
Case Study: Modeling, Simulation, Verification,
and Code Generation of an Automatic Cruise

Control System

Xiong Xu1[0000−0003−4236−9992], Shuling Wang3[0000−0002−2798−2660], Zekun
Ji1,2[0009−0000−0302−1737], Qiang Gao1,2[0009−0000−4663−8622], Xiangyu

Jin1,2[0000−0001−6176−2242], Bohua Zhan1,4[0000−0001−5377−9351], and Naijun
Zhan1,5[0000−0003−3298−3817]⋆

1 KLSS (CAS) and SKLCS, Institute of Software, Chinese Academy of Sciences,
Beijing, China

{xux,wangsl,jizk,gaoqiang,jinxy,bzhan,znj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 National Key Laboratory of Space Integrated Information System, Institute of
Software, Chinese Academy of Sciences, Beijing, China

4 Huawei Technologies Co., Ltd., Beijing, China
5 School of Computer Science, Peking University, Beijing, China

Abstract. Cyber-Physical Systems (CPSs) seamlessly integrate compu-
tational and physical capabilities, that expand the capabilities of physi-
cal world through communication, computation, and control. As pointed
out by Jones, any failure of these systems may cause severe catastro-
phes, especially for safety-critical applications. The Model Based De-
sign (MBD) approach can control complexity of systems by appropriate
abstraction/refinement and composition/decomposition, and meanwhile
provides techniques based on modeling, analysis, and verification in or-
der to detect and correct errors in the early stage of design. However, the
MBD for CPSs faces challenges, for it is difficult to consider all the three
aspects, including physical processes, software functionality, and system
architecture, uniformly in CPS design. To address this issue, we proposed
a unified graphical framework combing AADL and Simulink/Stateflow,
called AADL⊕S/S, for modeling all the three aspects of CPSs, and we
also presented the translation from informal AADL⊕S/S to formal Hybrid
Communicating Sequential Processes (HCSP) and finally to C code. In
this paper, we introduce a case study of a realistically-scaled automatic
cruise control system. The goal of this case study is to show the whole
procedure of modeling, simulation, verification, and code generation of
the MBD methodology, illustrate the combined framework of AADL and
Simulink/Stateflow to cover all the three aspects of CPS design, as well as
the capability of analyzing the combined model, and finally demonstrate
the practicability of our MBD approach for complex CPSs.

Keywords: CPS · MBD · AADL · Simulink/Stateflow · HCSP · Simu-
lation · Verification · Code Generation.

⋆ Corresponding author.

2 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

1 Introduction

Cyber-physical systems (CPSs) tightly couple hardware and software to sense
and actuate a physical environment. CPSs are ubiquitous in our daily life such as
aerospace, high-speed train, and automotive, and are expected to achieve desired
behaviors, especially for safety-critical ones. CPS can be dated back to Jones’s
computer-based systems [17], later his DSoS (dependable systems of systems)
[14]. As stressed by Jones [17, 4], dependability and reliability are essential for
these systems. To attack these issues, model based design (MBD), has become a
popular development approach in the CPS community. In the MBD approach, a
system is usually modeled as different levels of abstraction for different purposes.
However, the MBD of CPSs is not such easy. The key reason for the difficulty is
that when modeling CPSs, it is paramount to take multiple perspectives e.g. their
software functionalities, physical environment, hardware platform and system
architecture into account uniformly, as shown in Fig. 1.

Fig. 1. The three perspectives of CPS design

Unfortunately, most of existing design methodologies and workflows do not
support all these design aspects uniformly. For example, AADL [11, 23] fea-
tures strong capabilities for describing the architecture of a system due to the
pragmatic effectiveness of combining software and hardware component models.
However, the core of AADL only supports modeling of embedded system hard-
ware and abstraction of its relevant discrete behavior, and does not support the
description of the continuous physical processes to be controlled and its com-
bination with software. By contrast, Simulink/Stateflow [19, 20], the de-facto
industry standard for model-based analysis and design of embedded systems, is
best-suited for modeling and analyzing continuous physical processes, discrete
computations and their combination, but it cannot naturally model system ar-
chitectures and hardware platforms.

Case Study of an Automatic Cruise Control System 3

To address the above issue, we presented AADL⊕S/S [30, 27], a combination of
AADL and Simulink/Stateflow (S/S), that provides a unified graphical modeling
formalism to represent all three perspectives of CPS design in Fig. 1. An overview
of AADL⊕S/S is given in Fig. 2. Using AADL⊕S/S, a CPS is modeled with the
following three layers:

Architecture layer The system architecture and its hardware platform are
described by AADL components that define the structure, type and charac-
teristics of composed hardware and software components.

Software layer The software behavior can be modelled either through AADL
behavioral annexes or Simulink/Stateflow diagrams.

Physical layer The physics of the CPS and its interaction with the hard-
ware/software platform are modeled by Simulink/Stateflow diagrams.

Process

Process

Hardware
Componentsubcomponent

implementation

subcomponent

implementation

subcomponent

implementation

block

block

Simulink/Stateflow

Softw
are Layer

A
rchitecture Layer

Physical Layer
B
in
di
ng

A
bs
tr
ac
t

Fig. 2. An overview of AADL⊕S/S

We have developed a toolchain, called Mars [7, 29], for modeling, analysis,
verification, and code generation of CPSs. With the aid of the toolchain, this
paper will introduce a realistically-scaled example of an automatic cruise con-
trol system to illustrate the whole procedure of the MBD approach for CPSs,
including modeling, simulation, verification, and code generation. Concretely,
the graphical model of the system is constructed using AADL⊕S/S and then it
is translated to a formal HCSP (Hybrid Communicating Sequential Processes)
model, based on which the simulation and verification can be performed. From

4 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

the verified HCSP model, we can continue to generate the C code. Since the cor-
rectness of the translation is guaranteed, the generated C code is more reliable.
The case study is an extension of our previous work in [27], including:

– The translation of Simulink/Stateflow is simplified and improved.
– The verification is enhanced by a more automated HHL prover.
– The C code generation from the translated HCSP model is considered.

