g W N

© o N o

Piecewise Analysis of Probabilistic Programs via k-Induction

ANONYMOUS AUTHOR(S)

In probabilistic program analysis, quantitative analysis aims at deriving tight numerical bounds for probabilistic
properties such as expectation and assertion probability. Most previous works consider numerical bounds
over the whole program state space monolithically and do not consider piecewise bounds. Not surprisingly,
monolithic bounds are either conservative, or not expressive and succinct enough in general. To derive better
bounds, we propose a novel approach for synthesizing piecewise bounds over probabilistic programs. First,
we show how to extract useful piecewise information from latticed k-induction operators, and combine the
piecewise information with Optional Stopping Theorem to obtain a general approach to derive piecewise
bounds over probabilistic programs. Second, we develop algorithms to synthesize piecewise polynomial
bounds, and show that the synthesis can be reduced to bilinear programming in the linear case, and soundly
relaxed to semidefinite programming in the polynomial case. Experimental results show that our approach
generates tight piecewise bounds for a wide range of benchmarks when compared with the state of the art.

1 INTRODUCTION

Probabilistic programming [30, 37, 52] is a programming paradigm that extends classical program-
ming languages with probabilistic statements such as sampling and probabilistic branching, and
provides a powerful modelling mechanism for randomized algorithms [6], machine learning [12], re-
liability engineering [14], etc. Therefore, analysis of probabilistic programs is becoming increasingly
significant, and attracting more and more attention in recent years.

In this work, we consider the quantitative analysis problem that aims at automated approaches
that derive quantitative bounds for probabilistic programs. Common quantitative properties in-
clude expected runtime [1, 28, 34, 35], expected resource consumption [45, 53, 56], sensitivity [2],
assertion probabilities [19, 51, 55], and so forth. Most existing works focus on deriving numerical
bounds instead of solving the semantic equations exactly, as the latter is impossible theoretically
in general. In the literature, various approaches have been proposed to address the quantitative
analysis problem, including template-based constraint solving [15, 16, 18, 31], trace abstraction [50],
sampling [47], etc. Most of these approaches consider to synthesize a monolithic bound over the
whole state space of a probabilistic program of interest, and have the following disadvantages: First,
a monolithic bound is either too conservative (e.g., only very coarse bounds exist) or not succinct
enough (e.g., although tight monolithic bounds exist, the tightness usually requires complicated
polynomials with higher degree). Second, it may be even worse that no monolithic polynomial
bounds exist.

It is straightforward to observe that piecewise bounds are more accurate than monolithic bounds.
Moreover, a recent work [9] demonstrates that probabilistic program analysis requires piecewise
feature. However, the synthesis of piecewise bounds for probabilistic programs is not well investi-
gated in the literature. To our best knowledge, a handful relevant work is by [10]. They propose an
approach for generating (piecewise) invariants to verify user-provided linear bounds for proba-
bilistic programs with discrete probabilistic choices, which is based on Counterexample-Guided
Inductive Synthesis (CEGIS) and template refinement. Another relevant work is [5] that proposes a
data-driven approach that can synthesize piecewise (sub-)invariants over probabilistic programs
with discrete probabilistic choices. Their approach prefers a suitable list of numerical program
features (such as multiplication expressions over variables), which requires prior knowledge of
the program or user’s assistance. Both of these related works require a bound to be verified as an
additional program input when synthesizing (super-/sub-) invariants.

In this work, we propose a novel automated approach that synthesizes piecewise polynomial
bounds for probabilistic programs with discrete probability choices without user-provided bounds

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Anon.

or piecewise features to assist the derivation of the piecewise bound. The challenges are that (a)
We need to resolve a good criterion to partition the state space of a probabilistic program into
multiple parts in order to derive the form of the target piecewise bound. (b) We need to devise
efficient algorithms to synthesize piecewise bounds given the criterion. Our detailed contributions
to address these challenges are as follows.

To address the first challenge, we consider latticed k-induction operators [11, 40]. k-induction is
a powerful proof tactics in software and hardware verification that generalizes normal inductive
reasoning [22, 23, 38, 49]. Latticed k-induction [11, 40] further adapts k-induction to lattices and
has application in probabilistic program analysis [11]. We develop a novel combination between
operators from latticed k-induction and Optional Stopping Theorem (see the classical Optional
Stopping Theorem (OST) [58, Chapter 10]). Our combination allows to synthesize both upper and
lower bounds for quantitative properties over probabilistic programs without requiring a global
bound of program values (such as non-negativity in [10, 11, 40]). Moreover, the combination itself is
non-trivial, since we observe that an extended version of OST from [57] is needed and the classical
OST does not suffice. As a by-product, we slightly extend existing latticed k-induction operators.

To address the second challenge, we propose novel algorithms for synthesizing piecewise linear
and polynomial bounds w.r.t our combination of latticed k-induction and OST. It is important
to observe that the latticed k-induction involves minimum/maximum operation, and therefore
increases the difficulty to synthesize a bound algorithmically. We first introduce a key improvement
in time efficiency on the unrolling of the k-induction operators. Then, we show that the synthesis
of piecewise linear bounds can be equivalently transformed into a bilinear programming problem.
A bilinear programming problem is that the variables can be decomposed into two groups so that
within each group of variables the constraints are linear, and is a special non-convex programming
that admits efficient constraint solving [41]. Finally, since even on the linear benchmarks we
require piecewise polynomials to upper/lower bound the quantitative properties, we show that the
synthesis of the more general piecewise polynomial bounds can be soundly relaxed to semidefinite
programming. Experimental results over an extensive set of benchmarks that includes various
benchmarks from the literature show that our approach is capable of generating tight or even
accurate piecewise bounds and can solve benchmarks that previous approaches could not handle.

Technical Contributions. Approaches with latticed k-induction has inherent combinatorial explo-
sion [11, 40]. To address the difficulty, we propose two techniques. The first is a heuristic selection
of a small part of the functions in the minimum operation of latticed k-induction. The second is the
sound relaxation that over-approximates the minimum operation with convex combination.

2 PRELIMINARIES

In this section, we briefly review probability theory, define the k-induction operators, present the
probabilistic loops under consideration, nd finally formulate the problem of interest.

2.1 Probability Theory and Martingales

Consider a probability space (Q, 7, P), where Q is the sample space, ¥ is a g-algebra on Q and
P : & — [0,1] is a probability measure on the measurable space (Q, 7). A random variable
is an F-measurable function X : Q — R U {+c0, -0}, i.e., a function satisfying that for all
d € RU {+00, —00}, {w € Q : X(w) < d} € F. The expectation of a random variable X, denoted by
E(X), is the Lebesgue integral of X w.r.t. P, i.e., E(X) = f XdP. A filtration of the probability space
(Q, ¥,P) is an infinite sequence {F,},., such that for every n, the triple (Q, 77, P) is a probability
space and 7, € Fne1 C F. A stopping time w.rt. {F,}," is a random variable 7 : Q — N U {0, oo}

such that for every n > 0, the event {r < n} € 7, i.e, {w € Q : 7(w) < n} € F,. Intuitively, 7 is

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147

Piecewise Analysis of Probabilistic Programs via k-Induction 3

O
i

skip [x:=e | x i~ | C;C | {C} [p] {C} | if () {C} else {C}
e<el|-p|lone ex=cl|x|e-eletele—ce

<
i

Fig. 1. Syntax of Loop Guard and Body in the form (1)

interpreted as the time at which the stochastic process shows a desired behavior. A discrete-time
stochastic process is a sequence I' = {X,};” of random variables in (Q, F,P). The process T is
adapted to a filtration {F,,},,, if for all n > 0, X}, is a random variable in (€, ,,, P). A discrete-time
stochastic process T' = {X,,},) adapted to a filtration {7}, is a martingale (resp. supermartingale,
submartingale) if for all n > 0, E(|X,,|) < oo and it holds almost surely that E(X,.+1|%) = X, (resp.
E(Xn+1|Fn) < Xn, B(Xp41|Fn) = Xn). See Williams [58] for more details about martingale theory.

Applying martingales for probabilistic programs analysis is well-studied [15, 16, 19].

2.2 k-Induction Operators

To present k-induction operators, we briefly review lattice theory. Informally, a lattice is a partially
ordered set (E,) (where E is a set and C is a partial order on E) equipped with a meet operation M
and a join operation L. Given two elements u,v € E, the meet u M v is defined as the infimum of
{u, v} and dually the join u LI v is defined as the supremum of {u,v}. A partially ordered set (E,C)
is a lattice if for any u, v € E, we have that both u M v and u Ul v exist. Given a lattice (E,), we say
that an operator @ : E — E is monotone if for all u,v € E, u € v implies &(u) E ®(v). Throughout
this section, we fix a lattice (E, C) and a monotone operator ¢ : E — E.

We recall the k-induction operator given in [11] as follows, which we refer to as the upper
k-induction operator.

Definition 2.1 (Upper k-Induction Operator [11]). Given any element u € E, the upper k-induction
operator ¥, w.r.t. u and the monotone operator @ is defined by: ¥, : E — E,v +— ®(v) Mu .

Below we propose a dual version for the upper k-induction operator. The intuition is simply to
replace the meet operation with join. We call this dual operator as the lower k-induction operator.

Definition 2.2 (Lower k-Induction Operator). Let u € E. The dual k-induction operator ¥,, w.r.t. u
and the aforementioned monotone operator @ is defined by: ¥, : E — E, v — & (v) L u.

REMARK 1. Alterative formulation of the k-induction operators have also been proposed in [40].
In Appendix A, We show that these formulation are essential equivalent to the definitions adopted in
this work. Therefore, in the rest of this paper, we focus exclusively on the upper and lower k-induction
operators defined above. O

2.3 Probabilistic Loops

In this work, we use simple probabilistic while loops of the form (1) for easing the explanation of
our basic idea, and will discuss how to extend our approach to general probabilistic while loops
like nested loops without substantial changes in Section 5.2. Below we define the class of single
probabilistic loops.

Syntax. A probabilistic while loop takes the form
while (¢) {C} (1)

where ¢ is the loop guard and C is the loop body without loops. Formally, the loop guard ¢ and
loop body C are generated by the grammar in Figure 1, where x is a program variable taken

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178
179

181
182
183
184

186
187
188
189
190
191
192
193
194
195
196

4 Anon.

from a countable set Vars of variables, ¢ € R is a real constant, e is an arithmetic expression
that involves addition and multiplication, ¢ is a formula over program variables that is a Boolean
combination of arithmetic inequalities, and y is a predefined probability distribution. In this work,
we consider p to be a finite discrete probability distribution (i.e., distributions with a finite support)
such as Bernoulli distribution and discrete uniform distribution. The semantics of skip, assignment,
sequential composition, conditional, and while statement can be understood as their counterparts
in imperative programs. The semantics of a probabilistic choice {C;}[p]{C.} is that flips a coin
with bias p € [0, 1] and executes the statement C; if the coin yields head, and C; otherwise. The
semantics of a sampling statement x :~ y samples a value according to the predefined distribution
4 and assigns the value to the variable x.

Given a probabilistic while loop, a program state is a function that maps every program variable
to a real number. We denote by S the set of program states. The initial state for a probabilistic
while loop is denoted by s*. The evaluation ¢(s) of a logical formula ¢ and the evaluation e(s) of
an arithmetic expression e over a program state s are defined in the standard way. ¢(s) = true is

denoted by s |= ¢.

Semantics. The semantics of a probabilistic loop of the form (1) can be interpreted as a discrete-time
Markov chain, where the state space is the set of all program states S, and the transition probability
function P is given by the loop body C and determines the probability P(s, s”) for s,s” € S, meaning
the probability producing output state s’ from input state s. If the loop guard ¢(s) evaluates to false,
then we treat the program state s as a sink state, that is P(s,s) = 1 and P(s,s”) = 0 for s # s’.

Given the Markov chain of a probabilistic while loop as described above, a path is an infinite
sequence T = So, Sq, - - -5 S, - - . Of program states such that P(s,, sp+1) > 0 for all n > 0. Intuitively,
each s, corresponds to the state right before the (n + 1)-th loop iteration. A program state s is
reachable from an initial program state s* if there exists a path 7 = sg, 51, ... such that sy = s* and
sn = s for some n > 0, and define Reach(s") as the set of reachable states starting from the initial
state s*. By the standard cylinder construction (see e.g. [4, Chapter 10]), the Markov chain with a
designated initial program state s* for the probabilistic loop induces a probability space over paths
and reachable states. We denote the probability measure in this probability space by P+ and its
related expectation operator by Eg:.

Problem formulation. Given a probabilistic loop P in the form (1), assuming that P terminates with
probability 1, a return function f is a function f : S — R that is used to specify the output of the
loop P in the sense that when the loop P terminates at a program state s, then the return value
is given as f(s). A return function is piecewise polynomial if it can be expressed as a piecewise
polynomial expression in program variables. We denote by Xy the random variable for the return
value of the loop given a return function f. In this work, we consider the following problem: Given
a probabilistic while loop P in the form (1) and a piecewise polynomial return function f, synthesize
piecewise upper and lower bounds on the expected value of Xj.

3 AN OVERVIEW OF OUR APPROACH

Our approach falls in the background of (latticed) k-induction [11, 40]. k-induction is an induction
principle that generalizes the standard induction by considering k consecutive transitions together
in the inductive condition. Roughly speaking, given a predicate P to be proved via induction, the
k-induction principle considers the inductive condition as (P(x1) A - -+ A P(x)) — P(xg41), for
which the premise P(x1) A - - - A P(xy) means that the predicate P holds for k consecutive transitions,
and the whole condition states that if P holds for k consecutive transitions, then P holds after these
consecutive transitions. In particular, 1-induction coincides with the usual inductive condition.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Piecewise Analysis of Probabilistic Programs via k-Induction 5

Latticed k-induction [11] adapts the idea of k-induction to lattices for deriving bounds of fixed
points. It considers k consecutive applications of a monotone operator over a lattice and applies
the meet/join operations iteratively in the k consecutive applications. The parameter k here does
not matter in the monotone operator (see Definitions 2.1 and 2.2), but is the number of iterative
applications (see Definition 4.5) when the operator is applied. In this work, we propose a novel
combination of latticed k-induction operators and Optional Stopping Theorem (OST), and propose
novel algorithms for deriving piecewise linear and polynomial bounds on probabilistic programs.

We illustrate the main idea of our approach via the following example, which is a discretized
version of the GROWING WALK in Beutner et al. [12]:

GrowING WALK: while (0 <x){{x:=x+1y:=y+x} [05] {x:=-1}}

The example models a simple random walk where the step size x is increased by 1 with one half
probability, and set to —1 with the other half probability. The program terminates when x becomes
negative. The objective is to analyze the expected value of the return function f(x, y) = y, which
corresponds to the total traveled distance y, after the program terminates. We take the synthesis of
piecewise linear upper bound as an example.

Step 1: Establishing k-induction operators. Let 5]0 be the operator
Ef(h(x, y)):=[x<0]-y+[x>0](05 h(x+Ly+x+1)+0.5-h(-1,y))

for function h : RX R — R, and [x > 0] denotes the Iverson-bracket of the predicate x > 0,
which evaluates to 1 if x > 0 holds at state s and 0 otherwise. Intuitively, 5f outputs y if the loop
guard x > 0 is violated, and the expected value of h(x,y) after the execution of the loop body
{x == x+ 1Ly := y +x} [0.5] {x := —1} otherwise. We introduce the k-induction operator ¥,
(c.f. [11]), defined by ¥,(g) := min{af(g), h} for any fixed function h : R X R — R. Informally,
when applied to a function g, the operator ¥,(g) pulls 5f (9) down via the pointwise minimum
operation with h.

Step 2: Applying k-induction condition. Let k = 2. We unroll the loop P (k = 2) times and examine
the (k = 2)-induction condition to upper-bound the expected value of Xy. The resultant inductive
condition from our approach is as follows (here < is taken pointwise), which is obtained by applying
the operator ¥, to a candidate bound function h once (i.e., k — 1 times):

Ef('ffh(h)) <h (2)

We show that under a mild assumption and by using OST, if we have a function h that fulfills this
inductive condition, then ¥, (k) is an upper bound for the expected value of X, for which the
pointwise minimum in ¥y, (h) = min{af(h), h} is the key to derive the piecewise partition of the
bound apart from loop unrolling.

Step 3: Simplifying the k-induction condition. Our approach synthesizes a function h w.r.t the
condition (2). To the end, we reduce the condition (2) to the form below with four functions h;
(1 € i < 4) combined with a minimum operation:

min{hl, hz,]’lg, h4} < h, (3)

where by = [x < 0] -y+[x>0]- (05 -A(x+1L,x+y+1)+05-h(-1Ly)),h, =[x <0] -y+[x >
0]-(0.25-h(—1, y+x+1)+0.25-h(x+2, 2x+y+3)+0.5-h(-1,y)), h3 = [x < 0]-y+[x > 0]-(0.25-h(-1,y+
x+1)+0.25-h(x+2,2x+y+3)+0.5-y) and hy = [x < 0] -y+[x = 0]-(0.5-A(x+1,x+y+1)+0.5-y).
Using our algorithm, we employ a loop unrolling based approach to efficiently derive the simplified
constraint (3) and we show that each h; results from the unfolding of the loop up to depth k = 2
and corresponds to a loop-free program from the unfolding. See Stage 2 in Section 5 for the details.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

274
275
276
277

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Anon.

Step 4: Solving the simplified (k = 2)-induction condition. After Step 3, we obtain the constraint
in (3) and further synthesize the function 4 in (3) by assuming a template for h and solving the
template w.r.t. the constraint (3). Every synthesized function h leads to a piecewise upper bound
Yu(h) = min{af(h), h} for the expected value of X. Since this constraint includes a minimum
operation, it is non-convex and non-trivial to solve. Our approach reduces the synthesis problem
with a linear template to bilinear programming, and obtains a piecewise linear upper bound
[x <0]-y+[x>0]-(x+y+2), which is actually the exact expected value of y. Similarly, our
method can also obtain a piecewise linear lower bound [x < 0] - y+ [x > 0] - (x +y + 13/s).

4 PIECEWISE BOUNDS VIA LATTICED k-INDUCTION

In this section, we propose a novel combination of OST and latticed k-induction operators to derive
bounds for the expected value of X;. We first introduce expectation functions over which we
construct concrete k-induction operators, then define potential functions, and finally show the
soundness of potential functions to derive expectation bounds via OST. Throughout this section,
we fix a probabilistic while loop P = while(¢){C} in the form of (1) and a return function f.

4.1 Expectation Functions

Definition 4.1 (Expectation Functions). An expectation function is a function h : S — R that
assigns to each program state a real value. The partial order < over expectation functions is
defined in the pointwise fashion, i.e., iy X hy &= Vs € S, hi(s) < hy(s). We denote the set of
expectation functions by & and the lattice by (&, <), for which the meet operation M in the lattice
is given by h; M h, := min{hy, h,},where min is the pointwise minimum on functions, i.e., Vs €
S, min{hy, hz}(s) = min{h;(s), h2(s) }, and the join operation LI is given by h; Ul h; := max{hy, hy},
where max is the pointwise maximum.

Informally, an expectation function & is that for each program state s € S, the value h(s) bounds
the expected value of Xy after the execution of the while loop P when the loop starts with the
program state s. Although one observes that the partially ordered set (&, X) with the meet and join
operations defined above is a lattice, we do not use lattice properties in our approach.

To instantiate the k-induction operators for expectation functions, we construct the monotone
operator for the lattice (&, =). To this end, we first define the notion of pre-expectation as follows,
wherein [¢] denotes the Iverson-bracket of ¢. Notice that the random assignment command
x:~ pt (Where y is a discrete distribution of finite support) can be written in an iterative style of
{C1} [p] {C2}, so that we define pre-expectation without random assignment commands.

Definition 4.2 (Pre-expectation [15, 56]). Given an expectation function 4 : S — R. We define its
pre-expectation over a loop-free program Q, preg(h) : S — R, recursively on the structure of Q:

e preg(h) == h,if Q = skip.

o preg(h) := h[x/e],if Q = x = e, where h[x/e] denotes h[x/e](s) = h(s[x/e]) with
s[x/e](x) = e(s) and s[x/e](y) = s(y) for all y € Vars\{x}.

o preg(h) = preg, (preg,(h)), if Q = Q1; Q.

o preg(h) = p - preg, (h) + (1 -p) - preg,(h), if Q = {01} [p] {Q:}-

o preg(h) = [¢] - preg, (h) + [=¢] - preg,(h),if Q = if (§) {Q1} else {Q2}.

The intuition of pre-expectation is that given an expectation function h, the pre-expectation
prep computes the expected value preg(h) of h after the execution of the command Q. With
pre-expectation, we then define the monotone operator to be the characteristic function Ef of the
probabilistic loop P with respect to the return function f as follows.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343

Piecewise Analysis of Probabilistic Programs via k-Induction 7

For the rest of this section, we fix an initial state s* and override the set S of program states with
Reach(s*) in Definition 4.1 so that we consider expectation functions restricted to Reach(s*).

Definition 4.3 (Characteristic Function [15, 34]). The characteristic function 5f : & — & is defined
by 5f(h) =[] - f+ [¢] - prec(h). The monotone operator for the lattice (&, <) is defined as Ef.

Informally, the characteristic function Ef outputs f if the loop guard ¢ is violated and the loop
terminates in the next step, and the pre-expectation of h w.r.t. the loop body C otherwise. It is
straightforward to verify the monotonicity of Ef. In the following, we omit the subscript f in 5f if
it is clear from the context. Given the monotone operator, we establish the concrete k-induction
operators as follows.

Definition 4.4 (k-Induction Operators for (€, %)). Given an expectation function h, the upper (resp.
lower) k-induction operator ¥, : & — & (resp. ?;1 : & — &) is defined by ¥;,(g) = min{af(g), h}
(resp. ?’;l (9) = max{5f(g), h}) for arbitrary expectation function g € &.

Note that k does not explicitly appear within the operators; rather, it denotes the number of
times these operators are iteratively applied.

4.2 Potential Functions

We define potential functions as expectation functions satisfying the k-induction conditions. These
potential functions serve as candidate bounds to be synthesized.

Definition 4.5 (Potential Functions). Let k be a positive integer. A k-upper (resp. k-lower) potential
function is an expectation function h that satisfies the upper (resp. lower) k-induction condition

D,(Fy ' (h)) < h (resp. Bp((F))F~1(h)) = h), respectively,

We apply Optional Stopping Theorem (OST) to address our soundness results. We find that the
classical OST [24, 58] cannot handle our problem due to the requirement of bounded step-wise
difference (see Appendix B.1), while the OST variant proposed in [57] can handle our problem.

THEOREM 4.6 (EXTENDED OST [57]). Let {X,},, be a supermartingale adapted to a filtration
F = {Fu}eo and T be a stopping time w.r.t the filtration F. Suppose there exist positive real numbers
b1, by, c1, ¢o, €3 such that ¢, > c3 and

(a) For all sufficiently large natural numbers n, it holds that P(t > n) < ¢y - e” ™",
(b) For every natural number n > 0, it holds almost-surely that | X1 — Xpn| < by - nbz . e

Then we have that E(|X,|) < o0 and E(X;) < E(Xp).

c3'n

Under certain side conditions that guarantee the validity of the extended OST, the potential
functions provide upper and lower bounds on the expected value of X;. Before presenting this
result, we introduce some concepts that capture the magnitude of updates to program variables
between two consecutive steps.

Definition 4.7 (Termination Time). The termination time T of the loop P is the random variable
that for any path of the loop, measures the number of total loop iterations in the path.

Definition 4.8 (Uniform Amplifier). Suppose that the loop P is affine, i.e., all conditions and
assignments within the loop are affine functions of the program variables. For each program variable
x, let x,, denote the random variable representing the value of x at the n-th iteration of the loop. A
uniform amplifier c is a constant ¢ > 0 such that, for all n > 0, |x,41| < ¢ - |x,| + a holds for some
fixed constant a.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392

8 Anon.

Definition 4.9 (Bounded Update). The loop P has the bounded-update property if there exists
a real constant a > 0 such that for each program variable x, |x,4+; — x,| < a for every n > 0
(see Definition 4.8 for the meaning of x;,).

REMARK 2. Note that any program satisfying the bounded update property also admits a uniform
amplifier with ¢ = 0.

We now present the soundness theorem of k-upper (resp. lower) potential functions. We distin-
guish between affine programs and polynomial programs, as each requires different side conditions
for potential functions to serve as upper or lower bounds. Notably, the side conditions for affine
programs are weaker than those for polynomial programs.

THEOREM 4.10. Suppose the loop P is affine. Let k be a positive integer and h be a polynomial
potential function in the program variables with degree d. If there exist real numbers ¢; > 0 and
¢y > c3 > 0 such that

(P1) there exists a uniform amplifier ¢ satisfying ¢ < e%/?, and

(P2) the termination time T of P has the concentration property, i.e., P(T > n) < c¢; - e” %",

hold, then for any initial program state s*, we have:

o B¢ (Xy) < f/:_l(h) (s*) < h(s*) holds for any k-upper potential function h.
e Eo(Xy) > (?’;l)k_l(h) (s*) = h(s*) holds for any k-lower potential function h.

Proor SKETCH. (See Appendix B.2 for the full proof) Let s, be the random variable of the program

state at the n-th iteration with sy = s*, and let H = @];l_l(h). A key point is that since H is piecewise
polynomial (by the definition of ¥;,) and condition (P1) holds, condition (b) in Theorem 4.6 holds for
process {H(sp) } nen. Combining with the fact that h is a k-upper potential function, one can further
deduce {H(sp) }nen is a supermartingale. By applying Theorem 4.6, we have Eg (X1) < Es(Xo) (T
is a stopping time), thus Es- (Xf) < Es(Xo) = H(s"). The lower case is derived similarly. O

The side condition (P1) for affine programs requires that the loop P possesses a uniform amplifier
constant. In contrast, for polynomial programs, a stronger property is needed: the program must
satisfy the bounded update property, which imposes stricter constraints than (P1).

THEOREM 4.11. Let k be a positive integer. Suppose there exist real numbers ¢c; > 0 and c; > 0 such
that condition (P1’) loop P has the bounded update property; and condition (P2) in Theorem 4.10 holds,
then for any initial program state s*, we have

o Eu(Xp) < @ﬁ_l(h) (s*) < h(s*) holds for any k-upper potential function h.
e Eo(Xp) 2 (@;l)k‘l(h) (s*) = h(s*) holds for any k-lower potential function h.

REMARK 3. See Appendix B.3 for the proof of Theorem 4.11. The concentration condition (P2), which
ensures exponentially decreasing nontermination probabilities as stated in Theorems 4.10 and 4.11,
guarantees that loop P terminates almost surely. This condition has been extensively studied in the
literature (see, e.g., [16, 17, 26]). O

According to Theorems 4.10 and 4.11, synthesizing upper and lower bounds reduces to finding
a potential function A that satisfies the conditions outlined in these theorems. However, solving
the k-upper and k-lower potential conditions is challenging due to the intricate combination of
minimum and indicator functions involved. In the following sections, we introduce algorithmic
approaches to systematically synthesize these upper and lower bounds.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

431
432
433
434
435
436
437
438
439
440
441

Piecewise Analysis of Probabilistic Programs via k-Induction 9

5 ALGORITHMS FOR BOUND SYNTHESIS

In this section, we first present algorithms for synthesizing upper and lower bounds for single-loop
programs. We then demonstrate how our approach naturally extends to handle programs containing
nested or sequential loops.

