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Piecewise Analysis of Probabilistic Programs via k-Induction

ANONYMOUS AUTHOR(S)

In probabilistic program analysis, quantitative analysis aims at deriving tight numerical bounds for probabilistic
properties such as expectation and assertion probability. Most previous works consider numerical bounds
over the whole program state space monolithically and do not consider piecewise bounds. Not surprisingly,
monolithic bounds are either conservative, or not expressive and succinct enough in general. To derive better
bounds, we propose a novel approach for synthesizing piecewise bounds over probabilistic programs. First,
we show how to extract useful piecewise information from latticed k-induction operators, and combine the
piecewise information with Optional Stopping Theorem to obtain a general approach to derive piecewise
bounds over probabilistic programs. Second, we develop algorithms to synthesize piecewise polynomial
bounds, and show that the synthesis can be reduced to bilinear programming in the linear case, and soundly
relaxed to semidefinite programming in the polynomial case. Experimental results show that our approach
generates tight piecewise bounds for a wide range of benchmarks when compared with the state of the art.

1 INTRODUCTION

Probabilistic programming [30, 37, 52] is a programming paradigm that extends classical program-
ming languages with probabilistic statements such as sampling and probabilistic branching, and
provides a powerful modelling mechanism for randomized algorithms [6], machine learning [12], re-
liability engineering [14], etc. Therefore, analysis of probabilistic programs is becoming increasingly
significant, and attracting more and more attention in recent years.

In this work, we consider the quantitative analysis problem that aims at automated approaches
that derive quantitative bounds for probabilistic programs. Common quantitative properties in-
clude expected runtime [1, 28, 34, 35], expected resource consumption [45, 53, 56], sensitivity [2],
assertion probabilities [19, 51, 55], and so forth. Most existing works focus on deriving numerical
bounds instead of solving the semantic equations exactly, as the latter is impossible theoretically
in general. In the literature, various approaches have been proposed to address the quantitative
analysis problem, including template-based constraint solving [15, 16, 18, 31], trace abstraction [50],
sampling [47], etc. Most of these approaches consider to synthesize a monolithic bound over the
whole state space of a probabilistic program of interest, and have the following disadvantages: First,
a monolithic bound is either too conservative (e.g., only very coarse bounds exist) or not succinct
enough (e.g., although tight monolithic bounds exist, the tightness usually requires complicated
polynomials with higher degree). Second, it may be even worse that no monolithic polynomial
bounds exist.

It is straightforward to observe that piecewise bounds are more accurate than monolithic bounds.
Moreover, a recent work [9] demonstrates that probabilistic program analysis requires piecewise
feature. However, the synthesis of piecewise bounds for probabilistic programs is not well investi-
gated in the literature. To our best knowledge, a handful relevant work is by [10]. They propose an
approach for generating (piecewise) invariants to verify user-provided linear bounds for proba-
bilistic programs with discrete probabilistic choices, which is based on Counterexample-Guided
Inductive Synthesis (CEGIS) and template refinement. Another relevant work is [5] that proposes a
data-driven approach that can synthesize piecewise (sub-)invariants over probabilistic programs
with discrete probabilistic choices. Their approach prefers a suitable list of numerical program
features (such as multiplication expressions over variables), which requires prior knowledge of
the program or user’s assistance. Both of these related works require a bound to be verified as an
additional program input when synthesizing (super-/sub-) invariants.

In this work, we propose a novel automated approach that synthesizes piecewise polynomial
bounds for probabilistic programs with discrete probability choices without user-provided bounds
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or piecewise features to assist the derivation of the piecewise bound. The challenges are that (a)
We need to resolve a good criterion to partition the state space of a probabilistic program into
multiple parts in order to derive the form of the target piecewise bound. (b) We need to devise
efficient algorithms to synthesize piecewise bounds given the criterion. Our detailed contributions
to address these challenges are as follows.

To address the first challenge, we consider latticed k-induction operators [11, 40]. k-induction is
a powerful proof tactics in software and hardware verification that generalizes normal inductive
reasoning [22, 23, 38, 49]. Latticed k-induction [11, 40] further adapts k-induction to lattices and
has application in probabilistic program analysis [11]. We develop a novel combination between
operators from latticed k-induction and Optional Stopping Theorem (see the classical Optional
Stopping Theorem (OST) [58, Chapter 10]). Our combination allows to synthesize both upper and
lower bounds for quantitative properties over probabilistic programs without requiring a global
bound of program values (such as non-negativity in [10, 11, 40]). Moreover, the combination itself is
non-trivial, since we observe that an extended version of OST from [57] is needed and the classical
OST does not suffice. As a by-product, we slightly extend existing latticed k-induction operators.

To address the second challenge, we propose novel algorithms for synthesizing piecewise linear
and polynomial bounds w.r.t our combination of latticed k-induction and OST. It is important
to observe that the latticed k-induction involves minimum/maximum operation, and therefore
increases the difficulty to synthesize a bound algorithmically. We first introduce a key improvement
in time efficiency on the unrolling of the k-induction operators. Then, we show that the synthesis
of piecewise linear bounds can be equivalently transformed into a bilinear programming problem.
A bilinear programming problem is that the variables can be decomposed into two groups so that
within each group of variables the constraints are linear, and is a special non-convex programming
that admits efficient constraint solving [41]. Finally, since even on the linear benchmarks we
require piecewise polynomials to upper/lower bound the quantitative properties, we show that the
synthesis of the more general piecewise polynomial bounds can be soundly relaxed to semidefinite
programming. Experimental results over an extensive set of benchmarks that includes various
benchmarks from the literature show that our approach is capable of generating tight or even
accurate piecewise bounds and can solve benchmarks that previous approaches could not handle.

Technical Contributions. Approaches with latticed k-induction has inherent combinatorial explo-
sion [11, 40]. To address the difficulty, we propose two techniques. The first is a heuristic selection
of a small part of the functions in the minimum operation of latticed k-induction. The second is the
sound relaxation that over-approximates the minimum operation with convex combination.

2 PRELIMINARIES

In this section, we briefly review probability theory, define the k-induction operators, present the
probabilistic loops under consideration, nd finally formulate the problem of interest.

2.1 Probability Theory and Martingales

Consider a probability space (Q, 7, P), where Q is the sample space, ¥ is a g-algebra on Q and
P : & — [0,1] is a probability measure on the measurable space (Q, 7). A random variable
is an F-measurable function X : Q — R U {+c0, -0}, i.e., a function satisfying that for all
d € RU {+00, —00}, {w € Q : X(w) < d} € F. The expectation of a random variable X, denoted by
E(X), is the Lebesgue integral of X w.r.t. P, i.e., E(X) = f XdP. A filtration of the probability space
(Q, ¥,P) is an infinite sequence {F,},., such that for every n, the triple (Q, 77, P) is a probability
space and 7, € Fne1 C F. A stopping time w.rt. {F,},"  is a random variable 7 : Q — N U {0, oo}

such that for every n > 0, the event {r < n} € 7, i.e, {w € Q : 7(w) < n} € F,. Intuitively, 7 is
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Fig. 1. Syntax of Loop Guard and Body in the form (1)

interpreted as the time at which the stochastic process shows a desired behavior. A discrete-time
stochastic process is a sequence I' = {X,};” of random variables in (Q, F,P). The process T is
adapted to a filtration {F,,},,, if for all n > 0, X}, is a random variable in (€, ,,, P). A discrete-time
stochastic process T' = {X,,}, ) adapted to a filtration {7}, is a martingale (resp. supermartingale,
submartingale) if for all n > 0, E(|X,,|) < oo and it holds almost surely that E(X,.+1|%) = X, (resp.
E(Xn+1|Fn) < Xn, B(Xp41|Fn) = Xn). See Williams [58] for more details about martingale theory.

Applying martingales for probabilistic programs analysis is well-studied [15, 16, 19].

2.2 k-Induction Operators

To present k-induction operators, we briefly review lattice theory. Informally, a lattice is a partially
ordered set (E, ) (where E is a set and C is a partial order on E) equipped with a meet operation M
and a join operation L. Given two elements u,v € E, the meet u M v is defined as the infimum of
{u, v} and dually the join u LI v is defined as the supremum of {u,v}. A partially ordered set (E,C)
is a lattice if for any u, v € E, we have that both u M v and u Ul v exist. Given a lattice (E, ), we say
that an operator @ : E — E is monotone if for all u,v € E, u € v implies &(u) E ®(v). Throughout
this section, we fix a lattice (E, C) and a monotone operator ¢ : E — E.

We recall the k-induction operator given in [11] as follows, which we refer to as the upper
k-induction operator.

Definition 2.1 (Upper k-Induction Operator [11]). Given any element u € E, the upper k-induction
operator ¥, w.r.t. u and the monotone operator @ is defined by: ¥, : E — E,v +— ®(v) Mu .

Below we propose a dual version for the upper k-induction operator. The intuition is simply to
replace the meet operation with join. We call this dual operator as the lower k-induction operator.

Definition 2.2 (Lower k-Induction Operator). Let u € E. The dual k-induction operator ¥,, w.r.t. u
and the aforementioned monotone operator @ is defined by: ¥, : E — E, v — & (v) L u.

REMARK 1. Alterative formulation of the k-induction operators have also been proposed in [40].
In Appendix A, We show that these formulation are essential equivalent to the definitions adopted in
this work. Therefore, in the rest of this paper, we focus exclusively on the upper and lower k-induction
operators defined above. O

2.3 Probabilistic Loops

In this work, we use simple probabilistic while loops of the form (1) for easing the explanation of
our basic idea, and will discuss how to extend our approach to general probabilistic while loops
like nested loops without substantial changes in Section 5.2. Below we define the class of single
probabilistic loops.

Syntax. A probabilistic while loop takes the form
while (¢) {C} (1)

where ¢ is the loop guard and C is the loop body without loops. Formally, the loop guard ¢ and
loop body C are generated by the grammar in Figure 1, where x is a program variable taken
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4 Anon.

from a countable set Vars of variables, ¢ € R is a real constant, e is an arithmetic expression
that involves addition and multiplication, ¢ is a formula over program variables that is a Boolean
combination of arithmetic inequalities, and y is a predefined probability distribution. In this work,
we consider p to be a finite discrete probability distribution (i.e., distributions with a finite support)
such as Bernoulli distribution and discrete uniform distribution. The semantics of skip, assignment,
sequential composition, conditional, and while statement can be understood as their counterparts
in imperative programs. The semantics of a probabilistic choice {C;}[p]{C.} is that flips a coin
with bias p € [0, 1] and executes the statement C; if the coin yields head, and C; otherwise. The
semantics of a sampling statement x :~ y samples a value according to the predefined distribution
4 and assigns the value to the variable x.

Given a probabilistic while loop, a program state is a function that maps every program variable
to a real number. We denote by S the set of program states. The initial state for a probabilistic
while loop is denoted by s*. The evaluation ¢(s) of a logical formula ¢ and the evaluation e(s) of
an arithmetic expression e over a program state s are defined in the standard way. ¢(s) = true is

denoted by s |= ¢.

Semantics. The semantics of a probabilistic loop of the form (1) can be interpreted as a discrete-time
Markov chain, where the state space is the set of all program states S, and the transition probability
function P is given by the loop body C and determines the probability P(s, s”) for s,s” € S, meaning
the probability producing output state s’ from input state s. If the loop guard ¢(s) evaluates to false,
then we treat the program state s as a sink state, that is P(s,s) = 1 and P(s,s”) = 0 for s # s’.

Given the Markov chain of a probabilistic while loop as described above, a path is an infinite
sequence T = So, Sq, - - -5 S, - - . Of program states such that P(s,, sp+1) > 0 for all n > 0. Intuitively,
each s, corresponds to the state right before the (n + 1)-th loop iteration. A program state s is
reachable from an initial program state s* if there exists a path 7 = sg, 51, ... such that sy = s* and
sn = s for some n > 0, and define Reach(s") as the set of reachable states starting from the initial
state s*. By the standard cylinder construction (see e.g. [4, Chapter 10]), the Markov chain with a
designated initial program state s* for the probabilistic loop induces a probability space over paths
and reachable states. We denote the probability measure in this probability space by P+ and its
related expectation operator by Eg:.

Problem formulation. Given a probabilistic loop P in the form (1), assuming that P terminates with
probability 1, a return function f is a function f : S — R that is used to specify the output of the
loop P in the sense that when the loop P terminates at a program state s, then the return value
is given as f(s). A return function is piecewise polynomial if it can be expressed as a piecewise
polynomial expression in program variables. We denote by Xy the random variable for the return
value of the loop given a return function f. In this work, we consider the following problem: Given
a probabilistic while loop P in the form (1) and a piecewise polynomial return function f, synthesize
piecewise upper and lower bounds on the expected value of Xj.