Paper Organization Section 2 introduces briefly the basic notions in our for-
malism, including the informal aspect including AADL and Simulink/Stateflow,
the formal aspect HCSP, and the framework of our toolchain Mars. The auto-
matic cruise control system as the case study is illustrated in detail in Section 3,
followed with the simulation, verification, and code generation of this complex
system in Section 4 and 5. After reviewing related works in Section 6, we con-
clude in Section 7.

2 Background

2.1 AADL

AADL is an Architecture Analysis & Design Language used to model embedded
real-time systems as assembly of software components mapped onto execution
platforms [11, 23, 10]. An AADL specification is composed of software, hardware,
and composite systems. However, at present, there is no suitable AADL compo-
nent describing the continuous behavior of physical environments. Thus, in our
setting, we choose to represent the physical environments as system components.

Software in AADL consists of data, subprogram, threads, and processes.
A data component represents a data type. A subprogram component represents
executable code that can be called, with parameters provided by threads and
other subprograms. A thread component represents the fundamental unit for
executing a sequential flow of control behavior. A process component, which
is closely affiliated to a processor component, refers to a software instance re-
sponsible for executing threads. It usually contains multiple thread components,
whose execution is managed by a scheduler.

The hardware side represents computation and communication resources in-
cluding processor, memory, bus and device components. A processor compo-
nent represents the hardware and software responsible for scheduling and exe-
cuting task threads. A memory component is used to represent storage entities for
data and code. A device component models a component interacting with the
environment, such as sensor or actuator. A bus component represents a physical
connection among execution platform components. Finally, a system is a top-
level component consisting of a hierarchy of software and hardware components.

Communication among different components is realized by connections via
ports, parameters and access to shared data. Especially, port connection rep-
resents transmission of data, event, or data/event between different threads, or
between threads and hardware components such as processors or devices.

Case Study of an Automatic Cruise Control System 5

2.2 Simulink/Stateflow

Simulink [19] is an environment for model-based design of dynamical systems,
and has become a de-facto standard in the embedded systems industry. Gener-
ally, a Simulink diagram contains a set of blocks, subsystems, and wires, where
blocks and subsystems cooperate by exchanging data flows through connected
wires. Simulink provides an extensive library of pre-defined blocks for building
and managing such block diagrams, and also a rich set of fixed-step and variable-
step ODE solvers for simulating dynamical systems. Blocks can be grouped into
subsystems, such as normal, triggered, and enabled subsystems, to establish a
hierarchical structure on Simulink diagrams. A hierarchical Simulink model is
thus composed of blocks, subsystems, and lines between them. After a Simulink
model is built, it is ready for simulation. Each step of simulation corresponds to
one sample time of the overall diagram.

Stateflow [20] is a toolbox adding facilities for modeling and simulating re-
active systems by means of hierarchical statecharts. They can be defined as
Simulink blocks, fed with Simulink inputs and producing Simulink outputs. It
extends Simulink’s scope to event-driven and hybrid forms of embedded control.
A Stateflow diagram is composed of transitions, states and junctions. Each tran-
sition connects a source state to a destination state. It supports construction of
flow charts using connective junctions and transitions, which can be used be-
tween states to specify decision logics to form transition networks. The Stateflow
states can be composed to form hierarchical diagrams: Or diagram, for which
the states are mutually exclusive and only one state becomes active at a time,
and And diagram, for which the states are parallel and all of them become active
simultaneously.

2.3 HCSP

HCSP is an extension of Hoare’s Communicating Sequential Processes (CSP)
for hybrid systems [32, 15] . In HCSP, differential equations are introduced to
model continuous evolution of the physical processes (in the physical environ-
ment) along with interrupts. A hybrid system in HCSP is a parallel composition
of networked sequential processes interacting through dedicated channels, or a
repetition of a sub-system. Processes in parallel can only interact through com-
munication, and no shared variables are allowed.

Syntax The processes of HCSP are constructed as follows:

P ::= skip | x := e | wait(d) | ch?x | ch!e | B → P | ⟨ṡ = F (s)&B⟩
| 8i∈I(chi2i −→ Pi) | ⟨ṡ = F (s)&B⟩� 8i∈I(chi2i −→ Pi)
| X | µX.P | P # P′ | P ⊔ P′

S ::= P | S∥S′

where P, P′, and Pi represent sequential processes, whereas S and S′ stand for
(sub)systems, ch and chi are communication channels, while chi2i is a com-
munication event which can either be an input event ch?x or an output event

6 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

ch!e, B and e are boolean and arithmetic expressions respectively, and d is a
non-negative real constant.

Process skip terminates immediately without updating variables, and process
x := e assigns the value of expression e to variable x and then terminates. Process
wait(d) keeps idle for d time units without any change to respective variables.
Interaction between processes is based on two types of communication events:
ch!e sends the value of e along channel ch and ch?x assigns the value received
along channel ch to variable x. Communication takes place when both the source,
and the destination processes are ready.

HCSP supports both sequential and concurrent composition. A sequentially
composed process P #P′ behaves as P first, and if it terminates, as P′ afterwards.
The process B → P behaves as P only if B is true and terminates otherwise.

Internal choice between processes P and P′, denoted as P⊔P′, is resolved by
the process itself. Communication controlled external choice 8i∈I(chi2i −→ Pi)
specifies that as soon as one of the communications chi2i takes place, the process
starts behaving as respective process Pi.

Continuous evolution is specified as ⟨ṡ = F (s)&B⟩. Real variables s evolve
continuously according to differential equations F as long as the boolean ex-
pression B is true. B defines the domain of s and we require B to be open. For
example, x > 0 and x ̸= 0 are open while x ≥ 0 and x = 0 are not. In HCSP,
continuous evolution can be preempted due to the following interrupts:

Boundary Violation Process ⟨ṡ = F (s)&B⟩ evolves until the boundary con-
dition B becomes false.