5.1 Algorithms for Probabilistic Single Loops

In this subsection, we present algorithms for synthesizing k-upper and lower potential functions
that satisfy the conditions specified in Theorem 4.10 and Theorem 4.11, leading to piecewise bounds
on the expected value of Xy. Below, we consider a fixed probabilistic loop P of the form (1) along
with a return function f. Due to the space limit, we only illustrate the synthesis procedure for
upper bounds. The case for lower bounds is nearly analogous, obtained by replacing minimum with
maximum and substituting < by . The pseudocode for our algorithm is presented in Algorithm 1.
Our approach consists of the following major steps:

Stage 1: Prerequisites Checking and External Inputs. Our algorithm first verifies the side
conditions (P1) and (P2) (respectively, (P1’) and (P2’)) for affine (respectively, polynomial) programs,
as specified by Theorems 4.10 and 4.11. The algorithm also accepts the hyperparameter k and a
program invariant as input parameters.

Prerequisites checking. When P is affine, condition (P1) is verified by syntactically inspecting the
loop body to identify a positive constant cs, ensuring that each program variable is amplified by at
most e°/%, up to an additive constant, within a single loop iteration, where d denotes the degree
of the polynomial template potential function h (c.f. Stage 2). Condition (P2) is guaranteed either
by synthesizing a difference-bounded ranking supermartingale (lbRSM) that demonstrates the
exponentially decreasing concentration property [16, 17], or by syntactically analyzing probabilistic
branching within the loop to extract a suitable constant ¢, satisfying c¢; > c3 > 0. For polynomial
programs, condition (P1’)—the bounded update property—is checked via an SMT solver (e.g.,
Z3 [21]), while condition (P2) is ensured analogously to the affine case.

External inputs. Our algorithm requires the following hyperparameters as input: (1) Induction
parameter k: We specify a positive real number k as the parameter for k-induction, along with the
initial program state s*. (2) Program invariant: We assume the existence of an invariant I at the
entry point of the loop, which over-approximates the set of reachable program states Reach(s*).
That is, for every s € Reach(s*), we have s |= I. The state space is thus restricted to program states
satisfying I, and the relation < is interpreted over I, i.e., hy 2 hy &= Vs |1, hi(s) < hz(s). The
rational of this restriction follows from the over-approximation property of I. Invariants can be
obtained using external invariant generators, such as [48].

Example 5.1. We take the following example as a running example, which is a discretized version
of the GRowING WALK in [12]:

while (0 < x) {{x =x+ Ly :=y+x} [0.5] {x:=-1}}

In this example, our goal is to analyze the expected value of y upon program termination. We
check the prerequisites and specify the external inputs as follows: (1) Prerequisite Verification: We
find that ¢ = 1 serves as a uniform amplifier, satisfying ¢ < e®/¢ with ¢3 = In1.5 and d = 1. The
concentration condition (P2) is also met with ¢, = In 2. (2) External Inputs: We set k = 2, and choose
the invariant I = {x | —1 < x} with initial state s* = (x,y) = (1, 1). O

Stage 2: Templates and Constraints. After verifying the prerequisites and identifying the external
inputs as described in Stage 1, our algorithm predefines a d-degree polynomial template h as the
candidate k-upper potential function for the loop P. This template consists of a linear combination

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490

10 Anon.

of all monomials in the program variables of degree at most d, where each monomial is multiplied
by an unknown coefficient.
Next, we apply the k-induction conditions from Definition 4.5, resulting in the constraint

5f (?f};1 (h)) 2 h.The presence of min and indicator operators within this constraint complicates di-
rect simplification. To address this, we reformulate the constraint into the form min{hy, hs, .. ., hp, } 2
h, where each h; is free of the minimum operator. Although a brute-force arithmetic expansion can
achieve this transformation (see Appendix C.1 for details), our algorithm employs a more efficient
unfolding strategy, which we outline below.

The unfolding process for constraint simplification: We symbolically unroll the probabilistic loop from
the initial state up to k iterations, exploring all possible unfolding strategies. Here, "symbolic" means
that program variables in each program state retain their original variable names and represent
undetermined values. An unfolding strategy operates at each symbolic program state encountered
during the unfolding process (excluding the initial state), and chooses one of three actions: (i) unfold
the loop iteration once more, (ii) terminate the unfolding, or (iii) forced to stop when the total
number of unfoldings reaches k. Each unfolding strategy, determined by the choices made at each
unfolding step, yields a loop-free program. Let Cy,. .., Cp, denote all loop-free programs generated
by applying the above decision process across all possible unfolding strategies. For each loop-free
program C,4, we compute the pre-expectation prec,(h) of h with respect to Cy (see Definition 4.2),

allowing us to equivalently rewrite the constraint 5f (?/:_1 (h)) 2 has:
min{h, ha, ..., hm} < b, (4)

where each h; is given by prec, (h) for some C4. According to the computation of pre-expectation
(Definition 4.2), each h; can be represented as h; = ., [Bi,] - e;r, where B, is a predicate independent
of the template’s unknown coefficients, and e;, is a monolithic polynomial in the program variables,
potentially containing unknown coefficients. Moreover, the B;,’s are pairwise logically disjoint.

The following proposition formally establishes the relationship between the unfolding process
and the k-induction condition. The proof is provided in Appendix C.2.

— —k-

PROPOSITION 5.2. The upper k-induction condition @ s (¥}, 1(h)) = h is equivalent to constraint
min{hy, hy, ..., hy,} = h, where each h; equals prec,(h) for some unique Cq € {Cy,...,Cp} from the
unfolding process above.

By Proposition 5.2, the k-induction constraint can be simplified by computing the pre-expectations
of all programs {Cy,...,Cp} generated by all possible unfolding strategy within k loop itera-
tions. Since these programs are structurally similar, we can efficiently compute prec, (k) for all
Cq € {Cy4,...,Cp} simultaneously by traversing the k-unfolding of the program loop once. This
approach reduces runtime by eliminating excessive and repeated computations.

Hllustrative Example of the Unfolding Process. We demonstrate our unfolding process via a simple
but illustrative example as follows:

P :=while (¢(x)) {{x = aix + b1} [p] {x := azx + b2}} (5)

where x is a real-valued program variable, a;, b; (i = 1, 2) are real constants, p € [0,1] and ¢(x) isa
guard condition. Let f be the return function, and let @+ be the operator defined as

Dp(h)(x) = [=9(0)] - f(x) + [9()](p - h(arx +b1) + (1 = p) - h(azx +b2))

for any function b : R — R (with S = R), where [¢] denotes the Iverson bracket for the predicate ¢.
In this example, we consider the 2-induction operator ¥}, for a fixed function h : R — R, as defined

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Piecewise Analysis of Probabilistic Programs via k-Induction 11

in [11]. Specifically, ¥4(g) is given by ¥4(g) := min{Ef(g), h}, and the corresponding 2-upper
induction condition is : o

(I)f(q/h(h)) <h. 6)
According to Proposition 5.2, we simplify this constraint by transforming (6) into the following
form, which expresses the minimum over four functions h; (1 < i < 4):

min{hl, hz, h3, h4} =< h,

where each h; corresponds to a loop-free program C; generated during the unfolding process up to
depth k = 2. All such unfolded programs are summarized in Fig. 2.

sh(ai(a 89245 h(as(a
[zs o i(bf)} [z) i(bf)]

(b) Case 2: Program Cs

output o output
flarz +by) flagz +by)
s215 h(ai(ay | | s22;h(az(ay - - " . \
e | iy [ty omipsy | (maintsn) [ty
(c) Case 3: Program Cs3 (d) Case 4: Program Cy

Fig. 2. Loop-free programs generated by (k = 2)-induction

We illustrate the unfolding process as follows. Starting from an initial value x, if ¢(x) is not
satisfied, the loop terminates immediately and outputs f(x). If ¢ (x) holds, we proceed to unfold
the loop, resulting in four distinct cases. Due to space constraints, we describe only the first case in
detail here; the remaining three cases are depicted in Fig. 2, with further explanations provided
in Appendix C.3.In Case 1, the loop executes once and transitions to two possible states, a;x+b; and
azx+b,, after which it terminates. This corresponds to a single unrolling of the loop and terminating

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Anon.

the unfolding at both resulting symbolic states, yielding the loop-free program C; as shown in Fig. 2a.
The associated expression is by = [-¢@(x)] - f(x) + [@(x)](p - h(a1x + b1) + (1 — p) - h(azx + by)),
which represents the expected value of h(x) after executing program C;. Cases 2, 3, and 4 are
derived analogously by unrolling the loop up to two iterations.

Example 5.3. Returning to the running example in Example 5.1, we establish a 1-degree, i.e., linear
template h = a-x+b-y+c, where a, b, c are unknown coefficients. We apply 2-induction condition to
synthesize a piecewise linear upper bound. Starting from a symbolic initial program state s* = (x, y),
we unroll the loop once and arrive at two new symbolic program states (x+1,x+y+1) and (-1, y).
Over each new state, we take the decision separately and the unfolding strategy produces four
loop-free programs. The prec,(h) w.r.t. these four programs are as follows:

hi=[x<0]-y+[x>0]-(05-h(x+1L,x+y+1)+0.5-h(-1Ly))

hy=[x<0]-y+[x>0]-(0.25-h(-1,y+x)+0.25-h(x+2,2x+y+3)+0.5-h(-1y))
hs=[x<0]-y+[x>0]-(0.25-h(-1,y+x)+0.25-h(x+2,2x+y+3)+05-y) @)
hy=[x<0]-y+[x>0]-(05-h(x+Lx+y+1)+05 1)

Thus, we have the simplified constraint V(x, y) = I, min{hy, hy, hs, ha} < h. O

Branch reduction. During the unfolding process used to simplify the latticed k-induction condition

Ef (?’:71 (h)) < h, the number of resulting functions h; in (4) grows rapidly with the number of
probabilistic choices in the loop body. This combinatorial growth occurs because, when computing
the pre-expectation for probabilistic branches, the sum of two minimum expressions results in a new
minimum taken over the Cartesian product of the original function sets. To address this issue, we
introduce a heuristic that selects only a small subset of "representative"” functions from the complete
set of h; in (4). Importantly, this approach does not compromise soundness (see Theorems 4.10
and 4.11), as the minimum over any subset is always at least as the minimum over the full set.
Taking the case of k = 2 as an example, by definition of operator ¥, we have

@ (W (h) = By (min{{B(h), h}}
= [G] - f+[G] - Y pi - min{{®@p(h(us(5))), h(ui(s))}
i=1

where each p; denotes a probabilistic choice in the characteristic function Ef, and u; represents
the corresponding state update function under that choice. Instead of enumerating all possible 2"
combinations in choosing either Ef(h(ui(s))) or h(u;(s)) for each p; (to expand into the minimum
form (4)), one could consider combinations that have at most one Ef(h(ui(s))) and at most one
h(u;(s)), so that only a linear number of combinations are considered while retaining soundness.
For the case of k > 2, a possible way for relaxation is to recursively consider combinations that
have at most one Ef(?/:_z(h(ui(s))) and at most one h(u;(s)).

Stage 3: Transforming to Canonical Form. At this stage, our algorithm transforms the constraint
of the form (4) from Stage 2 into the following canonical form:

[Bi] = min{es,...,emi} < h, ..., [Bj]] = min{ey,...,emu} <h (8)

where h is the predefined polynomial template. Each B;(j € {1,...,1}) is a conjunction of predicates
over the program variables that does not involve the template’s unknown coefficients, and each e;;
is a polynomial expression in these unknown coefficients. The transformation begins by rewriting
the inequality (4) as

min {2, [Bir] - e1r, -, 2p[Bmr] - €mr} 2 h)

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Piecewise Analysis of Probabilistic Programs via k-Induction 13

where, as described previously, each h; is expressed as h; = . ,.[Bi,] - €;. Next, for each conjunction
B = A, Biy, — with each B;,, taken from the summation }.,[B;,] - e;; — we obtain the constraint
¥p = [B] = min}Z, e;;, < h. The transformed system of inequalities (8) is thus precisely the
set of all such ¥g constraints. Infeasible constraints (i.e., those with unsatisfiable B) are removed,
whenever possible, using an SMT solver such as Z3 [21].

Example 5.4. Continuing from Example 5.3, we convert (7) into its canonical form by partitioning
the state space S into two regions: [x < 0] and [x > 0], as indicated in (7). Applying Stage 3 and
eliminating unsatisfiable predicates yields the following canonical form:

[x* <0] = min{y} <h

05 -h(x+1,x+y+1)+0.5-h(-1,y)
0.25-h(-Ly+x+1)+0.25-h(x+22x+y+3)+0.5-h(-1,y)

[x > 0] = min <h (10)
0.25-h(-Ly+x+1)+0.25-h(x+2,2x+y+3)+05-y
05-h(x+1,x+y+1)+05-y

O

Stage 4: Solving Constraints. Below, we describe our approach for solving the canonical con-
straints given in (8). It is important to note that the presence of the minimum operator in this
canonical form makes the constraint non-convex. To address this, we develop distinct algorithms for
the linear and polynomial cases. In the linear case, where the program is affine (i.e., all conditions
and assignments are linear), we employ a linear template for the k-upper potential function h. In
the polynomial case, where the program may be non-affine, we utilize a polynomial template.

Solving constraints (linear case). In our algorithm for the linear case, we require that the return
function be piecewise linear and that the invariant be affine in the program variables. We first
eliminate the minimum operator in (8) by considering its negation. This allows us to transform the
constraint into a set of bilinear constraints using Motzkin’s Transposition Theorem, which can
then be solved with off-the-shelf bilinear programming solvers such as Gurobi.

Below, we present a variant of Motzkin’s Transposition Theorem [43], which will be utilized in
the subsequent analysis. The proof is provided in Appendix C.4.

THEOREM 5.5 (MOTZKIN’S TRANSPOSITION THEOREM [43]). Let S = (A;-x+by <0) and T =
(Ay - x+by < 0) be systems of linear inequalities, where Ay = (a;;) € R™" and Ay = (m4ij) €
R¥*" gre real coefficient matrices, by = (B1,...0m) " and by = (B, ..Pmsk) " are real vectors, and
x = (x1,..xn) . If S is satisfiable, then S A T is unsatisfiable if and only if there exist non-negative
real numbers Ao, A1, ..., Am+k, with at least one A; fori € {m + 1, ...,m + k} being nonzero, such that:

m+k m+k m+k
D hiagiay =0 D Aty =0, (D) Aifi) = Ao =0. (11)

i=1 i=1 i=1
REMARK 4. Note that, since A; > 0 for 0 < i < m + k, the requirement that at least one A; for
i€ {m+1,...,m+k} is nonzero can be equivalently encoded as the linear constraint ;’:’;’;1 A > 0.

In what follows, we demonstrate how to apply Theorem 5.5 to solve the canonical constraints (8).
We begin by conjunct the affine invariant I with the antecedent predicates in (8) and eliminating
any constraints with unsatisfiable antecedents, resulting in

[I ABj] = min{eyj, e,emj} <h forje{1,2,...,1}, (12)

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Anon.

where we assume that each I A B; is satisfiable. For each j, we have
([I AB;] = min{es}, ez,em;} < h) holds
& ([IABj] A (A (e;; > h))) is not satisfiable [Apply Thm 5.5]
&= exists nonnegative real vector A; = (A j, .. .,Amﬁkj,j),
st. (Amj+1js - - > Amj+k;,j) # 0, and eq. (11) holds.

The second equivalence follows from the Motzkin’s Transposition Theorem by setting S = I A B;
and T = (A" (e;; > h)) for each j € {1,2,...,1}. Note that (11) constitutes a bilinear constraint
problem, as its nonlinearity arises solely from the products of unknown template coefficients and
the variables A;. Our approach aggregates all such bilinear constraints and utilizes off-the-shelf
bilinear solvers to obtain concrete solutions for the template h.

Example 5.6. Continuing from Example 5.4, recall that we choose x > —1 as the invariant. For
the constraint (10), substituting h(x, y) with the template ax + by + ¢ and considering its negation
as previously illustrated, we obtain the following inequalities:

-x <0 0.5(a—b)x—0.5b <0 0.75(a — b)x — (b —0.25a) < 0
0.75(a - b)x +0.5(b — 1)y + (0.5¢ — 0.25a — b) < 0 0.5(a-b)x+05(b—-1)y+0.5(c—a—-b) <0.
Then by Theorem 5.5, the constraint (10) is equivalent to solving the following set of bilinear
constraints involving the unknown coeflicients g, b, and c.
o =20,4120,---,45>20 st. (A #0VA3#O0VAL#0V A5 £0)A

0=(=1)- A1 +0.5(a—b)- Ay +0.75(a—b) - A3 +0.75(a — b) - Ay + 0.5(a — b) - A5 A

0=050b-1)-A4+050b-1) 45 A

0=—05b-Ay — (b—0.25a) - A3 + (0.5¢ — 0.25a — b) - g + 0.5(c —a—b) - As — Ay. O

Our algorithm utilizes bilinear solvers to address the derived bilinear constraints. Since these
constraints define only a feasible region, we heuristically select an objective function to guide the
solver toward solutions that yield tighter upper bounds. Specifically, we minimize h(s*), where s*
is a designated initial program state of interest. Once the template coefficients for h are determined
(yielding a candidate h*), we reconstruct the piecewise linear upper bound by applying the upper

= —k-1
k-induction operator ¥y iteratively k — 1 times, resulting in ¥,. (h*). We claim that our linear
bound algorithm is complete in the sense that the reduction to bilinear programming preserves the
original k-induction condition.

Example 5.7. Continuing with Example 5.6, we use the objective function h = ax + by + ¢ with the
initial state s* = (x,y) = (1, 1). Solving the optimization yields the candidate A*(x,y) = x + y + 2.
We then reconstruct the piecewise upper bound by applying ¥, once, resulting in the upper bound
[x<0]-y+[x=0] - (x+y+2).

Solving constraints (polynomial case). In our algorithm for the polynomial case, we assume that
the return function is piecewise polynomial and that the invariant is a polynomial predicate over
the program variables. We design a sound approach that relaxes the k-induction constraint and
reduces the relaxed formulation to a semidefinite programming (SDP) problem using Putinar’s
Positivstellensatz [46]. This relaxation guarantees that the synthesized upper bound h satisfies the
original k-induction condition (see Definition 4.5). The algorithm is described as follows.

First, for each constraint in the canonical form (8), namely [B;] = min{eyj,...,em;j} < h
for j € {1,...,1}, we relax the constraint by replacing the minimum operator with a convex
combination of the terms {e;;}72,. This results in the following relaxed form:

[BJ] - Zglwi~e,~j§h,,j€{l,...,l} (13)

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Piecewise Analysis of Probabilistic Programs via k-Induction 15

where each weight w; > 0 and the set of weights satisfies },[*; w; = 1. Various forms of weight
combinations {w;}, can be employed, such as uniform weights (where each w; = 1/m) or randomly
generated weights normalized to sum to one. This relaxation is sound: any function h and set
{eij}, that satisfy the relaxed constraint (13) will also satisfy the original canonical form (8). This

follows from the fact that)72, w; - ¢;; <h = {min }{eij} <h
ie{l,...m

Next, we conjunct the invariant I with each constraint in (13), resulting in the following form:

/\ [I/\Bj] - iwi'euﬁh, (14)

je{1,...1} i=1

We then apply Putinar’s Positivstellensatz [46], following previous work [16, 57], to generate
constraints on the unknown coefficients, which are solved using off-the-shelf SDP solvers (see Ap-
pendix C.5 for details). As these constraints define only a feasible region, we employ a heuristic
objective function to guide the solver towards tighter upper bounds. Specifically, we minimize
2. h(s}), where s} are selected initial program states of interest. After obtaining the optimal

—k—
solution h* from the SDP solver, we reconstruct the piecewise polynomial upper bound ¥}, 1(h*)
by iteratively applying the upper k-induction operator ¥ to h* for a total of k — 1 times.

Algorithm 1: Synthesizing Bounds

Input :Probabilistic loop P in the form of (1) and a return function f
Output: Piecewise bounds for the expected value of X upon termination of P

Prerequisites Checking and External Inputs:

(a) Prerequisites Checking: Verify the prerequisites in Theorem 4.10 (Theorem 4.11).

(b) External Inputs: Generate an invariant I, select parameter k and specify initial program state s*.

Templates and Constraints:

(a) Predefining a (monolithic) polynomial template h.

(b) Unfolding the loop within k times and calculate prec, (h) for all Cy € {Cy,...,Cp} (generated by
our unfolding process) to obtain the constraint min{hy, ha, ..., hp} = h.

Transforming to Canonical Form:

Transform the constraints (4) into the form of (8) through an iterative approach and obtain I canonical
constraints;

Constraints Solving:

if the loop P is linear and the template h is linear then
Cons <« 0; > Linear Case

for j «— 1toldo
Extract the coefficients of the variables from canonical-formed constraints;
Construct bilinear constraints K; with auxiliary variables A ;;
Cons « Cons U Kj;
end
Call bilinear solver to solve Cons and obtain the piecewise bound with the solution h*
else
(a) Soundly relax the original canonical constraints (8) into (14). > Polynomial Case
(b) Call SDP solver to solve and obtain the piecewise bound with A*.

end

Correctness. Our algorithms are guaranteed to produce correct bounds by Theorems 4.10 and 4.11.
The Prerequisites Checking stage ensures that all prerequisites in Theorem 4.10 and Theorem 4.11 are
met, and the function A is determined according to the k-induction conditions (see Definition 4.5).

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
7

[

3
784

16 Anon.

Additionally, the invariants we use over-approximate the set of reachable program states, thereby
preserving the soundness of our approach. Specifically, our linear bound algorithm is both sound
and complete in the sense that the reduction to bilinear programming exactly preserves the original
k-induction condition. In the polynomial case, our algorithm employs a sound relaxation, which
likewise guarantees the correctness of the synthesized bounds.

5.2 Extensions: Handling Probabilistic Programs with Multiple Loops

Below, we describe the extension of our approach to probabilistic programs with multiple loops,
including both sequential compositions of probabilistic loops and nested loops. For brevity, we
focus on the synthesis of upper bounds; the synthesis of lower bounds is entirely analogous.

Sequential Composition. For a sequential composition P = Py;. .. ; P, of probabilistic loops Py, . .., P,
with a return function f, our method analyzes each loop component in reverse order. To illustrate
the approach, we focus on the case P = P;; P;. Given a k-induction parameter k, the procedure for
synthesizing upper bounds proceeds as follows:
e Begin by computing a piecewise upper bound h; for the expected value of f after the
execution of loop Ps.
e Then, treat h; as the return function for P; and compute its piecewise upper bound, resulting
in the final bound h; for the entire composition.
This backward compositional reasoning can be systematically extended to compositions with
more than two loops.
Nested Loops. To address nested loops, we incorporate our approach with the methods proposed
in [26, 27], applying k-induction exclusively to the innermost loop and 1-induction to the outer
loops. Since the innermost loop can be unfolded independently of the outer loops, we are able to
derive tight piecewise bounds for the inner loop via k-induction and subsequently propagate these
bounds to the outer loops. For clarity, we focus on the case where the program R contains a single
inner loop and has the following structure:

R =while(¢){P} with P =while(¢){Q} and Q loop-free.

Our objective is to analyze the expected value of X upon termination of the loop. Let @‘D}”t denote
the characteristic function (see Definition 4.3) with respect to the outer loop and return function f,
and let ;" denote the characteristic function for the inner loop P and return function g. While @;*
can be computed explicitly, CD;’” typically cannot. We therefore apply 1-induction to the outer loop
and k-induction to the inner loop, as summarized below:

e Define a template h,y,; at the entry of the outer loop and a template h;,, at the entry of the
inner loop.

e For the outer loop, the 1-induction rule yields the constraint @;”’ (hout) =X hoy:. Since
dflj‘i”’ (hoyt) cannot generally be computed explicitly, we upper-approximate the expected
value of hy,; after executing the inner loop P by h;y, i.e., @;’p’”(hout) 2 [-¢]-f+[¢¥] hin,and
the original constraint @;”t(hout) = hoys can be strengthened into [—/] - f+[¥/] - hin = hous.

e For the inner loop, we apply the k-induction condition (see Definition 4.4) to ensure that h;,
upper-approximates the expected value of h,,; after executing the inner loop. This leads to
the constraint <D;:m ((lI/}’;:’n)k‘l (hin)) = hin, where 11/;1:’" (9) = min{@i’(’;ut (9), hin} is the upper
k-induction operator for the inner loop P (see Definition 2.1).

e Collect the resulting constraints and apply our synthesis algorithm as described in Section 5.

Through this process, we obtain h,,; as a piecewise upper bound for the expected value of X
with respect to the return function f upon termination of the entire while loop R.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Piecewise Analysis of Probabilistic Programs via k-Induction 17

6 EXPERIMENTAL RESULTS

We implement our algorithms’ in Python 3.9.12 and Julia 1.9.4. We use Gurobi in Python for bilinear
programming and Mosek in Julia for semi-definite programming. All experiments are conducted on
a Windows 10 (64-bit) machine equipped with an Intel(R) Core(TM) i7-9750H CPU at 2.60GHz and
16GB of RAM. We evaluate our algorithms for synthesizing piecewise linear and polynomial upper
bounds, as detailed in Section 6.1 and Section 6.2. Results for lower bound synthesis, which exhibit
similar performance and comparative advantages, are provided in Appendix D.2 and Appendix D.3
due to space limitations.

Evaluation Goals. Our experiments are designed to address the following research questions:

RQ1. How effective is our approach in generating piecewise bounds?
RQ2. How does our approach compare to the most closely related methods?
RQ3. How do our piecewise bounds compare to monolithic polynomial bounds?

Experimental Settings. We address the evaluation goals for our piecewise linear and polynomial
algorithms separately. The experiments are conducted under the following settings:

Invariants. We employ invariants to over-approximate the set of reachable states, which is standard
in various existing results [15, 16, 28]. Note that invariants do not provide information about the
piecewise partitioning of the bounds to be computed. In our experiment, we minimize their impact
by deliberately choosing trivial interval-bound invariants that can be directly derived as the union
of loop guard and its post image under the increment/decrement operations within the loop body.