3 AN OVERVIEW OF OUR APPROACH

Our approach falls in the background of (latticed) k-induction [11, 40]. k-induction is an induction
principle that generalizes the standard induction by considering k consecutive transitions together
in the inductive condition. Roughly speaking, given a predicate P to be proved via induction, the
k-induction principle considers the inductive condition as (P(x1) A - -+ A P(x)) — P(xg41), for
which the premise P(x1) A - - - A P(xy) means that the predicate P holds for k consecutive transitions,
and the whole condition states that if P holds for k consecutive transitions, then P holds after these
consecutive transitions. In particular, 1-induction coincides with the usual inductive condition.
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Piecewise Analysis of Probabilistic Programs via k-Induction 5

Latticed k-induction [11] adapts the idea of k-induction to lattices for deriving bounds of fixed
points. It considers k consecutive applications of a monotone operator over a lattice and applies
the meet/join operations iteratively in the k consecutive applications. The parameter k here does
not matter in the monotone operator (see Definitions 2.1 and 2.2), but is the number of iterative
applications (see Definition 4.5) when the operator is applied. In this work, we propose a novel
combination of latticed k-induction operators and Optional Stopping Theorem (OST), and propose
novel algorithms for deriving piecewise linear and polynomial bounds on probabilistic programs.

We illustrate the main idea of our approach via the following example, which is a discretized
version of the GROWING WALK in Beutner et al. [12]:

GrowING WALK: while (0 <x){{x:=x+1y:=y+x} [05] {x:=-1}}

The example models a simple random walk where the step size x is increased by 1 with one half
probability, and set to —1 with the other half probability. The program terminates when x becomes
negative. The objective is to analyze the expected value of the return function f(x, y) = y, which
corresponds to the total traveled distance y, after the program terminates. We take the synthesis of
piecewise linear upper bound as an example.

Step 1: Establishing k-induction operators. Let 5]0 be the operator
Ef(h(x, y)):=[x<0]-y+[x>0](05 h(x+Ly+x+1)+0.5-h(-1,y))

for function h : RX R — R, and [x > 0] denotes the Iverson-bracket of the predicate x > 0,
which evaluates to 1 if x > 0 holds at state s and 0 otherwise. Intuitively, 5f outputs y if the loop
guard x > 0 is violated, and the expected value of h(x,y) after the execution of the loop body
{x == x+ 1Ly := y +x} [0.5] {x := —1} otherwise. We introduce the k-induction operator ¥,
(c.f. [11]), defined by ¥,(g) := min{af(g), h} for any fixed function h : R X R — R. Informally,
when applied to a function g, the operator ¥,(g) pulls 5f (9) down via the pointwise minimum
operation with h.

Step 2: Applying k-induction condition. Let k = 2. We unroll the loop P (k = 2) times and examine
the (k = 2)-induction condition to upper-bound the expected value of Xy. The resultant inductive
condition from our approach is as follows (here < is taken pointwise), which is obtained by applying
the operator ¥, to a candidate bound function h once (i.e., k — 1 times):

Ef('ffh(h)) <h (2)

We show that under a mild assumption and by using OST, if we have a function h that fulfills this
inductive condition, then ¥, (k) is an upper bound for the expected value of X, for which the
pointwise minimum in ¥y, (h) = min{af(h), h} is the key to derive the piecewise partition of the
bound apart from loop unrolling.

Step 3: Simplifying the k-induction condition. Our approach synthesizes a function h w.r.t the
condition (2). To the end, we reduce the condition (2) to the form below with four functions h;
(1 € i < 4) combined with a minimum operation:

min{hl, hz, ]’lg, h4} < h, (3)

where by = [x < 0] -y+[x>0]- (05 -A(x+1L,x+y+1)+05-h(-1Ly)),h, =[x <0] -y+[x >
0]-(0.25-h(—1, y+x+1)+0.25-h(x+2, 2x+y+3)+0.5-h(-1,y)), h3 = [x < 0]-y+[x > 0]-(0.25-h(-1,y+
x+1)+0.25-h(x+2,2x+y+3)+0.5-y) and hy = [x < 0] -y+[x = 0]-(0.5-A(x+1,x+y+1)+0.5-y).
Using our algorithm, we employ a loop unrolling based approach to efficiently derive the simplified
constraint (3) and we show that each h; results from the unfolding of the loop up to depth k = 2
and corresponds to a loop-free program from the unfolding. See Stage 2 in Section 5 for the details.
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Step 4: Solving the simplified (k = 2)-induction condition. After Step 3, we obtain the constraint
in (3) and further synthesize the function 4 in (3) by assuming a template for h and solving the
template w.r.t. the constraint (3). Every synthesized function h leads to a piecewise upper bound
Yu(h) = min{af(h), h} for the expected value of X. Since this constraint includes a minimum
operation, it is non-convex and non-trivial to solve. Our approach reduces the synthesis problem
with a linear template to bilinear programming, and obtains a piecewise linear upper bound
[x <0]-y+[x>0]-(x+y+2), which is actually the exact expected value of y. Similarly, our
method can also obtain a piecewise linear lower bound [x < 0] - y+ [x > 0] - (x +y + 13/s).

4 PIECEWISE BOUNDS VIA LATTICED k-INDUCTION

In this section, we propose a novel combination of OST and latticed k-induction operators to derive
bounds for the expected value of X;. We first introduce expectation functions over which we
construct concrete k-induction operators, then define potential functions, and finally show the
soundness of potential functions to derive expectation bounds via OST. Throughout this section,
we fix a probabilistic while loop P = while(¢){C} in the form of (1) and a return function f.

4.1 Expectation Functions

Definition 4.1 (Expectation Functions). An expectation function is a function h : S — R that
assigns to each program state a real value. The partial order < over expectation functions is
defined in the pointwise fashion, i.e., iy X hy &= Vs € S, hi(s) < hy(s). We denote the set of
expectation functions by & and the lattice by (&, <), for which the meet operation M in the lattice
is given by h; M h, := min{hy, h,},where min is the pointwise minimum on functions, i.e., Vs €
S, min{hy, hz}(s) = min{h;(s), h2(s) }, and the join operation LI is given by h; Ul h; := max{hy, hy},
where max is the pointwise maximum.

Informally, an expectation function & is that for each program state s € S, the value h(s) bounds
the expected value of Xy after the execution of the while loop P when the loop starts with the
program state s. Although one observes that the partially ordered set (&, X) with the meet and join
operations defined above is a lattice, we do not use lattice properties in our approach.

To instantiate the k-induction operators for expectation functions, we construct the monotone
operator for the lattice (&, =). To this end, we first define the notion of pre-expectation as follows,
wherein [¢] denotes the Iverson-bracket of ¢. Notice that the random assignment command
x:~ pt (Where y is a discrete distribution of finite support) can be written in an iterative style of
{C1} [p] {C2}, so that we define pre-expectation without random assignment commands.

Definition 4.2 (Pre-expectation [15, 56]). Given an expectation function 4 : S — R. We define its
pre-expectation over a loop-free program Q, preg(h) : S — R, recursively on the structure of Q:

e preg(h) == h,if Q = skip.

o preg(h) := h[x/e],if Q = x = e, where h[x/e] denotes h[x/e](s) = h(s[x/e]) with
s[x/e](x) = e(s) and s[x/e](y) = s(y) for all y € Vars\{x}.

o preg(h) = preg, (preg,(h)), if Q = Q1; Q.

o preg(h) = p - preg, (h) + (1 -p) - preg,(h), if Q = {01} [p] {Q:}-

o preg(h) = [¢] - preg, (h) + [=¢] - preg,(h),if Q = if (§) {Q1} else {Q2}.

The intuition of pre-expectation is that given an expectation function h, the pre-expectation
prep computes the expected value preg(h) of h after the execution of the command Q. With
pre-expectation, we then define the monotone operator to be the characteristic function Ef of the
probabilistic loop P with respect to the return function f as follows.
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Piecewise Analysis of Probabilistic Programs via k-Induction 7

For the rest of this section, we fix an initial state s* and override the set S of program states with
Reach(s*) in Definition 4.1 so that we consider expectation functions restricted to Reach(s*).

Definition 4.3 (Characteristic Function [15, 34]). The characteristic function 5f : & — & is defined
by 5f(h) =[] - f+ [¢] - prec(h). The monotone operator for the lattice (&, <) is defined as Ef.

Informally, the characteristic function Ef outputs f if the loop guard ¢ is violated and the loop
terminates in the next step, and the pre-expectation of h w.r.t. the loop body C otherwise. It is
straightforward to verify the monotonicity of Ef. In the following, we omit the subscript f in 5f if
it is clear from the context. Given the monotone operator, we establish the concrete k-induction
operators as follows.

Definition 4.4 (k-Induction Operators for (€, %)). Given an expectation function h, the upper (resp.
lower) k-induction operator ¥, : & — & (resp. ?;1 : & — &) is defined by ¥;,(g) = min{af(g), h}
(resp. ?’;l (9) = max{5f(g), h}) for arbitrary expectation function g € &.

Note that k does not explicitly appear within the operators; rather, it denotes the number of
times these operators are iteratively applied.

4.2 Potential Functions

We define potential functions as expectation functions satisfying the k-induction conditions. These
potential functions serve as candidate bounds to be synthesized.

Definition 4.5 (Potential Functions). Let k be a positive integer. A k-upper (resp. k-lower) potential
function is an expectation function h that satisfies the upper (resp. lower) k-induction condition

D,(Fy ' (h)) < h (resp. Bp((F))F~1(h)) = h), respectively,

We apply Optional Stopping Theorem (OST) to address our soundness results. We find that the
classical OST [24, 58] cannot handle our problem due to the requirement of bounded step-wise
difference (see Appendix B.1), while the OST variant proposed in [57] can handle our problem.

THEOREM 4.6 (EXTENDED OST [57]). Let {X,},, be a supermartingale adapted to a filtration
F = {Fu}eo and T be a stopping time w.r.t the filtration F. Suppose there exist positive real numbers
b1, by, c1, ¢o, €3 such that ¢, > c3 and

(a) For all sufficiently large natural numbers n, it holds that P(t > n) < ¢y - e” ™",
(b) For every natural number n > 0, it holds almost-surely that | X1 — Xpn| < by - nbz . e

Then we have that E(|X,|) < o0 and E(X;) < E(Xp).

c3'n

Under certain side conditions that guarantee the validity of the extended OST, the potential
functions provide upper and lower bounds on the expected value of X;. Before presenting this
result, we introduce some concepts that capture the magnitude of updates to program variables
between two consecutive steps.

Definition 4.7 (Termination Time). The termination time T of the loop P is the random variable
that for any path of the loop, measures the number of total loop iterations in the path.

Definition 4.8 (Uniform Amplifier). Suppose that the loop P is affine, i.e., all conditions and
assignments within the loop are affine functions of the program variables. For each program variable
x, let x,, denote the random variable representing the value of x at the n-th iteration of the loop. A
uniform amplifier c is a constant ¢ > 0 such that, for all n > 0, |x,41| < ¢ - |x,| + a holds for some
fixed constant a.
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Definition 4.9 (Bounded Update). The loop P has the bounded-update property if there exists
a real constant a > 0 such that for each program variable x, |x,4+; — x,| < a for every n > 0
(see Definition 4.8 for the meaning of x;,).

REMARK 2. Note that any program satisfying the bounded update property also admits a uniform
amplifier with ¢ = 0.

We now present the soundness theorem of k-upper (resp. lower) potential functions. We distin-
guish between affine programs and polynomial programs, as each requires different side conditions
for potential functions to serve as upper or lower bounds. Notably, the side conditions for affine
programs are weaker than those for polynomial programs.

THEOREM 4.10. Suppose the loop P is affine. Let k be a positive integer and h be a polynomial
potential function in the program variables with degree d. If there exist real numbers ¢; > 0 and
¢y > c3 > 0 such that

(P1) there exists a uniform amplifier ¢ satisfying ¢ < e%/?, and

(P2) the termination time T of P has the concentration property, i.e., P(T > n) < c¢; - e” %",

hold, then for any initial program state s*, we have:

o B¢ (Xy) < f/:_l(h) (s*) < h(s*) holds for any k-upper potential function h.
e Eo(Xy) > (?’;l)k_l(h) (s*) = h(s*) holds for any k-lower potential function h.

Proor SKETCH. (See Appendix B.2 for the full proof) Let s, be the random variable of the program

state at the n-th iteration with sy = s*, and let H = @];l_l(h). A key point is that since H is piecewise
polynomial (by the definition of ¥;,) and condition (P1) holds, condition (b) in Theorem 4.6 holds for
process {H(sp) } nen. Combining with the fact that h is a k-upper potential function, one can further
deduce {H(sp) }nen is a supermartingale. By applying Theorem 4.6, we have Eg (X1) < Es(Xo) (T
is a stopping time), thus Es- (Xf) < Es(Xo) = H(s"). The lower case is derived similarly. O

The side condition (P1) for affine programs requires that the loop P possesses a uniform amplifier
constant. In contrast, for polynomial programs, a stronger property is needed: the program must
satisfy the bounded update property, which imposes stricter constraints than (P1).