Communication Process ⟨ṡ = F (s)&B⟩ � 8i∈I(chi2i −→ Pi) behaves like
⟨ṡ = F (s)&B⟩, except that the continuous evolution is preempted whenever
one of the communications chi2i takes place, followed by respective Pi.

The recursion µX.P means that the execution of P can be repeated by replac-
ing each occurrence of X with µX.P itself during executing P, i.e., µX.P behaves
like P[µX.P]. Finally, S defines an HCSP system on the top level. A parallel com-
position S∥S′ behaves as if S and S′ run independently except that they need to
synchronize along the common communication channels.

2.4 From AADL⊕S/S to HCSP

The translation of AADL⊕S/S models to HCSP is introduced in [27] and we
give a brief overview here. The combined model is implemented in two ways:
First, the physical environment of the system can be described by a continuous
Simulink diagram; Second, the behavior of threads in AADL can be modeled by
discrete Simulink/Stateflow diagrams. The translation procedures for Simulink
and Stateflow are described in [29]. The connections between threads can be
translated into buffer and bus processes for coordinating asynchronous commu-
nication between components. Processors are translated into scheduler processes
managing the execution of threads according to the specified scheduling policies.
In addition, devices can be modeled directly by HCSP processes for producing

Case Study of an Automatic Cruise Control System 7

simulated signals, or modeled as Simulink blocks like signalBuilder and then
translated into HCSP processes. Finally, these separated HCSP processes can be
integrated in parallel to form the whole model of the system.

2.5 The Mars Toolchain

We developed a toolchain, called Mars 2.0 [29], for modeling, analysis, verifica-
tion, and code generation of CPSs. As shown in Fig. 3, Mars 2.0 (right) inte-
grates Mars 1.0 [7] (left) with significant extensions and improvements, allowing
the design of CPSs using the combination of AADL and Simulink/Stateflow
(AADL⊕S/S). The toolchain automatically translates AADL⊕S/S models into
HCSP; the translated HCSP can then be simulated using the HCSP simula-
tor [27], and to complement incomplete simulation, it can be verified using the
Hybrid Hoare Logic prover [33] in Isabelle/HOL, as well as the more automated
HHLPy prover [25]. Finally, implementations in SystemC [28] or C [26] can be
automatically generated from the verified HCSP processes. On the other side,
the toolchain can translate AADL⊕S/S models directly into C code [30], but the
correctness of the translation cannot be guaranteed.

The architecture of the previous version of this tool, i.e., Mars 1.0, is mainly
composed of three parts: translators Sim2HCSP and HCSP2Sim, and an HHL
prover. HCSP2Sim is used to justify the correctness of Sim2HCSP, and HHL
prover verifies HCSP formal models. In Mars 2.0, the correctness of the trans-
lation procedures is proved formally, thus HCSP2Sim is no longer necessary. In
summary, Mars 2.0 extends Mar 1.0 mainly from the following aspects:

– The co-modeling with AADL;
– The HCSP simulator and improved HHL provers;
– The code generation from HCSP models.

In what follows, we illustrate the whole procedure of Mars 2.0 by the case
study of an automatically cruise control system introduced in the next section.

3 An Automatic Cruise Control System

In this section, we introduce an automatic cruise control system (ACCS for short)
as the case study to illustrate the whole procedure of modelling, simulation, ver-
ification, and code generation by our toolchain Mars introduced in Section 2.5.
This example is adapted from the self-driving car system in [10], where it is mod-
elled only in AADL, and then extended in [27] by adding physical environment
and control components modelled in Simulink/Stateflow.

The architecture of the ACCS decomposes to three levels, shown in Fig. 4.
The physical layer contains the physical vehicle. The software level defines control
of the system and it contains three processes for obstacle detection, velocity
control, and panel control, and each process is composed of several threads. These
processes interact with the environment (the physical layer) through devices. The
platform layer consists of a bus, a processor, and some devices. The connections

8 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

Fig. 3. Mars 1.0 (left, [7]) and 2.0 (right)

between processes and devices could be bound to the bus and all the threads are
bound to the processor, with HPF (High-Priority-First) scheduling policy.

The execution of the ACCS is as follows. A vehicle is placed at the starting
point initially and the driver can accelerate (inc) and decelerate (dec) the vehicle
by the user panel. Thread pan ctr th deals with the commands from the driver
and then sends desired velocities (des v) to the discrete PI controller (thread
PI ctr). Meanwhile, process obs det detects the obstacles ahead by a camera

and a radar and provides the velocity controller process (vel ctr) with the
real-time position of obstacle (obs pos). Thread velo voter in process vel ctr

monitors the velocity of the vehicle using laser and another device located on
one wheel of the vehicle and produces the real-time velocity of the vehicle (veh v)
to the discrete PI controller PI ctr and the emergency control thread (emerg).
Based on the real-time velocity of vehicle and the desired velocity received,
PI ctr computes a desired acceleration (des a) which will be sent to emerg.
Finally, emerg collects the real-time position (veh pos by GPS) and velocity of
the vehicle, the desired velocity set by the driver, and the real-time position of
the obstacle to work out a command, by some emergency control strategy, which
will update the acceleration of the vehicle through actuator. The vehicle moves
according to the new acceleration and the above procedure repeats.