Prerequisites Checking. Our experiments cover both linear and polynomial probabilistic programs
(see Appendix E for details). For linear programs with monolithic linear return functions, we use
a linear template and apply our linear algorithm. For more general cases involving polynomial
programs with piecewise polynomial return functions, we employ a higher-degree polynomial
template and apply our polynomial algorithm. In our piecewise linear experiments, we ensure
that the prerequisites (P1) and (P2) in Theorem 4.10 are satisfied as follows. For (P1), we verify
syntactically that the uniform amplifier ¢ can typically be set to 1 across most benchmarks, ensuring
that (P1) holds for any positive c,. For the remaining benchmarks, we take the maximum coefficient
of the program variables in the loop body as c. For example, in the ST-PETERSBURG benchmark, we
set the uniform amplifier ¢ to 2, choosing c3 = In 2 (since e®® = 2) and c; = In 4 to meet the required
conditions. For (P2), in benchmarks where each loop iteration terminates with probability p and
continues with probability 1 — p, we can syntactically extract p and verify that the concentration
property holds, exhibiting exponential decay at a rate of e™(!~?)_ For the remaining benchmarks,
we construct difference-bounded ranking supermartingales (dbRSMs) to ensure the concentration
property. Such dbRSMs can be synthesized automatically using methods described in [16, 17]. In our
piecewise polynomial experiments, we ensure that the prerequisites (P1’) and (P2) in Theorem 4.11
are satisfied as follows. For (P1°), we verify the bounded-update property on each polynomial
benchmark using an SMT solver [21]. For (P2), we apply the same approach as in the linear case to
establish the concentration property for polynomial programs.

Bound Optimization. Recall that in our algorithms described on pages 14 and 15, we optimize the
synthesized upper bounds by minimizing their values over the initial states of interest, which serve
as the objective function. In the piecewise linear experiments, we typically set the default initial
state s* by assigning the value 1 to all program variables across most benchmarks. For specific cases,
such as FAIR COIN, we assign initial values x = 0 and y = 0 — since (x, y) = (0, 0) is the only state
from which the loop can be entered — and set the variable i to its default value of 1. In the piecewise
polynomial experiments, for path probability estimation benchmarks selected from [13, 29, 47, 57],

!https://anonymous.4open.science/r/text1-B83C-popl/

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Anon.

we adopt the default initial state s* used in previous work to ensure consistency. For the remaining
benchmarks, we first define an interval-bound region, with real-valued variables ranging over
[0,10] and Boolean variables over [0, 1]. We then select 10 initial states comprising the boundary
points of the region, the midpoints of each boundary, the center point, and uniformly distributed
integer points within the region.

Weights Selection. For the polynomial experiments, recall that our algorithm requires a predefined
set of weight combinations (see Eq. (14)). We employ uniformly distributed weights (i.e., each
weight is %) and additionally generate 10 sets of randomly selected weights, each normalized to
sum to one. Independent computations are performed for each of these 11 weight combinations.
From the resulting solutions, we select the function with the minimum objective value as the
synthesized upper bound h*. The total execution time is reported as the cumulative runtime for the
11 independent runs with different weight settings.

Numerical Repair. To address the inherent numerical issues associated with numerical solvers,
we apply a post-processing step to repair the computed results. In the linear experiments, we
approximate the output floating-point coefficients with rational numbers using continued fractions
(see Appendix D.1, [33]), and validate these approximations by checking the constraints in (8). This
numerical repair is applied to all benchmarks except ExpECTED TIME. For this particular benchmark,
since suitable rational approximations could not be found, we truncate the floating-point results
to a precision of 10™* and verify their validity against the same constraints. In the polynomial
experiments, we similarly truncate all floating-point coefficients to 10™* precision, then substitute
the results into the constraints in (14) to check feasibility. Of the 20 benchmarks evaluated, the
results for 16 passed our validation procedure, while the remainder remain unknown.

6.1 Piecewise Linear Bound Synthesis

Benchmark Selection. We choose upper-bound benchmarks from existing works [5, 10-12,
20, 26, 27, 29] that fall into our scope and have the following adaptions. First, for those that do
not have linear return functions, we add simple linear return functions. Second, for those whose
upper bound that can be handled directly by 1-induction (except for several classical examples:
K-GEo, REVBIN, FAIrR CoIN), we adapt them by reasonable perturbations (such as changing the
assignment statement, changing the probability parameters, reducing the continuous distribution
to discrete distribution, etc) so that they require (k > 1)-induction. Third, for those whose upper
bound that cannot be handled by k-induction with small k = 1, 2, 3, we adapt them by reasonable
perturbations as above so that they can be handled by (k > 1)-induction, while still cannot be
handled by 1-induction.

In detail, we consider 7 original examples and 6 adapted examples from the literature. The
examples GEo, K-GEO and EQUAL-PROB-GRID are taken from [10, 11], for which we replace the
assertion probability with a linear return function goal in EQUAL-PROB-GRID. We consider the
benchmark Zero-CoNF-VARIANT adapted from [10, 26]. We revise the assignments and probabilistic
parameters in the original program, and add a linear return function curprobe. The benchmark
ST-PETERSBURG VARIANT is taken from [26] where we replace the probability parameter % with
% since the original program does not satisfy the prerequisites in Theorem 4.10. From [5, 20, 27],
we consider the benchmarks Coin, MART, REVBIN and FAIR CoiN, and revise the assignments,
guards on the original benchmarks BIN series so that we obtain a more complex version BIN-RAN.
The remaining three examples, ExPECTED TIME, GROWING WALK and its variant, are all adapted
from [12, 29] by reducing the continuous distributions to discrete distributions.

Answering RQ1. We present the experimental results on these 13 benchmarks in Table 1. As
bilinear solving is an iterative search for optimal solutions, we set the maximum searching time for

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924

926
927
928
929
930
931

Piecewise Analysis of Probabilistic Programs via k-Induction 19

Table 1. Experimental Results for RQ1 and RQ2, Linear Case (Upper Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" (of our approach) stands for the execution time of our approach
(in seconds), including the parsing from the program input, transforming the k-induction constraint into
the bilinear problems, bilinear solving time and verification time. "Conventional Approach (k = 1)" stands
for the monolithic linear upper bound synthesized via 1-induction, "k" stands for the k-induction we apply,
"Solution" stands for the linear candidate solved by Gurobi, and "Piecewise Linear Upper Bound" stands for
our piecewise results. "Result” stands for the synthesized results by other tools and "T(s)" (of their approaches)
stands for the execution time of their tools.

Conventional Our Approach CEGISPRO2 EXIST
Benchmark f Approach
(k=1) k | Solution Piecewise Linear Upper Bound T(s) Result T(s) Result T(s)
0] - x+
Gro 0] -x+[c<0]-(x+1 : le> : = .
x X 3 x+1 [e>0]-x+[c<0]-(x+1) 1.92 [c<0]-(x+1) 0.05 x+[c=0] 17.29
[k>N]-y+[k<N-1]
—k+ N+ -k+N (-k+N+x+y+1)+ [k>N]-y+[k<N] y+ [k <n]
K-GEO 132. . .74
? y x+y+1 3 +x+y+1 [N-1<k<NJ- 32.76 (-k+N+x+y+1) 038 (x—k+n+1) 767
(-0.5k +0.5N +x+y+1)
. [i > 10] - y+ . .
BIN-RAN y X 2 Ofor zi;l [22 < < 10] - (0.9x — 21i +y +233) | 106.29 mcroe';i‘it:m - inner error -
Y +1i < 2] - (0.9x — 18.8i +y +215)
Comv i x 2| i+d Loyl i+, 10413 | not terminate - fail -
[x=y]-(i+3)
folation of
MarT i X 3] i+2 [x<0]-i+[x>0]-(i+2) 19.29 Vviolation o © | ie[x>0]%2 | 3723
non-negativity
iolation of +[x > 0]
GROWINGWALK . >0] - 2 X vio - Y K
y X 3| x+y+2 [x <0]-y+[x>0] - (x+y+2) 4.03 non-negativity (x+2) 21.98
G W, lx <0 -y+ violation of
ROWINGWALK |, x+y+1 3| x+y+1 [0 <x <1]-(0.5x +y+0.25) 125.19 on-nesativit - not terminate -
-VARIANT x> 1] (x+y) 8 y
[x <0l - t+[0<x<1]-(t+1)+
[1 < x < 3.258] - (3.9852x + +7.39) o
4.4280. t lat f
ExpECTED t X 3| M e +[3.258 < x < 3.3772]- 10935 | vOLOLe - | not terminate | -
Time : (4.4280x + £ + 6.2461)+ gativity
[3.3772 < x] - (3.5867x + t +9.0874)
[est > 0] - cur+ violation of cur + [est = 0]
Zero-Conr cur X 3| cur+140 [start = 0 A est < 0] - (cur+ 140) 180.42 non-negativi - <(—49 - start?~ | 392.19
“VARIANT +[start > 1 A est < 0] - (cur+ 42) & ty 49 - start + 141)
[a>10Vb > 10V
EQUAL- [a>10Vb> 10V goal # 0] - goal goal # 0] - goal+ . ~
pros-Gun | 5% X 2] goal+15 | conb<10Agoal=0]-15 | 28| [a<ionb<io | oM fail
Agoal =0] - 1.5
1] - z+[1<x<2]-(z+x+1) [x<1]z+
REVBIN lx < .
z 2x+z 3 2x+z x> 2] - (z+2%) 70.30 [x> 1] (z42%) 0.22 | z+ [x > 0] - 2x | 151.26
. [x>0vy>0]-i+
oV 0] - =0]-
FaIr CoIN i i—aye2 3| i+d [x>0vy> 0] i+ 12034 [x<ong<o] |oos | FHY=ON | g5
3 [x<0Ay<0]-(i+3) (i+1) g +i
ST-PETERSBURG 3 3 ’ [x>0]-y+ y+[x=0]
X 3 5 x>0]-y+[x<0]-3 1.53 0.04 1339
VARIANT Y 2y [1-y+l 12y [x <0] -%y 0.5y

Gurobi to 100s. On most benchmarks, we find that a monolithic linear bound with 1-induction does
not exist but obtain a piecewise linear upper bound via (k > 1)-induction in a few minutes. Our
approach derives the exact bound, i.e., the tightest upper bound, on the benchmarks Geo, Coin,
K-GEO, MART, GROWING WALK, EQUAL-PROB-GRID, REVBIN, FAIR COIN, ST-PETERSBURG VARIANT.
The exactness of these bounds is established by comparison with the exact invariants synthesized
in [5] (see RQ2) and with the piecewise lower bounds presented in Appendix D.2. We also show that
on a significant number of benchmarks (e.g., K-GEO, BIN-RAN, GROWING WALK-VARIANT, EXPECTED
TIME, etc), the piecewise bounds we synthesize are non-trivial (i.e., the program state space S is
partitioned into more than [¢] and [—¢]).

Answering RQ2. We answer RQ2 by comparing our approach with the most related approaches [5,
10]. We present our comparison results in Table 1. The main difference between cEGIsPrO2 [10] and
our approach is that CEGISPRO2 requires an upper bound to be verified as an additional program
input and it will only return a super-invariant (i.e., a possibly piecewise upper-bound) that is
sufficient to verify (i.e., smaller than) the input upper bound, while we intend to synthesize a tight

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

975
976
977
978
979
980

20 Anon.

piecewise upper bound directly. The benchmarks Geo, k-GEo are the common benchmarks in
these two works and the direct comparisons are as follows: For the benchmark Geo, the piecewise
upper bounds of the two methods are the same. For k-GEo, their piecewise result is consistent
with our result over Z>,. While in the scope of real numbers, our piecewise upper bound is tighter
than theirs. To have a richer comparison with CEGISPRO2, we give CEGISPROZ an advantage by
feeding our benchmarks (including the above two benchmarks) in Table 1 to CEGISPRO2 paired with
the piecewise upper bounds synthesized by our approach. We find cEGisproO2 cannot adequately
handle piecewise inputs. Additionally, it reports violation of non-negativity on 5 of our benchmarks
(see Table 1). By feeding one segment from the piecewise bounds synthesized via our approaches
for the remaining 8 benchmarks, we find on 6 benchmarks, cEGisPro2 produce the consistent
results with our inputs on Z3, while some of them (e.g., K-GE0) are incorrect over R. On BIN-RAN,
the results they produce are impossible to compare since it produces sophisticated and different
results when we feed different segments from our piecewise upper bound. On Coin, the execution
using their tool does not terminate, which prevents the output of a result.

The work [5] considers the probabilistic invariant synthesis via data-driven approach. Note that
the synthesis of upper bounds (i.e., super-invariants) is not considered in their work, and the only
relevant work in [5] with our upper bound synthesis is the exact invariant synthesis. For a further
comparison, We apply their tool EXIsT on our benchmarks to try to generate exact invariants. On
the benchmarks Geo, k-GEo, MART, GROWING WALK, REVBIN, FAIR COIN, ST-PETERSBURG VARIANT,
EXIST can generate an exact invariant for each benchmark and we show that on these benchmarks,
the piecewise upper bounds we synthesize are equal to their exact invariants so that the upper
bounds we synthesize are actually the exact expected value of Xy . On the benchmark ZEro-Cong-
VARIANT, they spend about 400s while we obtain a respectable piecewise linear bound in around
180s. For the remaining benchmarks, their tool fails or the computation seems to be stuck.

In conclusion, our approach can handle many benchmarks that these two works [5, 10] cannot
handle. When feeding our benchmarks with the bounds synthesized through our approach to
CEGISPRO2 and EXIST, they fail on about 40% of our benchmarks. Over most of the benchmarks that
their and our approaches can handle, our bounds are comparable with theirs.

Answering RQ3. In addition RQ2, we compare our piecewise linear upper bounds with monolithic
polynomial bounds via 1-induction in Table 2. Following [16, 57], we implement the polynomial
synthesis with Putinar’s Positivstellensatz [46] (see Appendix C.5). For a fair comparison, we
generate the polynomial bounds with the same invariant and optimal objective function for each
benchmark. All the numerical results in the polynomial bounds are cut to 10™* precision. We
compare two results by uniformly taking the grid points in the invariant and evaluate two results,
and we compute the percentage of the points that our piecewise upper bound are larger (i.e.,
not better) than monolithic polynomial, which is shown in the last column "PCT" in Table 2. We
show that on most of our benchmarks, our piecewise linear bounds are significantly tighter than
monolithic polynomial bounds.

6.2 Piecewise Polynomial Bound Synthesis

Benchmark Selection. We select all remaining benchmarks from [5, 10] that are not used in the
previous linear experiments, as well as path probability estimation benchmarks from [13, 29, 47, 57],
including all unbounded loop benchmarks from [47] in particular. For the former 7 benchmarks
from [5], we instantiate the probability parameters with commonly used values (such as 0.5). Note
that among them, the benchmarks GEOAR, BINO, BIn2, Sum0, DUEL cannot be handled by our
piecewise linear algorithm with k-induction when k = 1, 2, 3, even though both the program and
the return function are linear. For the benchmarks from [10], the benchmarks cHAIN, BRP exhibit

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Piecewise Analysis of Probabilistic Programs via k-Induction 21

Table 2. Experimental Results for RQ3, Linear Case (Upper Bounds). "f" stands for the return function
considered in the benchmark, "k" stands for the k-induction condition we apply in this comparison, "Monolithic
Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized via 1-induction, and
"d" stands for the degree of polynomial template we use, "PCT" stands for the percentage of the points that
our piecewise upper bound are larger (i.e., not better) than monolithic polynomial.

Our Approach Monolithic Polynomial via 1-Induction
Benchmark f PCT
k Piecewise Linear Upper Bound d ‘ Monolithic Polynomial Upper Bound
1.0000 — 1.9996 * ¢ + 1.0000 * x+
GEo . <0]- %
x 3 le>0]-x+[c<0]- (x+1) 3 0.9996 % c2 — 0.0002 # x * ¢ +0.0002 * x * c2 0.0%
[k > NJ-y+ B B
T I I T LI e reuec o P
[N-1<k<N] (~05k+05N+x+y+1) : y+ i :
66.8036 + 21.0161 * i — 29.5267 * y—
17.6524 # x — 1.5735 # i% — 0.2059 * y % i—
[i > 10] - y+ 0.0157 * y? — 0.4056 * x # i — 0.2380 * x * y—
BIN-RAN y 2 R < i <10] - (0.9x — 21i +y + 233) 3 1.7910 # x% — 0.0102 # i + 0.2917 * y * i*+ 49.59%
+[i < 27+ (0.9x — 18.8i +y + 215) 0.0103 # y? # i — 0.0045 * y° + 0.4251 * x * i°—
0.0036 # x * y * i — 0.0095 * x * y? + 0.6938 * x? * i—
0.03827 * X2 * y + 0.6886 * x>
. . 2.6667 + 1.0000 * i — 0.6381 * y + 4.2840 * x
Coin i . =yl - 8 . ; A
s [x#yl-i+lx=yl-(+3) 2 —2.0286 * y? — 2.0067 x * y + 0.3893 # x° 0.0%
Magt i 3 [x<0]-i+[x>0]-(i+2) 2 0.0248 + 1.0000 * i + 199999.6588 * x + 0.1643 x2 0.0%
GROWING 2.5000 + 1.0000 * y + 1.900 * x
WALK vy |3 [x<0l-y+[x20]-(x+y+2) 3 —0.5000*x2+(§/.1000*x3 0.0%
GROWINGWALK [x <0] - y+ 1.0000 * y — 0.2380 * x + 0.1041 * y?—
VARIANT y 3 [0 <x <1]-(0.5x +y+0.25) 3 0.0686 * X * y + 0.0951 % x> + 0.03558 * x * y? 5.52%
+x>1] - (x+y) +0.0686 * x% * y +0.1430 % x>
[x <0]-t+[0<x<1]-(t+1)+
EXPECTED [1<x <3.258] - (3.9852x + £ +7.39)+ 31203409622+ 1 + 2.8278 x x+
t 3 3 0.0015 * t* — 0.01558 * x * t — 0.1397 * x°— 50.0%
TIME [3.258 < x < 3.3772] - (4.4280x + t + 6.2461) 0.0003 % x % £% — 0.0002 & x% 5 £ 4 0.0025 % x°
+[3.3772 < x] - (3.5867x +t +9.0874))))
[est> 0] - curt 109.8660 — 0.1357 * cur + 293795.0410 * start+
ZERO-CONF 209178.7117 * est +0.0019 # cur? + 0.7202 start * cur—
cur | 3 [start == 0 A est < 0] - (cur+ 140) 2 2 0.5 %
-VARIANT +[start > 1 A est < 0] - (cur+42) 293865.0570 * start® + 1.0313 * est * cur+
- - 274251.8886 * est * start — 209283.0750 * est®
1.6661 + 5.7396 * goal — 9.4857 * 107> * b+
Equar- \ Vv .
Pno%jc;m goal | 2 J[ra[;:(i N Ab b><1(i . Ag"‘zlal#_ol)] _g‘l’“Sl 2| 157071075 + a+0.6003 * goal® — 0.6740 % b goal | 0.0%
- B soar=) +1.597510-5 * b? +2.2074 % 1075 * a * goal
1]-z+[1 < 2] - +x+1
REVBIN z |3 [r<il-z+{lsx<2]-(z+x+1) 2 1.0000 * z + 2.0000 % x 0.0%
+[x > 2] - (z+2x)
>0vys>0l i+ 1.3333 + 1.0000 # i — 0.4141 * y — 0.4141 * x
FAIR COIN i 3 [x<0A zoj'(Hé) 2 +1.1743 % i2 — 2.3486 * y * i + 0.2551 % y? 0.0%
- y= 3 —2.3486 * x * i + 3.6820 % x * y + 0.2551 % x?
ST-PETERSBURG 3 0.0197 + 1.5047 = y + 371727.7656 * x
. < L2 o
VARIANT vy |3 [x>0]-y+[x<0]- 3y 3 —0.5028 * x * y — 371727.7734 * x* 0.0%

numerical pathologies due to extremely large constants, which can cause numerical instability
and render our algorithms ineffective. To address this issue, we scale down these pathological
values to more moderate magnitudes—for instance, replacing 1000000000000 with 100 in the cHAIN
benchmark and 8000000000 with 800 in the BRP benchmark—so that our numerical algorithm
can operate reliably. For the benchmarks from [13, 29, 47, 57], since 5 of 9 benchmarks contain
continuous distributions originally, we make simple adaptions on these benchmarks by replacing
each continuous distribution (e.g. uniform distribution over [0, 1]) with a uniform discrete choice of
the same range (e.g. 0 with probability 0.5 and 1 also with 0.5), resulting in 5 adapted benchmarks.
The benchmark INV-PEND in [47] does not pass our checking of prerequisite (P2). Therefore we
make minor modifications to the coefficients in this benchmark so that we can synthesize a dbRSM
to satisfy (P2), thereby obtaining the benchmark iNv-PEND VARIANT. We apply 2-induction on these
24 benchmarks.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Anon.

Answering RQ1. Our algorithm successfully handles all of the aforementioned benchmarks
except for four. The failures in these cases are attributed to excessive branching introduced by our
algorithm based on Proposition 5.2 (see Stage 2 in Section 5), and branch reduction techniques
(see Page 12) have not yet been incorporated into our implementation. Nevertheless, our current
implementation is capable of addressing a wide range of complex benchmarks. For example, the
benchmark cav5 comprises 35 lines of code (see Appendix E), the benchmark INV-PEND VARIANT
benchmark features 4 variables with complex polynomial updates, posing significant challenges
for analysis. We leave further optimization for future work. We present the experimental results
for the synthesis of piecewise polynomial upper bounds on the remaining 20 benchmarks in
Table 3. Our approach successfully derives piecewise polynomial upper bounds for 16 out of 20
benchmarks within seconds. Of the remaining four, two benchmarks (F16-6 and F1G-7) are solved
within tens of seconds, while only INV-PEND VARIANT and cAv-5 require more than five minutes
to compute a result. Our algorithms obtain the exact bound (i.e., the tightest upper bound) on
the benchmarks Bin0, Bin2, DEPRV, PrINsYS, SUMO. The exactness of these results is verified by
comparison with the exact invariants synthesized in [5] (see RQ2) and with our corresponding
lower bounds in Appendix D.3.

Answering RQ2. We answer RQ2 by comparing our approach with the relevant work xist [5]
in Table 3, whose illustration is the same to Table 1. It is worth noting that cEGISPRO2 only supports
linear bounds and does not accept nonlinear expressions as additional program input. Therefore,
we exclude it from our comparison. Note that the only relevant aspect of [5] with respect to
upper bound synthesis (i.e., super-invariants) is their method for exact invariant synthesis. For
comparison, we apply their tool EXIST to our benchmarks in an attempt to generate exact invariants.
On the benchmarks BIN0O, BIN2, PrINsYs, and SUMO0, we show that the piecewise polynomial upper
bounds we synthesize are actually the exact expected value of X, i.e., the tightest upper bounds,
by comparing them with the exact invariants synthesized by ExisT. Among these benchmarks,
EXIST spends about 80s on BINO, about 250s on BiN2, and about 100s on Sum0, while we spend only
several seconds to obtain the specific results. Thus, our algorithm is much more efficient. For the
benchmarks DUEL, cCHAIN, and cAv2, the tool EXIST is able to identify candidates for exact invariants
but fails to verify them, and thus does not produce exact invariants. Additionally, Ex1sT does not
support the benchmarks GRID sMALL and GRID BIG. For the remaining benchmarks, Ex1sT fails to
generate results due to internal errors. Moreover, for the benchmark DEPRV, we demonstrate that
the piecewise polynomial upper bound synthesized by our approach is exact, as it coincides with
the corresponding lower bound (see Appendix D.3). Thus, our method yields the tightest upper
bound for 5 out of the 20 benchmarks in this table. In summary, our approach successfully handles
more benchmarks than [5], and for those benchmarks that both methods can process, our approach
is more efficient and produces comparable bounds.

Answering RQ3. In addition to the comparisons in RQ2, we further evaluate our piecewise
polynomial upper bounds (obtained via k-induction) against monolithic polynomial bounds of
higher degree synthesized using simple induction (i.e., 1-induction). The synthesis of these mono-
lithic polynomial bounds is implemented using Putinar’s Positivstellensatz [46] (see Appendix C.5
for details). For a fair comparison, we use the same invariant and optimal objective function for
each benchmark. We also verify the validity of the monolithic polynomial bounds (see Numerical
Repair). In our experimental evaluation, we observe that for most benchmarks, when the degree
of the polynomial template exceeds 5, numerical performance deteriorates and the synthesized
monolithic bounds fail our validation process. Therefore, in this experiment, we restrict the degree
of monolithic polynomial bounds to at most 5.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Piecewise Analysis of Probabilistic Programs via k-Induction 23

Table 3. Experimental Results for RQ1 and RQ2, Polynomial Case (Upper Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" stands for the execution time of our approach (in seconds),
including the parsing procedure from the program input, relaxing the k-induction constraint into the SDP
problems, the SDP solving time and verification time. "d" stands for the degree of polynomial template we
use and "Solution h*" is the candidate polynomial solved directly by the solver. "Piecewise Polynomial upper
Bound" stands for the piecewise bound we synthesize. "Exact" stands for the exact expected value synthesized
by EXIST.