THEOREM 4.11. Let k be a positive integer. Suppose there exist real numbers ¢c; > 0 and c; > 0 such
that condition (P1’) loop P has the bounded update property; and condition (P2) in Theorem 4.10 holds,
then for any initial program state s*, we have

o Eu(Xp) < @ﬁ_l(h) (s*) < h(s*) holds for any k-upper potential function h.
e Eo(Xp) 2 (@;l)k‘l(h) (s*) = h(s*) holds for any k-lower potential function h.

REMARK 3. See Appendix B.3 for the proof of Theorem 4.11. The concentration condition (P2), which
ensures exponentially decreasing nontermination probabilities as stated in Theorems 4.10 and 4.11,
guarantees that loop P terminates almost surely. This condition has been extensively studied in the
literature (see, e.g., [16, 17, 26]). O

According to Theorems 4.10 and 4.11, synthesizing upper and lower bounds reduces to finding
a potential function A that satisfies the conditions outlined in these theorems. However, solving
the k-upper and k-lower potential conditions is challenging due to the intricate combination of
minimum and indicator functions involved. In the following sections, we introduce algorithmic
approaches to systematically synthesize these upper and lower bounds.
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5 ALGORITHMS FOR BOUND SYNTHESIS

In this section, we first present algorithms for synthesizing upper and lower bounds for single-loop
programs. We then demonstrate how our approach naturally extends to handle programs containing
nested or sequential loops.

5.1 Algorithms for Probabilistic Single Loops

In this subsection, we present algorithms for synthesizing k-upper and lower potential functions
that satisfy the conditions specified in Theorem 4.10 and Theorem 4.11, leading to piecewise bounds
on the expected value of Xy. Below, we consider a fixed probabilistic loop P of the form (1) along
with a return function f. Due to the space limit, we only illustrate the synthesis procedure for
upper bounds. The case for lower bounds is nearly analogous, obtained by replacing minimum with
maximum and substituting < by . The pseudocode for our algorithm is presented in Algorithm 1.
Our approach consists of the following major steps:

Stage 1: Prerequisites Checking and External Inputs. Our algorithm first verifies the side
conditions (P1) and (P2) (respectively, (P1’) and (P2’)) for affine (respectively, polynomial) programs,
as specified by Theorems 4.10 and 4.11. The algorithm also accepts the hyperparameter k and a
program invariant as input parameters.

Prerequisites checking. When P is affine, condition (P1) is verified by syntactically inspecting the
loop body to identify a positive constant cs, ensuring that each program variable is amplified by at
most e°/%, up to an additive constant, within a single loop iteration, where d denotes the degree
of the polynomial template potential function h (c.f. Stage 2). Condition (P2) is guaranteed either
by synthesizing a difference-bounded ranking supermartingale (lbRSM) that demonstrates the
exponentially decreasing concentration property [16, 17], or by syntactically analyzing probabilistic
branching within the loop to extract a suitable constant ¢, satisfying c¢; > c3 > 0. For polynomial
programs, condition (P1’)—the bounded update property—is checked via an SMT solver (e.g.,
Z3 [21]), while condition (P2) is ensured analogously to the affine case.

External inputs. Our algorithm requires the following hyperparameters as input: (1) Induction
parameter k: We specify a positive real number k as the parameter for k-induction, along with the
initial program state s*. (2) Program invariant: We assume the existence of an invariant I at the
entry point of the loop, which over-approximates the set of reachable program states Reach(s*).
That is, for every s € Reach(s*), we have s |= I. The state space is thus restricted to program states
satisfying I, and the relation < is interpreted over I, i.e., hy 2 hy &= Vs |1, hi(s) < hz(s). The
rational of this restriction follows from the over-approximation property of I. Invariants can be
obtained using external invariant generators, such as [48].

Example 5.1. We take the following example as a running example, which is a discretized version
of the GRowING WALK in [12]:

while (0 < x) {{x =x+ Ly :=y+x} [0.5] {x:=-1}}

In this example, our goal is to analyze the expected value of y upon program termination. We
check the prerequisites and specify the external inputs as follows: (1) Prerequisite Verification: We
find that ¢ = 1 serves as a uniform amplifier, satisfying ¢ < e®/¢ with ¢3 = In1.5 and d = 1. The
concentration condition (P2) is also met with ¢, = In 2. (2) External Inputs: We set k = 2, and choose
the invariant I = {x | —1 < x} with initial state s* = (x,y) = (1, 1). O

Stage 2: Templates and Constraints. After verifying the prerequisites and identifying the external
inputs as described in Stage 1, our algorithm predefines a d-degree polynomial template h as the
candidate k-upper potential function for the loop P. This template consists of a linear combination
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of all monomials in the program variables of degree at most d, where each monomial is multiplied
by an unknown coefficient.
Next, we apply the k-induction conditions from Definition 4.5, resulting in the constraint

5f (?f};1 (h)) 2 h.The presence of min and indicator operators within this constraint complicates di-
rect simplification. To address this, we reformulate the constraint into the form min{hy, hs, .. ., hp, } 2
h, where each h; is free of the minimum operator. Although a brute-force arithmetic expansion can
achieve this transformation (see Appendix C.1 for details), our algorithm employs a more efficient
unfolding strategy, which we outline below.

The unfolding process for constraint simplification: We symbolically unroll the probabilistic loop from
the initial state up to k iterations, exploring all possible unfolding strategies. Here, "symbolic" means
that program variables in each program state retain their original variable names and represent
undetermined values. An unfolding strategy operates at each symbolic program state encountered
during the unfolding process (excluding the initial state), and chooses one of three actions: (i) unfold
the loop iteration once more, (ii) terminate the unfolding, or (iii) forced to stop when the total
number of unfoldings reaches k. Each unfolding strategy, determined by the choices made at each
unfolding step, yields a loop-free program. Let Cy,. .., Cp, denote all loop-free programs generated
by applying the above decision process across all possible unfolding strategies. For each loop-free
program C,4, we compute the pre-expectation prec,(h) of h with respect to Cy (see Definition 4.2),

allowing us to equivalently rewrite the constraint 5f (?/:_1 (h)) 2 has:
min{h, ha, ..., hm} < b, (4)

where each h; is given by prec, (h) for some C4. According to the computation of pre-expectation
(Definition 4.2), each h; can be represented as h; = ., [Bi,] - e;r, where B, is a predicate independent
of the template’s unknown coefficients, and e;, is a monolithic polynomial in the program variables,
potentially containing unknown coefficients. Moreover, the B;,’s are pairwise logically disjoint.

The following proposition formally establishes the relationship between the unfolding process
and the k-induction condition. The proof is provided in Appendix C.2.

—  —k-

PROPOSITION 5.2. The upper k-induction condition @ s (¥}, 1(h)) = h is equivalent to constraint
min{hy, hy, ..., hy,} = h, where each h; equals prec,(h) for some unique Cq € {Cy,...,Cp} from the
unfolding process above.

By Proposition 5.2, the k-induction constraint can be simplified by computing the pre-expectations
of all programs {Cy,...,Cp} generated by all possible unfolding strategy within k loop itera-
tions. Since these programs are structurally similar, we can efficiently compute prec, (k) for all
Cq € {Cy4,...,Cp} simultaneously by traversing the k-unfolding of the program loop once. This
approach reduces runtime by eliminating excessive and repeated computations.

Hllustrative Example of the Unfolding Process. We demonstrate our unfolding process via a simple
but illustrative example as follows:

P :=while (¢(x)) {{x = aix + b1} [p] {x := azx + b2}} (5)

where x is a real-valued program variable, a;, b; (i = 1, 2) are real constants, p € [0,1] and ¢(x) isa
guard condition. Let f be the return function, and let @+ be the operator defined as

Dp(h)(x) = [=9(0)] - f(x) + [9()](p - h(arx +b1) + (1 = p) - h(azx +b2))

for any function b : R — R (with S = R), where [¢] denotes the Iverson bracket for the predicate ¢.
In this example, we consider the 2-induction operator ¥}, for a fixed function h : R — R, as defined
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Piecewise Analysis of Probabilistic Programs via k-Induction 11

in [11]. Specifically, ¥4(g) is given by ¥4(g) := min{Ef(g), h}, and the corresponding 2-upper
induction condition is : o

(I)f(q/h(h)) <h. 6)
According to Proposition 5.2, we simplify this constraint by transforming (6) into the following
form, which expresses the minimum over four functions h; (1 < i < 4):

min{hl, hz, h3, h4} =< h,

where each h; corresponds to a loop-free program C; generated during the unfolding process up to
depth k = 2. All such unfolded programs are summarized in Fig. 2.

sh(ai(a 89245 h(as(a
[zs o i(bf)} [z ) i(bf)]

(b) Case 2: Program Cs

output o output
flarz +by) flagz +by)
s215 h(ai(ay | | s22;h(az(ay - - " . \
e | iy [ty omipsy | (maintsn) [ty
(c) Case 3: Program Cs3 (d) Case 4: Program Cy

Fig. 2. Loop-free programs generated by (k = 2)-induction

We illustrate the unfolding process as follows. Starting from an initial value x, if ¢(x) is not
satisfied, the loop terminates immediately and outputs f(x). If ¢ (x) holds, we proceed to unfold
the loop, resulting in four distinct cases. Due to space constraints, we describe only the first case in
detail here; the remaining three cases are depicted in Fig. 2, with further explanations provided
in Appendix C.3.In Case 1, the loop executes once and transitions to two possible states, a;x+b; and
azx+b,, after which it terminates. This corresponds to a single unrolling of the loop and terminating
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the unfolding at both resulting symbolic states, yielding the loop-free program C; as shown in Fig. 2a.
The associated expression is by = [-¢@(x)] - f(x) + [@(x)](p - h(a1x + b1) + (1 — p) - h(azx + by)),
which represents the expected value of h(x) after executing program C;. Cases 2, 3, and 4 are
derived analogously by unrolling the loop up to two iterations.

Example 5.3. Returning to the running example in Example 5.1, we establish a 1-degree, i.e., linear
template h = a-x+b-y+c, where a, b, c are unknown coefficients. We apply 2-induction condition to
synthesize a piecewise linear upper bound. Starting from a symbolic initial program state s* = (x, y),
we unroll the loop once and arrive at two new symbolic program states (x+1,x+y+1) and (-1, y).
Over each new state, we take the decision separately and the unfolding strategy produces four
loop-free programs. The prec,(h) w.r.t. these four programs are as follows:

hi=[x<0]-y+[x>0]-(05-h(x+1L,x+y+1)+0.5-h(-1Ly))

hy=[x<0]-y+[x>0]-(0.25-h(-1,y+x)+0.25-h(x+2,2x+y+3)+0.5-h(-1y))
hs=[x<0]-y+[x>0]-(0.25-h(-1,y+x)+0.25-h(x+2,2x+y+3)+05-y) @)
hy=[x<0]-y+[x>0]-(05-h(x+Lx+y+1)+05 1)

Thus, we have the simplified constraint V(x, y) = I, min{hy, hy, hs, ha} < h. O

Branch reduction. During the unfolding process used to simplify the latticed k-induction condition

Ef (?’:71 (h)) < h, the number of resulting functions h; in (4) grows rapidly with the number of
probabilistic choices in the loop body. This combinatorial growth occurs because, when computing
the pre-expectation for probabilistic branches, the sum of two minimum expressions results in a new
minimum taken over the Cartesian product of the original function sets. To address this issue, we
introduce a heuristic that selects only a small subset of "representative"” functions from the complete
set of h; in (4). Importantly, this approach does not compromise soundness (see Theorems 4.10
and 4.11), as the minimum over any subset is always at least as the minimum over the full set.
Taking the case of k = 2 as an example, by definition of operator ¥, we have

@ (W (h) = By (min{{B(h), h}}
= [G] - f+[G] - Y pi - min{{®@p(h(us(5))), h(ui(s))}
i=1

where each p; denotes a probabilistic choice in the characteristic function Ef, and u; represents
the corresponding state update function under that choice. Instead of enumerating all possible 2"
combinations in choosing either Ef(h(ui(s))) or h(u;(s)) for each p; (to expand into the minimum
form (4)), one could consider combinations that have at most one Ef(h(ui(s))) and at most one
h(u;(s)), so that only a linear number of combinations are considered while retaining soundness.
For the case of k > 2, a possible way for relaxation is to recursively consider combinations that
have at most one Ef(?/:_z(h(ui(s))) and at most one h(u;(s)).

Stage 3: Transforming to Canonical Form. At this stage, our algorithm transforms the constraint
of the form (4) from Stage 2 into the following canonical form:

[Bi] = min{es,...,emi} < h, ..., [Bj]] = min{ey,...,emu} <h (8)

where h is the predefined polynomial template. Each B;(j € {1,...,1}) is a conjunction of predicates
over the program variables that does not involve the template’s unknown coefficients, and each e;;
is a polynomial expression in these unknown coefficients. The transformation begins by rewriting
the inequality (4) as

min {2, [Bir] - e1r, -, 2p[Bmr] - €mr} 2 h )
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Piecewise Analysis of Probabilistic Programs via k-Induction 13

where, as described previously, each h; is expressed as h; = . ,.[Bi,] - €;. Next, for each conjunction
B = A, Biy, — with each B;,, taken from the summation }.,[B;,] - e;; — we obtain the constraint
¥p = [B] = min}Z, e;;, < h. The transformed system of inequalities (8) is thus precisely the
set of all such ¥g constraints. Infeasible constraints (i.e., those with unsatisfiable B) are removed,
whenever possible, using an SMT solver such as Z3 [21].