3.1 Physical Level

The physical level is represented by an AADL system component which contains
a Simulink diagram (shown in Fig. 4) describing how the vehicle moves. Specifi-
cally, it receives an ac(de)celeration a from the input port veh a, based on which
the velocity v and position s of the vehicle evolve. The evolution can easily be

Case Study of an Automatic Cruise Control System 9

im
g_acq.im

p

com
p_obs_pos.im

p

obs_det.im
p

em

erg.im
p

velo_voter.im
p

vel_ctr.im
p

pan_ctr_th.im

p

pan_ctr.im
p

cam
era

radar
laser

G
PS

actuator
w
heel

user_panel

vehicle.im
p

Sim
ulink D

iagram

im
gproc_im

g
obs_pos_radar

proc_im
g

obs_pos
cm

d

velocity

vehicle position

wheel_v

obs_pos

veh_v
veh_v

des_a

veh_pos
des_v

laser_v

wheel_valid

laser_valid

event: dec or inc

Physical

Softw
are

Platform

ac(de)celeration

PI_ctr.im
p des_v

veh_v

des_a

a

v

s

obstacle position detection

veh_a
veh_s

veh_v_l

vehicle velocity

veh_v_w

C
PU

B
U
S

Fig. 4. Automatic Cruise Control System

10 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

described by a set of ODEs {ṡ = v, v̇ = a}. During the evolution, the vehicle can
interact with its environment (composed of several devices) at any time: it can
be actuated by the actuator and its position and velocity can be sensed by the
GPS and two speedometers (laser and wheel), respectively.

3.2 Software Level

The software level is composed of three AADL processes: obs det for detect-
ing the obstacle in front of the vehicle, vel ctr for controlling the vehicle, and
pan ctr for dealing with the commands from the user panel. These three pro-
cesses are connected to make the evolution of the vehicle follow the driver’s
intent as much as possible, and in the meantime the vehicle should not collide
into the obstacle ahead.

Obstacle Detection The obstacle detection process obs det is composed of
two threads: img acq for dealing with the obstacle image from the camera and
comp obs pos for computing the position of the obstacle according to the image
from the camera and the signal from the radar. Concretely, the thread img acq

acquires from a camera raw images (img) of the road ahead and then sends the
processed images (proc img) to the thread comp obs pos which also receives ob-
stacle information detected by a radar. The thread comp obs pos then outputs
the final position of the obstacle (obs pos). The image processing of img acq

may cause some delay, so its behavior is simply abstracted as a Simulink dia-
gram containing only a unit delay (Fig. 5), because the detail of the image
processing is not a concern in this case study. The behavior of comp obs pos is
also described by a discrete Simulink diagram (Fig. 6) which combines the two
inputs in a conservative way: it takes the minimal of the valid (≥ 0) obstacle
positions detected as the final value and then sends it out.

1
img

1
proc_img

processing

image new_image

Fig. 5. The behavior of thread img acq

Velocity Control The process vel ctr for velocity control consists of three
threads. The thread vel voter is a voter procedure combining velocity informa-
tion received from the wheel and laser of the vehicle. Concretely, if the wheel
is valid (wheel valid > 0) but the laser is not (laser valid ≤ 0), then the
velocity information from the wheel will be sent out; if, symmetrically, the laser
is valid but the wheel is not, i.e., laser valid > 0 ∧ wheel valid ≤ 0, then
the velocity sensed by the laser will be taken; otherwise, i.e., both are valid

Case Study of an Automatic Cruise Control System 11

1
obs_pos

1
proc_img

2
obs_pos_radar

 > 0

 > 0

 > 0

0
obs_pos_radar

proc_img

obs_pos

Fig. 6. The behavior of thread comp obs pos

1
veh_v

1
wheel_valid

2
wheel_v

3
laser_valid

4
laser_v

 > 0

 > 0 2

wheel_valid

laser_valid

laser_v

wheel_v

veh_v

Fig. 7. The behavior of thread velo voter

or invalid, the mean of the sensed velocity values will be regarded as the final
velocity of the vehicle. The Simulink diagram in Fig. 7 models this behavior.

The thread PI ctr receives the vehicle speed (veh v) produced by vel voter

and a desired speed (des v) from the user panel and then computes a desired
acceleration (des a). Concretely, it computes the difference between the desired
and the real velocities of the vehicle and then sends the difference to discrete
PI controller with a wind-up method (back-calculation) to calculate a desired
acceleration. The Simulink diagram in Fig. 8 models this behavior.

PI(z)

Discrete PID Controller

1
des_v

2
veh_v

1
des_a

des_v

veh_v
des_a

Fig. 8. The behavior of thread PI ctr

The thread emerg receives obstacle position (obs pos) from obs det, vehicle
position (veh pos) from GPS, vehicle speed (veh v) from vel voter and the
desired acceleration (des a) from PI ctr, and computes a command (veh a) to
the actuator based on all these inputs. It checks whether the acceleration output
by PI ctr is safe with respect to obstacle position. If so this is allowed as the
final command. Otherwise, it overrides the command with a safe deceleration.

12 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

Concretely, the control of emerg is based on the Maximum Protection Curve [27]
computed as follows:

Vlim(s) =

vmax if sobs − s ≥ v2

max

(−2amin)√
−2amin · (sobs − s) if 0 < sobs − s <

v2
max

(−2amin)

0 otherwise

where s and sobs are the respective current positions of the vehicle and the
obstacle, vmax is the maximum velocity that the vehicle can reach and amin < 0
is the braking deceleration of the vehicle. If the obstacle is out of the safe distance
(−v2max/2amin) of the vehicle, the upper limit velocity of the vehicle can be the
maximum vmax ; if not, the velocity should not exceed

√
−2amin · (sobs − s) in

order to avoid the collision (provided sobs − s > 0); otherwise, if sobs − s ≤ 0,
then a collision has already happened, and the vehicle should stop (Vlim = 0).

At each iteration, emerg predicts the position snext and velocity vnext of the
vehicle at the next period based on the desired acceleration (ades) provided by
PI ctr (see Fig. 4). Concretely, they can be computed by

vnext = v + ades · period
snext = s+ v · period + 1

2 · ades · period2

where period is the period of the thread emerg.
If, at the next period, the velocity does not exceed the upper limit computed

as above, i.e., vnext ≤ Vlim(snext), then the desired acceleration ades is safe; if
not, it continues to test if the constant velocity (no acceleration or deceleration)
is safe (v ≤ Vlim(s+ v · period)); otherwise, the emergency alerts and the thread
emerg outputs the minimal deceleration (amin < 0) to brake the vehicle. The
above control strategy can be summarized as

a(s, v) =

 ades if vnext ≤ Vlim(snext)
0 if v ≤ Vlim(s+ v · period)

amin otherwise

and it is modeled by the Stateflow diagram shown in Fig. 9.