Our Approach EXIST
Benchmark f
d Solution h* ‘ T(s) ‘ Piecewise Polynomial Upper Bound Exact T(s)
0.0001 % x? — 0.0004 % x # 1 +0.0005 * x * min{[z> 0] - <0‘°°01X22’ 0.0008 »x x y+
GEOAR x 2| +0.0011 % 4 +0.0079 % 22 +0.9998 * x 7.28 0-0003 x x * 2 +0.0010y" +0.0003 + y » 2 inner error -
15398 + g — 0.0085 2 + 5.0078 +0.00402 + 0.9995x + 2.0416y—
))) 0.004z +7.0485) + [z < 0] - x, h*}
0]-
BINO x 2 X+0.5%y*n 1031 x+[n>0]-05%y*n x>0l gy,
05%y*n
x+[n>0]
Bin2 5 x+[n>0]-(025%n+x (0.25n
x 2 0.25%n+x+0.25%n’ +05%y*n 10.12 F0.25 7% +0.5 5 y %) ot 025t | 25060
+0.5 %y % n)
0] - (=0.25 % n+0.25 n®+
~02 25 % n? +0. [n>)
DepRV x*y 2 0 5*:82(;)(5:””*_:25“!*” 9.57 05%y*n+05%Xx*n+x%y) inner error -
) Y +[n<0]-xxy
==1] = 1+
PRINSYS == 3 == == [x
[x==1] |2 0.5+0.5 % x 235 [x==1]%1+[x==0] %05 lx==0] s05 | 392
Sum0 2 . . P . x+[i> 0]
x 2 0.25 % i +0.25 % i + x 2.33 [i > 0] *(0.25%i*+0.25% i) +x (0.251 +0.251%) 105.01
min{[t > 0 A x > 1] - (~10.1335x% — 2.5502¢%
B . B) +0.2099 # X * £ +10.1230 * x + 2.5502 * ¢
DueL t g | TROE6TwX SO0ALB Xl DI0DHL (o) 5015) 4 [t < 0 Ax 2 1] - (=5.0668 * x° fail -
+20.6657 * X +3.5505 * ¢ +0.0013
+0.1050 # x * t — 2.5502 * t2 + 5.0615 * x
+3.0504 * t +0.2514) + [x < 1] - t,h*}
[Failed 38912.3699 * failed® +0.7329 * sent’+ mf(;{g;zlied <_112 : sen[t+<3z(;ol]2»3(70;732?ls ed"f t
BRP failed 1o | 5 9173+ failed « sent + 1486.258 * failed | 10.12 - failed x sen : Saile 1o -
=10] _573.6644 % sent — 2459.9900 +793.1100 * failed — 572.1811 * sent terminate
- . —2623.2068) + [failed = 10], h*}
- . min{[y = 0 A x < 100] - (=0.0059 * x * y
CHAIN [y=1 |2 0 Og'zoloi :’121172'38413%007 479 +0.4793 % y? — 0.0022 % x + 0.4373 * y fail -
: - g+ +0.1079) + [y = 1], b*}
0.0018 % a * b — 0.0003 * a® — 0.0008 * a® * b min{[a <10 A b <10] - (~0.0003 » &'~
[a < 107) 5 . by . 0.0011 * b* — 0.0008 * a® * b +0.0018 * a * b?
GRID SMALL b > 10] —0.0011 # b*> +0.0117 * a* — 0.0154 * a * b+ 6.71 £0.0109 % @ --- +0.0277 % b Not support -
> . X 0.
0.0136 * b% — 0.097 * a +0.0239 * b + 0.5355 +0.5109) + [a < 10 A b > 10], k)
min{[a < 1000 A b < 1000] - (0.0159 * @’
GRID BIG [a < 1000A B 0.0159 * a® — 0.0319 * @ * b + 0.0159 * b* 774 —0.0319 % a * b +0.0159 x b* +0.2714 + a Not support B
b > 1000] +0.2715 % a — 0.3086 * b — 0.437 : —0.3087 * b — 0.4397)+ PP
[a < 1000 A b > 1000], h*}
CAV-2 [h>1+1] |3 0.0 3.78 [h>t+1] fail -
CAV-4 [x<10] |2 10 275 1.0 inner error -
0.0011 % x* + g — 0.0001 + x* - 0.0001 + g min{[x < 4] - (=0.0001 * x* +0.0011 * x> * y
. A - _ 2 442 3 _ 4
FIG-6 [y <5] 4 +0.0008 * x * y* — 0.001 * x% sy + - - 109,03 | 0001 %X *Sy +0.0008 » x *2y 00001 x y inner error -
05712 1 % — 0,981 % 14 0.6009 +0.0023 % x* - - - — 0.0094 * y? +0.5530 * x—
: (2Ol E Y+ 0.2782 %y +0.6027) + [x > 4 Ay < 5], h*}
0.0005 * y? — 0.0008 * y * i . 2
, <0]- - —
FIG-7 [x < 1000] | 2 +0.0002 * i2 — 0.0001 % x+ 2432 min{[y < 0] - (0.0002 « i —0.0002 + x— inner error -
0.001 * y — 0.0005 * i + 1.0003 0.0005 * i + 1.0004) + [y > 0 A x < 1000], h*}
0.0058 * pAD? * pA +0.0023 * pAD? * cV— min{[cp > 0.5V ep < —0.5V pA > 0.1V
INV-PEND 0.1313 % pAD? x cP — 0.6278 * pAD * pA®— PpA < —=0.1] - (0.0058pAD?pA — 0.0011pAD*cV . .
VARIANT (PA<U |30 0352pAD % pA s oV -~ 5.002¢V x cP | 21220 | Z0.1313pAD? #cP + - - +0.0689 % cP +0.3238) | T error
—44.9405 # cP? — 5.7109 * ¢V + 1.0 +[-0.5 < cp <0.5A—0.1 < pA <0.1],h*}
—0.0001 * > +0.0002 * i> % x min{[i < 5] - (0.0001 * i% * x + 0.0005 * i—
CAV-7 [x<30] |3 +0.0011 # i2 — 0.0012 * i * x— 5.26 0.0006 * i * X +0.0004 * i —0.0011 * x inner error -
0.0009 * i = 0.0001 * x + 0.9993 +0.9983) + [i < 5 A x <30],h"}
Z0.0001 % i + money? — 0.0004 = i~ min{[money > 10] - (—0.0001 * i * money>—
X X Il : :
CAV-5 [i <10] 3 0.0006 * i * money + 0.1029 * money® 892.6 0-0004 = £ 0'0004: ix money +0.0015 i inner error -
40,0037 % i+ 1.0 +0.1028 * money” — 0.2118 * money+
T) 3.1283) + [money < 10 A i < 10],h*}
0.0005 * x* — 0.0055 * x? y +0.0272 % x * min{[y < 1]+ (~0.0491 #x"+0.0272 x” x y=
)) y . . — 0.1341)
ApD [x>5] | 3| —0.0491#y>—0.0109 x> +0.0513 * x * y— | 3.63 03%25151”3 toooffssf ;- (?3536:: X++ inner error -
0.0224 % 32 +0.0819 % x — 0.2123 + + 0.9308 : xry= ooy =l o
0.1406 * y +0.7181) + [y > 1 Ax > 5], h*}
GROWINGWALK 0.0622 % x* — 1.2722 % x * r + 6.5027 * r min{[r < 0] - (0.0622 * x* + 0.6279 * x . ~
VARIANT2 Yy 2 +0.6396 % X + 1 — 6.5379 * r + 1.6433 533 +y+1.6914) + [r > 0] - y. h*} inner error

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Anon.

We present the comparison results in Table 4, whose illustration is the same to Table 2. To
compare the two synthesized bounds, we uniformly sample grid points from a region of interest
(typically a subset of the invariant) and evaluate both results at these points. We then compute the
percentage of points at which our piecewise polynomial upper bound is larger (i.e., not better) than
the (higher degree) monolithic polynomial, which is shown in the last column "PCT" in Table 4. We
show that on all the benchmarks except GRID SMALL, GRID BIG, FIG-6, ADD, our piecewise polynomial
bounds are significantly tighter and simpler than monolithic polynomial bounds. Although our
running time is a bit longer than that of monolithic polynomial experiments, our approach allows
to synthesize lower-degree polynomials while achieving better precision against higher-degree
polynomials. This advantage is critical as the synthesis of higher-degree polynomials suffers from
a large amount of numerical errors as stated previously.

7 RELATED WORKS & CONCLUSION

In this work, we propose a novel approach to synthesize piecewise probabilistic bounds for prob-
abilistic programs. Further improvements include optimization on the branch reduction and the
constraint solving of latticed k-induction constraints with minimum. Below we compare our
approach with most related approaches.

Compared with previous approaches (e.g. [15, 16, 18]) that mostly focus on synthesizing mono-
lithic bounds over probabilistic programs, our approach targets piecewise bounds, and hence is
orthogonal. The work [11] proposes latticed k-induction. We claim that their work differs signifi-
cantly from ours. They do not synthesize bounds and only verify whether a given bound is an upper
bound or not. The work [10] synthesize piecewise linear bounds to verify the input upper bound
via counterexample-guided inductive synthesis (CEGIS), while we do not need this additional input
bound and we solve the bounds by bilinear and semidefinite programming rather than CEGIS.
For the verification of lower bounds, their work applies a proof rule in [28, 32] derived from the
original OST, while our approach applies extended OST. The work [5] synthesizes (piecewise)
exact invariants and sub-invariants (to verify the input lower bound) via data-driven learning.
Their work additionally requires a list of features composed of numerical expressions, while our
approach captures the piecewise feature via k-induction automatically and without such additional
inputs. The works [13, 57, 59] focus on deriving bounds for the posterior distribution in Bayesian
probabilistic programs, whereas our work aims at deriving piecewise bounds for the expected
output of the probabilistic programs.

Other approaches [3, 7, 8, 36] focus on moment-based invariants generation and high-order
moments derivation for probabilistic programs. These works can even handle the probabilistic
program with non-polynomial expressions and continuous distributions, but they only consider the
probabilistic while loop in a rather restricted form: while true {C}. The work [42] enlarges the
theoretical foundation through the assumption that all variables appearing in if-conditions (loop
guards) are finitely valued , and [44] further provides an algorithm about computing the strongest
polynomial moment invariants for this kind of loops, but their works still cannot handle most of our
benchmarks. Our approach can handle all the polynomial forms of loop guards and if-conditions.
In a similar vein, the works [39, 53] bound higher central moments for running time and other
monotonically increasing quantities, but are limited to programs with constant size increments.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Piecewise Analysis of Probabilistic Programs via k-Induction 25

Table 4. Experimental Results for RQ3, Polynomial Case (Upper Bounds). "f" stands for the return function
considered in the benchmark. "Piecewise Polynomial Upper Bound" stands for the results synthesized by our
algorithm. "Monolithic Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized
via 1-induction, "T(s)" stands for the total execution time. "PCT" stands for the percentage of the points that
our piecewise polynomial upper bound are lower (i.e., not better) than (higher degree) monolithic polynomial.

Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
d ‘ T(s) ‘ Piecewise Polynomial Upper Bound d ‘ T(s) ‘ Monolithic Polynomial Upper Bound
min{[z > 0] - (0.0001x? — 0.0003 * x * y+ ~0.0001x> +0.0001 * x * y — 0.0011 * x% % z—
2 . 2 _ 2
GEOAR . 2| 728 0.0003*x*12+0,0010y +0.0003 xy * z 3| 152 0,0004*:(*% 0,0lIZ*x*yx;z+0,l()4*x*z 5.0%
+0.00402% + 0.9995x + 2.0416y— +0.0012 % y® + -+ = 0.0137 % y? +2.7194 % y x 2
0.004z +7.0485) + [z < 0] - x,h*} +0.9993 * x + 0.0417 * y + 89867.2768 * z + 0.078
Bino x 2| 1031 Xx+[n>0]-05%y=n 3| 1.0 05*y+n+x 0.0%
—0.0001 * x * y? — 0.0002 * x * y * n—
0.0001 # x * n? +0.0009 * y> — 0.0009 * y* x n
0] - (0.25
BIN2 x 2| 1012 x’:) 12"5;12] +(0 o :;) 30103 | —0.0011%yn?—0.0001%n>+0.0004+x %y | 214%
' ~*Y —0.0093 * y? + 0.5117 * y * 1+ 0.2496 * n?
+0.9986 * x +0.033 % y + 0.2641 * 1+ 0.051
0] - (=0.25%n+0.25%n’ +0.5%y*n Xk Y+0.5%x%n+0.5%y % n+
DEPRV 2| 9. > 3| 102 0%
*y 57 H05xxsn+xxy)+[n<0]-x*y 0 0.25 % n? = 0.2499 % .+ 0.0001 0.0%
PrINsYS [x==1] |2]| 235 [x==1]#1+[x==0] %05 31075 0.2973 % x° +0.2027 * x + 0.5 0.0%
Sumo x 2| 233 0.25 % 2 +0.25% i +x 4|07 0.25% 2 +0.25 % i+ x 0.0%
min{[t > 0 A x > 1] - (=10.1335x — 2.5502¢° —175.0474xT — 33.1201x°t — 256.8154 * x° t*
+0.2099 * x * £ +10.1230 * x + 2.5502 * +74.5673 # x * t5 + 81.1314 * t* — 115.4608 = x>+
DukL t 2| 690 +0.5015) + [t < 0 Ax > 1] - (=5.0668 * x? 4] 0.92 | 153.7459 % x% t — 125.7204 * x * t* — 104.9856t> | 0.02%
+0.1050 # x * ¢ — 2.5502 * t? + 5.0615 * x +78.3171 + x% + 186.7714 * x * t — 135.7646 * t*
+3.0504 # t +0.2514) + [x < 1] - t,h*} +212.334 % x + 160.6187 *
. .6049f ailed™ + 4.902f ailed® .2 iled®
min{[failed < 10 A sent < 800] - (0.7329sent* 5:60 farled. * 2 %0 {ar’ed sent + 3. 6626falled
[failed +0.0322 failed * sent +389.1237 * failed’ 00035 failed’sent” —7.0269 x failed” x sent
BRP 2| 10.12 : | 4| 1.27 | +0.0019 * failed * sent? +2.9608 failed * sent | 28.8%

=10] +793.1100 * failed — 572.1811 * sent

—0.0001sent® +5.1816 iled® - 0.0288 t?
~2623.2068) + [failed = 10], h*} sen * faile ¥ sen

+2.4293 x failed — 7.3179 x sent — 0.9176
—0.0449 % x> — 0.5045 * x? * y + 5.611 # x * y°—
155242.5616 * y° + 5.5921 * x? + 43.0661 * x * y

—668140.0947 * y* — 117.5705 * x+
823721.7882 * y + 160.1718

min{[y =0 A x < 100] - (—0.0059 * x *y
CHAIN [y=1 |2| 479 +0.4793 Y% — 0.0022 * x +0.4373 * y 3| 115
+0.1079) + [y = 1], h*}

0.85%

min{[a < 10 A b < 10] - (—0.0003 * a>—
[a < 10A 3| em 0.0011 * b> — 0.0008 * a® * b +0.0018 * a * b*
b > 10]) +0.0109 * @ - - - +0.0277 * b
+0.5109) + [a < 10 A b > 10],h*}
min{[a < 1000 A b < 1000] - (0.0159 * a®
[a < 1000A —0.0319 % a* b +0.0159 % b> +0.2714 = a

0.0001 * a® — 0.0003 * a® * b + 0.0002 a * b*
4116 —0.0001 * b3 — 0.0002 * a* + 0.0001 a = b 43.54%
+0.0003 * b% — 0.0326 * a + 0.0322 * b + 0.4628

GRID SMALL

0.0005 * a@® — 0.0044 * a® * b +0.0052 * a * b>—

GRID BIG . . 0.0023b% + 2.3321 * a* — 4.6674 b+ 2.3399b% X
b > 1000] ae 03087 x b — 0.4397)+ T +3§ 489 % a*—a4z 4502 * b*—ags 5;54 e
[a <1000 A b > 1000], h*} e))
0.0008 * h% = 0.001 h * t +0.001 % £*
CAV-2 1 . t+1 410 0.0%
[h>t+1])3 378 th>t+1] 75 ~0.0066 * h — 0.0073 * ¢ +0.0885 .
0.0007 # x * y? — 20.236 * y* — 0.0007 * x * y
CAV-4 < %
lx<10] 2| 275 10 3| 062 +13.2821 * y® +6.9539 * y + 1.0 0.0%
min{[x < 4] - (=0.0001 = x +0.0011 * x° * y —0.0001 * x° — 0.0002 * x¥ % y — 0.0003 * x* * y*
—0.001 * x* % y* + 0.0008 * x * y> — 0.0001 * y* +0.0001 * x * y* — 0.0002 * y° + 0.0011 * x*+
FIG-6 < 4| 109. 1.12 42.
ly <5l 0903 | 10,0023+ x° - - — 0.0094 = y? +0.5530 * x— 5 0.0037 % x5 y - -+ +0.1432 % x * y + 0.0064 y* 73%
0.2782 * y +0.6027) + [x > 4 Ay < 5],h"} +0.9708 * x — 0.6526 * y + 0.575
0.0003 # x% 5 i — 0.083 * x% * y + 48.5638 * x * y>+
i < 0] - (0.0002 * i — 0.0002 * x— 0.5267 # x #y * i — 0.018 * x * i® + 2600.9691 * y°
FIG-7 < min{[y < 7 ; %
[< 1000] | 21} 2432 | 3057 4 1.0004) + [y > 0 A x < 1000], h*} 312651 36705« yP ki —2.646 %y * i2 - —3.3923 % x 2587
+56310.8279 * y — 0.0114 * i +7.2868
min{[cp > 0.5V cp < —0.5V pA > 0.1V 0.2264 = pADT +1.1448 + pAD® = pA
INV-PEND PA < —0.1] - (0.0058pAD?*pA — 0.0011pAD*cV —0.1026 * pAD? * ¢V — 0.1107 * pAD* * cP+
< . . .04%
VARIANT [pA<1] |3 | 41220 ~0.1313pAD? x cP +- -+ 0.0689 cP+0.3238) | * | 74 5.2869 % pAD? % pA® + - - - +10.6625 cP? +04%
+[-0.5<ep <05A-0.1<pA<0.1],h"} —0.0001 * pA +53.8573 * ¢V + 1.0
. 0.0007 = iT — 0.0011 * i° 0.0005 * i% * x?
min{[i < 5] (0.0001 ¢ x +0.0005 » i*~ -0 0001**1 ixx—0 50145**)2;+ 0 0052*; i;:x
CAV-7 [x<30] [3| 526 0.0006 * i * x + 0.0004 i — 0.0011 * x 4117 ’ ’ ' 37.37%

—0.0012 # i % x* +0.0134 % i* = 0.012 % i * x+

0.002 * x® — 0.0135 * i + 0.0046 * x + 1.0034

0.0001 * i% * money?® + 0.0002 * i * money>+
0.0001 * money® +0.0184 * i x money

+0.9983) + [i < 5 A x < 30], A"}

min{[money > 10] - (=0.0001 * i * money®—
0.0004 * i — 0.0004 * i * money + 0.0015 * i

CAV-5 i>1 2. 4012 —0.0396 * i 2 -0.0168 3 0%
>10] |3 8926 +0.1028 * money? — 0.2118 * money+ 7 rixmoney = 0-0108x money 0.0%
3.1283) + [money < 10 Ai < 10], K} +0.0009 # i* — 0.0291 * i* +2.8701 * i
) - +0.2414 * i * money + 4.264 x* money* + 1.0
. T+4.4802 % X3 x y — 4.4 Zxy?
min{[y < 1] - (—0.0491 % x* + 0.0272 * x? % y— 0.0637x" + 44802 x” = y — 4.4386 + x*x y
0.0055 x % g +0.0005 » * — 01348 % %4 +3.8156 # x * Y — 2.5543 * y* — 4.6104 % x>+
ADD [x > 5] 3| 363 PO : s o 4] 081 | 4.8566*x?*y—7.0417 + x * y> + 6.8972 * y*— | 43.94%
0.0926 # x * y — 0.015 * y* — 0.3568 * x+ 3 3
0.1406 + y +0.7181) + [y > 1 Ax > 5], h*} 0.4752 % x* — 1.6341 # x * y — 2.8078 * y
) ' ’ +5.0331 % x — 1.5381 x y
. 0.999 # x * rZ +0.0008 * y * r° + 700.3292 * 1>
GROWINGWALK < 0] - (0.0622 = x? +0.6279 2
y 2| 533 min{[r < 0] - (X o 30122 | —1.999 % x 1 —0.0008 %y r — 1399.6591 + 12 | 5.0 %
VARIANT2 +y +1.6914) + [r > 0] -y, h*}

+x +y +698.3298 * r + 1.0001

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Anon.
REFERENCES
[1] Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. 2021. Learning Probabilistic Termination Proofs. In Computer

[10]

[11]

[12]

[13]

[14]

Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 3-26. https://doi.org/
10.1007/978-3-030-81688-9_1

Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
2021. A pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang. 5, POPL (2021), 1-28.
https://doi.org/10.1145/3434333

Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovacs, Marcel Moosbrugger, and Miroslav Stankovic.
2022. Solving Invariant Generation for Unsolvable Loops. In Static Analysis - 29th International Symposium, SAS 2022,
Auckland, New Zealand, December 5-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13790), Gagandeep
Singh and Caterina Urban (Eds.). Springer, 19-43. https://doi.org/10.1007/978-3-031-22308-2_3

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.

Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. 2022. Data-Driven Invariant Learning for
Probabilistic Programs. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August
7-10, 2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.).
Springer, 33-54. https://doi.org/10.1007/978-3-031-13185-1_3

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016. Proving Differential
Privacy via Probabilistic Couplings. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM,
749-758. https://doi.org/10.1145/2933575.2934554

Ezio Bartocci, Laura Kovacs, and Miroslav Stankovic. 2019. Automatic Generation of Moment-Based Invariants for
Prob-Solvable Loops. In Automated Technology for Verification and Analysis - 17th International Symposium, ATVA
2019, Taipei, Taiwan, October 28-31, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11781), Yu-Fang Chen,
Chih-Hong Cheng, and Javier Esparza (Eds.). Springer, 255-276. https://doi.org/10.1007/978-3-030-31784-3_15

Ezio Bartocci, Laura Kovacs, and Miroslav Stankovic. 2020. Mora - Automatic Generation of Moment-Based Invariants.
In Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12078), Armin Biere and David Parker (Eds.). Springer,
492-498. https://doi.org/10.1007/978-3-030-45190-5_28

Kevin Batz, Tom Jannik Biskup, Joost-Pieter Katoen, and Tobias Winkler. 2024. Programmatic Strategy Synthesis:
Resolving Nondeterminism in Probabilistic Programs. Proc. ACM Program. Lang. 8, POPL (2024), 2792-2820. https:
//doi.org/10.1145/3632935

Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
2023. Probabilistic Program Verification via Inductive Synthesis of Inductive Invariants. In Tools and Algorithms for
the Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 13994), Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Springer, 410-429.
https://doi.org/10.1007/978-3-031-30820-8_25

Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schroer.
2021. Latticed k-Induction with an Application to Probabilistic Programs. In Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 524-549. https://doi.org/10.1007/978-3-
030-81688-9_25

Raven Beutner, C.-H. Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal
probabilistic programming. In PLDI °22: 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 536-551.
https://doi.org/10.1145/3519939.3523721

Raven Beutner, C.-H. Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal
probabilistic programming. In PLDI °22: 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 536-551.
https://doi.org/10.1145/3519939.3523721

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that
execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 33-52. https://doi.org/10.
1145/2509136.2509546

https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1145/3434333
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-13185-1_3
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-45190-5_28
https://doi.org/10.1145/3632935
https://doi.org/10.1145/3632935
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1145/3519939.3523721
https://doi.org/10.1145/3519939.3523721
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2509136.2509546

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Piecewise Analysis of Probabilistic Programs via k-Induction 27

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In
Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer,
511-526. https://doi.org/10.1007/978-3-642-39799-8_34

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic
Programs Through Positivstellensatz’s. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer, 3-22. https://doi.org/10.1007/978-3-319-41528-4_1

Krishnendu Chatterjee, Hongfei Fu, Petr Novotny, and Rouzbeh Hasheminezhad. 2016. Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 327-342. https://doi.org/10.1145/2837614.2837639
Krishnendu Chatterjee, Hongfei Fu, Petr Novotny, and Rouzbeh Hasheminezhad. 2018. Algorithmic Analysis of
Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs. ACM Trans. Program. Lang.
Syst. 40, 2 (2018), 7:1-7:45. https://doi.org/10.1145/3174800

Krishnendu Chatterjee, Petr Novotny, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termination. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 145-160. https://doi.org/10.1145/3009837.
3009873

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop
Invariant Generation by Lagrange Interpolation. In Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel
Kroening and Corina S. Pasareanu (Eds.). Springer, 658—674. https://doi.org/10.1007/978-3-319-21690-4_44
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS 08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337-340.

Leonardo Mendonga de Moura, Harald Ruef, and Maria Sorea. 2003. Bounded Model Checking and Induction:
From Refutation to Verification (Extended Abstract, Category A). In Computer Aided Verification, 15th International
Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2725),
Warren A. Hunt Jr. and Fabio Somenzi (Eds.). Springer, 14-26. https://doi.org/10.1007/978-3-540-45069-6_2
Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Riimmer. 2011. Software Verification Using
k-Induction. In Static Analysis - 18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6887), Eran Yahav (Ed.). Springer, 351-368. https://doi.org/10.1007/978-3-642-
23702-7_26

J. L. Doob. 1971. What is a Martingale? The American Mathematical Monthly 78, 5 (1971), 451-463. https://doi.org/10.
1080/00029890.1971.11992788 arXiv:https://doi.org/10.1080/00029890.1971.11992788

Gy Farkas. 1894. A Fourier-féle mechanikai elv alkalmazasai. Mathematikaiés Természettudomanyi Ertesito 12 (1894),
457-472.

Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023.
Lower Bounds for Possibly Divergent Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 696—726.
https://doi.org/10.1145/3586051

Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for
Probabilistic Programs. In Automated Technology for Verification and Analysis - 15th International Symposium, ATVA
2017, Pune, India, October 3-6, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10482), Deepak D’Souza and
K. Narayan Kumar (Eds.). Springer, 400-416. https://doi.org/10.1007/978-3-319-68167-2_26

Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Verification,
Model Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January
13-15, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.).
Springer, 468-490. https://doi.org/10.1007/978-3-030-11245-5_22

Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, 62-83.
https://doi.org/10.1007/978-3-319-41528-4_4

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming.
In Proceedings of the on Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, James D.
Herbsleb and Matthew B. Dwyer (Eds.). ACM, 167-181. https://doi.org/10.1145/2593882.2593900

https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-540-45069-6_2
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1080/00029890.1971.11992788
https://doi.org/10.1080/00029890.1971.11992788
https://arxiv.org/abs/https://doi.org/10.1080/00029890.1971.11992788
https://doi.org/10.1145/3586051
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/2593882.2593900

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Anon.

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle Mclver. 2013. Prinsys - On a Quest for Probabilistic Loop Invariants.
In Quantitative Evaluation of Systems - 10th International Conference, QEST 2013, Buenos Aires, Argentina, August 27-30,
2013. Proceedings (Lecture Notes in Computer Science, Vol. 8054), Kaustubh R. Joshi, Markus Siegle, Mariélle Stoelinga,
and Pedro R. D’Argenio (Eds.). Springer, 193-208. https://doi.org/10.1007/978-3-642-40196-1_17

Marcel Hark, Benjamin Lucien Kaminski, Jirgen Giesl, and Joost-Pieter Katoen. 2020. Aiming low is harder: induction
for lower bounds in probabilistic program verification. Proc. ACM Program. Lang. 4, POPL (2020), 37:1-37:28. https:
//doi.org/10.1145/3371105

William B. Jones and W. J. Thron. 1984. Continued Fractions: Analytic Theory and Applications. https://api.
semanticscholar.org/CorpusID:118226015

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition
Reasoning for Expected Run-Times of Probabilistic Programs. In Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science,
Vol. 9632), Peter Thiemann (Ed.). Springer, 364-389. https://doi.org/10.1007/978-3-662-49498-1_15

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition
Reasoning for Expected Runtimes of Randomized Algorithms. J ACM 65, 5 (2018), 30:1-30:68. https://doi.org/10.
1145/3208102

Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efstathia Bura. 2023. Exact and Approxi-
mate Moment Derivation for Probabilistic Loops With Non-Polynomial Assignments. CoRR abs/2306.07072 (2023).
https://doi.org/10.48550/ARXIV.2306.07072 arXiv:2306.07072

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328-350. https://doi.org/10.
1016/0022-0000(81)90036-2

Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh, and Arie Gurfinkel. 2019. Interpolating Strong Induction.
In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer,
367-385. https://doi.org/10.1007/978-3-030-25543-5_21

Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probabilities for Randomized Program Runtimes via
Martingales for Higher Moments. In Tools and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11428), Tomas
Vojnar and Lijun Zhang (Eds.). Springer, 135-153. https://doi.org/10.1007/978-3-030-17465-1_8

Jia Lu and Ming Xu. 2022. Bisection Value Iteration. In 29th Asia-Pacific Software Engineering Conference, APSEC 2022,
Virtual Event, Japan, December 6-9, 2022. IEEE, 109-118. https://doi.org/10.1109/APSEC57359.2022.00023

Garth P. McCormick. 1976. Computability of global solutions to factorable nonconvex programs: Part I - Convex
underestimating problems. Math. Program. 10, 1 (1976), 147-175. https://doi.org/10.1007/BF01580665

Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovacs. 2022. This is the moment for probabilistic
loops. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1497-1525. https://doi.org/10.1145/3563341

Theodore Samuel Motzkin. 1936. Beitrage zur Theorie der linearen Ungleichungen. (No Title) (1936).