Example 5.4. Continuing from Example 5.3, we convert (7) into its canonical form by partitioning
the state space S into two regions: [x < 0] and [x > 0], as indicated in (7). Applying Stage 3 and
eliminating unsatisfiable predicates yields the following canonical form:

[x* <0] = min{y} <h

05 -h(x+1,x+y+1)+0.5-h(-1,y)
0.25-h(-Ly+x+1)+0.25-h(x+22x+y+3)+0.5-h(-1,y)

[x > 0] = min <h (10)
0.25-h(-Ly+x+1)+0.25-h(x+2,2x+y+3)+05-y
05-h(x+1,x+y+1)+05-y

O

Stage 4: Solving Constraints. Below, we describe our approach for solving the canonical con-
straints given in (8). It is important to note that the presence of the minimum operator in this
canonical form makes the constraint non-convex. To address this, we develop distinct algorithms for
the linear and polynomial cases. In the linear case, where the program is affine (i.e., all conditions
and assignments are linear), we employ a linear template for the k-upper potential function h. In
the polynomial case, where the program may be non-affine, we utilize a polynomial template.

Solving constraints (linear case). In our algorithm for the linear case, we require that the return
function be piecewise linear and that the invariant be affine in the program variables. We first
eliminate the minimum operator in (8) by considering its negation. This allows us to transform the
constraint into a set of bilinear constraints using Motzkin’s Transposition Theorem, which can
then be solved with off-the-shelf bilinear programming solvers such as Gurobi.

Below, we present a variant of Motzkin’s Transposition Theorem [43], which will be utilized in
the subsequent analysis. The proof is provided in Appendix C.4.

THEOREM 5.5 (MOTZKIN’S TRANSPOSITION THEOREM [43]). Let S = (A;-x+by <0) and T =
(Ay - x+by < 0) be systems of linear inequalities, where Ay = (a;;) € R™" and Ay = (m4ij) €
R¥*" gre real coefficient matrices, by = (B1,...0m) " and by = (B, ..Pmsk) " are real vectors, and
x = (x1,..xn) . If S is satisfiable, then S A T is unsatisfiable if and only if there exist non-negative
real numbers Ao, A1, ..., Am+k, with at least one A; fori € {m + 1, ...,m + k} being nonzero, such that:

m+k m+k m+k
D hiagiay =0 D Aty =0, (D) Aifi) = Ao =0. (11)

i=1 i=1 i=1
REMARK 4. Note that, since A; > 0 for 0 < i < m + k, the requirement that at least one A; for
i€ {m+1,...,m+k} is nonzero can be equivalently encoded as the linear constraint ;’:’;’;1 A > 0.

In what follows, we demonstrate how to apply Theorem 5.5 to solve the canonical constraints (8).
We begin by conjunct the affine invariant I with the antecedent predicates in (8) and eliminating
any constraints with unsatisfiable antecedents, resulting in

[I ABj] = min{eyj, e, ....emj} <h forje{1,2,...,1}, (12)
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where we assume that each I A B; is satisfiable. For each j, we have
([I AB;] = min{es}, ez, ....em;} < h) holds
& ([IABj] A (A (e;; > h))) is not satisfiable [Apply Thm 5.5]
&= exists nonnegative real vector A; = (A j, .. .,Amﬁkj,j),
st. (Amj+1js - - > Amj+k;,j) # 0, and eq. (11) holds.

The second equivalence follows from the Motzkin’s Transposition Theorem by setting S = I A B;
and T = (A" (e;; > h)) for each j € {1,2,...,1}. Note that (11) constitutes a bilinear constraint
problem, as its nonlinearity arises solely from the products of unknown template coefficients and
the variables A;. Our approach aggregates all such bilinear constraints and utilizes off-the-shelf
bilinear solvers to obtain concrete solutions for the template h.

Example 5.6. Continuing from Example 5.4, recall that we choose x > —1 as the invariant. For
the constraint (10), substituting h(x, y) with the template ax + by + ¢ and considering its negation
as previously illustrated, we obtain the following inequalities:

-x <0 0.5(a—b)x—0.5b <0 0.75(a — b)x — (b —0.25a) < 0
0.75(a - b)x +0.5(b — 1)y + (0.5¢ — 0.25a — b) < 0 0.5(a-b)x+05(b—-1)y+0.5(c—a—-b) <0.
Then by Theorem 5.5, the constraint (10) is equivalent to solving the following set of bilinear
constraints involving the unknown coeflicients g, b, and c.
o =20,4120,---,45>20 st. (A #0VA3#O0VAL#0V A5 £0)A

0=(=1)- A1 +0.5(a—b)- Ay +0.75(a—b) - A3 +0.75(a — b) - Ay + 0.5(a — b) - A5 A

0=050b-1)-A4+050b-1) 45 A

0=—05b-Ay — (b—0.25a) - A3 + (0.5¢ — 0.25a — b) - g + 0.5(c —a—b) - As — Ay. O

Our algorithm utilizes bilinear solvers to address the derived bilinear constraints. Since these
constraints define only a feasible region, we heuristically select an objective function to guide the
solver toward solutions that yield tighter upper bounds. Specifically, we minimize h(s*), where s*
is a designated initial program state of interest. Once the template coefficients for h are determined
(yielding a candidate h*), we reconstruct the piecewise linear upper bound by applying the upper

= —k-1
k-induction operator ¥y iteratively k — 1 times, resulting in ¥,.  (h*). We claim that our linear
bound algorithm is complete in the sense that the reduction to bilinear programming preserves the
original k-induction condition.

Example 5.7. Continuing with Example 5.6, we use the objective function h = ax + by + ¢ with the
initial state s* = (x,y) = (1, 1). Solving the optimization yields the candidate A*(x,y) = x + y + 2.
We then reconstruct the piecewise upper bound by applying ¥, once, resulting in the upper bound
[x<0]-y+[x=0] - (x+y+2).

Solving constraints (polynomial case). In our algorithm for the polynomial case, we assume that
the return function is piecewise polynomial and that the invariant is a polynomial predicate over
the program variables. We design a sound approach that relaxes the k-induction constraint and
reduces the relaxed formulation to a semidefinite programming (SDP) problem using Putinar’s
Positivstellensatz [46]. This relaxation guarantees that the synthesized upper bound h satisfies the
original k-induction condition (see Definition 4.5). The algorithm is described as follows.

First, for each constraint in the canonical form (8), namely [B;] = min{eyj,...,em;j} < h
for j € {1,...,1}, we relax the constraint by replacing the minimum operator with a convex
combination of the terms {e;;}72,. This results in the following relaxed form:

[BJ] - Zglwi~e,~j§h,,j€{l,...,l} (13)
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where each weight w; > 0 and the set of weights satisfies },[*; w; = 1. Various forms of weight
combinations {w;}, can be employed, such as uniform weights (where each w; = 1/m) or randomly
generated weights normalized to sum to one. This relaxation is sound: any function h and set
{eij}, that satisfy the relaxed constraint (13) will also satisfy the original canonical form (8). This

follows from the fact that )72, w; - ¢;; <h = {min }{eij} <h
ie{l,...m

Next, we conjunct the invariant I with each constraint in (13), resulting in the following form:

/\ [I/\Bj] - iwi'euﬁh, (14)

je{1,...1} i=1

We then apply Putinar’s Positivstellensatz [46], following previous work [16, 57], to generate
constraints on the unknown coefficients, which are solved using off-the-shelf SDP solvers (see Ap-
pendix C.5 for details). As these constraints define only a feasible region, we employ a heuristic
objective function to guide the solver towards tighter upper bounds. Specifically, we minimize
2. h(s}), where s} are selected initial program states of interest. After obtaining the optimal

—k—
solution h* from the SDP solver, we reconstruct the piecewise polynomial upper bound ¥}, 1(h*)
by iteratively applying the upper k-induction operator ¥ to h* for a total of k — 1 times.

Algorithm 1: Synthesizing Bounds

Input :Probabilistic loop P in the form of (1) and a return function f
Output: Piecewise bounds for the expected value of X upon termination of P

Prerequisites Checking and External Inputs:

(a) Prerequisites Checking: Verify the prerequisites in Theorem 4.10 (Theorem 4.11).

(b) External Inputs: Generate an invariant I, select parameter k and specify initial program state s*.

Templates and Constraints:

(a) Predefining a (monolithic) polynomial template h.

(b) Unfolding the loop within k times and calculate prec, (h) for all Cy € {Cy,...,Cp} (generated by
our unfolding process) to obtain the constraint min{hy, ha, ..., hp} = h.

Transforming to Canonical Form:

Transform the constraints (4) into the form of (8) through an iterative approach and obtain I canonical
constraints;

Constraints Solving:

if the loop P is linear and the template h is linear then
Cons <« 0; > Linear Case

for j «— 1toldo
Extract the coefficients of the variables from canonical-formed constraints;
Construct bilinear constraints K; with auxiliary variables A ;;
Cons « Cons U Kj;
end
Call bilinear solver to solve Cons and obtain the piecewise bound with the solution h*
else
(a) Soundly relax the original canonical constraints (8) into (14). > Polynomial Case
(b) Call SDP solver to solve and obtain the piecewise bound with A*.

end

Correctness. Our algorithms are guaranteed to produce correct bounds by Theorems 4.10 and 4.11.
The Prerequisites Checking stage ensures that all prerequisites in Theorem 4.10 and Theorem 4.11 are
met, and the function A is determined according to the k-induction conditions (see Definition 4.5).
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Additionally, the invariants we use over-approximate the set of reachable program states, thereby
preserving the soundness of our approach. Specifically, our linear bound algorithm is both sound
and complete in the sense that the reduction to bilinear programming exactly preserves the original
k-induction condition. In the polynomial case, our algorithm employs a sound relaxation, which
likewise guarantees the correctness of the synthesized bounds.

5.2 Extensions: Handling Probabilistic Programs with Multiple Loops

Below, we describe the extension of our approach to probabilistic programs with multiple loops,
including both sequential compositions of probabilistic loops and nested loops. For brevity, we
focus on the synthesis of upper bounds; the synthesis of lower bounds is entirely analogous.

Sequential Composition. For a sequential composition P = Py;. .. ; P, of probabilistic loops Py, . .., P,
with a return function f, our method analyzes each loop component in reverse order. To illustrate
the approach, we focus on the case P = P;; P;. Given a k-induction parameter k, the procedure for
synthesizing upper bounds proceeds as follows:
e Begin by computing a piecewise upper bound h; for the expected value of f after the
execution of loop Ps.
e Then, treat h; as the return function for P; and compute its piecewise upper bound, resulting
in the final bound h; for the entire composition.
This backward compositional reasoning can be systematically extended to compositions with
more than two loops.
Nested Loops. To address nested loops, we incorporate our approach with the methods proposed
in [26, 27], applying k-induction exclusively to the innermost loop and 1-induction to the outer
loops. Since the innermost loop can be unfolded independently of the outer loops, we are able to
derive tight piecewise bounds for the inner loop via k-induction and subsequently propagate these
bounds to the outer loops. For clarity, we focus on the case where the program R contains a single
inner loop and has the following structure:

R =while(¢ ){P} with P =while( ¢ ){Q} and Q loop-free.

Our objective is to analyze the expected value of X upon termination of the loop. Let @‘D}”t denote
the characteristic function (see Definition 4.3) with respect to the outer loop and return function f,
and let ;" denote the characteristic function for the inner loop P and return function g. While @;*
can be computed explicitly, CD;’” typically cannot. We therefore apply 1-induction to the outer loop
and k-induction to the inner loop, as summarized below:

e Define a template h,y,; at the entry of the outer loop and a template h;,, at the entry of the
inner loop.

e For the outer loop, the 1-induction rule yields the constraint @;”’ (hout) =X hoy:. Since
dflj‘i”’ (hoyt) cannot generally be computed explicitly, we upper-approximate the expected
value of hy,; after executing the inner loop P by h;y, i.e., @;’p’”(hout) 2 [-¢]-f+[¢¥] hin,and
the original constraint @;”t(hout) = hoys can be strengthened into [—/] - f+[¥/] - hin = hous.

e For the inner loop, we apply the k-induction condition (see Definition 4.4) to ensure that h;,
upper-approximates the expected value of h,,; after executing the inner loop. This leads to
the constraint <D;:m ((lI/}’;:’n)k‘l (hin)) = hin, where 11/;1:’" (9) = min{@i’(’;ut (9), hin} is the upper
k-induction operator for the inner loop P (see Definition 2.1).

e Collect the resulting constraints and apply our synthesis algorithm as described in Section 5.