Panel Control The process pan ctr includes only one thread pan ctr th.
It receives events from device user panel. The driver can control user panel

by triggering events inc and dec to increase and decrease the desired speed,
respectively. The behavior of the thread pan ctr th is modeled by a Stateflow
diagram shown in Fig. 10.

3.3 Platform Level

The hardware platform is composed of a bus, a processor, and some devices
such as camera, radar, and actuator, connecting the physical and software
levels. The behavior of each device is described directly by HCSP using HCSP

Case Study of an Automatic Cruise Control System 13

v_lim	=	V_lim
MATLAB	Function

state

[veh_v<=V_lim()]/{cmd=0}

1

{next_s=veh_pos+veh_v*period}
2

{next_v=veh_v+des_a*period;
	next_s=veh_pos+veh_v*period
														+0.5*des_a*period*period;}

[next_v<=V_lim()]
/{cmd=des_a}

1

/{cmd=min_a}

2

Fig. 9. The behavior of thread emerg

update

dec/{des_v=des_v-1}

2

inc/{des_v=des_v+1}

1

{des_v=0}

Fig. 10. The behavior of thread pan ctr th

Annex. In the ACCS architecture (Fig. 4), the connections between devices and
processes are all bound to a bus, and all the threads in the processes are bound
to a processor adopting HPF (High-Priority-First) scheduling policy. Each bus
has the property of latency denoting the transfer delay, thus we can consider
different settings of number of buses and their latency to observe the impact on
the system performance caused by bus.

3.4 Restrictions on AADL

We only take part of AADL components including processes, threads, processors,
buses, devices, abstract components (used to model physical environment), and
the connections between components, into account. Other components have not
been considered, for instance, memories and processors with more scheduling
policies. The reasons for the restrictions include:

1. We concern more on the abstract and formal model of AADL. The design
details of AADL will lead to complex and redundant formal models, which
prevents us from verifying the key properties (like safety and latency) of
AADL models;

14 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

2. The Simulink/Stateflow diagrams are used to describe the hybrid and phys-
ical behaviors of components, i.e., we focus more on behavioral components
like threads. The components regarding resource (for instance, memories) are
not the concern. In our future work, we will consider the effect of resource
constraints on AADL models.

4 Simulation and Verification

The ACCS introduced in Section 3 is an (informal) graphical combined model
of AADL and Simulink/Stateflow (AADL ⊕ S/S). In order to analyze it in a
formal manner, we translate it to a formal HCSP model. The translation from
AADL ⊕ S/S to HCSP has been presented in [27] and integrated into our Mars
toolchain introduced in Section 2.5. The correctness of the translation has also
been proved [27]. Given the translated HCSP model of the ACCS, we can perform
simulation and verification using the toolchain Mars.

4.1 Simulation

We set up a scenario where there is a mobile obstacle in front of the vehicle and
where the driver also sets a desired speed for the vehicle. We assume that the
obstacle appears at time 10s and position 35m, then moves ahead with velocity
2m/s, before finally moving away at time 20s and position 55m. In this scenario,
we assume the camera fails to work and thus only radar can detect the obstacle.
Concretely, the behavior of the failed camera can be simply described by the
HCSP program: µX.out!−1#wait(0.2)#X, i.e., it outputs −1 (invalid) through its
output port every 0.2s (the period of the camera), and the behavior of the radar
can be modeled by µX.x := 0 #(10 ≤ t < 20 → x := 2t+15) #out!x #wait(0.01) #X,
where t denotes the local time of the radar and is set 0 initially, and x represents
the detected position of the obstacle.

On the vehicle side, we assume that at the beginning the vehicle is at rest
at the initial position 0m and the driver pushes the inc button (to increase the
speed) three times with time interval 0.5s in between to set a desired speed to
3m/s. After 29s, the driver pushes the dec button (to decrease the speed) twice
in 0.5s time intervals to decrease the desired speed. In summary, the behavior
of the driver (user panel) can be modeled by the following HCSP program:

out!"inc" # wait(0.5) # out!"inc" # wait(0.5)out!"inc"#
wait(29)#
out!"dec" # wait(0.5) # out!"dec"

Other devices (actuator, GPS, laser, and wheel) are treated as “routers”
which transfer periodically the received messages at the input ports directly
through the output ports. For example, the behavior of the GPS can be described
as µX.in?x # out!x # wait(0.006) # X, where x denotes the sensed vehicle position
and the period of the GPS is 0.006s.

Case Study of an Automatic Cruise Control System 15

Impact of Bus We first set the latency of the bus in ACCS (Fig. 4) to 3ms,
and the simulation results are shown in Fig. 11, from which we can see that the
vehicle nearly hits the moving obstacle ahead. The reason for this dangerous
situation is the competition for bus permission. The competition is so intense
that the radar can hardly transfer the sensed obstacle position to the process
obs det in time. Actually, the delay of the transferring is up to 5s in this case,
which is absolutely intolerable in the real world applications.

0 5 10 15 20 25 30 35 40
time (s)

0

1

2

3

4

5

ve
hi

cle
 v

el
oc

ity
 (m

/s
)

HCSP (no bus)
HCSP (1bus, 3ms)

0 5 10 15 20 25 30 35 40
time (s)

0

20

40

60

80

100

po
sit

io
n

(m
)

obstacle
vehicle (1bus, 3ms)

Fig. 11. One bus with the latency 3ms

The above can be seen as a design error: the allocation of bus capacity is
insufficient for the given latency. To correct this problem, we set an extra bus
with the same latency (3ms) for the radar. The connection between the device
radar and the process obs det is bound to this dedicated bus. The simulation
result of the vehicle velocity in this case is shown in Fig. 12 (dashed line), which
is similar to the case not involving buses (solid line). The minor gap between
them is due to the latency of the buses.