Julian Miillner, Marcel Moosbrugger, and Laura Kovacs. 2024. Strong Invariants Are Hard: On the Hardness of
Strongest Polynomial Invariants for (Probabilistic) Programs. Proc. ACM Program. Lang. 8, POPL (2024), 882-910.
https://doi.org/10.1145/3632872

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for prob-
abilistic programs. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM,
496-512. https://doi.org/10.1145/3192366.3192394

Mihai Putinar. 1993. Positive Polynomials on Compact Semi-algebraic Sets. Indiana University Mathematics Journal 42,
3 (1993), 969-984. http://www.jstor.org/stable/24897130

Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs:
inferring whole program properties from finitely many paths. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan
(Eds.). ACM, 447-458. https://doi.org/10.1145/2491956.2462179

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings (Lecture Notes in
Computer Science, Vol. 3148), Roberto Giacobazzi (Ed.). Springer, 53-68. https://doi.org/10.1007/978-3-540-27864-1_7
Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. 2000. Checking Safety Properties Using Induction and a
SAT-Solver. In Formal Methods in Computer-Aided Design, Third International Conference, FMCAD 2000, Austin, Texas,
USA, November 1-3, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1954), Warren A. Hunt Jr. and Steven D.

https://doi.org/10.1007/978-3-642-40196-1_17
https://doi.org/10.1145/3371105
https://doi.org/10.1145/3371105
https://api.semanticscholar.org/CorpusID:118226015
https://api.semanticscholar.org/CorpusID:118226015
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102
https://doi.org/10.48550/ARXIV.2306.07072
https://arxiv.org/abs/2306.07072
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-030-25543-5_21
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1109/APSEC57359.2022.00023
https://doi.org/10.1007/BF01580665
https://doi.org/10.1145/3563341
https://doi.org/10.1145/3632872
https://doi.org/10.1145/3192366.3192394
http://www.jstor.org/stable/24897130
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1007/978-3-540-27864-1_7

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Piecewise Analysis of Probabilistic Programs via k-Induction 29

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58
[59]

—

Johnson (Eds.). Springer, 108-125. https://doi.org/10.1007/3-540-40922-X_8

Calvin Smith, Justin Hsu, and Aws Albarghouthi. 2019. Trace abstraction modulo probability. Proc. ACM Program.
Lang. 3, POPL (2019), 39:1-39:31. https://doi.org/10.1145/3290352

Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. 2021. Ranking and Repulsing Supermartingales for
Reachability in Randomized Programs. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 5:1-5:46. https://doi.org/10.1145/
3450967

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An Introduction to Probabilistic
Programming. CoRR abs/1809.10756 (2018). arXiv:1809.10756 http://arxiv.org/abs/1809.10756

Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Central moment analysis for cost accumulators in proba-
bilistic programs. In PLDI °21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 559-573.
https://doi.org/10.1145/3453483.3454062

Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Expected-Cost Analysis for Probabilistic Programs and Semantics-
Level Adaption of Optional Stopping Theorems. CoRR abs/2103.16105 (2021). arXiv:2103.16105 https://arxiv.org/abs/
2103.16105

Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021. Quantitative
analysis of assertion violations in probabilistic programs. In PLDI 21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and
Eran Yahav (Eds.). ACM, 1171-1186. https://doi.org/10.1145/3453483.3454102

Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019.
Cost analysis of nondeterministic probabilistic programs. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley
and Kathleen Fisher (Eds.). ACM, 204-220. https://doi.org/10.1145/3314221.3314581

Peixin Wang, Tengshun Yang, Hongfei Fu, Guanyan Li, and C.-H. Luke Ong. 2024. Static Posterior Inference of
Bayesian Probabilistic Programming via Polynomial Solving. Proc. ACM Program. Lang. 8, PLDI, Article 202 (jun 2024),
26 pages. https://doi.org/10.1145/3656432

David Williams. 1991. Probability with Martingales. Cambridge University Press.

Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong. 2025. Guaranteed Bounds on Posterior Distributions of
Discrete Probabilistic Programs with Loops. Proc. ACM Program. Lang. 9, POPL (2025), 1104-1135. https://doi.org/10.
1145/3704874

https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1145/3290352
https://doi.org/10.1145/3450967
https://doi.org/10.1145/3450967
https://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
https://doi.org/10.1145/3453483.3454062
https://arxiv.org/abs/2103.16105
https://arxiv.org/abs/2103.16105
https://arxiv.org/abs/2103.16105
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3656432
https://doi.org/10.1145/3704874
https://doi.org/10.1145/3704874

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 Anon.

A SUPPLEMENTARY MATERIAL FOR SECTION 2.2

In this section, we supplement the introduction of the variant of k-induction operators proposed
in [40], some important properties of these two k-induction operators, the equivalence between
them and all their proofs.

Recall that in Section 2.2, we fix a lattice (E, C) and a monotone operator & : E — E.

A.1 Property of the Upper k-Induction Operator in [11]
We attach an important property of the upper k-induction operator ¥, in [11] here.

THEOREM A.1 (PARK INDUCTION FROM k-INDUCTION [11]). Foranyu € E and k € N, we have that
(V) Cu = ®(¥r(u) C V().

The proof is given in [11, Lemma 2].

A.2 Upper k-Induction Operator in [40]
First we recall the definition of the upper k-induction operator proposed in [40].

Definition A.2 (The k-Induction Operator in [40]). The upper k-induction operator ¥ is defined
by: ¥ :E — E,0+— ®(v) Mo.

Intuitively, it can be seen as a natural tightening of the operator ¥,, which considers the meet
with the input element v itself. Below we introduce some important properties of the operator V.

LEMMA A.3. Let ¥ be the k-induction operator in [40] w.r.t. . Then

(1) ¥ is monotonic, i.e., Yv1,v, € E,v1 C vy implies ¥(v1) T ¥(vy).
(2) Iterations of ¥ starting from u are descending, i.e.,

L CY'wCcY-lwC..CYwCu
And thus we have for allm < n € N,¥"(u) C Y™ (u).

Proor. Foritem (1), observe that if we have w; C w, and v; C 05, then we have wy Mo; C wyMo,.

¥(v1) = @(01) Moy (by definition of ¥)
E &(vy) Moy (by monotonicity of ¢ and above property)
= ¥(vy) (by definition of ¥)

For item (2), we can immediately derived from the definition of ¥ as

Pk (u) = TP (w)) (by definition of ¥ (u))
= d(PF 1 (w)) M (v) (by definition of ¥)

C v 1(u) (by definition of 1)

[m]

PROPOSITION A.4. Foranyu € E, ®(¥*(u)) Cu & &(¥*(u)) C ¥*(u).

PROOF. The if-direction is trivial as W*(u) C u (by Lemma A.3(2)). For the only-if direction:

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Piecewise Analysis of Probabilistic Programs via k-Induction 31

¥k (1) 2 ¥F 1 (w) (by Lemma A.3(2))
= O(¥* (w) N ¥* () (by definition of ¥)

= &(P*(w)) M (¥ (u)) (by definition of W (u))

= &(P* () M (@(¥F 1 (w) N1 (w)) (by definition of ¥)

= (&(¥*(w)) M (¥ (w)) M ¥ (u)) (by associative law)

= &(¥*(w)) M ¥ (u) (by monotonicity of & and Lemma A.3(2))

= (&(¥*(w)) NP (u) Nu (by unfolding ¥* until k = 1)
=d(¥* () nu (by monotonicity of @ and Lemma A.3(2))

= o(¥*(u)) (by the premise)

O

A.3 Equivalence between ¥, and ¥

THEOREM A.5 (EQUIVALENCE BETWEEN ¥, AND ¥). For any element u € E, the sequence
{WX(u)}xso of elements in E coincides with the sequence {¥* (1) }r»o. In other words, for any natural
number k > 0, we have that ¥ (u) = ¥*(u).

Proor. Proof by mathematical induction. We denote Xj = W,f (u) and Y = ¥*(u). when k = 0,
Xo=u=Yy. When k =1, X; = ®(u) Mu = Yy, by definition of two operators, respectively.
Now we suppose that Xj = Y4, i.e., lI’,’j(u) = ¥¥(u), and we aim to prove that q/,’j“(u) = pk+l(y).

Xies1 = W (VX (u) (by definition of ¥**!(u))

= (VX (u)nu (by definition of ¥,)

Yier1 = Y(¥F (w)) (by definition of W**(x))
= &(¥*(v)) M ¥*(u) (by definition of ¥)

= &(P*(w)) M (1 (u)) (by definition of ¥ (u))

= @(*(w) M (@(FF 1 (w) N1 (u)) (by definition of)

= (®(¥*(w) Mo (¥ (w)) N ¥ 1 (u)) (by associative law)

= &(P*(w)) NP (u) (by monotonicity of ¢ and Lemma A.3(2))

= ((¥*(w) No(w) Nu (by unfolding ¥* until k = 1)

= (Y (w) Nu (by monotonicity of ¢ and Lemma A.3(2))

Since we suppose that WX (1) = ¥ (), we obtain that &(¥* (x) Mu = &(¥* (1)) M u, thus we have
PR () = TR (1), fe., Xiyr = Yiar. O

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 Anon.

A.4 Supplementary Materials for the Dual k-Induction Operators ¥, and ¥’

We first give the definition of the Dual k-Induction Operators ¥, which has been examined
in [40].

Definition A.6 (Dual k-Induction Operator in [40]). The lower k-induction operator ¥’ is given
by: ¥’ : E — E,v +— &(v) Uo.
LEMMA A.7. Fix a lattice (E,C) and a monotone operator ®. For any element u € E, both of these
two dual k-induction operators ¥, and ¥’ have the following properties:
(1) W (resp. ¥’) is monotone.
(2) Iterations of ¥,, (resp. ¥') starting from u are ascending, i.e.,

UC W () C...(¥)w)c (¥)rw). ..
UC ¥ WC... () wC (¥)®w)...
Thus we have forallm < n € N, (%)™ (u) E ()" (u) and (¥")™(u) C (¥")"(u).

ProoFr. We only prove the case of dual k-induction operator ¥/, since the proof of the properties
of the dual k-induction operator ¥’ is similar with that of ¥,.
For item (1), observe that if we have w; C w,, then we have w; Liu T w; Llu. Assume that v; C 0,

¥, (01) = P(v1) Uu (by definition of ¥)
CP(vy)Uu (by monotonicity of ¢ and above property)
=Y, (v2) (by definition of ¥})

For item (2), we prove it by mathematical induction. We have u C ¥}, (u) as ¥, (u) = ®(u) L u.
We then assume that (%)% (u) 2 (W;l)k_l(u), and we prove that

(0 () = %, ()" (w) (by definition of (¥)**! ())

V() () (by monotonicity of ¥}, and assumption)

= (¥)*(u) (by definition of (¥)* (u))

Thus the value sequence is an ascending chain. O

ProprOsITION A.8. For any element u € E, the lower k-induction operators ¥, and V' have the
following properties:

S W) 3u = d(¥)*w) 2 () ()
(¥ W) 2u = o(¥)*w) 3 (¥)*w)

Proor. For the case of the dual k-induction operator ¥,:
The if-direction is trivial as (‘I/,;)k (u) 3 u (by Lemma A.7(2)). For the only-if direction:

()" (w) © (9 (u) (by Lemma A.7(2)))
= (7)*(u)) (by the definition of (¥/)**!(u))
= o((¥%)"(w) Uu (by the definition of ¥})
= lI/((‘I/;)k(u)) (by the premise)

For the case of the dual k-induction operator ¥':

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Piecewise Analysis of Probabilistic Programs via k-Induction 33

The if-direction is trivial as (¥")*(x) 3 u (by Lemma A.7(2)). For the only-if direction:

() (w) £ (%) (u) (by Lemma A.7(2)))
=9 ((¥)*(u) (by the definition of (¥’)F*!(u))
=o((¥)*) u (¥)* () (by the definition of ¥’)
= o (P (w) LY () () (by the definition of (¥/)¥ (u))
= o((¥) (w) LD (¥ (w) U (¥ (w) (by the definition of ¥)
= (@((¥)* () LD (¥ () U (¥ (u) (by associate law)
=o((¥)*w) u (¥ () (by monotonicity of @ and Lemma A.7(2)))
= o((¥)(w) LY (u) (by unfolding (¥")*(u) until k = 1)
=o(¥) W) ud(u)uu (by definition of ¥’)
=o((¥) W) uu (by monotonicity of ¢ and Lemma A.7(2)))
= o((¥)* () (by the premise)

O

A5 Equivalence between ¥, and ¥’

THEOREM A.9 (EQUIVALENCE BETWEEN ¥, AND ¥’). For any element u € E, we have that the
sequence { (W)X (u) }xso of elements in E coincides with the sequence {(¥')* (u)}rso. In other words,
for any natural number k > 0, we have that (V) (u) = (%)% (u).

Proor. Analogously, we proof it by mathematical induction. Xj = (‘I/,;)k (u) and Vi = (¥)*(u).
when k =0, Xy = u = Y. When k = 1, X; = ®(u) U u = Y;, by definition of two dual operators,
respectively.

Now we suppose that Xj. = Y, ie., (‘I/,;)k(u) = (¥")*(u), and we aim to prove that (‘I/l:)k“(u) =
(\I//)k+1 (u)

X = (7)) (w)) (by definition of (%;)*! ())
=o(¥)*u) Lu (by definition of ¥)

Yier = ¥ ()5 (w)) (by definition of (¥/)F*!(u))
= o((¥) (w) U (¥)*(u) (by definition of ¥’)

= o (P (w) LY () (u) (by definition of (¥)* (u))

= o((¥)F(w) U (P((F)* ' (w) L ¥* 1 (u)) (by definition of ¥’)

= (@((¥)*(w)) LD ((F) 1 (w)) L 1 (u)) (by associative law)
=o((¥)*w) u (¥ () (by monotonicity of & and Lemma A.7(2)))

= (@((¥)*w)udw)Lu (by unfolding (¥")* until k = 1)

=o((¥)* W) uu (by monotonicity of & and Lemma A.7(2))

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

34 Anon.

Since we suppose that ()X (u) = (¥’)*(u), we obtain that &((¥/)*(u) Uu = &((¥")*(u)) U u,
thus we have (%) (u) = (¥")**!(u), i.e., X1 = Yis1.]

B SUPPLEMENTARY MATERIAL FOR SECTION 4

B.1 Classical OST

Optional Stopping Theorem (OST) is a classical theorem in martingale theory that characterizes
the relationship between the expected values initially and at a stopping time in a supermartingale.
Below we present the classical form of OST.

THEOREM B.1 (OPTIONAL STOPPING THEOREM (OST) [58, CHAPTER 10]). Let {X,},>, be a martin-
gale (resp. supermartingale) adapted to a filtration ¥ = {F,.},., and T be a stopping time w.r.t the
filtration . If we have that:

e E(r) < oo;
o exists an M € [0, o) such that |Xp+1 — Xpn| < M holds almost surely for every n > 0,
then it follows that (|X;|) < oo and B(X;) = E(X)(resp. E(X;) < E(X))).

Since the classical Optional Stopping Theorem [24, 58] requires bounded step-wise difference
| Xn+1 —Xn| in a stochastic process {X,, } n>0, which cannot handle our problem due to the assignment
commands in the loop body. To address this difficulty, We have sought several extended versions of
OST, as proposed in [54, 56, 57], etc. Among which we find the OST variant proposed in [57] can
handle our problem.

B.2 Proof of Theorem 4.10

Theorem 4.10. Suppose the loop P is affine. Let k be a positive integer and h be a polynomial
potential function in the program variables with degree d. If there exist real numbers ¢; > 0 and
¢y > c¢3 > 0 such that

(P1) there exists a uniform amplifier ¢ satisfying ¢ < /¢, and
(P2) the termination time T of P has the concentration property,ie,P(T > n) <c;-e %™

hold, then for any initial program state s*, we have:

o Eu(Xp) < ?;_1 (h)(s™) < h(s*) holds for any k-upper potential function h.
o B¢ (Xr) > (@;l)k‘l (h)(s*) = h(s*) holds for any k-lower potential function h.

Proor. We first proof the soundness of upper potential functions. Let s,, be the random vector
(random variable) of the program state at the n-th iteration of the probabilistic while loop P, where
so = s¥, and let {F,}n>0 be the filtration such that each ¥, is the o-algebra that describes the
first n iterations of the loop, i.e., the smallest o-algebra that makes the random values during
the first n executions measurable. This choice of ¥, is standard in previous martingale-based
results [17-19, 56].

We also define H = T’:_l (h). Note that H is piecewise linear or polynomial (by the definition of
— — k- — —k—
¥}, in Definition 4.4) . By Definition 4.5 and the property that (¥}, ! (h) 2 h = &V, 1(h)) =
—k— —

v, 1(h) (Theorem A.1), we obtain that Vs € Reach(s*), ®(H)(s) < H(s). We define the stochastic
process {X,} , by

X, = H(sy).
We first prove that the stochastic process {X,, } is a supermartingale. We discuss this in the following
two scenarios:

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Piecewise Analysis of Probabilistic Programs via k-Induction 35

o if s, [~ ¢, by the semantics of probabilistic while loop (see Section 2.3), s,+1 = s, and thus
Xn+1 = Xy, which satisfies the conditions of supermartingale;
o if s, = ¢, we have

Eg- [Xn+1 |7:n] = Es [H(3n+1)|7:n]

= Es, [H(sp+1)|7n] (by definition of conditional expectation)
= prec(H)(sn) (by definition of pre-expectation)
=& (H)(s,) (by definition of characteristic function)
< H(spn) (by property of H)
=X,

where the property of conditional expectation is the “take out what is known” property
of conditional expectation (see [58]). From (P1) and the definition of uniform amplifier
(see Definition 4.8), for each program variable x, the value of x, is bounded by |X,| <
x|l +a- (4" 1) < Ky - < Ky - €4 for some positive constant K;,. From that
H is piecewise linear (resp. polynomial with degree d), i.e., H is linear (resp. polynomial
with degree d) on each segment, we can obtain Es-[X,,] = Es+[H(sp)] = Es+[M,, - ¢"*] < o0
for some positive constant M,, > 0 by the definition of X,,. Thus {X,,} is a supermartingale.

The condition (a) in Theorem 4.6 follows from the assumption that (P2) P has the concentration
property.

Then we prove the condition (b) in Theorem 4.6. From (P1), we have that for each program
variable x, the value of x,, at n-th iteration, i.e., at the program state s,, is bounded by K, - ¢". When
H is piecewise linear, i.e., d = 1, we have that H(s,) < M, - ¢ for M,, > 0.

| Xns1 = Xn| = [H(sns1) — H(sn)|
< |H(sns1)| + |[H(sn)|
< My - lef™ + My - e[
< (Mp + [e| - Mys1) - el
< by -e4"
When H is piecewise polynomial with degree d, we have that H(s,) < M, - ¢ for M,, > 0.
|Xn+1 — Xul = |H(sn+1) — H(sn)|

< |H(sns1)| + [H(sn)|

< My - [e]™ + My - [e] D

< (Mg +1¢%) - M) - ||

< by - (e/dynd

< by - eS"

Especially, if the uniform amplifier c is chosen as 1, then c¢; can be chosen arbitrarily small, the
prerequisites of this theorem always holds regardless of the values taken by ¢, and d.

By applying Theorem 4.6, we have that E,- (X7) < Eg(Xp). Since the termination time T is a
stopping time w.r.t. the filtration { %, },>0, and there will be st £ ¢, thus X7 = f(s7) = Xr. We have

Es (Xf) < Es+(Xo) = H(s"). The second inequality, i.e., ?’:_101) (s*) < h(s*)(Vs*) can be derived

—k—
directly from the property that ¥, 1(h) = hholds (see Appendix A.2 and [11]). The case of lower
potential functions is completely dual to the case of upper potential functions since we can consider

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

36 Anon.

the stochastic process {—X,}, that is, define the stochastic process by Y, := —H(s,). The remaining
proof is essentially the same.
m]

B.3 Proof of Theorem 4.11

Theorem 4.11. Let k be a positive integer. Suppose there exist real numbers ¢; > 0 and ¢; > 0 such
that condition (P1’) loop P has the bounded update property; and condition (P2) in Theorem 4.10
holds, then for any initial program state s*, we have

o Eo(Xp) < f/:_l(h) (s™) < h(s*) holds for any k-upper potential function h.
o B¢ (Xp) 2 (@;1)"_1 (h)(s*) = h(s*) holds for any k-lower potential function h.

Proor. We first proof the soundness of upper potential functions. Let s,, be the random vector
(random variable) of the program state at the n-th iteration of the probabilistic while loop P, where
so = s, and let {F, },>0 be the filtration such that each ¥, is the o-algebra that describes the
first n iterations of the loop, i.e., the smallest o-algebra that makes the random values during
the first n executions measurable. This choice of ¥, is standard in previous martingale-based
results [17-19, 56].

We also define H = @:_1 (h). Note that H is piecewise linear or polynomial (by the definition of
W}, in Definition 4.4) . By Definition 4.5 and the property that 5(@:_1 (h) =h = 5(@2_1 (h)) =
?’:_l (h) (Theorem A.1), we obtain that Vs € Reach(s*), ®(H)(s) < H(s). We define the stochastic
process {X,},, by

X, = H(sy).

We first prove that the stochastic process {X,, } is a supermartingale. We discuss this in the following
two scenarios:

e if s, [~ ¢, by the semantics of probabilistic while loop (see Section 2.3), s,+1 = s,, and thus
Xn+1 = Xy, which satisfies the conditions of supermartingale;
o if's, = ¢, we have

Eq- [Xn+1 |Tn] = Es- [H(sn+1)|7rn]

= E;, [H(sp+1)|Fn] (by definition of conditional expectation)
= prec(H)(sn) (by definition of pre-expectation)
=& (H)(s,) (by definition of characteristic function)
< H(sp) (by property of H)
=X,

where the property of conditional expectation is the “take out what is known” property of con-
ditional expectation (see [58]). From (P1’) that P has the bounded update property and H is a
piecewise polynomial with degree d, i.e., H is a polynomial with degree d on each segment, we can
obtain B¢ [X,,] = Es [H(s,)] < ¢ - n for a positive constant { > 0, thus {X,,} is a supermartingale.

The condition (a) in Theorem 4.6 follows from the assumption that (P2) P has the concentration
property.

Then we prove the condition (b) in Theorem 4.6. From that P has the bounded update property
and H is a piecewise polynomial with degree d, we also have that |X,| < ¢ - n¢ for a positive

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

Piecewise Analysis of Probabilistic Programs via k-Induction 37

constant { > 0, thus we have
IXn+1 - Xn| < |Xn+1| + |Xn|

<¢-nt+7-(n+1)?

Sbl-nd

Note that in this theorem, c; in Theorem 4.6(b) is chosen arbitrarily small, therefore the prerequisites
of Theorem 4.6 always holds regardless of the values taken by c;.

By applying Theorem 4.6, we have that E+(X7) < E(Xp). Since the termination time T is a
stopping time w.r.t. the filtration {#,},>0, and there will be sy ¢ ¢, thus X7 = f(sr) = Xy. We

have Es (Xr) < Es(Xo) = H(s"). The second inequality, i.e., ?’:_l(h) (s*) < h(s*)(V¥s™), can be

derived directly from the property that ?/];_1 (h) = hholds (see Appendix A.2 and [11]). The case of
lower potential functions is completely dual to the case of upper potential functions since we can
consider the stochastic process {—X,, }, that is, define the stochastic process by Y,, :== —H(s,). The
remaining proof is essentially the same.

O

C SUPPLEMENTARY MATERIAL FOR SECTION 5

C.1 Supplementary Material for Brute-Force Arithmetic Expansion in Stage 2
In this section, we supplement the brute-force arithmetic expansion that can simplify the k-induction

constraint. To transform the k-induction constraint 5f (sz_l(h)) = h into a simpler form, our
algorithm further unrolls this k-induction conditions so that the minimum operations appear at
the outermost of the left-hand-side of the inequality. In detail, from the definition of the operator
¥}, (Definition 4.4), the unrolling is reduced to the recursive computation of pre-expectation and
the pointwise minimum operation. Following the definition of pre-expectation (Definition 4.2), the
unrolling can be done by the following reduction rules for functions fi, ..., fi, 91, - - gn:

(R1) min{fy,..., fu} + min{gy,...,gn} = minici<mi<j<n{fi + g}

(R2) ¢-min{fi,..., fn} =min{c- fi,..., fin} for constant ¢ > 0;

(R3) [B] - min{fi,..., fr} = min{[B] - fi,..., [B] - fim} for predicate B.

— —k-1
By iterative applications of the reduction rules, the constraint (¥, ~(h)) = h can be trans-
formed into a succinct form with only one minimum operation:

min{hl, hz, ey hm} =< h

where h is the predefined polynomial template and each h; (i = 1,..., m) is a piecewise expression
derived from the unrolling that does not contain the minimum operation.

C.2 Proof of Proposition 5.2
We give a proof for Proposition 5.2 in this section.

— k-
Proposition 5.2. The upper k-induction condition @ (¥}, ! (h)) = his equivalent to constraint
min{hy, hy, ..., hyn} = h, where each h; equals prec, (h) for some unique C; € {Cy,...,Cy,} from
the unfolding process above.

— k-
Proor. We concentrate on the left side of the constraint: @ (¥}, ! (h)) < h.

We first proof the case of k = 2, i.e, Ef(?/;l(h)) < h. Since our syntax of the probabilistic
programs is defined in a compositional style (see Fig. 1 in Section 2.3 for more details), we proof

38 Anon.

1814 by induction on the structure of programs. For simplicity, we denote prec([®]) by [®(C)], which
1815 represent the evaluation of [®] after the execution of C.

1816 e Case C = skip.

1817 _

1818 ‘Df(g/h(h))

1o = [=¢]- f+I[p] - prec(Pa(h))

1820

= [l - f+ o] - Talh)

1822 = [=el-f+le] - min{®f(h),h}

1623 = [-¢]-f+l¢] -min{[~¢] - f+[¢]-h h}

1222 = [—¢]- f+min{[]-h [¢] - h}

= [l f+ 1ol h

1827 = @r(h)

1828 It corresponds to pre-expectation of the loop-free program unfolded with twice (only one
182 program).

1830 e CaseC=x:=e.