Through this process, we obtain h,,; as a piecewise upper bound for the expected value of X
with respect to the return function f upon termination of the entire while loop R.
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6 EXPERIMENTAL RESULTS

We implement our algorithms’ in Python 3.9.12 and Julia 1.9.4. We use Gurobi in Python for bilinear
programming and Mosek in Julia for semi-definite programming. All experiments are conducted on
a Windows 10 (64-bit) machine equipped with an Intel(R) Core(TM) i7-9750H CPU at 2.60GHz and
16GB of RAM. We evaluate our algorithms for synthesizing piecewise linear and polynomial upper
bounds, as detailed in Section 6.1 and Section 6.2. Results for lower bound synthesis, which exhibit
similar performance and comparative advantages, are provided in Appendix D.2 and Appendix D.3
due to space limitations.

Evaluation Goals. Our experiments are designed to address the following research questions:

RQ1. How effective is our approach in generating piecewise bounds?
RQ2. How does our approach compare to the most closely related methods?
RQ3. How do our piecewise bounds compare to monolithic polynomial bounds?

Experimental Settings. We address the evaluation goals for our piecewise linear and polynomial
algorithms separately. The experiments are conducted under the following settings:

Invariants. We employ invariants to over-approximate the set of reachable states, which is standard
in various existing results [15, 16, 28]. Note that invariants do not provide information about the
piecewise partitioning of the bounds to be computed. In our experiment, we minimize their impact
by deliberately choosing trivial interval-bound invariants that can be directly derived as the union
of loop guard and its post image under the increment/decrement operations within the loop body.

Prerequisites Checking. Our experiments cover both linear and polynomial probabilistic programs
(see Appendix E for details). For linear programs with monolithic linear return functions, we use
a linear template and apply our linear algorithm. For more general cases involving polynomial
programs with piecewise polynomial return functions, we employ a higher-degree polynomial
template and apply our polynomial algorithm. In our piecewise linear experiments, we ensure
that the prerequisites (P1) and (P2) in Theorem 4.10 are satisfied as follows. For (P1), we verify
syntactically that the uniform amplifier ¢ can typically be set to 1 across most benchmarks, ensuring
that (P1) holds for any positive c,. For the remaining benchmarks, we take the maximum coefficient
of the program variables in the loop body as c. For example, in the ST-PETERSBURG benchmark, we
set the uniform amplifier ¢ to 2, choosing c3 = In 2 (since e®® = 2) and c; = In 4 to meet the required
conditions. For (P2), in benchmarks where each loop iteration terminates with probability p and
continues with probability 1 — p, we can syntactically extract p and verify that the concentration
property holds, exhibiting exponential decay at a rate of e™(!~?)_ For the remaining benchmarks,
we construct difference-bounded ranking supermartingales (dbRSMs) to ensure the concentration
property. Such dbRSMs can be synthesized automatically using methods described in [16, 17]. In our
piecewise polynomial experiments, we ensure that the prerequisites (P1’) and (P2) in Theorem 4.11
are satisfied as follows. For (P1°), we verify the bounded-update property on each polynomial
benchmark using an SMT solver [21]. For (P2), we apply the same approach as in the linear case to
establish the concentration property for polynomial programs.

Bound Optimization. Recall that in our algorithms described on pages 14 and 15, we optimize the
synthesized upper bounds by minimizing their values over the initial states of interest, which serve
as the objective function. In the piecewise linear experiments, we typically set the default initial
state s* by assigning the value 1 to all program variables across most benchmarks. For specific cases,
such as FAIR COIN, we assign initial values x = 0 and y = 0 — since (x, y) = (0, 0) is the only state
from which the loop can be entered — and set the variable i to its default value of 1. In the piecewise
polynomial experiments, for path probability estimation benchmarks selected from [13, 29, 47, 57],

!https://anonymous.4open.science/r/text1-B83C-popl/



834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Anon.

we adopt the default initial state s* used in previous work to ensure consistency. For the remaining
benchmarks, we first define an interval-bound region, with real-valued variables ranging over
[0,10] and Boolean variables over [0, 1]. We then select 10 initial states comprising the boundary
points of the region, the midpoints of each boundary, the center point, and uniformly distributed
integer points within the region.

Weights Selection. For the polynomial experiments, recall that our algorithm requires a predefined
set of weight combinations (see Eq. (14)). We employ uniformly distributed weights (i.e., each
weight is %) and additionally generate 10 sets of randomly selected weights, each normalized to
sum to one. Independent computations are performed for each of these 11 weight combinations.
From the resulting solutions, we select the function with the minimum objective value as the
synthesized upper bound h*. The total execution time is reported as the cumulative runtime for the
11 independent runs with different weight settings.

Numerical Repair. To address the inherent numerical issues associated with numerical solvers,
we apply a post-processing step to repair the computed results. In the linear experiments, we
approximate the output floating-point coefficients with rational numbers using continued fractions
(see Appendix D.1, [33]), and validate these approximations by checking the constraints in (8). This
numerical repair is applied to all benchmarks except ExpECTED TIME. For this particular benchmark,
since suitable rational approximations could not be found, we truncate the floating-point results
to a precision of 10™* and verify their validity against the same constraints. In the polynomial
experiments, we similarly truncate all floating-point coefficients to 10™* precision, then substitute
the results into the constraints in (14) to check feasibility. Of the 20 benchmarks evaluated, the
results for 16 passed our validation procedure, while the remainder remain unknown.

6.1 Piecewise Linear Bound Synthesis

Benchmark Selection. We choose upper-bound benchmarks from existing works [5, 10-12,
20, 26, 27, 29] that fall into our scope and have the following adaptions. First, for those that do
not have linear return functions, we add simple linear return functions. Second, for those whose
upper bound that can be handled directly by 1-induction (except for several classical examples:
K-GEo, REVBIN, FAIrR CoIN), we adapt them by reasonable perturbations (such as changing the
assignment statement, changing the probability parameters, reducing the continuous distribution
to discrete distribution, etc) so that they require (k > 1)-induction. Third, for those whose upper
bound that cannot be handled by k-induction with small k = 1, 2, 3, we adapt them by reasonable
perturbations as above so that they can be handled by (k > 1)-induction, while still cannot be
handled by 1-induction.

In detail, we consider 7 original examples and 6 adapted examples from the literature. The
examples GEo, K-GEO and EQUAL-PROB-GRID are taken from [10, 11], for which we replace the
assertion probability with a linear return function goal in EQUAL-PROB-GRID. We consider the
benchmark Zero-CoNF-VARIANT adapted from [10, 26]. We revise the assignments and probabilistic
parameters in the original program, and add a linear return function curprobe. The benchmark
ST-PETERSBURG VARIANT is taken from [26] where we replace the probability parameter % with
% since the original program does not satisfy the prerequisites in Theorem 4.10. From [5, 20, 27],
we consider the benchmarks Coin, MART, REVBIN and FAIR CoiN, and revise the assignments,
guards on the original benchmarks BIN series so that we obtain a more complex version BIN-RAN.
The remaining three examples, ExPECTED TIME, GROWING WALK and its variant, are all adapted
from [12, 29] by reducing the continuous distributions to discrete distributions.

Answering RQ1. We present the experimental results on these 13 benchmarks in Table 1. As
bilinear solving is an iterative search for optimal solutions, we set the maximum searching time for



883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924

926
927
928
929
930
931

Piecewise Analysis of Probabilistic Programs via k-Induction 19

Table 1. Experimental Results for RQ1 and RQ2, Linear Case (Upper Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" (of our approach) stands for the execution time of our approach
(in seconds), including the parsing from the program input, transforming the k-induction constraint into
the bilinear problems, bilinear solving time and verification time. "Conventional Approach (k = 1)" stands
for the monolithic linear upper bound synthesized via 1-induction, "k" stands for the k-induction we apply,
"Solution" stands for the linear candidate solved by Gurobi, and "Piecewise Linear Upper Bound" stands for
our piecewise results. "Result” stands for the synthesized results by other tools and "T(s)" (of their approaches)
stands for the execution time of their tools.

Conventional Our Approach CEGISPRO2 EXIST
Benchmark f Approach
(k=1) k | Solution Piecewise Linear Upper Bound T(s) Result T(s) Result T(s)
0] - x+
Gro 0] -x+[c<0]-(x+1 : le> : = .
x X 3 x+1 [e>0]-x+[c<0]-(x+1) 1.92 [c<0]-(x+1) 0.05 x+[c=0] 17.29
[k>N]-y+[k<N-1]
—k+ N+ -k+N (-k+N+x+y+1)+ [k>N]-y+[k<N] y+ [k <n]
K-GEO 132. . .74
? y x+y+1 3 +x+y+1 [N-1<k<NJ- 32.76 (-k+N+x+y+1) 038 (x—k+n+1) 767
(-0.5k +0.5N +x+y+1)
. [i > 10] - y+ . .
BIN-RAN y X 2 Ofor zi;l [22 < < 10] - (0.9x — 21i +y +233) | 106.29 mcroe';i‘it:m - inner error -
Y +1i < 2] - (0.9x — 18.8i +y +215)
Comv i x 2| i+d Loyl i+, 10413 | not terminate - fail -
[x=y]-(i+3)
folation of
MarT i X 3] i+2 [x<0]-i+[x>0]-(i+2) 19.29 Vviolation o © | ie[x>0]%2 | 3723
non-negativity
iolation of +[x > 0]
GROWINGWALK . >0] - 2 X vio - Y K
y X 3| x+y+2 [x <0]-y+[x>0] - (x+y+2) 4.03 non-negativity (x+2) 21.98
G W, lx <0 -y+ violation of
ROWINGWALK |, x+y+1 3| x+y+1 [0 <x <1]-(0.5x +y+0.25) 125.19 on-nesativit - not terminate -
-VARIANT x> 1] (x+y) 8 y
[x <0l - t+[0<x<1]-(t+1)+
[1 < x < 3.258] - (3.9852x +  +7.39) o
4.4280. t lat f
ExpECTED t X 3| M e +[3.258 < x < 3.3772]- 10935 | vOLOLe - | not terminate | -
Time : (4.4280x + £ + 6.2461)+ gativity
[3.3772 < x] - (3.5867x + t +9.0874)
[est > 0] - cur+ violation of cur + [est = 0]
Zero-Conr cur X 3| cur+140 [start = 0 A est < 0] - (cur+ 140) 180.42 non-negativi - <(—49 - start?~ | 392.19
“VARIANT +[start > 1 A est < 0] - (cur+ 42) & ty 49 - start + 141)
[a>10Vb > 10V
EQUAL- [a>10Vb> 10V goal # 0] - goal goal # 0] - goal+ . ~
pros-Gun | 5% X 2] goal+15 | conb<10Agoal=0]-15 | 28| [a<ionb<io | oM fail
Agoal =0] - 1.5
1] - z+[1<x<2]-(z+x+1) [x<1]z+
REVBIN lx < .
z 2x+z 3 2x+z x> 2] - (z+2%) 70.30 [x> 1] (z42%) 0.22 | z+ [x > 0] - 2x | 151.26
. [x>0vy>0]-i+
oV 0] - =0]-
FaIr CoIN i i—aye2 3| i+d [x>0vy> 0] i+ 12034 [x<ong<o] |oos | FHY=ON | g5
3 [x<0Ay<0]-(i+3) (i+1) g +i
ST-PETERSBURG 3 3 ’ [x>0]-y+ y+[x=0]
X 3 5 x>0]-y+[x<0]-3 1.53 0.04 1339
VARIANT Y 2y [ 1-y+l 12y [x <0] -%y 0.5y

Gurobi to 100s. On most benchmarks, we find that a monolithic linear bound with 1-induction does
not exist but obtain a piecewise linear upper bound via (k > 1)-induction in a few minutes. Our
approach derives the exact bound, i.e., the tightest upper bound, on the benchmarks Geo, Coin,
K-GEO, MART, GROWING WALK, EQUAL-PROB-GRID, REVBIN, FAIR COIN, ST-PETERSBURG VARIANT.
The exactness of these bounds is established by comparison with the exact invariants synthesized
in [5] (see RQ2) and with the piecewise lower bounds presented in Appendix D.2. We also show that
on a significant number of benchmarks (e.g., K-GEO, BIN-RAN, GROWING WALK-VARIANT, EXPECTED
TIME, etc), the piecewise bounds we synthesize are non-trivial (i.e., the program state space S is
partitioned into more than [¢] and [—¢]).