Based on the setting of two buses, we further increase the bus latency to 5ms
to test the performance of the system. The result is that the vehicle never starts.
By examining the logs of simulation, we can find that the thread emerg cannot
obtain bus permission in order to transfer the acceleration command to actuator,
causing the vehicle keeping motionless. The reason is the lack of throughput of
the bus. To resolve it, we hence add another bus to the architecture and bind
the connection between the thread emerg and the actuator to this bus, and the
simulation result returns to normal according to Fig. 12 (dotted line).

4.2 Verification

One of the motivations of translating the AADL⊕S/S model of ACCS to HCSP is
to verify the informal graphical model of ACCS. In this case study, we verify the
safety property of the control strategy of the thread emerg (Velocity Control
in Section 3.2) using trace-based Hybrid Hoare Logic.

16 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

0 5 10 15 20 25 30 35 40
time (s)

0

1

2

3

4

5

ve
hi

cle
 v

el
oc

ity
 (m

/s
)

HCSP (no bus)
HCSP (2bus, 3ms)
HCSP (3bus, 5ms)

Fig. 12. Vehicle velocity under different bus settings

First, we use automated HHL prover: HHLPar to generate an assertion R on
trace and state satisfying the following lemma.

Theorem 1.

∀s̄0. p(s̄0) −→ |= {s̄ = s̄0 ∧ tr = ϵ} Plant∥Control {R(s̄0)}

where p represents the initial condition on the starting state s̄0 and R maps
the the starting state s̄0 to the assertion on the state s̄ and trace tr after the
termination of the process describing the whole behaviour this parallel system.

The process Plant and Control are defined in following:

Plant ≜ ch1!v; ch2!s; (ch3?a; ⟨ṡ = v, v̇ = a&true⟩� 8[ch1!v → ch2!s])∗

Control ≜ ch1?v; ch2?s; (snext := s+ v · period+ 1
2
· ades · period2;

vnext := v + ades · period;
(if − 2 · amin · (sobs − snext) ≥ v2max then Vlim := vmax else

if sobs − snext > 0 then Vlim :=
√

−2 · amin · (sobs − snext)
else Vlim := 0);

(if vnext ≤ Vlim then a := ades else

snext := s+ v · T ;
(if − 2 · amin · (sobs − snext) ≥ v2max then Vlim := vmax else

if sobs − snext > 0 then Vlim := −2 · amin · (sobs − snext)
else Vlim := 0);

if v ≤ Vlim then a := 0 else a := amin);
ch3!a; wait period; ch1?v; ch2?s)∗

The generating procedure of R to satisfy the theorem through HHLPar includes
the following three steps:

Lemma 1.
|= {s̄ = s̄1 ∧ tr = ϵ} Plant {R1(s̄1)}

Lemma 2.
|= {s̄ = s̄2 ∧ tr = ϵ} Control {R2(s̄2)}

Case Study of an Automatic Cruise Control System 17

Based on the structure of a single process we automatically generate its corresponding
assertions using the specification rules. For example:

paramODEsol(
−→̇
x = −→e ,B,−→p , e) lipschitz(

−→̇
x = −→e) spec of(c,Q)

spec of(⟨−→̇x = −→e &B⟩; c,wait(s = s0[−→x 7→ −→p (s0, t)], e, {d ⇒ Q[−→x := −→p (s0, d)]}))

Then we apply the synchronization rules between R1 and R2 to compute the R on
parallel process.

Lemma 3.

∀ s̄1 s̄2 , p(s̄1 ⊎ s̄2) −→ R1(s̄1)∥R2(s̄2) =⇒ R(s̄1 ⊎ s̄2)

The assertion R computed by HHLPar contains state changes and generated tra-
jectories of the process and is strong enough to inference the safety property we need
which can be concluded as Safe ≜ s ≤ sobs ∧ v ≤ Vlim(s), and we have

Theorem 2.
R(s̄0, s̄, tr) −→ Safe(s̄)

which can be proved by Isabelle/HOL. Combining the two theorems, we can obtain
complete verification of the security property of this system.

5 Code Generation

In our previous work [30], combined models of AADL ⊕ S/S are translated to C code
directly. The translation is done by the following steps: (1) the AADL part is translated
to C following the execution semantics of AADL; (2) the Simulink/Stateflow part is
translated using the existing C code generation facility in Matlab; (3) the architecture
part is implemented by a library in C that includes thread scheduling protocols and
so on; and (4) the combined model is translated by integrating the C codes generated
from the above three parts. However, the interaction (communication) between com-
ponents is implemented by shared variables (without pthreads) and the correctness of
the translation has not been proved.

In our latest work [26], we generate the C code of AADL ⊕ S/S models from their
HCSP models. Since HCSP are verifiable and the correctness of the translation can
be guaranteed, the generated code, especially the code for the controller, satisfies the
safety requirement and therefore is reliable. The communication between processes is
implemented using pthreads and the correctness of the code generation is proved based
on approximate bisimulation, i.e., an HCSP model and the C code generated from it are
in some approximate bisimulation relation. The generated C code is of 3500–4000 lines.
The HCSP model is specified by a formal language and therefore verifiable. Thus, the
C code generated from HCSP files is more reliable than from the graphical AADL⊕S/S
model directly.