1831 _

1832 P (Pn(h))

iZ;i = [l f+[p] - prec(¥n(h)

=[] f+ o] - Tu(h)([x/e])

1836 = [=el-f+le]-min{[-¢] - f+ [¢] - h([x/e]), h}([x/e])
1837 = [~e]- f+ o] -min{[-¢([x/e])] - f([x/e]) +

1:23 lo([x/eD] - h([x/e])([x/e]), h([x/e])}

= min{[~p] - £+ [p A ~g([x/e])] - f([x/e]) +

1841 lo A o([x/eD)] - h([x/e])([x/e]), [=@] - f + [@] - h([x/e])}
1542 = min{[=¢] - f+ [¢ A —g([x/e])] 'f([X/e]) +

12: [o A o([x/eD] - prec.c(h), [=¢] - f + [@] - h([x/e])}

1845 the expressions in the minimize operator correspond to pre-expectation of the two loop-free
1846 programs unfolded within twice (one for once, and another for twice).

1847 e Case C = Cy;C,.

188 D (Wy(h))

1849 _

1850 = [l f+le]-prec(¥u(h))

1851 = [~ol- f+lelprec,(prec,(min{[~¢] - f + [¢] - prec, (prec,(h)), h}))
e = [~e]- f+le] - min{[-¢(Cy;C)] - prec;c,(f) +

o [p(C1:Co)] - precc, (h), precyc, (W)}

1855 = min{[=¢] - f+[¢p A @(Ci;C2)] - prec,c,(f) +

1856 [¢ A —(Cy; Cz)] - prec;c, (h),

e [=¢] - f+ o] - precic, (W)}

1858

1859

1860 the expressions in the minimize operator correspond to pre-expectation of the two loop-free
1861 programs unfolded within twice (one for once, and another for twice)

1862

Piecewise Analysis of Probabilistic Programs via k-Induction 39

1863 e case C = {Ci}[p{Ca}-

1864

7 (Th(h))

o = [0l f+[p] - prec(¥n(h)

1868 = [=@]- f+[p]-p-prec,(¥n(h) + [¢] - (1-p) - prec,(¥h(h))

1::2 wherein

e prec,(@n(h) = prec,(min{[~p] - £+ [¢] - (p - prec, (W) + (1= p) - prec, (). h)
1873 = min{[-¢(Cy)] - prec, (f) + [¢(C1)] -

1874 (p - precyc,(h) + (1= p) - prec,c,(h)), prec, (h)}

1875

1876 and

1877 _

1878 prec,(¥u(h)) = prec,(min{[-¢] - f + [¢] - (p - prec,(h) + (1 - p) - prec,(h)), h}

1879 = min{[-¢(Cy)] - prec,(f) + [¢(C2)] -

1:? (P s prec,c (h) + (1 - p) ' preCZ;Cz(h))»PreCz(h)}

1882 Thus we have

1883

1884 D (¥h(h))

o = [=p]-f+1p]-p-min{[~p(C] - prec,(f)

1887 +[<0(C1)] ’ (p s precycy (h) + (1 _P) 'precl;cz(h))>prec1(h)} +

1888 lo] - (1= p) - min{[=¢(C2)] - prec,(f)

1889 +[@(Co)] - (p - precyic, (h) + (1= p) - prec,c, (M), prec, (h)}

o = min{[~¢] - f+[p A=¢(C)] - p prec,(f) + [A =p(C2)] - (1= p) - prec,(f)

1592 +lo A@(C))] - (p* - precyc, (h) + p(1 = p) - precyc, (h))

1893 +o A @(Co)] - (1= p)p - prec,c, (h) + (1= p)? - prec,c, (),

1894 (=@l f+ 1o A=p(C)]-p-prec,(f) +

1895

[p A @(C1 - (5% - prec.c, (B) + p(1 = p) - precy.c, (h) +

1897 [90] : (1 _P) - prec, (h)’

1898 (=] - f+ 1o A=p(Ca)] - (1-p) - prec,(f) +

1899 [o A @(C2)] - ((1=p)p - precyc, () + (1= p)* - prec,c, (k) +

1900

001 [] - p-prec,(h),

1902 [~¢]- f+1e]l-p-prec,(h)+[¢]-(1-p)-prec,(h)

1903

1904

1905 The first expression corresponds to the case that we unfold for twice at each state we reach
1906 (after the execution of C; and Cy), and the second (resp. third) expression corresponds to the
1907 case that we unfold for twice at the state that we reach after the execution of C; (resp. C,)
1908 and unfold for once at the state that we reach after the execution of C; (resp. Cy). The fourth
1909 expression corresponds to the case that we unfold for once at both states, i.e., 1-induction
1910 principle.

1911

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

40 Anon.

o case C =if (¢) {C1} else {C,}.

D (Wy(h))
= [=¢]l - f+ o] prec(¥n(h))
= [-¢]-f+[p ¢l prec,(Pn(h) + [p A =¢] - prec,(Py(h))

wherein

prec,(¥p(h) = prec,(min{[-¢] - f +[¢] - ([¢] - prec,(h) + [~¢] - prec, (), h}
= min{[-¢(C1)] - prec, (f) + [¢(C1)] -
([¢(C] - precyc, (B) + [=$(C1)] - prec,ic,(h)), prec, (h)}

and

prec,(Ta(h)) = prec,(min{[~¢] - f + [¢] - ([] - prec, (h) + [~¢] - prec,(h)), b}
= min{[~¢(C)] - prec,(f) + [¢(C2)] -
([¢(C2)] 'PreCz;Cl(h) + [_'¢(C2)] : preC2;C2(h))’preC2 (h)}

Thus we have

¢ (Ph(h))
= [=¢] - f+ ¢ A@d] min{[-¢(C1)] - prec,(f)
+e(C)] - ([#(C)] - precyc, (B) + [=¢(C1)] - prec,c, (), prec, ()} +
[A =¢] - min{[-¢(C2)] - prec,(f)
+e(C)] - ([#(C2)] - prec,c, () + [¢(C2)] - prec,c,(h)). prec,(h)}
= min{[-¢] - f+[@ AP A=@(C1)] - prec,(f) +
[@ A=p A=p(C2)] - prec,(f) +
[Ap A @(Cr) AP(C1)] - precyc,(B) + [@ AP A @(Cr) A=¢(Cr)] - prec,c,(h)) +
[p A =p A p(C2) AP(Co)] - precyc, (h) + [@ A = A @(C2) A =§(C2)] - prec,c, (h)),
[~ol - f+leAdA-@(C1)]-prec, (f) +
[ApA@(Cr) AP(C1)] - precyc,(B) + [@ A A @(Cr) A=¢(Cr)] - prec,c,(h)) +
[A =¢] - prec,(h),
[—@] - f+ e A=p A=p(C)] - prec,(f) +
[@ A =g A @(C2) AP(C2)] - precye, () + [@ A =p A @(C2) A=¢(C2)] - prec,c, (h)) +
[@ A @] - prec, (h),
[—] - f+[eA¢l-prec,(h) +[p A=d] - prec,(h)

The one-to-one relation is the same as that in the former case (probabilistic choice case).

Then we proof the case of k > 2 by mathematical induction. Suppose that the proposition
holds when k = n, i.e., the upper n-induction condition Ef(i/z_l(h)) = h is equivalent with
min{hy, ho, ..., hm} = h, where each h; uniquely corresponds to one C; € {Cy,..., Cm} and is
equal to prec, (h), where {Cy, ..., Cp} are all the loop-free programs generated by following the
decision process in Stage 2 in Section 5 within m unfolding.

Piecewise Analysis of Probabilistic Programs via k-Induction 41

1961 Then we proof the case of n + 1.
1962
— ,—n - — —n-1
B (T () = B (T (T ()
1964 — . = —n-
1965 = @ (min{® (¥}, (h)),h})
1966 = af(min{min{hl, hy, ..., hm}t, h})

1967

= @p(min{hy, hy, ..., b, h})
= [=¢] - f + [¢] - prec(min{hy, by, ..., hym, h})

Through the same inference on the structure C as above, we show it is equivalent to min{gi, g, . . ., gm },
where M > m + 1 and each g; uniquely corresponds to one C; € {Cy,...,Cy} and is equal to
prec,(h), where {Cy, ...,Cpy} are all the loop-free programs generated by following the decision
process in Stage 2 in Section 5 within n + 1 unfolding. Thus the proposition holds when k = n + 1.
Notice that the operators 5f and pointwise min are noncommutative.

By mathematical induction, the proposition holds for k > 2. O

1968
1969
1970
1971
1972
1973
1974
1975
1976

1977
REMARK 5. In Proposition 5.2, We only propose the case of upper k-induction condition, and the case

of lower k-induction condition is completely dual.

1978
1979
1980

Los1 C.3 Supplementary Material for the Pedagogical Explanation in Stage 2

1082 We now present a detailed mathematical analysis of the program in (5).
1983 Recall that we denote f as the return function, and denote @ r as the function given by
1984

(W) (x) = [~(x)] - F() + [p(x)](p - hlayx +by) + (1= p) - h(ayx +by))

132: for every function A : R — R. We use the k-induction operator ¥, from [11] (k is dummy here)
which is given by ¥, (g) := min{5f(g), h}. We apply the k = 2-induction condition to upper-bound
the expected value of X and perform a key simplification for this condition via loop unfolding as
follows. For the ease of understanding, we let H; = [—¢(a1x + b1)] - f(aix + b1) + [p(a1x + b1)] -
(p-h(ai(a;x+b1)+by)+(1—p)-h(az(a;x+by) +by)), which intuitively represents that we unfold
the loop once at the state of a;x + by, and Hy = [—@(azx + by)] - f(axx + by) + [p(azx + by)] - (p -
h(ay(azx + bz) + by) + (1 — p) - h(az(azx + by) + by)), which intuitively represents that we unfold

the loop once at the state of a;x + b5.

1988
1989
1990
1991
1992
1993
1994

1995 e Case 1: In this case, the loop is executed once, reaching two states a;x + b; and a;x + by, and
1996 does not continue. In other words, we unfold the loop only once and obtain the loop-free
1997 program C; as in Fig. 2a. This amounts to h; = [—¢(x)] - f(x) +[e(x)](p-h(aix+b1) + (1 -
1998 p) - h(azx + by)), which is the expected value of h(x) after the execution of the program C;.
1999 e Case 2: In this case, the loop is first executed once, reaching two states a;x + b; and azx + b,.
2000 Then, we clarify two cases below.

2001 — At the state a;x + by, we stop the execution of the loop and have the value A(a;x + b;).
2002 — At the state a;x + bz, we continue the execution of the loop and obtain two branches: (i)
2003 if ¢ is not satisfied, we directly have the return function f(ayx + by); (ii) if ¢ is satisfied,
2004 we arrive at the states a;(asx + bs) + by and ay(axx + by) + bs.

2005 The unfolding process above generates a loop-free program C; (see Fig. 2b), and h; is derived
2006 from the program C; in a way similar to h;. We have that h, = [-¢(x)] - f(x) + [o(x)] -
2007 (p - h(a1x + b1) + (1 — p) - Hy), which is the expected value of h(x) after the execution of
2008 the program Cs.

2009

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

42 Anon.

e Case 3: This case is similar to Case 2, with the only difference that we choose to continue
the execution of the loop at the state a;x + b; and do not unfold the loop at a,x + b;. Then,
we clarify two cases below.

— At the state a;x + by, we continue the execution of the loop and we will attain two
branches: (i) if ¢ is not satisfied, output the return function f(a;x + b1); (ii) if ¢ is
satisfied, we will arrive at the states a;(a;x + by) + b; and as(a;x + by) + b,.

— At the state of ayx + b,, we stop the execution of the loop and have the value h(azx +b,).
This generates a loop-free program Cs (see Fig. 2c), from which hs is derived similar to
hi1, hy. We have that hs = [-¢(x)] - f(x) + [@(x)] - (p- H1 + (1 — p) - h(azx + bs)), which is
the expected value of h(x) after the execution of the program Cs.

e Case 4:In this case, at both the states a;x+b; and a;x+b,, we choose to execute the loop once
more. This generates a loop-free program Cy (see Fig. 2d). hy is derived from the program Cy4
similar to the previous cases. We have that by = [-¢(x)]: f(x)+[¢(x)]-(p-Hi+(1—-p) -H,),
which is the expected value of h(x) after the execution of the program C,.

C.4 Supplementary Material for Stage 4

Motzkin’s Transposition Theorem is a classical theorem that provides a dual characterization for
the satisfiability of a system of strict and non-strict inequalities. Below we present the original
Motzkin’s Transposition Theorem.

THEOREM C.1 (MOTZKIN’S TRANSPOSITION THEOREM [43]). Given the set of linear, and strict linear,
inequalities over real-valued variables x1, x3, ..., Xy,

.) .)
Z i) X+ P <0 Z A(mri) " Xi+ P <0
i=1 i=1

S = and T =

n n
Z A(m,i) " Xi + Pm <0 Z X (m+k,i) " Xi t Pk <0
i=1] =

in which a(1,1), ..., Q(m+k,n) and Pi, ..., Pm+k are real-valued, we have that S and T simultaneously
are not satisfiable (i.e., they have no solution in x) if and only if there exist non-negative real numbers
A0s A, ooy Amak such that either the condition (A):

0= Z?i?" Aiaginy, - 0= Ziﬁ?k AiQ(in), 1= (Z?:h;k AiBi) = Ao,
or condition (Ay): at least one coefficient A; fori in the range {m + 1, ...,m + k} is non-zero and
0= XM D), - 0 = TP i), 0 = (S35 i) = Ao

In our work, we consider the variant form of Motzkin’s Transposition Theorem (see Theorem 5.5).

Theorem 5.5 is first proposed in [18, Theorem 4.5 and Remark 4.6] without proof. We give a complete
proof here.
Theorem 5.5. [Corollary of Motzkin’s Transposition Theorem] Let S and T be the same systems
of linear inequalities as that in Theorem C.1. If S is satisfiable, then S A T is unsatisfiable iff there
exist non-negative reals Ay, A1, ..., A4k and at least one coefficient A; fori € {m + 1,...,m + k} is
non-zero, such that:

0= 2 iy, 0 0= S Di(im), 0 = (S5 2i8) = o.
i.e., the condition (A;) in Theorem C.1.

Before we proof the theorem, we introduce the desired theorem: Farkas’s Lemma:

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

Piecewise Analysis of Probabilistic Programs via k-Induction 43

LEmMMA C.2 (FARKAS’S LEMMA [25]). Consider the following system of linear inequalities over
real-valued variables x1, xs, ..., Xp,

aqnxt +o+ aamxn 1 <0
S= :
Am1)X1 + o+ Amn)Xn +Pm <0
When S is satisfiable, it entails a given linear inequality
prexi+ o+, +d <0

if and only if there exist non-negative real numbers Ay, A1, ..., A, such that

m m m
c1= Z Ai@(i1)s s Cn = Z AiC(iny, d = (Z Aifi) = Ao
i=1 i=1 i=1

Furthermore, S is unsatisfiable if and only if the inequality 1 < 0 can be derived as shown above.

Now we proof the corollary (Theorem 5.5).

Proor. Proof by contradiction. According to Motzkin’s Transposition Theorem, S and T have no
solution in x if and only if there exists non-negative real numbers Ay, A, ..., A4 such that either
condition (A;) or (Ay) is satisfied. We first proof (4,41 # 0) V (A2 # 0) V ... V (Apik # 0).

If it is not satisfied, we assume that A,,4; = ... = Adpex = 0. Then we know the condition (A;)
must be satisfied and we have (By applying the assumption A1 = ... = A4k = 0):

m m m
0= ZI/L'OC(M), 0= leia(i,n),zllliﬁi = /10 +12>1,
1= 1= i=

By applying Farkas’s Lemma, we have:

m m m
1= Z/lia(i,l) =0,..,cp = Z/lia(i,n) =0,d= (Z Aifi) —A=A+1-1 =1,
i=1 i=1

i=1
Thus we have:
p=c1x1+..+epxp+d=d=1<0
if and only if S is not satisfiable, which contradicts the assumption, so the assumption does not
hold. We have proved (Ap41 # 0) V (A2 2 0) V ... V (Aak £ 0).

If condition (A;) is satisfied, then exists non-negative real numbers Ao, A1, ..., Ak and (Ape1 #
0) V (Amsz #0) V... V (Aysk # 0)(what we just prove) such that

m+k m+k m+k

0= Z Aia(iys - 0 = Z Ait(in), 1 = (Z AiBi) = Ao,
i1 im1 im1

let Ay = Ao +1 > 0 and we can find that it also satisfies the condition (A), thatis A; = A,.
Thus, Motzkin’s Transposition Theorem can be simplified as: If S is satisfiable, then S and T have
no solution in x if and only if there exists non-negative real numbers Ay, Ay, ..., A4k, such that:

(ALVA) A (A = Ay)) &= A

Thus we prove Theorem 5.5. O

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156

44 Anon.

C.5 Application of Putinar’s Positivstellensatz [46]

We recall Putinar’s Positivstellensatz below.

THEOREM C.3 (PUTINAR’S POSITIVSTELLENSATZ [46]). Let V be a finite set of real-valued variables
and g, g1, ..., 9m € R[V] be polynomials over V with real coefficients. Consider the set S := {x €
RY | gi(x) > 0 forall1 < i < m} which is the set of all real vectors at which every g; is non-negative.
If (i) there exists some gy such that the set {x € RV | gi(x) = 0} is compact and (ii) g(x) > 0 for all
x € S, then we have that

9= Jo+ 21 fi- 9i (15)
for some polynomials fy, fi ..., fm € R[V] such that each polynomial f; is the a sum of squares (of
polynomials inR[V]), i.e. f; = Zf:o qij for polynomials q; ;’s in R[V].

In our comparison, we utilize the sound form in (15) for witnessing a polynomial g to be non-
negative over a semi-algebraic set P for each inductive constraint Vx € P, g(x) > 0.

In our experiments, the maximum degree of unknown SOS polynomials is set to the degree of
the polynomial template plus 2.

D SUPPLEMENTARY MATERIAL FOR SECTION 6
D.1 Continued Fraction

Continued fraction can represent a real number r by an expression as follows:
1

r=ap+ 1
G+ T

and r is abbreviated as [ay, a, a, ...]. In our implementation, we first transform each output float
coefficient into its continued fraction form [ag, a;, ay, ...]. Then we perform the truncation operation
that we find the first a;(i > 1) that is greater than a large threshold, for which we choose 100,

and truncate from there (including this number). We keep only the previous parts, as our rational
approximation results.

D.2 Experimental Results of Piecewise Linear Lower Bounds

We present the experimental results of piecewise linear lower bounds in this section. For the linear
lower bounds, we consider the same benchmarks and return functions f as in Section 6.1, and use
the same invariant from the External Inputs for each benchmark.

Answering RQ1. We present the experimental results for the synthesis of piecewise linear lower
bounds on the 13 benchmarks in Table 5. In this table, we only show the piecewise results with
(k < 3)-induction. We observe that on most of the benchmarks, we can obtain a linear lower
bound via the conventional approach, i.e., 1-induction, while the piecewise linear lower bounds
we synthesize are better (tighter) with (k > 1)-induction. Only on the benchmark GrRowING
WALK-VARIANT, we require (k > 1)-induction to synthesize a lower bound. Moreover, our k-
induction-based approach can produce results within a few minutes.

Answering RQ2. We answer RQ2 by comparing our approach with the most related approaches [5,
10] in Table 5. The relevant explanations for RQ2 in Table 5 are totally the same to Table 1. These
two relevant works require a (possibly piecewise) lower bound to be verified as an additional
program input and return a sub-invariant that is sufficient to verify the input lower bound, which
is the most different aspect from our work. cEGIsPrRO2 produce the results by a proof rule derived
from the original OST (see Section 6 in [10] and Appendix B.1), while we apply an extended
OST (see Theorem 4.6). To have a richer comparison, we also feed our benchmarks paired with

2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

Piecewise Analysis of Probabilistic Programs via k-Induction 45

Table 5. Experimental Results for RQ1 and RQ2, Linear Case (Lower Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" (of our approach) stands for the execution time of our approach
(in seconds), including the parsing from the program input, transforming the k-induction constraint into
the bilinear problems, bilinear solving time and verification time. "Conventional Approach (k = 1)" stands
for the monolithic linear upper bound synthesized via 1-induction, "k" stands for the k-induction we apply,
"Solution" stands for the linear candidate solved by Gurobi, and "Piecewise Linear Upper Bound" stands for
our piecewise results. "Result” stands for the synthesized results by other approaches and "T(s)" (of their
approaches) stands for the execution time of their tools.

Conventional

Our Approach CEGISPRO2 EXIST
Benck k f Approach (k = 1) PP
Result T(s) | k| Solution Piecewise Linear Lower Bound T(s) Result T(s) Result T(s)
Geo . . 3 [e> 0] -x+ =

x x 033 |3 x [e>0] - x+[c<0] (x+73) 2.19 le<0]-(x+ %) 0.06 x+[c=0] 83.01

[k>NJ]-y+ y+ [k <nl
x-GEO y y 100.18 | 3 y Ik (T) ;\?x +y ++”; ;I)\” 133.81 [k < N- 02 | (0.8x—03k |239.95

. y+o (-k+N+x+y+1) +0.3n +0.5)

o . . . k [i>10]-y+[i<10]
BIN-RAN y | -05i+y+s5| 118 |2| BETY i>10]-y+[1<i< 0] 106.59 (L x+y- 0.26 fail -
+o (—55i+y+px+ 55 53059 o f L2000
112 22

Coin i i i N —x]-(i+12 ly#x] i+ i =y]-:

i i 100.51 | 2 i l[y#x]-i+[y=x] (i+%) 5.99 ly=x]-(i+ %) 0.07 | i+[x=y] 2.2 | 116.67
iolati f

Mart i i 037 |3 i [x<0]-i+[x>0]-(i+15) 244 violation o o | it[x>0]%2 | 12293

non-negativity

GROWINGWALK . S ol 5 violation of R f .
3 y x+y 100.16 | 3 x+y [x<0]-y+[x20]-(x+y+3) 101.80 non-negativity fail

[x <0]-y+
GROWINGWALK < 1] - 5x — 1 iolati f
y R } 3 y-1 [0<x<1] - (y+05x—1) + 125.53 vio! atlon'o. R fail B
-VARIANT [1<x<2] (y+0.5x—-15) non-negativity
+[2 < x]-(y+0.75x - 2)
[x <0]-t+ -
EXPECTED lat; f
i ¢ | Llllx+t | 025 | 3| 1.2d0x+¢t [0<x<1]-(0.124x + 1 +0.9) 125.54 n::l"rf’e“;’;;’n - fail -
[1<x<10]-(1.1284x +t +1.9116) gativity
0] - cur+ P
ZERO-C [est >
i‘:;mf!lf cur cur 100.32 | 3 cur [start == 0 A est < 0] - (cur+1.9502) | 183.63 Vl?lanort‘. Oi - inner error -
+[start > 1 A est < 0] - (cur+0.287) non-negativity
[a>10Vb>10v
EquaL- [a>10Vb > 10V goal # 0] - goal goal # 0] - goal+ .
PROB-GRID goal goal 100.38 | 2 goal [a<10Ab <10 A goal=0] - 1.5 139.80 l[a<10Ab <10 0.1 inner error -
Agoal=0] - 1.5
[x <1]-z+
RevBIN z | z+2x—2 |10014 |3 | z+2x—2 [1<x<2]-(z+%) 129.46 lx<1]-z+ o | FHIEOL e
tx>2] (z42x—2) [x>1] - (z+2x-2) -2x
. [x>0vy>0]- i+ .
v . =
Far Comn i i 10034 | 3 i [x>0vy>o]-i+ 43.84 [x=0Ay=0] 006 | HIxry=0l| o
[x=0Ay=0]-(i+3) (i43) 1.3
4
ST-PETERSBURG 1 [x>0] - y+ y+[x=0]
vARIANT y y 032 |3 y [x>0]-y+[x<o0]-iy 228 [x<0]- iy 0.21 0y 98.05

the piecewise lower bounds synthesized by our approach to cEgispro2. On 5 of our benchmarks
(e.g., GROWING WALK-VARIANT, ZERO-CONF-VARIANT, etc), it reports failure (violation of non-
negativity). On 6 of our benchmarks, CEGISPRO2 produce the same results with our inputs. Only on
two benchmarks (k-Geo, BIN-RAN) cEGISPRO2 produce a different result to verify our inputs.

For the comparison with EXIST, we note that EXIST synthesizes sub-invariants without the
application of OST, which might be unsound for proving the input lower bounds (see also Section
7 in [10]). We compare with their tool on our benchmarks by assuming the soundness of their
lower bounds and feed them our piecewise lower bounds as an additional program input. On
benchmarks Geo, k-Geo, CoiN, REVBIN, MART, FAIR COIN, ST-PETERSBURG VARIANT, their tool can
generate a tighter sub-invariant to verify our piecewise lower bound. On these benchmarks, due to
the existence of exact invariants, they are usually able to find a tighter sub-invariant by a heuristic
search based on sampling and machine learning at the cost of the long time (usually about or even
more than 100s) . For the remaining benchmarks, either they cannot generate sub-invariants or
there are internal errors within their tool.

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

46 Anon.

In conclusion, our approaches can handle many benchmarks that these two works [5, 10] cannot
handle. When feeding our benchmarks with the bounds synthesized through our approach to
CEGISPRO2 and EXIST, they fail on about 40% of our benchmarks. Over most of the benchmarks that
CEGISPRO2 and our approach can handle, our bounds are comparable with theirs. Over most of the
benchmarks that ExIsT and our approach can handle, they spend much more time to generate a
slightly tighter bound.

Answering RQ3. Similarly to the upper case, we compare our piecewise linear lower bounds with
monolithic polynomial lower bounds synthesized via 1-induction, as shown in Table 6. From the
comparison result "PCT" in Table 6, we observe that on most of our benchmarks , our piecewise
linear lower bounds are significantly tighter (i.e., greater) than monolithic polynomial lower bounds.

D.3 Experimental Results of Piecewise Polynomial Lower Bound

In this section, we present the experimental results of piecewise polynomial lower bounds. For the
piecewise polynomial lower bounds, we consider the same benchmarks and return functions f as
in Section 6.2, and use the same invariant as the External Inputs for each benchmark.

Answering RQ1. We present the experimental results for the synthesis of piecewise polynomial
lower bounds on the 20 benchmarks in Table 7. The experimental results show that our approach
can compute piecewise polynomial lower bounds for most of the benchmarks within around 10
seconds. Especially, on the benchmarks Bin0, Bin2, DEPRV, Sum0, Prinsys, the lower bounds we
obtain are the same with the upper bounds we obtain in Section 6.2 (see Table 3 for more details),
which shows that we obtain the exact expected value of X after the execution of the loop, i.e., the
tightest lower bounds, on these 5 benchmarks.