Answering RQ2. We answer RQ2 by comparing our approach with the most related approaches [5,
10]. We present our comparison results in Table 1. The main difference between cEGIsPrO2 [10] and
our approach is that CEGISPRO2 requires an upper bound to be verified as an additional program
input and it will only return a super-invariant (i.e., a possibly piecewise upper-bound) that is
sufficient to verify (i.e., smaller than) the input upper bound, while we intend to synthesize a tight
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piecewise upper bound directly. The benchmarks Geo, k-GEo are the common benchmarks in
these two works and the direct comparisons are as follows: For the benchmark Geo, the piecewise
upper bounds of the two methods are the same. For k-GEo, their piecewise result is consistent
with our result over Z>,. While in the scope of real numbers, our piecewise upper bound is tighter
than theirs. To have a richer comparison with CEGISPRO2, we give CEGISPROZ an advantage by
feeding our benchmarks (including the above two benchmarks) in Table 1 to CEGISPRO2 paired with
the piecewise upper bounds synthesized by our approach. We find cEGisproO2 cannot adequately
handle piecewise inputs. Additionally, it reports violation of non-negativity on 5 of our benchmarks
(see Table 1). By feeding one segment from the piecewise bounds synthesized via our approaches
for the remaining 8 benchmarks, we find on 6 benchmarks, cEGisPro2 produce the consistent
results with our inputs on Z3, while some of them (e.g., K-GE0) are incorrect over R. On BIN-RAN,
the results they produce are impossible to compare since it produces sophisticated and different
results when we feed different segments from our piecewise upper bound. On Coin, the execution
using their tool does not terminate, which prevents the output of a result.

The work [5] considers the probabilistic invariant synthesis via data-driven approach. Note that
the synthesis of upper bounds (i.e., super-invariants) is not considered in their work, and the only
relevant work in [5] with our upper bound synthesis is the exact invariant synthesis. For a further
comparison, We apply their tool EXIsT on our benchmarks to try to generate exact invariants. On
the benchmarks Geo, k-GEo, MART, GROWING WALK, REVBIN, FAIR COIN, ST-PETERSBURG VARIANT,
EXIST can generate an exact invariant for each benchmark and we show that on these benchmarks,
the piecewise upper bounds we synthesize are equal to their exact invariants so that the upper
bounds we synthesize are actually the exact expected value of Xy . On the benchmark ZEro-Cong-
VARIANT, they spend about 400s while we obtain a respectable piecewise linear bound in around
180s. For the remaining benchmarks, their tool fails or the computation seems to be stuck.

In conclusion, our approach can handle many benchmarks that these two works [5, 10] cannot
handle. When feeding our benchmarks with the bounds synthesized through our approach to
CEGISPRO2 and EXIST, they fail on about 40% of our benchmarks. Over most of the benchmarks that
their and our approaches can handle, our bounds are comparable with theirs.

Answering RQ3. In addition RQ2, we compare our piecewise linear upper bounds with monolithic
polynomial bounds via 1-induction in Table 2. Following [16, 57], we implement the polynomial
synthesis with Putinar’s Positivstellensatz [46] (see Appendix C.5). For a fair comparison, we
generate the polynomial bounds with the same invariant and optimal objective function for each
benchmark. All the numerical results in the polynomial bounds are cut to 10™* precision. We
compare two results by uniformly taking the grid points in the invariant and evaluate two results,
and we compute the percentage of the points that our piecewise upper bound are larger (i.e.,
not better) than monolithic polynomial, which is shown in the last column "PCT" in Table 2. We
show that on most of our benchmarks, our piecewise linear bounds are significantly tighter than
monolithic polynomial bounds.

6.2 Piecewise Polynomial Bound Synthesis

Benchmark Selection. We select all remaining benchmarks from [5, 10] that are not used in the
previous linear experiments, as well as path probability estimation benchmarks from [13, 29, 47, 57],
including all unbounded loop benchmarks from [47] in particular. For the former 7 benchmarks
from [5], we instantiate the probability parameters with commonly used values (such as 0.5). Note
that among them, the benchmarks GEOAR, BINO, BIn2, Sum0, DUEL cannot be handled by our
piecewise linear algorithm with k-induction when k = 1, 2, 3, even though both the program and
the return function are linear. For the benchmarks from [10], the benchmarks cHAIN, BRP exhibit
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Table 2. Experimental Results for RQ3, Linear Case (Upper Bounds). "f" stands for the return function
considered in the benchmark, "k" stands for the k-induction condition we apply in this comparison, "Monolithic
Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized via 1-induction, and
"d" stands for the degree of polynomial template we use, "PCT" stands for the percentage of the points that
our piecewise upper bound are larger (i.e., not better) than monolithic polynomial.

Our Approach Monolithic Polynomial via 1-Induction
Benchmark f PCT
k Piecewise Linear Upper Bound d ‘ Monolithic Polynomial Upper Bound
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numerical pathologies due to extremely large constants, which can cause numerical instability
and render our algorithms ineffective. To address this issue, we scale down these pathological
values to more moderate magnitudes—for instance, replacing 1000000000000 with 100 in the cHAIN
benchmark and 8000000000 with 800 in the BRP benchmark—so that our numerical algorithm
can operate reliably. For the benchmarks from [13, 29, 47, 57], since 5 of 9 benchmarks contain
continuous distributions originally, we make simple adaptions on these benchmarks by replacing
each continuous distribution (e.g. uniform distribution over [0, 1]) with a uniform discrete choice of
the same range (e.g. 0 with probability 0.5 and 1 also with 0.5), resulting in 5 adapted benchmarks.
The benchmark INV-PEND in [47] does not pass our checking of prerequisite (P2). Therefore we
make minor modifications to the coefficients in this benchmark so that we can synthesize a dbRSM
to satisfy (P2), thereby obtaining the benchmark iNv-PEND VARIANT. We apply 2-induction on these
24 benchmarks.
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Answering RQ1. Our algorithm successfully handles all of the aforementioned benchmarks
except for four. The failures in these cases are attributed to excessive branching introduced by our
algorithm based on Proposition 5.2 (see Stage 2 in Section 5), and branch reduction techniques
(see Page 12) have not yet been incorporated into our implementation. Nevertheless, our current
implementation is capable of addressing a wide range of complex benchmarks. For example, the
benchmark cav5 comprises 35 lines of code (see Appendix E), the benchmark INV-PEND VARIANT
benchmark features 4 variables with complex polynomial updates, posing significant challenges
for analysis. We leave further optimization for future work. We present the experimental results
for the synthesis of piecewise polynomial upper bounds on the remaining 20 benchmarks in
Table 3. Our approach successfully derives piecewise polynomial upper bounds for 16 out of 20
benchmarks within seconds. Of the remaining four, two benchmarks (F16-6 and F1G-7) are solved
within tens of seconds, while only INV-PEND VARIANT and cAv-5 require more than five minutes
to compute a result. Our algorithms obtain the exact bound (i.e., the tightest upper bound) on
the benchmarks Bin0, Bin2, DEPRV, PrINsYS, SUMO. The exactness of these results is verified by
comparison with the exact invariants synthesized in [5] (see RQ2) and with our corresponding
lower bounds in Appendix D.3.

Answering RQ2. We answer RQ2 by comparing our approach with the relevant work xist [5]
in Table 3, whose illustration is the same to Table 1. It is worth noting that cEGISPRO2 only supports
linear bounds and does not accept nonlinear expressions as additional program input. Therefore,
we exclude it from our comparison. Note that the only relevant aspect of [5] with respect to
upper bound synthesis (i.e., super-invariants) is their method for exact invariant synthesis. For
comparison, we apply their tool EXIST to our benchmarks in an attempt to generate exact invariants.
On the benchmarks BIN0O, BIN2, PrINsYs, and SUMO0, we show that the piecewise polynomial upper
bounds we synthesize are actually the exact expected value of X, i.e., the tightest upper bounds,
by comparing them with the exact invariants synthesized by ExisT. Among these benchmarks,
EXIST spends about 80s on BINO, about 250s on BiN2, and about 100s on Sum0, while we spend only
several seconds to obtain the specific results. Thus, our algorithm is much more efficient. For the
benchmarks DUEL, cCHAIN, and cAv2, the tool EXIST is able to identify candidates for exact invariants
but fails to verify them, and thus does not produce exact invariants. Additionally, Ex1sT does not
support the benchmarks GRID sMALL and GRID BIG. For the remaining benchmarks, Ex1sT fails to
generate results due to internal errors. Moreover, for the benchmark DEPRV, we demonstrate that
the piecewise polynomial upper bound synthesized by our approach is exact, as it coincides with
the corresponding lower bound (see Appendix D.3). Thus, our method yields the tightest upper
bound for 5 out of the 20 benchmarks in this table. In summary, our approach successfully handles
more benchmarks than [5], and for those benchmarks that both methods can process, our approach
is more efficient and produces comparable bounds.

Answering RQ3. In addition to the comparisons in RQ2, we further evaluate our piecewise
polynomial upper bounds (obtained via k-induction) against monolithic polynomial bounds of
higher degree synthesized using simple induction (i.e., 1-induction). The synthesis of these mono-
lithic polynomial bounds is implemented using Putinar’s Positivstellensatz [46] (see Appendix C.5
for details). For a fair comparison, we use the same invariant and optimal objective function for
each benchmark. We also verify the validity of the monolithic polynomial bounds (see Numerical
Repair). In our experimental evaluation, we observe that for most benchmarks, when the degree
of the polynomial template exceeds 5, numerical performance deteriorates and the synthesized
monolithic bounds fail our validation process. Therefore, in this experiment, we restrict the degree
of monolithic polynomial bounds to at most 5.
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Table 3. Experimental Results for RQ1 and RQ2, Polynomial Case (Upper Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" stands for the execution time of our approach (in seconds),
including the parsing procedure from the program input, relaxing the k-induction constraint into the SDP
problems, the SDP solving time and verification time. "d" stands for the degree of polynomial template we
use and "Solution h*" is the candidate polynomial solved directly by the solver. "Piecewise Polynomial upper
Bound" stands for the piecewise bound we synthesize. "Exact" stands for the exact expected value synthesized
by EXIST.

Our Approach EXIST
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We present the comparison results in Table 4, whose illustration is the same to Table 2. To
compare the two synthesized bounds, we uniformly sample grid points from a region of interest
(typically a subset of the invariant) and evaluate both results at these points. We then compute the
percentage of points at which our piecewise polynomial upper bound is larger (i.e., not better) than
the (higher degree) monolithic polynomial, which is shown in the last column "PCT" in Table 4. We
show that on all the benchmarks except GRID SMALL, GRID BIG, FIG-6, ADD, our piecewise polynomial
bounds are significantly tighter and simpler than monolithic polynomial bounds. Although our
running time is a bit longer than that of monolithic polynomial experiments, our approach allows
to synthesize lower-degree polynomials while achieving better precision against higher-degree
polynomials. This advantage is critical as the synthesis of higher-degree polynomials suffers from
a large amount of numerical errors as stated previously.

7 RELATED WORKS & CONCLUSION

In this work, we propose a novel approach to synthesize piecewise probabilistic bounds for prob-
abilistic programs. Further improvements include optimization on the branch reduction and the
constraint solving of latticed k-induction constraints with minimum. Below we compare our
approach with most related approaches.

Compared with previous approaches (e.g. [15, 16, 18]) that mostly focus on synthesizing mono-
lithic bounds over probabilistic programs, our approach targets piecewise bounds, and hence is
orthogonal. The work [11] proposes latticed k-induction. We claim that their work differs signifi-
cantly from ours. They do not synthesize bounds and only verify whether a given bound is an upper
bound or not. The work [10] synthesize piecewise linear bounds to verify the input upper bound
via counterexample-guided inductive synthesis (CEGIS), while we do not need this additional input
bound and we solve the bounds by bilinear and semidefinite programming rather than CEGIS.
For the verification of lower bounds, their work applies a proof rule in [28, 32] derived from the
original OST, while our approach applies extended OST. The work [5] synthesizes (piecewise)
exact invariants and sub-invariants (to verify the input lower bound) via data-driven learning.
Their work additionally requires a list of features composed of numerical expressions, while our
approach captures the piecewise feature via k-induction automatically and without such additional
inputs. The works [13, 57, 59] focus on deriving bounds for the posterior distribution in Bayesian
probabilistic programs, whereas our work aims at deriving piecewise bounds for the expected
output of the probabilistic programs.

Other approaches [3, 7, 8, 36] focus on moment-based invariants generation and high-order
moments derivation for probabilistic programs. These works can even handle the probabilistic
program with non-polynomial expressions and continuous distributions, but they only consider the
probabilistic while loop in a rather restricted form: while true {C}. The work [42] enlarges the
theoretical foundation through the assumption that all variables appearing in if-conditions (loop
guards) are finitely valued , and [44] further provides an algorithm about computing the strongest
polynomial moment invariants for this kind of loops, but their works still cannot handle most of our
benchmarks. Our approach can handle all the polynomial forms of loop guards and if-conditions.
In a similar vein, the works [39, 53] bound higher central moments for running time and other
monotonically increasing quantities, but are limited to programs with constant size increments.
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Table 4. Experimental Results for RQ3, Polynomial Case (Upper Bounds). "f" stands for the return function
considered in the benchmark. "Piecewise Polynomial Upper Bound" stands for the results synthesized by our
algorithm. "Monolithic Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized
via 1-induction, "T(s)" stands for the total execution time. "PCT" stands for the percentage of the points that
our piecewise polynomial upper bound are lower (i.e., not better) than (higher degree) monolithic polynomial.