In Fig. 13, we compare our results with the simulation of the HCSP model of the
ACCS and the execution of the C code generated directly from the AADL⊕S/S model
of the ACCS ([30]). The left of Fig. 13 shows the execution results of the vehicle speed,
where the black line denotes the desired velocity set by the driver. We can see that
the execution result of the generated C code is almost the same as the simulation of
its HCSP model. Specifically, the average relative error (ARE) between the time series

18 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

0 5 10 15 20 25 30 35 40
time (s)

0

1

2

3

4
ve

hi
cle

 v
el

oc
ity

 (m
/s

)

desired
C[UTP-19]
HCSP
C

0 5 10 15 20 25 30 35 40
time (s)

0

20

40

60

80

100

po
sit

io
n

(m
)

obstacle
vehicle(C[UTP-19])
vehicle(HCSP)
vehicle(C)

Fig. 13. Comparison of execution results where UTP-19 denotes the work of [30]

of the velocity generated from the HCSP model and its C code is 0.138% with the
variance 4.686× 10−5. Besides, we can also observe that there is a negligible difference
between the results of the C code generated by [30] and the latest C code generated:
the ARE is 0.182% with the variance 4.232× 10−3.

From both results, we can see that the vehicle accelerates to the desired speed
(3m/s) in 10s. The fluctuation during [2s, 10s] reflects feature of PI controllers. It then
decelerates to avoid the collision onto the obstacle ahead. After the obstacle moves
away (at 20s), the vehicle accelerates again to the desired speed. At 30s, the driver
pushes the dec button to adjust the desired velocity to 1m/s and we can see that the
vehicle decelerates to 1m/s in about 6s under the PI controller. The positions of the
vehicle and of the obstacle with respect to time are shown on the right of Fig. 13.

6 Related Work

There exist a huge amount of work on the modeling, analysis, verification and code gen-
eration of CPSs. Several unified frameworks have been proposed for designing CPSs.
The Metropolis design framework [2, 9] is a platform-based design environment for
heterogeneous systems, that provides simulation, verification, and code synthesis by
transforming all models to a unified meta-model language. However, it lacks support
for physical plant modeling. Ptolemy [22] aims to design heterogeneous systems that
combine different models of computation in terms of actors and provides modeling and
simulation techniques for the combined models. Functional Mock-up Interface (FMI
3.0) [18] is an industrial standard maintained by the Modelica Association that en-
ables the exchange and co-simulation of dynamic component models. It couples differ-
ent simulation tools at system level by coordinating and synchronizing their respective
executions. However, Ptolemy supports very limited facilities to model continuous be-
haviors [8], and furthermore, both Ptolemy and FMI are not designed for hardware
architecture modeling and analysis.

Other lines of work consider limited perspectives of CPSs. UML, SysML [1] and
MARTE [24] are traditional model based design environments for designing discrete
systems, without support for physical plants. There are some works aiming for modeling
and verifying continuous and hybrid behaviors, but without considering architectures.
Zélus [6] extends the synchronous language Lustre [13] with ODEs and zero-crossing

Case Study of an Automatic Cruise Control System 19

events for designing and implementing hybrid systems and has also been implemented
in SCADE 6. It supports analysis of hybrid models by type systems and semantics,
and handles the detection of zero-crossing events [6, 3]. Differential dynamic logic [21]
is developed for reasoning about behaviors of hybrid dynamic models, and based on
which the KeYmaera X prover [12] is implemented for safety analysis of dynamic
systems. VeriPhy [5] automatically transforms verified formal models of CPSs modelled
in differential dynamic logic [21, 12] to controller implementations that preserve safety
properties of original models.

7 Conclusion

In this paper, we introduced a realistically-scaled automatic cruise control system as
the case study to illustrate the whole procedure of modeling, simulation, verification,
and code generation of the MBD for CPS design. We can learn from the results in
Section 4 that the impact on system behavior and perform can be foreseen and the
defect of system design can be checked by analyzing the model of system at the very
early stage, reducing the development cost significantly, reflecting the original intention
of the MBD methodology.

This case study demonstrates the practicability of the MBD tool, Mars, in dealing
with complex CPSs. The toochain Mars was first proposed in [7] with limited capability,
and later it is significantly improved based on our recent works including [27, 25, 31],
and so on. Given the case study described in this paper, we will summarize the toolchain
Mars into a tool paper and make it public to the MBD and CPS communities.

However, there are some limitations to our approach. First, AADL provides plenty
of components and functions, while we only consider its core functionalities, which
limits the practicality of our framework for more case-studying realistic CPSs. Second,
at present, our verifier only scales to small HCSP models and some sequential models
(no communication is involved). Thus, as future work, we will try to integrate more
functionalities into our approach, such as considering more AADL components and
Simulink/Stateflow blocks, modeling and verification of hybrid systems containing de-
lay or stochastic differential equations. Correspondingly, we will improve verification
efficiency and scalability by extending Jones’s rely/guarantee [16] to CPS such that our
approach can be applied to real-world case studies on a larger scale.

Acknowledgment

This work is partly funded by the NSFC under grant No. 62192732, the National Key
R&D Program of China under grants No. 2022YFA1005101 and 2022YFA1005103, the
NSFC under grant No. 62032024, and the CAS Project for Young Scientists in Basic
Research under grant No. YSBR-040.

References

1. SysML 1.6 Beta Specification (2019), http://www.omg.org/spec/SysML
2. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-

Vincentelli, A.L.: Metropolis: An integrated electronic system design environment.
Computer 36(4), 45–52 (2003). https://doi.org/10.1109/MC.2003.1193228

20 X. Xu, S. Wang, Z. Ji, Q. Gao, X. Jin, B. Zhan, and N. Zhan

3. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard seman-
tics of hybrid systems modelers. J. Comput. Syst. Sci. 78(3), 877–910 (2012).
https://doi.org/10.1016/J.JCSS.2011.08.009

4. Besnard, D., Jones, C.: Designing dependable systems needs interdisci-
plinarity. Safety Critical System’s Club Newsletter 13(3), 6–9 (2004),
https://hal.science/hal-00724103

5. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: Veriphy: verified
controller executables from verified cyber-physical system models. In: PLDI 2018.
pp. 617–630. ACM (2018). https://doi.org/10.1145/3192366.3192406