Answering RQ2. We answer RQ2 by comparing our approach with the relevant work ExisT
in Table 7. Since their tool requires a lower bound to be verified as an extra program input, we feed
them our lower bounds (the column "Solution A*" in Table 7) synthesized by our approach. Over
these benchmarks, they only successfully synthesize a sub-invariant to verify our lower bounds on
PriNsys and the sub-invariant they generate is the same as our piecewise lower bound. For the
benchmarks Bin0, Bin2,Sum0, they can learn some candidates for sub-invariants but they are not
able to verify them so that they fail to generate a sub-invariant. For the other 16 benchmarks, they
fail to generate due to some inner errors within their tool.

Answering RQ3. Similarly to the upper case, we compare our piecewise polynomial lower bounds
with higher degree monolithic polynomial lower bounds synthesized via 1-induction, as shown
in Table 8. For a fair comparison, we generate the polynomial bounds with the same invariant and
optimal objective function for each benchmark. The degree of monolithic polynomial bounds is
also set to be not greater than 5 in this experiment.

From the comparison results "PCT", We show that on all the benchmarks except BRP, F1G-6, CAV-5,
our piecewise polynomial bounds are significantly tighter than monolithic polynomial bounds.
Although our running time is also a bit longer than that of monolithic polynomial experiments, our
approach allows to synthesize lower-degree polynomials while achieving better precision against
higher-degree polynomials. This advantage is critical as the synthesis of higher-degree polynomials
suffers from a large amount of numerical errors as stated previously. Thus our approach has a value
to use lower-degree piecewise polynomials to surpass the numerical problem of higher-degree
polynomials.

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

Piecewise Analysis of Probabilistic Programs via k-Induction 47

Table 6. Experimental Results for RQ3, Linear Case (Lower Bounds). "f" stands for the return function
considered in the benchmark, "k" stands for the k-induction condition we apply in this comparison, "Monolithic
Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized via 1-induction, and
"d" stands for the degree of polynomial template we use, "PCT" stands for the percentage of the points that
our piecewise lower bound are lower (i.e., not better) than monolithic polynomial.

Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
k Piecewise Linear Lower Bound | d Monolithic Polynomial Lower Bound
0 —0.0313 — 0.1902 * ¢ + 1.0478 % x—
Gro x |4 [le g] _](' x:z) 3| 039802 +0.0695%xxc—0.0019 % x*~ | 0.0%
e=0lr iy 0.1595 % x # % +0.07227 x% ¢ — 0.0147 # x°
«-GEO g |3 [k > N]-y+ , | 446223 % N — 2212813 — 0.77291 wk+ 1.00(;0 U1 100
[k < NJ-(0.75x +y +0.25) +0.9281 # x — 2.1922 % N? — 0.1043 * x°
—22.0746 — 24.4593 * i + 33.7063 * y+
20.7709 * x + 1.4945 i% +0.2057 * y * i+
[i>10] - g+ 0.0232 # i + 0.4741 % X * i + 0.2689 * X * y+
BIN-RAN Y| 2| [<i<10]: (-Bityas 24 loay | 3 1.9807 % x +0.0006 i* — 0.3133 + y # i~ | 33.39%
Ps ' TYT YT s 0.0111 * 2 i +0.0049 * > — 0.4668 * x i+
0.0036 * x * y * i + 0.0105 * x * y* — 0.7437 * x°
+0.04213 * x% y — 0.7531 x° * i
2.6655 + 1.0002 * | — 3622.3830 * y—
2 7o
CoiN i |4 [yzx]-i+[y=x]-(i+Z 2 5419'22?79;;(5530;05;)1_’;.10022'3101 ;y H 2.0%
1827.4383 * x * y + 3594.2952 * x?
MaRT il a lx=0]-i+ 2 1.0000 # i +39.9996 % x — 199.9958 # x2 1.0%
[x>0]-(i+])
GROWING [c<0] - y+ ~0.0004 +1.0003 * y + 1.3463 x x—
WaLx y | 4 c2 0] (x+y+ 1) 3 0.0001 * 2 — 0.0010 * x * y — 0.0590 * x? 0.0%
= 8 +0.0007 * x? % y — 0.0022 * x>
[x <0] -y+
GROWING WALK [0<x<1]- (0.5117 +y—1) _1'00020 +1.0000 + y = 0.3903 * x~ 2
y |3 3 0.0734 % 12 + 0.0484 * x # y + 0.4758 # x2— 0.01%
VARIANT I sx<2]-(05x+y-15) 0.0250 % x * % — 0.0484 % x° # — 0.0855 * x°
+2<x]-(0.75x +y —2) : y -5 y=o
EXPECTED [x <0] - t+ —0.0784 + 1.0093 * £ + 3.1426 * x—
Tive t 3 [0<x<1]-(0.124x + t +0.9)+ 3 0.0010 * t2-+‘—0.0083 % x %t —0.1576 % x>+ 64.6 %
[1<x<10]-(1.1284x +t +1.9116) 0.0002 * x * t? +0.0002 # x% * t +0.0043 * x>
[est> 0] - cur+ 140.2458 + 1.0098 * cur — 424365.5964 * start—
ZERO-CONE | 3 | [start == 0 A est < 0] - (cur +19502) | 2 | 20/075:0179 » est = 0.0066 « start x cur+ |,
-VARIANT +[start > 1 A est < 0] - (cur-+0.287) 424267.3602 * start® — 0.0095 * est * cur—
- - 504437.5495 * est * start + 587534.7143 x est?
Equar- [a> 10V b > 10V goal # 0] - goal 0.4950 * goal — 0.2020 * goal®+
Pron-Grio | 8% 2 | 4a<10Ab<10A goal=0]-15 | > 0.0053 % b * goal — 0.0011 * a * goal 0.0%
[x <1]-z+
REVBIN z |3 [1<x<2]-(z+x) 2 —2.0000 + 1.0000 * z + 2.0000 * x 0.0%
+[x>2]-(z+2x—2)
0 ol i 1.0000 * i — 0.3932 * y — 0.39325 * x
FaIr ColN i |4 [[<"0>A V<yo> 1 2 —0.3153 * 2 +0.6305 * y # i — 0.7242 % i 0.0%
XSO0Ay<0]-(i+3g +0.6305 % X # i — 0.1796 x * y — 0.7242 * x>
ST-PETERSBURG 1 —0.0017 + 1.0023 * y — 121479.0179 * x
VARIANT y |3 x>0l -y+[x=<0]- 5y 3 —0.0550 * x * y + 121479.0185 * x2 0.0%

D.4 Full Expressions for Experimental Results

For readability and conciseness, some of the experimental results in the main text were partially
omitted and denoted with - - - . In this appendix, we provide the complete expressions corresponding
to those abbreviated entries.

Piecewise polynomial upper bound of GRID-sMALL: min{[a < 10Ab < 10]-(—0.0003%a>~0.0011b>—
0.00085a®#b+0.0018axb?+0.0109xa*—0.0144xa*b+0.0129%b*—0.0926+a+0.0277xb+0.5109) +[a <
10 A b > 10],h*}.

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

48 Anon.

Table 7. Experimental Results for RQ1 and RQ2, Polynomial Case (Lower Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" stands for the execution time of our approach (in seconds),
including the parsing procedure from the program input, relaxing the k-induction constraint into the SDP
problems, the SDP solving time and verification time. "d" stands for the degree of polynomial template we
use and "Solution h*" is the candidate polynomial solved directly by the solver. "Piecewise Polynomial upper
Bound" stands for the piecewise bound we synthesize, where h* is the column "Solution A*". "Sub-invariant”
stands for the sub-invariant synthesized by ExisT, and "T(s)" stands for the execution time of their tool.

Our Approach EXIST
Benchmark f
d Solution h* T(s) Piecewise Polynomial lower Bound Sub-invariant | T(s)
—0.0467 * Y +0.8036 * y * z— max{[z > 0] - (—0.0467y% + 0.4018 * y * z
GEOAR x 2 7.1202 # 2% + x + 0.6668 * y 7.22 —3.5601 * 22 + x + 1.0734 % y + 5.5129 = z inner error -
+10.2222 % z — 2.3795 ~1.2594) + [z < 0] - x, b}
Bin0 x 2 X+05%y*n 10.04 x+[n>0]-05%yxn fail -
Bin2 2 x+[n>0]-(025%n+x . ~
x 2 0.25%n+x+025%n*+05%y=*n 10.25 +0.25 %1 4055y xn) fail
~ B [n> 0] - (=0.25 % n+0.25 * n’+
DEPRV Xy 2 025xn+0.25+n"+0.5xy*n 9.08 0.5%y*n+0.5%x%n+x%y) inner error | -
+05xx*n+x*y
+[n<0]-xxy
PrINsys == 3 ==1]*1+ [x==0] =0. .
[x==1] 2 0 2.10 [x 11+ [x]+0.5 e==0] <05 |72
Sum0 x 2 0.25 % i% 4 0.25 % i + x 1.98 [i > 0] * (0.25 % > +0.25 % i) + x fail -
max{[t > 0 A x > 1] - (10.8660x+
0.2353 # x * ¢ + 1.3703 * £ — 11.0903 * x
21.7319 % x? — 0.4706 * x * t + 1.3703 * t? —1.3703 * t +0.4987) + [t <O Ax > 1]-
DuEeL . = = i -
t 2 —21.7099 # x — 0.3707 t — 0.0011 6.66 (5.4330 % X% +0.1177 # x £ + 1.3703 * 12 nner error
—5.5451 % x — 0.8705 * ¢ + 0.2488)
+[x <1]-t,h*}
—41834.4189 * failed® — 6.0771 * failed * sent max{[failed <10 A sent < 800]-
. 2 X (—418.3442 * failed” — 0.0608 * failed sent— .
BRP [failed = 10] | 2 —0.8349 * sent” — 1710.0678 = failed 9.85 g N inner error -
+655.2652 % sent + 2695.5357 0.8349 * sent” — 853.7891 failed + 653.5513sent
. . +2907.9668) + [failed = 10],h*}
B _ 2 max{[y = 0 Ax < 100] - (—0.0001 x * y
CHAIN ly=1] 2 o (;)dggo*l;fgglnofosfgéz 4.09 —0.0051 * y* +0.0032 * x+ inner error -
0038w+ O y-0 0.0170 + y — 0.0314) + [y = 1], h*}
2 . 3_
0.0006 % @* — 0.0012 * @* % b +0.0008 * a * b? max{[a < 10Ab < 10] - (0.0006 *a’~
[a < 10A . ;N 2 0.0012 * a® % b +0.0008 * a * b* — 0.0068 * a .
GRID SMALL 3 —0.0071 = a* + 0.008 * a * b — 0.0056 * b*— 6.75 2 inner error -
b > 10] 0,046 + @4 0.0822 + b +0.4185 +0.0076 * @ + b — 0.0052 * b? — 0.0478 * a+
) : ’ 0.0800 # b +0.4306) + [a < 10 A b > 10], h*}
B B B 2 max{[a < 1000 A b < 1000] - (—0.0231 * a’+
GRID BIG [Z j 11888]/\ 2 0.02—3011*825 :2'_[:4062:2: : l; N gggg; *b 7.21 0.0462 * a * b — 0.0231 * b? — 0.1895 * a+ inner error -
=)) ' 0.2425b +0.9537) + [a < 1000 A b > 1000], h*}
0.0001 * h> —0.0003 * h? * t max{[t > h] - (0.0001 * h® — 0.0003 * h? * t+
+0.0003 % h % t2 = 0.0001 = £* +0.0018 * h? 0.0003 * h % t2 = 0.0001 * > + 0.0023 * h? .
CAV-2 , ; .
[h>1+1] |3 ~0.0057 # o £ +0.0032 * £2 — 0.002 * h 345 —0.0066 * h % £ +0.0037 * £2 + 0.0076 * h+ nner error
+0.054 * t — 0.6863 0.0399 # t — 0.5852) + [h > 1+1],h*}
—0.0148 * x* — 0.0597 * x * y + 0.3443 = y max{[y > 1] - (-0.0148 % x* — 0.0072 * x+ .
CAV-4 < .
lxs10] 2 +0.0523 % x — 0.3282 * y + 0.9537 247 0.9694) + [y < 1 Ax < 10], h*} inner error
) ; < 4] - (0.0001 * x* = 0. syt
0.0001 * x* — 0.0007 * x> * y + 0.0009 * x* * y° max{[x S | Z(0 0001 * x* = 0, 9007 +x eyt
P A o, 0.0009 # x? * y* — 0.0006 * x * y* — 0.0014 * x
—0.0006 # x * y* = 0.0011 # x* +0.0143 + x? x y)) 5
N 5) +0.0140 * x? % y — 0.0035 * x * y? + 0.0026 * y)
FIG-6 [y <5] 4| —0.0035 * x * y* +0.0032 * y* + 0.0556 * x°— | 109.28 2 ;s inner error -
0.1077 % x % g + 0.0085 77— +0.0690 % x? — 0.0960 * X * y +0.0173 * yf
y : —0.3696 * x +0.1229 % y + 0.5508)
. +0.1362 * y + 0.543:
0.3753 * X +0.1362 * y + 0.5438 Hlx>4ny <SLAY
—0.0002 * x * y — 0.0029 * 4 +0.0038 * y i A
< 0] - (~0.0009 * i? +0.0002 * x+)
FIG-7 [x < 1000] |2 —0.0009 i% +0.0002 x — 0.0037 % y 21.38 or(r)l;;]{ Eyi 3 01995) tlos T)l/\ T 1000*} "h‘} inner error .
+0.002 * i +0.9978 i : Y = ’
P> 05V pA<—0.1VcP<—05V
0.0008 % pAD? % pA — 0.0023 * pAD? % cV+ max{ e P s
: 0.0991 % pAD? * cP +0.4931 * pAD * pA>+ pA > 0.1] - (00011 pAD® + pA+
INV-PEND pA<1] |3| - 436.04 0.0011 pAD? % cV + -+ +0.999 % cV/ inner error -
VARIANT 0.1464 * pAD % pA ¢V -+ —5.002 cV cP
449405 % cP — 57109 1 ¢V 4 1.0 —0.0688 * cP +1.6061) + [cP < 0.5
))) ApA <0.1AcP>-05AcP £05],h"}
0.0001 # i — 0.0002 * % % x + 0.0001 * i * x>— max{[i < 5] - (~0.0001 % iZ ¥ x — 0.0001 * iZ
CAV-7 [x < 30] 3 0.0006 * i? +0.001 * i * x — 0.0002 * x° 5.17 +0.0006 * i * x — 0.0001 * x? + 0.0003 * i+ inner error -
+0.0007 i — 0.0005 * x +0.9981 0.0001 * x +0.9985) + [i > 5 A x < 30],h"}
max{[money > 10] - (0.0009 * i* * money+
0.0009 * i * money + 0.0043 x i * money® 0.0043 i * money?® + 0.0013 * money®
. +0.0013 * money® — 0.9614 * i>~ —0.9624 * i2 — 17.8205 * i * money— .
CAV-5 > 5 P -
liz10] 3 17.8117 * i * money — 66.2212 money? 897.32 66.2275 * money? — 12.8062 i+ inner error
—29.2611 % i+ 1.0 118.2861 * money — 1379.4033)
+[money < 10 Ai < 10],h*}
—0.0002 * x> +0.002 * x? x y max{[y < 1] - (0.0088 * x> — 0.0092 * x? * y+
—0.0092 * x * y* + 0.0088 * y* + 0.0049 * x? 0.002 * x * y* — 0.0002 * y +0.0618 * x* .
App -
=513 0067 v w + 0.0425 % 4 +0.0167 # x 374 10,0406 % x % y +0.0064 * y? — 0.0527 * x— nner error
—0.1369 * y +0.0314 0.0102 * y — 0.0328) + [y > 1 Ax > 5], h"}
—0.0055 * x% — 0.0013 * x * y — 0.0132 % x * r max{[r < 0] - (—0.0075 * x? — 0.004 * x * y
GROWINGWALK y 2| =0.0027 * y? +0.0123 * y + r — 0.0261 * r? 4.83 —0.0027 * y? +0.5230 # x + 1.0174 * y inner error -
VARIANT2 +0.0288 % x +1.0125 % y + 0.0111 * r — 0.0454 —0.0362) + [r > 0] - y, h*}

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

Piecewise Analysis of Probabilistic Programs via k-Induction 49

Table 8. Experimental Results for RQ3, Polynomial Case (Lower Bounds). "f" stands for the return function
considered in the benchmark, "Piecewise Polynomial Lower Bound" stands for the results synthesized by our
algorithm. "Monolithic Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized
via 1-induction, "T(s)" stands for the total execution time. "PCT" stands for the percentage of the points that
our piecewise polynomial lower bound are larger (i.e., not better) than (higher degree) monolithic polynomial.

Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
d ‘ T(s) ‘ Piecewise Polynomial lower Bound d ‘ T(s) ‘ Monolithic Polynomial lower Bound
0.0021 % x% * 2 +0.0003 * x * 4% + 0.0128 * X % y * 2
—0.0745 2 —0.0013 * y* +0.0006 * y*
max{[z > 0] - (~0.0467y" +0.4018 + y » 2 00011 = 2 34350.8767 :z" 00001 » 22
GEOAR x 2| 722 —3.5601 * 22 + x + 1.0734 * y + 5.5129 % z 3| 125 . Y . . s 5.0%
C12504) 4 [z 2 0] -x —0.0028 * x * Y +0.0294 % x * 2+ 0.0154 * y
: = ’ +1.9735 * y * z + 68717.1029 * 2% + 1.0025 * x
—0.0476 * y — 34355.4581 * z — 0.0973
Bino x 2 | 10.04 x+[n>0]-05%y*n 3081 0.5%y*n+x 0.0%
Z0.0001 * 4 +0.0001 * y? * n + 0.0001 * y * n?
(0.2
Bin2 x 2| 1025 ’:;[ngi 02]+((;)52*Z+) 3| 114 +0.0006 % % +0.4992 % # 1+ 0.25 % n’ + x 16.2%
Xroeowm Aoy n ~0.0021 % y +0.249 % n — 0.0028
2
DEPRV) [n>0] (-0.25%n+025%n*+05xy=*n X*y+05%xxn+0.5%y*n+
**y 9-08 H05xxxn+xxy)+[n<0] xxy 3|08 0.25 % n? — 0.2501 * n — 0.0001 4%
PRINsYS [x==1] |2 210 [x==1]*1+[x==0] 0.5 30045 0.0 0.0%
Sumo x 2| 198 [i > 0] * (0.25 # i2 +0.25 % i) + x 4050 0.25% i2 +0.25 % i +x 0.0%
>1]- 2
max{[t >0 Ax 2 1] - (10.8660x%+ 57.6107 # x* — 0.3086 X3 # £ +32.5537 x2 # 12
0.2353 % x # t + 1.3703 * t? — 11.0903 * x 3 A 3
—0.9734 % x * £3 — 8.9958 * 14 + 31.3993 % x°
—1.3703 %t +0.4987) + [t <0 A x > 1]- 5 > N
DuEr t 2| 7.24 2 2 4| 058 | —17.8531 % x% # t +10.7254 % x # t2 +26.343 % ¢ 0.02%
(5.4330 % x% +0.1177 % x * £ + 1.3703 * 1 72812 % X% — 247154 8 x 2 1
—5.5451 % x — 0.8705 * £ +0.2488 - '
X o1) +13.3805 % t2 — 61.5859 * x — 29.7278 *
+[x <1]-t,h*}
. -5.1928 iled® —0.992 iled t—
max{|failed < 10 A sent < 800]- *f.azez 2 * faile *.sen?
(~418.3442 * failed? — 0.0608 + failed * sent— 0.0002 # failed” + sent® ~ 1.6946 failed+
BRP [failed =10] | 2 | 9.85 . . 4| 1.24 | 2.1022 failed® « sent +0.0001 = failed = sent’~ | 53.54%

0.8349 * sent? — 853.7891f ailed + 653.5513sent

o Failed? — ; _ 2
+2907.9668) + [failed = 10], h*) 3.3782failed* — 1.0916f ailed * sent — 0.0057sent

—2.09 * failed + 1.1127 * sent +0.7991
0.0429 # x° + 0.6155 * X% * y + 12.0075 * x * y°
+124904.4081 * > — 5.4506 * x?
—67.0765 * X * y + 869301.3767 * y*+
119.3344 * x — 994786.2786 = y + 4.4144

max{[y =0 Ax < 100] - (—=0.0001 * x * y
CHAIN [y=1] 2| 4.09 —0.0051 * 2 + 0.0032 x+ 3] 074
0.0170 y — 0.0314) + [y = 1], "}

1.00%

max{[a < 10 A b < 10] - (0.0006 * @>°—

— 2 2
0.0012 # a® % b +0.0008 * @ * b — 0.0068 * a> 00002+ a* b +0.0001 x ax b+

GRID SMALL = \ X 2 0. . 2 .62%
=1 3] 675 | " 00076asb-00052+b" 004780+ |+ | O 0 008(2) o *(;(?270;::*}’;}003:7* b 0.62%
0.0800 * b +0.4306) + [a < 10 A b > 10], h*})))
[a < 10001 max{[a < 1000 A b < 1000] - (=0.0231 * a’+ 0.001 * a> — 0.0005 * a® * b — 0.0018 * a * b?
GRID BIG b > 1000] 2| 7.24 0.0462 = a = b — 0.0231 * b® — 0.1895 = a+ 3056 +0.0008 * b — 2.9594 * a® +5.9103 * a * b— 4.73%
- 0.2425b +0.9537) + [a < 1000 A b > 1000], h*} 2.9631b° — 499.9807a + 511.5109b + 253.0223
T 3 _ v
max{[t > h] - (0.0001 + & — 0.0003 « « 1+ 0.0001 * i +0.03001 YRt 40.0009 «h *f
0.0003 % 7 £ — 0.0001 % £ + 0.0023 & h +0.0013 h # £3 = 0.0007 * t4 = 0.0062 * h
CAV-2 [h>t+1] | 3| 345 . ' e 4| 047 | +0.0306 + h? x t — 0.0831 % h » 2 +0.0777 = £* | 33.33%
~0.0066 * h ¢ +0.0037 * t +0.0076 * h+ 2 2
00399 + £ - 0.5852) + [h > 1+ 1], I"} —0.1378 * h? + 1.2065 * h + t — 1.9084 t
’) ’ —6.4628 * h+ 21.3167 * t — 92.5531
—0.0017 * x> — 0.0105 * x% % y — 0.0514 * x * y>+
> - (=0. 2 _ (. P
cav-4 [x<10] |2]| 247 max(gygggi]) +([Oflfi* " 10(1 0;7}2 s 034 11.376 % 4 +0.0085 * x? + 0.0539 % x # y— 0.76%
: y =10 5.0983 % y? — 0.0103 % x — 6.2928 % y + 1.0
0.0002 * x° +0.0001 * x* 0.0001 = x? * y°
max{[x < 4] - (0.0001 = x* — 0.0007 * x> * y+ e A *y: Y
s) p 5 —0.0001 * x * y* — 0.0021 * x* — 0.0033 * x> x y
0.0009 * x2 * 42 — 0.0006 * x * y* — 0.0014 * x P 5
+0.0140 % x2 % y — 0.0035 * x * y? +0.0026 * * +0-001 %2 % y” = 0.0016 % x * y
FIG-6 [y <5] 4] 109.28 : IS : 2 |5 094 ~0.0001 * y* +0.0072 * x> +0.033 % x% * y 40.77%
+0.0690 * X2 — 0.0960 * X * y +0.0173 * p . 4
20,3696 + x + 01229 * 3 + 0.5508) —0.008 * x * y? +0.0017 % y° + 0.0817 * x°
’ N pon 5]yh*}' —0.2069 * x * +0.0347 » y? — 0.8681 * x
y=sb +0.5271 % +0.5958
0.0616 * x2 * y — 0.0002 * x * i — 47.1183 * x * y
—0.4059 # x % y * i +0.014 # x * i¥ — 3529.0989 * y*
< 0] - (=0.0009 * % + 0.0002 * x +23.9641 * y? x i + 2.4655 * y x i — 0.38 = i*
FIG-7 < max{[y < : A
[x<1000] | 21 2138 | o 00914t 0.997) + [y > 0 A x < 1000], h*} 5| 240 —0.0401 * x? +43.7495 % X * y + 0.318 % x * i 237%
+86697.7958 * y? — 25.0167 * y * i — 0.5461 i?
+3.2993 % x — 83167.42 * y — 0.0624 * i — 5.0013
5V =0.1Vv -0.5v
max{[cP > 05V pA < —01V cP < =0.5 ~0.2235 * pAD® — 1.1293 + pAD® % pA+
pA > 0] - (00011 pAD® « pA+ 0.1015 pAD? % cV +0.1091 % pAD® % cP—
INV-PEND [pA<1] |3 43604 0.0011 % pAD? % ¢V + -+ - +0.999 % ¢V 4| 671 S8 ;};ADZ Yo 10"4%5 e 1.18%
« .
—0.0688 * cP + 1.6061) + [cP < 0.5 : :
.0001 * pA — 53.21 1.
APA<0.1ACP>—05AcP<05],h'} 0-0001 x pA = 53.2106 x ¢V + 1.0
—0.0007 # iT +0.001 * i3 % x — 0.0005 * i% * x7
max{[i < 5] - (~0.0001 x i » x —0.0001 « 0.0001 :xl*tc* +0 0*0;4**)2 -0 0052*»: i;*x;
CAV-7 [x < 30] 3| 517 +0.0006 * i * x — 0.0001 * x? + 0.0003 * i+ 4078 . . . 25.83%

+0.0011 * i # x? — 0.0134 i* +0.0121 i * x

0-0001+x+0.9985) + [2 5 A x < 30 "} 200019 # x? + 0.0128 % i — 0.004 % X + 0.9966

2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450

50 Anon.

Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
d ‘ T(s) Piecewise Polynomial lower Bound d ‘ T(s) Monolithic Polynomial lower Bound
>10] - (0. i’
max{[mone.y 2 10] 2(0 0009 i x moniy+ —0.0001 * i% * money® — 0.0004 * i * money>
0.0043 * i * money” + 0.0013 * money 4 3 2
~0.9624 * 2 — 17.8205 » i * money~— —0.0002 * money” — 0.001 * i” +0.0222 * i“—
cav-5 [i>10] | 3]|897.32) s o 4108 0.0257 * i2 * money + 0.0526 * i * money® 50.0%
66.2275 * money” — 12.8062 * i+ 3 .
+0.0298 * money” — 0.4528 * i * money
118.2861 * money — 1379.4033) 5 .
. M —4.1462 * money” — 3.6304 x i + 1.0
+[money < 10 A i < 10],h*}
—0.3566 x° — 2.2831 * xT * y + 3.1151 = x° * y>—
. 2xyd - 0. 440, St
max{[y < 1] - (0.0088 » x° ~ 0.0092 » x* # y+ 2 ZSZ :;“ ’ 7 153095*9;2 . ;H 328045*85 . Zz
2 _ 3 2 . -7. . -
ADD [x>5] | 3] 374 | 0002xxxy —00002xy +0.0618%x" | 51, o, 2.0416 % x % 1 + 1.1293 % y* + 0.0868 + x3— 32.66%
—0.0406 * x * y +0.0064 * y* — 0.0527 * x— : 5) N
0.0102 % y — 0.0328) + [y > 1 A x > 5], h*} 0.2857 * x° * y + 6.5688 * x * y° — 6.7823 * y’+
! ’ ? 2.7185 % X% + 1.5398 * x * y + 3.6667 * y*
—6.7017 * x + 1.4053 * y + 0.0001
—0.0013 * x° +0.0006 * X% * y — 0.0026 * x° * 1
N 2 2
max{[r < 0] - (=0.0075 * x? — 0.004 x x * y +0.0001 xz* y° +0.0082 * x * yz* r+3.1974 x x *sr
GROWINGWALK 2 +0.001 # y° * r — 1.1091 * y * r* — 19675.0498 * r
y 2| 483 —0.0027 * y* +0.5230 * x + 1.0174 * y 3| 1.09) 5.03%
VARIANT2 ~0.0362) + [r > 0] - y, b} —0.0103 * x* +0.0017 * x * y — 4.1484 * x * 1
: L& —0.0057 # y* + 1.0965 * 1 * r +39349.552 x 2+
1.048 * x +1.0165 * y — 19675.6056 * r + 0.8489

Monolithic polynomial upper bound of GEOAR: —0.0001 x> +0.0001x? %y —0.0011*x%%z—0.0004*
x#y?—0.0112%x%y#2+0.164%x%2%+0.0012+1°+0.0046 %1% x2—1.8186%y+22+89866.1344%2°+0.0027 +x*
y—0.1236%x%2—0.0137y+2.7194%y*2—179731.0721x2%+0.9993%x+0.0417 xy+89867.27682+0.078.