Our Approach Monolithic Polynomial via 1-induction
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0.0055  x % g +0.0005 » * — 01348 % %4 +3.8156 # x * Y — 2.5543 * y* — 4.6104 % x>+
ADD [x > 5] 3| 363 PO : s o 4] 081 | 4.8566*x?*y—7.0417 + x * y> + 6.8972 * y*— | 43.94%
0.0926 # x * y — 0.015 * y* — 0.3568 * x+ 3 3
0.1406 + y +0.7181) + [y > 1 Ax > 5], h*} 0.4752 % x* — 1.6341 # x * y — 2.8078 * y
) ' ’ +5.0331 % x — 1.5381 x y
. 0.999 # x * rZ +0.0008 * y * r° + 700.3292 * 1>
GROWINGWALK < 0] - (0.0622 = x? +0.6279 2
y 2| 533 min{[r < 0] - ( X o 30122 | —1.999 % x 1 —0.0008 %y r — 1399.6591 + 12 | 5.0 %
VARIANT2 +y +1.6914) + [r > 0] -y, h*}

+x +y +698.3298 * r + 1.0001
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A  SUPPLEMENTARY MATERIAL FOR SECTION 2.2

In this section, we supplement the introduction of the variant of k-induction operators proposed
in [40], some important properties of these two k-induction operators, the equivalence between
them and all their proofs.

Recall that in Section 2.2, we fix a lattice (E, C) and a monotone operator & : E — E.

A.1 Property of the Upper k-Induction Operator in [11]
We attach an important property of the upper k-induction operator ¥, in [11] here.

THEOREM A.1 (PARK INDUCTION FROM k-INDUCTION [11]). Foranyu € E and k € N, we have that
(V) Cu = ®(¥r(u) C V().

The proof is given in [11, Lemma 2].

A.2 Upper k-Induction Operator in [40]
First we recall the definition of the upper k-induction operator proposed in [40].

Definition A.2 (The k-Induction Operator in [40]). The upper k-induction operator ¥ is defined
by: ¥ :E — E,0+— ®(v) Mo.

Intuitively, it can be seen as a natural tightening of the operator ¥,, which considers the meet
with the input element v itself. Below we introduce some important properties of the operator V.

LEMMA A.3. Let ¥ be the k-induction operator in [40] w.r.t. . Then

(1) ¥ is monotonic, i.e., Yv1,v, € E,v1 C vy implies ¥(v1) T ¥(vy).
(2) Iterations of ¥ starting from u are descending, i.e.,

L CY'wCcY-lwC..CYwCu
And thus we have for allm < n € N,¥"(u) C Y™ (u).

Proor. Foritem (1), observe that if we have w; C w, and v; C 05, then we have wy Mo; C wyMo,.

¥(v1) = @(01) Moy (by definition of ¥)
E &(vy) Moy (by monotonicity of ¢ and above property)
= ¥(vy) (by definition of ¥)

For item (2), we can immediately derived from the definition of ¥ as

Pk (u) = TP (w)) (by definition of ¥ (u))
= d(PF 1 (w)) M (v) (by definition of ¥)

C v 1(u) (by definition of 1)

[m]

PROPOSITION A.4. Foranyu € E, ®(¥*(u)) Cu & &(¥*(u)) C ¥*(u).

PROOF. The if-direction is trivial as W*(u) C u (by Lemma A.3(2)). For the only-if direction:
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¥k (1) 2 ¥F 1 (w) (by Lemma A.3(2))
= O(¥* (w) N ¥* () (by definition of ¥)

= &(P*(w)) M (¥ (u)) (by definition of W (u))

= &(P* () M (@(¥F 1 (w) N1 (w)) (by definition of ¥)

= (&(¥*(w)) M (¥ (w)) M ¥ (u)) (by associative law)

= &(¥*(w)) M ¥ (u) (by monotonicity of & and Lemma A.3(2))

= (&(¥*(w)) NP (u) Nu (by unfolding ¥* until k = 1)
=d(¥* () nu (by monotonicity of @ and Lemma A.3(2))

= o(¥*(u)) (by the premise)

O

A.3 Equivalence between ¥, and ¥

THEOREM A.5 (EQUIVALENCE BETWEEN ¥, AND ¥). For any element u € E, the sequence
{WX(u)}xso of elements in E coincides with the sequence {¥* (1) }r»o. In other words, for any natural
number k > 0, we have that ¥ (u) = ¥*(u).

Proor. Proof by mathematical induction. We denote Xj = W,f (u) and Y = ¥*(u). when k = 0,
Xo=u=Yy. When k =1, X; = ®(u) Mu = Yy, by definition of two operators, respectively.
Now we suppose that Xj = Y4, i.e., lI’,’j(u) = ¥¥(u), and we aim to prove that q/,’j“(u) = pk+l(y).

Xies1 = W (VX (u) (by definition of ¥**!(u))

= (VX (u)nu (by definition of ¥,)

Yier1 = Y(¥F (w)) (by definition of W**(x))
= &(¥*(v)) M ¥*(u) (by definition of ¥)

= &(P*(w)) M (1 (u)) (by definition of ¥ (u))

= @(*(w) M (@(FF 1 (w) N1 (u)) (by definition of )

= (®(¥*(w) Mo (¥ (w)) N ¥ 1 (u)) (by associative law)

= &(P*(w)) NP (u) (by monotonicity of ¢ and Lemma A.3(2))

= ((¥*(w) No(w) Nu (by unfolding ¥* until k = 1)

= (Y (w) Nu (by monotonicity of ¢ and Lemma A.3(2))

Since we suppose that WX (1) = ¥ (), we obtain that &(¥* (x) Mu = &(¥* (1)) M u, thus we have
PR () = TR (1), fe., Xiyr = Yiar. O
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A.4 Supplementary Materials for the Dual k-Induction Operators ¥, and ¥’

We first give the definition of the Dual k-Induction Operators ¥, which has been examined
in [40].

Definition A.6 (Dual k-Induction Operator in [40]). The lower k-induction operator ¥’ is given
by: ¥’ : E — E,v +— &(v) Uo.
LEMMA A.7. Fix a lattice (E,C) and a monotone operator ®. For any element u € E, both of these
two dual k-induction operators ¥, and ¥’ have the following properties:
(1) W (resp. ¥’) is monotone.
(2) Iterations of ¥,, (resp. ¥') starting from u are ascending, i.e.,

UC W () C...(¥)w)c (¥)rw). ..
UC ¥ WC... () wC (¥)®w)...
Thus we have forallm < n € N, (%)™ (u) E ()" (u) and (¥")™(u) C (¥")"(u).

ProoFr. We only prove the case of dual k-induction operator ¥/, since the proof of the properties
of the dual k-induction operator ¥’ is similar with that of ¥,.
For item (1), observe that if we have w; C w,, then we have w; Liu T w; Llu. Assume that v; C 0,

¥, (01) = P(v1) Uu (by definition of ¥)
CP(vy)Uu (by monotonicity of ¢ and above property)
=Y, (v2) (by definition of ¥})

For item (2), we prove it by mathematical induction. We have u C ¥}, (u) as ¥, (u) = ®(u) L u.
We then assume that (%)% (u) 2 (W;l)k_l(u), and we prove that

(0 () = %, ()" (w) (by definition of (¥)**! ())

V() () (by monotonicity of ¥}, and assumption)

= (¥)*(u) (by definition of (¥)* (u))

Thus the value sequence is an ascending chain. O

ProprOsITION A.8. For any element u € E, the lower k-induction operators ¥, and V' have the
following properties:

S W) 3u = d(¥)*w) 2 () ()
(¥ W) 2u = o(¥)*w) 3 (¥)*w)

Proor. For the case of the dual k-induction operator ¥,:
The if-direction is trivial as (‘I/,;)k (u) 3 u (by Lemma A.7(2)). For the only-if direction:

()" (w) © (9 (u) (by Lemma A.7(2)))
= (7)*(u)) (by the definition of (¥/)**!(u))
= o((¥%)"(w) Uu (by the definition of ¥})
= lI/((‘I/;)k(u)) (by the premise)

For the case of the dual k-induction operator ¥':
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The if-direction is trivial as (¥")*(x) 3 u (by Lemma A.7(2)). For the only-if direction:

() (w) £ (%) (u) (by Lemma A.7(2)))
=9 ((¥)*(u) (by the definition of (¥’)F*!(u))
=o((¥)* ) u (¥)* () (by the definition of ¥’)
= o (P (w) LY () () (by the definition of (¥/)¥ (u))
= o((¥) (w) LD (¥ (w) U (¥ (w) (by the definition of ¥)
= (@((¥)* () LD (¥ () U (¥ (u) (by associate law)
=o((¥)*w) u (¥ () (by monotonicity of @ and Lemma A.7(2)))
= o((¥)(w) LY (u) (by unfolding (¥")*(u) until k = 1)
=o(¥) W) ud(u)uu (by definition of ¥’)
=o((¥) W) uu (by monotonicity of ¢ and Lemma A.7(2)))
= o((¥)* () (by the premise)

O

A5 Equivalence between ¥, and ¥’

THEOREM A.9 (EQUIVALENCE BETWEEN ¥, AND ¥’). For any element u € E, we have that the
sequence { (W)X (u) }xso of elements in E coincides with the sequence {(¥')* (u)}rso. In other words,
for any natural number k > 0, we have that (V) (u) = (%)% (u).

Proor. Analogously, we proof it by mathematical induction. Xj = (‘I/,;)k (u) and Vi = (¥)*(u).
when k =0, Xy = u = Y. When k = 1, X; = ®(u) U u = Y;, by definition of two dual operators,
respectively.

Now we suppose that Xj. = Y, ie., (‘I/,;)k(u) = (¥")*(u), and we aim to prove that (‘I/l:)k“(u) =
(\I//)k+1 (u)

X = (7))  (w)) (by definition of (%;)*! ())
=o(¥)*u) Lu (by definition of ¥)

Yier = ¥ ()5 (w)) (by definition of (¥/)F*!(u))
= o((¥) (w) U (¥)*(u) (by definition of ¥’)

= o (P (w) LY () (u) (by definition of (¥)* (u))

= o((¥)F(w) U (P((F)* ' (w) L ¥* 1 (u)) (by definition of ¥’)

= (@((¥)*(w)) LD ((F) 1 (w)) L 1 (u)) (by associative law)
=o((¥)*w) u (¥ () (by monotonicity of & and Lemma A.7(2)))

= (@((¥)*w)udw)Lu (by unfolding (¥")* until k = 1)

=o((¥)* W) uu (by monotonicity of & and Lemma A.7(2))
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Since we suppose that ()X (u) = (¥’)*(u), we obtain that &((¥/)*(u) Uu = &((¥")*(u)) U u,
thus we have (%) (u) = (¥")**!(u), i.e., X1 = Yis1. ]

B SUPPLEMENTARY MATERIAL FOR SECTION 4

B.1 Classical OST

Optional Stopping Theorem (OST) is a classical theorem in martingale theory that characterizes
the relationship between the expected values initially and at a stopping time in a supermartingale.
Below we present the classical form of OST.

THEOREM B.1 (OPTIONAL STOPPING THEOREM (OST) [58, CHAPTER 10]). Let {X,},>, be a martin-
gale (resp. supermartingale) adapted to a filtration ¥ = {F,.},., and T be a stopping time w.r.t the
filtration . If we have that:

e E(r) < oo;
o exists an M € [0, o) such that |Xp+1 — Xpn| < M holds almost surely for every n > 0,
then it follows that (|X;|) < oo and B(X;) = E(X)(resp. E(X;) < E(X))).

Since the classical Optional Stopping Theorem [24, 58] requires bounded step-wise difference
| Xn+1 —Xn| in a stochastic process {X,, } n>0, which cannot handle our problem due to the assignment
commands in the loop body. To address this difficulty, We have sought several extended versions of
OST, as proposed in [54, 56, 57], etc. Among which we find the OST variant proposed in [57] can
handle our problem.

B.2 Proof of Theorem 4.10

Theorem 4.10. Suppose the loop P is affine. Let k be a positive integer and h be a polynomial
potential function in the program variables with degree d. If there exist real numbers ¢; > 0 and
¢y > c¢3 > 0 such that

(P1) there exists a uniform amplifier ¢ satisfying ¢ < /¢, and
(P2) the termination time T of P has the concentration property,ie,P(T > n) <c;-e %™

hold, then for any initial program state s*, we have:

o Eu(Xp) < ?;_1 (h)(s™) < h(s*) holds for any k-upper potential function h.
o B¢ (Xr) > (@;l)k‘l (h)(s*) = h(s*) holds for any k-lower potential function h.

Proor. We first proof the soundness of upper potential functions. Let s,, be the random vector
(random variable) of the program state at the n-th iteration of the probabilistic while loop P, where
so = s¥, and let {F,}n>0 be the filtration such that each ¥, is the o-algebra that describes the
first n iterations of the loop, i.e., the smallest o-algebra that makes the random values during
the first n executions measurable. This choice of ¥, is standard in previous martingale-based
results [17-19, 56].