6. Bourke, T., Pouzet, M.: Zélus: a synchronous language with ODEs. In: HSCC 2013.
pp. 113–118. ACM (2013). https://doi.org/10.1145/2461328.2461348

7. Chen, M., Han, X., Tang, T., Wang, S., Yang, M., Zhan, N., Zhao, H., Zou, L.:
MARS: A toolchain for modelling, analysis and verification of hybrid systems. In:
Provably Correct Systems, pp. 39–58. NASA Monographs in Systems and Software
Engineering, Springer (2017). https://doi.org/10.1007/978-3-319-48628-4 3

8. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hy-
brid co-simulation: It’s about time. Softw. Syst. Model. 18(3), 1655–1679 (2019).
https://doi.org/10.1007/S10270-017-0633-6

9. Davare, A., Densmore, D., Meyerowitz, T., Pinto, A., Sangiovanni-Vincentelli, A.,
Yang, G., Zeng, H., Zhu, Q.: A next-generation design framework for platform-
based design. In: DVCon 2007. Citeseer (February 2007)

10. Delange, J.: AADL in Practice. Reblochon Development Company (2017)
11. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction

to the SAE Architecture Analysis & Design Language. Addison-Wesley Profes-
sional (2012)

12. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: Keymaera X: an axiomatic
tactical theorem prover for hybrid systems. In: CADE 2015. LNCS, vol. 9195, pp.
527–538. Springer (2015). https://doi.org/10.1007/978-3-319-21401-6 36

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow pro-
gramming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991).
https://doi.org/10.1109/5.97300

14. Hayes, I.J., Jackson, M.A., Jones, C.B.: Determining the specification of a control
system from that of its environment. In: FME 2003. LNCS, vol. 2805, pp. 154–169.
Springer (2003). https://doi.org/10.1007/978-3-540-45236-2 10

15. He, J.: From CSP to hybrid systems, p. 171–189. Prentice Hall International (UK)
Ltd., GBR (1994)

16. Jones, C.B.: Specification and verification. IEEE Transactions on Software Engi-
neering SE-10(2), 126–127 (1984). https://doi.org/10.1109/TSE.1984.5010214

17. Jones, C.B.: Dependability of computer-based systems. In: Sampaio, A. (ed.) SBSE
2000. pp. 16–20. SBC (2000). https://doi.org/10.5753/SBES.2000.25917

18. Junghanns, A., Gomes, C., Schulze, C., Schuch, K., R., P., Blaesken, M., Zacharias,
I., Pillekeit, A., Wernersson, K., Sommer, T., Bertsch, C., Blochwitz, T., Najafi,
M.: The functional mock-up interface 3.0 - new features enabling new applications.
In: Proceedings of 14th Modelica Conference 2021 (2021)

19. MathWorks Inc.: Simulink User’s Guide (2013),
http://www.mathworks.com/help/pdf doc/simulink/sl using.pdf

20. MathWorks Inc.: Stateflow User’s Guide (2013),
http://www.mathworks.com/help/pdf doc/stateflow/sf ug.pdf

21. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018).
https://doi.org/10.1007/978-3-319-63588-0

Case Study of an Automatic Cruise Control System 21

22. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation Using Ptolemy II.
Ptolemy.org (2014), http://ptolemy.org/books/Systems

23. SAE International Standards: Architecture analysis & design language (AADL),
Revision C (2017)

24. Selic, B., Gerard, S.: Modeling and Analysis for Real-time and Embedded Sys-
tems with UML and MARTE: Developing Cyber-Physical Systems. The MK/OMG
Press (2013)

25. Sheng, H., Bentkamp, A., Zhan, B.: HHLPy: Practical verification of hybrid sys-
tems using Hoare logic. In: FM 2023. LNCS, vol. 14000, pp. 160–178. Springer
(2023). https://doi.org/10.1007/978-3-031-27481-7 11

26. Wang, S., Ji, Z., Xu, X., Zhan, B., Gao, Q., Zhan, N.: Formally verified C code
generation from hybrid communicating sequential processes. In: ICCPS 2024. pp.
123–134. IEEE (2024), https://doi.org/10.1109/ICCPS61052.2024.00018

27. Xu, X., Wang, S., Zhan, B., Jin, X., Talpin, J., Zhan, N.: Unified graphi-
cal co-modeling, analysis and verification of cyber-physical systems by com-
bining AADL and Simulink/Stateflow. Theor. Comput. Sci. 903, 1–25 (2022).
https://doi.org/10.1016/J.TCS.2021.11.008

28. Yan, G., Jiao, L., Wang, S., Wang, L., Zhan, N.: Automatically generating SystemC
code from HCSP formal models. ACM Trans. Softw. Eng. Methodol. 29(1), 4:1–
4:39 (2020). https://doi.org/10.1145/3360002

29. Zhan, B., Xu, X., Gao, Q., Ji, Z., Jin, X., Wang, S., Zhan, N.: Mars 2.0: A toolchain
for modeling, analysis, verification and code generation of cyber-physical systems.
arXiv abs/2403.03035 (2024)

30. Zhan, H., Lin, Q., Wang, S., Talpin, J.P., Xu, X., Zhan, N.: Unified graphical
co-modelling of cyber-physical systems using AADL and Simulink/Stateflow. In:
UTP. LNCS, vol. 11885, pp. 109–129 (2019). https://doi.org/10.1007/978-3-030-
31038-7 6

31. Zhan, N., Zhan, B., Wang, S., Guelev, D.P., Jin, X.: A generalized hybrid Hoare
logic. CoRR abs/2303.15020 (2023)

32. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Hybrid
Systems III: Verification and Control. LNCS, vol. 1066, pp. 511–530. Springer
(1995). https://doi.org/10.1007/BFB0020972

33. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying Simulink dia-
grams via a hybrid Hoare logic prover. In: EMSOFT. pp. 1–9. IEEE (2013).
https://doi.org/10.1109/EMSOFT.2013.6658587