Solution h* of F16-6: —0.0001%x%+0.0011x3%y—0.001+x2%1y%+0.0008*x 3> —0.0001+y*+0.0016+x> -
0.0195%x%%y+0.006+x%1%—0.003%1°—0.0627+x%+0.1018xx+y—0.0028*y+0.5712%x—0.28 15y +0.6009.

Piecewise polynomial upper bound of F16-6: min{[x < 4] - (=0.0001 % x* +0.0011 x> % y — 0.001 =
x2 % 4% +0.0008 * x * y> — 0.0001 * y* +0.0023 * x> — 0.0182 * x2 * y + 0.0064 * x * y* — 0.0026 * y°> —
0.0788 * x% + 0.0913 * x * y — 0.0094 * y® + 0.5530 * x — 0.2782 * y + 0.6027) + [x > 4 Ay < 5], h*}.

Monolithic polynomial upper bound of F1G-6: —0.0001%x°—0.0002x*%1y—0.0003x2 33 +0.0001%x*
y*—0.0002%1°+0.0011xx*+0.0037x>%y—0.0008x251%+0.0021xx%y>+0.0005%y*—0.0012xx>~0.036 1 *
x2#y+0.0088 xx xy® —0.0042% y> —0.084 % x% +0.1432 x x xy+0.0064 y* +0.9708 x x —0.6526 * y+0.575.

Monolithic polynomial upper bound of F1G-7: —0.083%x2xy+0.0003 % x% % i+48.5638 % x * % +0.5267
x#y#i—0.018%x%124+2600.9691xy> —36.705%y? i —2.646xyxi°+0.4053%1°+0.0539x2 —45.1036xx *y —
0.4109%x %i—58912.9534 %y +37.7582 %y *i+0.6223 %> —3.3923 % x +56310.8279y—0.0114%i+7.2868.

Solution (upper) h* of INV-PEND VARIANT: 0.0058 * pAD? % pA+0.0023* pAD? xcV —0.1313 % pAD? %
cP—0.6278+ pAD* pA2—0.2352% pAD * pAxcV —4.2984% pAD * pA+cP+0.0034x pAD +cV?Z—0.0776 %
PAD*cVxcP+0.2901% pAD*cP?—3.3499xpA3+1.2174% pA?5cV —18.4697% p A% cP+0.8063# pAxcV 2+
7.4278xpAxcVxcP+2.1607pA%cP?+0.1664+cV3+0.0048xcV 2 %cP—0.5863%cV +cP?—101.7368%cP*+
0.7678+pAD?*+4.7849%pAD*+pA—0.1664xpAD+cV —3.5565+pAD*cP+28.2784xpA%—2.7311xpAxcV —
20.9853xpA*cP—1.1597%cV2+5.9637cV xcP+60.4194%cP? —0.0002pA+7.1495%cV +0.001xcP+1.0.

Piecewise polynomial upper bound of INV-PEND VARIANT: min{[cp > 0.5V ¢p < —0.5V pA >
0.1V pA < —0.1] - (0.0058 * pAD? x pA — 0.0011 * pAD? * ¢V — 0.1313 % pAD? cP — 0.6279 * pAD *
PA? —0.2408 5 pAD * pA s cV — 4.2984 x pAD * pA * cP — 0.0124 % pAD * cV? — 0.0021 x pAD * cV =
cP +0.2901 * pAD * cP? — 3.3498 + pA% +0.4776 * pA% x cV — 18.4697 x pA? * cP + 0.4734pA + cV? +
5.5455 % pA x ¢V * cP + 2.1607 * pA % cP? +0.1014 % cV® — 0.0334 cV? % cP — 3.4879 x ¢V * cP? —
101.7368 * cP3 +0.5916 * pAD? +4.0443 « pAD * pA+0.0057 % pAD * ¢V —3.5023 * pAD * cP +26.6426 *
PA? —1.1436 % pA x cV — 20.7584 x pA + cP —0.5132 % cV? +5.5468 % ¢V % cP + 60.3921 * cP? — 0.4489 *
PAD —1.5038 % pA +5.2348 % cV +0.0688 % cP +0.3238) + [-0.5 < cp < 0.5A —0.1 < pA < 0.1], h*}.
Monolithic polynomial upper bound of INV-PEND VARIANT: 0.2264 * pAD* + 1.1448 * pAD? = pA —
0.1026 * pAD3 % ¢V — 0.1107 * pAD? * cP + 5.2869 * pAD? x pA? — 0.4937 pAD? x pA * cV — 0.8938 *
PAD? % pA+cP+0.3036 x pAD? % V2 +0.0478 + pAD? # ¢V cP +0.4208 = pAD? % cP? +6.8201 * pAD

2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

Piecewise Analysis of Probabilistic Programs via k-Induction 51

PA®—3.2518 % pAD * pA? xcV —2.3942% pAD x pA% % cP+1.3927 x pAD * pA* cV?+0.7868 % pAD * pA =
cV xcP+4.5143 % pAD * pAxcP* —0.1912 % pAD x cV> —0.1023 % pAD # cV? 5 cP — 0.1906 * pAD = cV *
cP?-2.8734% pAD*cP3+53.6801% pA*+1.323x pA3 5V —6.8123% pA3 5 cP+5.2663% pA® xcV2 +2.473%
PA% 5V xcP+47.9517 % pA% 5 cP? —0.5451 % pA*cV> —0.7983 % pAx V% xcP—0.9821% pAscV * cP? —
20.6044 % pA + cP* +0.0986 * cV* +0.0333 % V> cP +0.3483 * cV? * cP? + 4.5559 % ¢V % cP> +30.7504 *
cP*—0.3716 % pAD®+3.8 % pAD? x pA+0.4985 % pAD? + ¢V —0.0606 * pAD? 5 cP—9.7537 * pAD * pA®? —
6.8904 % pAD * pA s cV +0.4876 x pAD * pA % cP—0.748 % pAD % cV? —0.1874 % pAD % cV % cP — 3.858 *
PAD x cP? —11.7619 % pA® +18.5549 % pA% x ¢V — 0.4732 % pA? cP +4.6011 pA x cV? — 0.8554 x pA *
eV #cP—9.3429% pA s+ cP? +1.9127 % cV>+0.0857 % cV? % cP+5.2916 * ¢V * cP? —3.7534 % cP® + 4.1573 %
PAD? +17.8582 % pAD * pA +0.2247 * pAD * cV — 2.5151 * pAD * cP +34.1498 * pA? + 1.7805 * pA =
¢V —5.4381 % pA*cP—10.9045+cV?+1.196 % cV % cP+10.6625 + cP? — 0.0001 * pA+53.8573 % ¢V +1.0.

Solution (lower) h* of INV-PEND VARIANT: 0.0008 + pAD? % pA—0.0023 % pAD? % cV +0.0991 x pAD? *
cP+0.4931% pAD * pA®+0.1464 % pAD x pA*cV +3.1026 % pAD x pA*cP—0.0138 « pAD xcV > +0.0529 *
PAD ¢V 5 cP —0.2253 % pAD cP? +2.4945 % pA® — 1.1719 % pA? % ¢V +13.2225 % pA® 5 cP — 0.66 * pA =
cV? —5.8813 % pAxcV % cP—1.6276 % pA* cP? —0.1308 % V> = 0.0137 V2 % cP — 0.2948 * ¢V x cP% +
70.0898 * cP* — 0.6053 pAD? — 3.6586 * pAD * pA+0.2164 % pAD % cV +2.8831 % pAD * cP — 20.411 *
PA?+2.3725%pAxcV +16.7142% pA*cP+0.9814%cV? —5.002xcV cP—44.9405%cP?—5.7109cV +1.0.

Piecewise polynomial lower bound of INV-PEND VARIANT: max{[cp > 0.5V c¢p < —0.5V pA >
0.1VpA < —0.1]-(0.0011 % pAD? * pA+0.0012 % pAD? % cV +0.0983 x pAD? % cP+0.5052 % pAD * pA+
0.1661%pAD*pA*cV+3.1298+pAD*pA%cP+0.0035%pAD*cV?2—0.0028*pADs*cV +cP—0.1801% pADx*
cP?+2.5528%pA%—0.5263%pA%+cV+13.3751% pA%xcP—0.3872+ pAxcV?—4.3942+ pAxcV xcP—1.4142x
PAxcP?—0.0803%cV3+0.0045%cV 25 cP+1.8662+cV cP?+70.0747%cP*—0.4694% pAD?*—3.0860+pAD*
PA+0.0414%pAD*cV +2.8487« pAD*cP—19.2280 pA2+0.9998 % pA+cV +16.5897 pA*cP+0.4500
cV2 —4.5457 % ¢V % cP — 44.9216 % cP? +0.3480 + pAD +1.1902 cV% — 4.5456 * ¢V x cP — 44.9216 * cP? +
0.3480%pAD+1.1903%pA+0.999%cV —0.0688xcP+1.606)+[—0.5 < cp < 0.5A—0.1 < pA < 0.1], h*}.

Monolithic polynomial lower bound of INV-PEND VARIANT: —0.2235 * pAD* — 1.1293 % pAD? « pA +
0.1015%pAD3cV +0.1091 % pAD3 xcP—5.2183% pAD?* x pA*+0.4869+ pAD? x p A cV +0.8825% pAD? %
PpA*cP—0.35pAD?%cV2—0.0472xpAD?*cV +cP—0.4159%pAD?*cP?—6.7225%pAD*p A3+3.227+p AD*
PAZxcV+2.3658+pAD*pA2xcP—1.3787pADxpAscV2—0.7789xp ADxpAxcV +cP—4.4659xp ADxp Ax
cP?+0.189+pAD+cV3+0.1012xp AD*cV2xcP+0.189xp AD*cV cP?+2.8456xp AD*cP3—53.0957 pA* —
1.3037pA35cV+6.7519% pA3xcP—5.2076% pA%xc V2 —2.4518% p A%V *cP—47.4808+ p A% cP?+0.54
PAxcV3+0.7896xpAxcV?xcP+0.9738% pAxcV xcP?+20.4078% pAxcP3—0.0975%cV*~0.033%cV3xcP—
0.3448+cV2xcP?—4.5124%cV xcP®—30.4568%cP*+0.3659% pAD3—3.7578+ pAD?+ pA—0.4937x pAD? x
cV+0.06xpAD?cP+9.654% pAD* pA®+6.8253% pAD* pAxcV —0.4846% pAD* pAxcP+0.7351xpAD*
cV?+0.1847+pAD+cVcP+3.8138+pAD*cP?+11.671xpA3—18.344xp A% +cV+0.4762xp A*xcP—4.5653
PAxCV?+0.8466% pAxcV xcP+9.2637xpAxcP?—1.8886xcV>—0.0833%cV 2xcP—5.2318xcV*cP?+3.7165%
cP?-4.1093%pAD?—17.6591% pAD* pA—0.204% pAD +cV +2.4836 % pAD *cP—33.745% pA> —1.6881 %
PA*cV+5.3915%pA%cP+10.7733%cV2—1.1846+cV +cP—10.4965%cP?+0.0001 % pA—53.2106%cV +1.0.

E BENCHMARK PROGRAMS

This section presents the benchmark programs used in our experiments, along with the invari-
ants employed in our algorithms. In addition, we show the results of checking the prerequisites
of Theorems 4.10 and 4.11(P2), as discussed in Section 6.

E.1 Programs in Linear Experiments

This section contains the benchmark programs in our linear experiments, i.e., in Tables 1 and 5.

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

52 Anon.

Example E.1 (Geo).
Cieo: While (0 <c¢){
{c:=1} [0.5] {x =x+1}
}

In this probabilistic program, we take the invariant] = 0 < x, and every loop iteration terminates
directly with probability p = 0.5.

Example E.2 (k-geo).
Ciegeo: While (k < N){
{k:==k+Ly=y+xx:=0}[05] {x :=x+1}
}

In this probabilistic program, we take the invariant] = 0 < x A0 < yAk < N+1,and
synthesize dbRSM k — N.

Example E.3 (Binomial-random).
Chinran: While (i <10){
{x = x+1} [0.5] {x := 0}
{ly=y+x;i=i+1}[09] {y:=y+1;i:=0}
}

In this probabilistic program, we take the invariant I =0 < i <11 A0 < x A 0 < y, and there is
a probability p > 0.9'° that the program will terminate immediately for every ten loop iterations.

Example E.4 (Coin).
Ccoin: while(x=y){
{x = 0} [Ya] {x =1}
{y=0} [3s] {y =1}
i=i+1;
}

In this probabilistic program, we take the invariant] =0 <iA0 <x <1A0<y < 1,and
every loop iteration terminates directly with probability p = %.
Example E.5 (Martingale).
Cmart: Wwhile(0<x){
{y==y+x;x:=0} [05] {y =y —x;x:=2xx}
i=i+1;
}

In this probabilistic program, we take the invariant I = 0 < x, and every loop iteration terminates
directly with probability p = 0.5.

Example E.6 (Growing Walk).

CGrowingWalk: while (0 <x){
{x =x+Ly:=y+x}[05] {x =-1}

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597

Piecewise Analysis of Probabilistic Programs via k-Induction 53

In this probabilistic program, we take the invariant] = —1 < x, and every loop iteration
terminates directly with probability p = 0.5.

Example E.7 (Growing Walk variant1).

CGmwmgWhml5 While(O S.x){
{x:=x-1y:=y+x}[05] {x =1}
}

In this probabilistic program, we take the invariant] = —1 < x, and every loop iteration
terminates directly with probability p = 0.5.

Example E.8 (Expected Time).

CExpected Time : while (0 < x){
{X ::x—l;t::t+1} [0.9] {x = 10;t;:t+1}

}

In this probabilistic program, we take the invariant I = —1 < x < 10, and there is a probability
p > 0.9 that the program will terminate immediately for every ten loop iterations.

Example E.9 (Zero Conference variant).

Czero-Confvar: While (‘established < 0 A start < 1) {
if (start > 1){
{start := 0} [0.3] {start := 0; established := 1} }
else { {curprobe := curprobe+ 1} [0.99] {start := 1; curprobe := curprobe — 1} }

}

In this probabilistic program, we take the invariant I = 0 < start < 1A 0 < est < 1, and for the
prerequisite (P2) checking, when start = 1, the loop iteration terminates directly with probability
p = 0.7. When start = 0, the value of start has the probability of 0.01 to become 1 and turn to the
branch of start = 1.

Example E.10 (Equal Probability Grid Family).

CEqual-Prob-Grid-Family: While (a < 10 A b < 10 A goal = 0) {
if(b=10){
{goal := 1} [0.5] {goal := 2} }
else{
if (a>10){
a=a-1}
else{
{a=a+1}[05] {b:=b+1}}
}

In this probabilistic program, we take the invariant =0 <a <10 A0 < b < 10 A goal > 0,
and we synthesize dbRSM 10 — b.

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

54 Anon.

Example E.11 (RevBin).
CRevBin: While (1 < x){
{x=x—-1z:=2z+1}[05] {z:=z+1}
}
In this probabilistic program, we take the invariant I = 0 < x, and we synthesize dbRSM x.
Example E.12 (Fair Coin).
Crair Coin: While(x <0Ay <0){
{x:=0} [0.5] {x =1;i:=i+1}
{y:=0} [05] {y:=1;i:=i+1}
}

In this probabilistic program, we take the invariant] =0 < x < 1A 0 <y < 1, and every loop
iteration terminates directly with probability p = 0.25.

Example E.13 (Bernoulli’s St. Petersburg Paradox variant).
Cst. Petersburg1 while (X <0) {
}

In this probabilistic program, we take the invariant I = 0 < x < 1 Ay < 0, and every loop
iteration terminates directly with probability p = 0.75.
E.2 Programs in Polynomial Experiments
This section contains the benchmarks in our polynomial experiments, i.e., in Tables 3 and 7.
Example E.14 (GeoAr).
CGeoar: While(0<z){
y=y+1;
{x:=x+y} [09] {z :=0}
}

In this probabilistic program, we take the invariant] =0 < x A0 < y A 0 < z, and every loop
iteration terminates directly with probability p = 0.1.

Example E.15 (Bin0).
CBinO3 while(n>0){
{x=x+y;n:=n-1} [05] {n:=n-1}
}

In this probabilistic program, we take the invariantI =0 < x A 0 < y A 0 < n, and synthesize
dbRSM n.

Example E.16 (Bin2).
Cginz: While(n>0){
{x=x+Ln:=n-1} [05] {x =x+y;n:=n—-1}

2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

Piecewise Analysis of Probabilistic Programs via k-Induction 55

In this probabilistic program, we take the invariant] = 0 < x A0 < y A0 < n, and we synthesize
dbRSM n.

Example E.17 (DepRV).
Cpeprv: while(n>0){
{x=x+Ln:=n-1} [05]{y:==y+Ln:=n—-1}
}

In this probabilistic program, we take the invariantI =0 < x A 0 < y A 0 < n, and synthesize
dbRSM n.

Example E.18 (Prinsys).
CPrinsys: while (x = 0) {
{x =0} [0.5] {{x := -1} [0.5] {x:=1}}
}

In this probabilistic program, we take the invariant I = -1 < x < 1, and every loop iteration
terminates directly with probability p = 0.5.

Example E.19 (Sum0).
Csumo: while(n>0){
{x=x+mn=n-1}[05] {n:=n-1}
}
In this probabilistic program, we take the invariant I =i > 0, and synthesize dbRSM n.
Example E.20 (Duel Boy).
Cpuel: While(x > 1)1
if(t>0){
{x:=0}[05] {t:=1—1}
telse{{x:=0} [0.75] {t:=1—1t}}
}

In this probabilistic program, we take the invariant] =0 < x < 1A 0 <t < 1, and every loop
iteration terminates directly with probability p > 0.5.

Example E.21 (brp).
Cprp: while (sent < 800 A failed < 10) {
{sent := sent + 1; failed = 0} [0.99] {failed := failed + 1}
}

In this probabilistic program, we take the invariant I = 0 < failed < 10 A 0 < sent < 800, and
there is a probability p = 0.01!° that the program will terminate immediately for every ten loop
iterations.

Example E.22 (chain).
Cchain: While (y < 0Ax <100){
{y :== 1} [0.01] {x :=x+1}

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

56 Anon.

In this probabilistic program, we take the invariant] = 0 < x < 100 A0 < y < 1, and every
loop iteration terminates directly with probability p = 0.01.

Example E.23 (grid-small).

Cgrid-sma: while (a<10Ab<10){
{a=a+1} [05] {b:=Db+1}
}

In this probabilistic program, we take the invariant I =0 < g < 11 A0 < b < 11, and synthesize
dbRSM 19 — (a + b).

Example E.24 (grid-big).

Cyriabig: While (@ < 1000 A b < 1000) {
{a==a+1} [05] {b:=b+1}
}

In this probabilistic program, we take the invariant] = 0 < a
synthesize dbRSM 1999 — (a + b).

< 1001 A0 < b < 1001, and

Example E.25 (cav-2).
Ceav2: while(h <t){
{h = h+10} [0.25] {skip};
{t=t+1}

}

In this probabilistic program, we take the invariant [=0 < t A0 < hAh > t +1, and synthesize
dbRSM ¢t — h.

Example E.26 (cav-4).

Ceav-a: while(y >1){

{y =1} [0.5] {y =0}
{x =x+1}

}

In this probabilistic program, we take the invariant] = 0 < y < 1 Ax > 0, and every loop
iteration terminates directly with probability p = 0.5.

Example E.27 (fig-6).
Chge: Wwhile(x <4){
{x:=x—-1}[05] {x =x+3};
{skip} [0.3333] {{y ==y + 1} [0.5] {y ==y +2}};
¥

In this probabilistic program, we take the invariant y > 0 A x < 7, and synthesize dbRSM 4 — x.

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
27171
2772
2773
2774
27175
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793

Piecewise Analysis of Probabilistic Programs via k-Induction 57

Example E.28 (fig-7).

Crg7: while(y <0){
{y =0} [0.5] {y =1}
X = 2% X;
i=i+1;

}

In this probabilistic program, we take the invariant I =i > 0Ax > 0A 0 < y < 1, and every
loop iteration terminates directly with probability p = 0.5.

Example E.29 (inv-Pend variant).

Ciny-Pend variant: ~ While (exitcond < 0) {
if (0.5 < cP) {
if (cP <£0.5){
if (0.1 < pA){
if (pA<0.1){
exitcond := 1;
telse{skip}
Jelse{skip}
telse{skip}
telse{skip}

cP :=cP+0.01*cV;

{c¢V :=0.02%cP+0.5%cV —0.3%pA—0.06*pAD — 1} [0.5]

{cV :=0.02%cP+0.5%cV —0.3%pA—0.06*pAD + 1};

pA = pA+0.01*pAD;

{pAD 1= 0.04 % cP +0.07 + ¢V — 0.51 % pA + 0.85 = pAD — 0.8} [0.5]
{PAD = 0.04 % cP +0.07 % ¢V — 0.51 % pA + 0.85 pAD +0.8};

}

In this probabilistic program, we take the invariant I = ¢V > 0, and synthesize a dbRSM
0.7747 # cP? +0.0004 * cV? + 0.0222 * pA? + 0.0005 = pAD? +0.0298 + cP * ¢V — 0.0919 * cP * pA —
0.0168 * cP * pAD —0.0019 ¢V * pA — 0.0003 * ¢V * pAD +0.0014 * pA * pAD (cut to 10~ precision).

Example E.30 (CAV-7).

Ccav7: while(i<4){
{x=x+1;i=i+1} [1-02=i] {x =x+1}
}

In this probabilistic program, we take the invariant I = 0 < i < 5 A 0 < x, and synthesize
dbRSM —i.

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

58 Anon.

Example E.31 (cav-5).

Ceav-5: While (10 < money) {
{bet := 5} [0.5] {bet := 10};
money := money — bet;
bank_guard :~ Uniform(0.0, 1.0)
if (bank_guard < 0.94737) {
coll_guard :~ Uniform(0.0, 1.0);
if (coll_guard < 0.33333) {
flip_guardl :~ Uniform(0.0, 1.0);
if (flip_guardl < 0.5) {
money := money + 1.5 * bet;
}else{money := money + 1.1 = bet; }
telse{
col2_guard :~ Uniform(0.0, 1.0);
if (col2_guardl < 0.5) {
flip_guard2 :~ Uniform(0.0, 1.0);
if (flip_guard2 < 0.33333) {
money := money + 1.5 * bet;
telse{money := money + 1.1 = bet; }
telse{
flip_guard3 :~ Uniform(0.0, 1.0);
if (flip_guard3 < 0.66667) {
money := money + 0.3 * bet;
telse{skip}

i=i+1
}

In this probabilistic program, we take the invariant I = 0 < i A —1 < money, and synthesize
dbRSM money — 10.

Example E.32 (add).
Cagd: Wwhile(y<1){

{y:==y+1} [0.2] {x =x+1}
}

In this probabilistic program, we take the invariant] = 0 < x A 0 < y < 2, and synthesize
dbRSM 1 — y.

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891

Piecewise Analysis of Probabilistic Programs via k-Induction 59

Example E.33 (Growing Walk Variant2).
CGrowing Walk Variant2: ~ While (r <0){
{r =0} [0.5] {r =1}
{y:==y+xx*r;
{x=x+1;

}

In this probabilistic program, we take the invariant [=0 < x A0 <y A0 <r < 1, and every
loop iteration terminates directly with probability p = 0.5.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Probability Theory and Martingales
	2.2 k-Induction Operators
	2.3 Probabilistic Loops

	3 An Overview of Our Approach
	4 Piecewise Bounds via Latticed k-Induction
	4.1 Expectation Functions
	4.2 Potential Functions

	5 Algorithms for Bound Synthesis
	5.1 Algorithms for Probabilistic Single Loops
	5.2 Extensions: Handling Probabilistic Programs with Multiple Loops

	6 Experimental Results
	6.1 Piecewise Linear Bound Synthesis
	6.2 Piecewise Polynomial Bound Synthesis

	7 Related Works & Conclusion
	References
	A Supplementary Material for Section 2.2
	A.1 Property of the Upper k-Induction Operator in DBLP:conf/cav/BatzCKKMS20
	A.2 Upper k-Induction Operator in DBLP:conf/apsec/LuX22
	A.3 Equivalence between u and
	A.4 Supplementary Materials for the Dual k-Induction Operators 'u and '
	A.5 Equivalence between 'u and '

	B Supplementary Material for Section 4
	B.1 Classical OST
	B.2 Proof of thm:soundness
	B.3 Proof of thm:soundnesspoly

	C Supplementary Material for Section 5
	C.1 Supplementary Material for Brute-Force Arithmetic Expansion in Stage 2
	C.2 Proof of prop:relation
	C.3 Supplementary Material for the Pedagogical Explanation in Stage 2
	C.4 Supplementary Material for Stage 4
	C.5 Application of Putinar's Positivstellensatz putinar

	D Supplementary Material for Section 6
	D.1 Continued Fraction
	D.2 Experimental Results of Piecewise Linear Lower Bounds
	D.3 Experimental Results of Piecewise Polynomial Lower Bound
	D.4 Full Expressions for Experimental Results

	E Benchmark Programs
	E.1 Programs in Linear Experiments
	E.2 Programs in Polynomial Experiments