We also define H = T’:_l (h). Note that H is piecewise linear or polynomial (by the definition of
— — k- — —k—
¥}, in Definition 4.4) . By Definition 4.5 and the property that (¥}, ! (h) 2 h = &V, 1(h)) =
—k— —

v, 1(h) (Theorem A.1), we obtain that Vs € Reach(s*), ®(H)(s) < H(s). We define the stochastic
process {X,} , by

X, = H(sy).
We first prove that the stochastic process {X,, } is a supermartingale. We discuss this in the following
two scenarios:
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o if s, [~ ¢, by the semantics of probabilistic while loop (see Section 2.3), s,+1 = s, and thus
Xn+1 = Xy, which satisfies the conditions of supermartingale;
o if s, = ¢, we have

Eg- [Xn+1 |7:n] = Es [H(3n+1)|7:n]

= Es, [H(sp+1)|7n] (by definition of conditional expectation)
= prec(H)(sn) (by definition of pre-expectation)
=& (H)(s,) (by definition of characteristic function)
< H(spn) (by property of H)
=X,

where the property of conditional expectation is the “take out what is known” property
of conditional expectation (see [58]). From (P1) and the definition of uniform amplifier
(see Definition 4.8), for each program variable x, the value of x, is bounded by |X,| <
x|l +a- (4" 1) < Ky - < Ky - €4 for some positive constant K;,. From that
H is piecewise linear (resp. polynomial with degree d), i.e., H is linear (resp. polynomial
with degree d) on each segment, we can obtain Es-[X,,] = Es+[H(sp)] = Es+[M,, - ¢"*] < o0
for some positive constant M,, > 0 by the definition of X,,. Thus {X,,} is a supermartingale.

The condition (a) in Theorem 4.6 follows from the assumption that (P2) P has the concentration
property.

Then we prove the condition (b) in Theorem 4.6. From (P1), we have that for each program
variable x, the value of x,, at n-th iteration, i.e., at the program state s,, is bounded by K, - ¢". When
H is piecewise linear, i.e., d = 1, we have that H(s,) < M, - ¢ for M,, > 0.

| Xns1 = Xn| = [H(sns1) — H(sn)|
< |H(sns1)| + |[H(sn)|
< My - lef™ + My - e[
< (Mp + [e| - Mys1) - el
< by -e4"
When H is piecewise polynomial with degree d, we have that H(s,) < M, - ¢ for M,, > 0.
|Xn+1 — Xul = |H(sn+1) — H(sn)|

< |H(sns1)| + [H(sn)|

< My - [e]™ + My - [e] D

< (Mg +1¢%) - M) - ||

< by - (e/dynd

< by - eS"

Especially, if the uniform amplifier c is chosen as 1, then c¢; can be chosen arbitrarily small, the
prerequisites of this theorem always holds regardless of the values taken by ¢, and d.

By applying Theorem 4.6, we have that E,- (X7) < Eg(Xp). Since the termination time T is a
stopping time w.r.t. the filtration { %, },>0, and there will be st £ ¢, thus X7 = f(s7) = Xr. We have

Es (Xf) < Es+(Xo) = H(s"). The second inequality, i.e., ?’:_101) (s*) < h(s*)(Vs*) can be derived

—k—
directly from the property that ¥, 1(h) = hholds (see Appendix A.2 and [11]). The case of lower
potential functions is completely dual to the case of upper potential functions since we can consider
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the stochastic process {—X,}, that is, define the stochastic process by Y, := —H(s,). The remaining
proof is essentially the same.
m]

B.3 Proof of Theorem 4.11

Theorem 4.11. Let k be a positive integer. Suppose there exist real numbers ¢; > 0 and ¢; > 0 such
that condition (P1’) loop P has the bounded update property; and condition (P2) in Theorem 4.10
holds, then for any initial program state s*, we have

o Eo(Xp) < f/:_l(h) (s™) < h(s*) holds for any k-upper potential function h.
o B¢ (Xp) 2 (@;1)"_1 (h)(s*) = h(s*) holds for any k-lower potential function h.

Proor. We first proof the soundness of upper potential functions. Let s,, be the random vector
(random variable) of the program state at the n-th iteration of the probabilistic while loop P, where
so = s, and let {F, },>0 be the filtration such that each ¥, is the o-algebra that describes the
first n iterations of the loop, i.e., the smallest o-algebra that makes the random values during
the first n executions measurable. This choice of ¥, is standard in previous martingale-based
results [17-19, 56].

We also define H = @:_1 (h). Note that H is piecewise linear or polynomial (by the definition of
W}, in Definition 4.4) . By Definition 4.5 and the property that 5(@:_1 (h) =h = 5(@2_1 (h)) =
?’:_l (h) (Theorem A.1), we obtain that Vs € Reach(s*), ®(H)(s) < H(s). We define the stochastic
process {X,},, by

X, = H(sy).

We first prove that the stochastic process {X,, } is a supermartingale. We discuss this in the following
two scenarios:

e if s, [~ ¢, by the semantics of probabilistic while loop (see Section 2.3), s,+1 = s,, and thus
Xn+1 = Xy, which satisfies the conditions of supermartingale;
o if's, = ¢, we have

Eq- [Xn+1 |Tn] = Es- [H(sn+1)|7rn]

= E;, [H(sp+1)|Fn] (by definition of conditional expectation)
= prec(H)(sn) (by definition of pre-expectation)
=& (H)(s,) (by definition of characteristic function)
< H(sp) (by property of H)
=X,

where the property of conditional expectation is the “take out what is known” property of con-
ditional expectation (see [58]). From (P1’) that P has the bounded update property and H is a
piecewise polynomial with degree d, i.e., H is a polynomial with degree d on each segment, we can
obtain B¢ [X,,] = Es [H(s,)] < ¢ - n for a positive constant { > 0, thus {X,,} is a supermartingale.

The condition (a) in Theorem 4.6 follows from the assumption that (P2) P has the concentration
property.

Then we prove the condition (b) in Theorem 4.6. From that P has the bounded update property
and H is a piecewise polynomial with degree d, we also have that |X,| < ¢ - n¢ for a positive
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constant { > 0, thus we have
IXn+1 - Xn| < |Xn+1| + |Xn|

<¢-nt+7-(n+1)?

Sbl-nd

Note that in this theorem, c; in Theorem 4.6(b) is chosen arbitrarily small, therefore the prerequisites
of Theorem 4.6 always holds regardless of the values taken by c;.

By applying Theorem 4.6, we have that E+(X7) < E(Xp). Since the termination time T is a
stopping time w.r.t. the filtration {#,},>0, and there will be sy ¢ ¢, thus X7 = f(sr) = Xy. We

have Es (Xr) < Es(Xo) = H(s"). The second inequality, i.e., ?’:_l(h) (s*) < h(s*)(V¥s™), can be

derived directly from the property that ?/];_1 (h) = hholds (see Appendix A.2 and [11]). The case of
lower potential functions is completely dual to the case of upper potential functions since we can
consider the stochastic process {—X,, }, that is, define the stochastic process by Y,, :== —H(s,). The
remaining proof is essentially the same.

O

C SUPPLEMENTARY MATERIAL FOR SECTION 5

C.1 Supplementary Material for Brute-Force Arithmetic Expansion in Stage 2
In this section, we supplement the brute-force arithmetic expansion that can simplify the k-induction

constraint. To transform the k-induction constraint 5f (sz_l(h)) = h into a simpler form, our
algorithm further unrolls this k-induction conditions so that the minimum operations appear at
the outermost of the left-hand-side of the inequality. In detail, from the definition of the operator
¥}, (Definition 4.4), the unrolling is reduced to the recursive computation of pre-expectation and
the pointwise minimum operation. Following the definition of pre-expectation (Definition 4.2), the
unrolling can be done by the following reduction rules for functions fi, ..., fi, 91, - - gn:

(R1) min{fy,..., fu} + min{gy,...,gn} = minici<mi<j<n{fi + g}

(R2) ¢-min{fi,..., fn} =min{c- fi,..., fin} for constant ¢ > 0;

(R3) [B] - min{fi,..., fr} = min{[B] - fi,..., [B] - fim} for predicate B.

—  —k-1
By iterative applications of the reduction rules, the constraint (¥, ~(h)) = h can be trans-
formed into a succinct form with only one minimum operation:

min{hl, hz, ey hm} =< h

where h is the predefined polynomial template and each h; (i = 1,..., m) is a piecewise expression
derived from the unrolling that does not contain the minimum operation.

C.2 Proof of Proposition 5.2
We give a proof for Proposition 5.2 in this section.

— k-
Proposition 5.2. The upper k-induction condition @ (¥}, ! (h)) = his equivalent to constraint
min{hy, hy, ..., hyn} = h, where each h; equals prec, (h) for some unique C; € {Cy,...,Cy,} from
the unfolding process above.

— k-
Proor. We concentrate on the left side of the constraint: @ (¥}, ! (h)) < h.

We first proof the case of k = 2, i.e, Ef(?/;l(h)) < h. Since our syntax of the probabilistic
programs is defined in a compositional style (see Fig. 1 in Section 2.3 for more details), we proof



38 Anon.

1814 by induction on the structure of programs. For simplicity, we denote prec([®]) by [®(C)], which
1815 represent the evaluation of [®] after the execution of C.

1816 e Case C = skip.

1817 _

1818 ‘Df(g/h(h))

1o = [=¢]- f+I[p] - prec(Pa(h))

1820

= [l - f+ o] - Talh)

1822 = [=el-f+le] - min{®f(h),h}

1623 = [-¢]-f+l¢] -min{[~¢] - f+[¢]-h h}

1222 = [—¢]- f+min{[]-h [¢] - h}

= [l f+ 1ol h

1827 = @r(h)

1828 It corresponds to pre-expectation of the loop-free program unfolded with twice (only one
182 program).

1830 e CaseC=x:=e.

1831 _

1832 P (Pn(h))

iZ;i = [l f+[p] - prec(¥n(h)

=[] f+ o] - Tu(h)([x/e])

1836 = [=el-f+le]-min{[-¢] - f+ [¢] - h([x/e]), h}([x/e])
1837 = [~e]- f+ o] -min{[-¢([x/e])] - f([x/e]) +

1:23 lo([x/eD] - h([x/e])([x/e]), h([x/e])}

= min{[~p] - £+ [p A ~g([x/e])] - f([x/e]) +

1841 lo A o([x/eD)] - h([x/e])([x/e]), [=@] - f + [@] - h([x/e])}
1542 = min{[=¢] - f+ [¢ A —g([x/e])] 'f([X/e]) +

12: [o A o([x/eD] - prec.c(h), [=¢] - f + [@] - h([x/e])}

1845 the expressions in the minimize operator correspond to pre-expectation of the two loop-free
1846 programs unfolded within twice (one for once, and another for twice).

1847 e Case C = Cy;C,.

188 D (Wy(h))

1849 _

1850 = [l f+le]-prec(¥u(h))

1851 = [~ol- f+lelprec,(prec,(min{[~¢] - f + [¢] - prec, (prec,(h)), h}))
e = [~e]- f+le] - min{[-¢(Cy;C)] - prec;c,(f) +

o [p(C1:Co)] - precc, (h), precyc, (W)}

1855 = min{[=¢] - f+[¢p A @(Ci;C2)] - prec,c,(f) +

1856 [¢ A —(Cy; Cz)] - prec;c, (h),

e [=¢] - f+ o] - precic, (W)}

1858

1859

1860 the expressions in the minimize operator correspond to pre-expectation of the two loop-free
1861 programs unfolded within twice (one for once, and another for twice)

1862
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1863 e case C = {Ci}[p{Ca}-

1864

7 (Th(h))

o = [0l f+[p] - prec(¥n(h)

1868 = [=@]- f+[p]-p-prec,(¥n(h) + [¢] - (1-p) - prec,(¥h(h))

1::2 wherein

e prec,(@n(h) = prec,(min{[~p] - £+ [¢] - (p - prec, (W) + (1= p) - prec, (). h)
1873 = min{[-¢(Cy)] - prec, (f) + [¢(C1)] -

1874 (p - precyc,(h) + (1= p) - prec,c,(h)), prec, (h)}

1875

1876 and

1877 _

1878 prec,(¥u(h)) = prec,(min{[-¢] - f + [¢] - (p - prec,(h) + (1 - p) - prec,(h)), h}

1879 = min{[-¢(Cy)] - prec,(f) + [¢(C2)] -

1:? (P s prec,c (h) + (1 - p) ' preCZ;Cz(h))»PreCz(h)}

1882 Thus we have

1883

1884 D (¥h(h))

o = [=p]-f+1p]-p-min{[~p(C] - prec,(f)

1887 +[<0(C1)] ’ (p s precycy (h) + (1 _P) 'precl;cz(h))>prec1(h)} +

1888 lo] - (1= p) - min{[=¢(C2)] - prec,(f)

1889 +[@(Co)] - (p - precyic, (h) + (1= p) - prec,c, (M), prec, (h)}

o = min{[~¢] - f+[p A=¢(C)] - p prec,(f) + [ A =p(C2)] - (1= p) - prec,(f)

1592 +lo A@(C))] - (p* - precyc, (h) + p(1 = p) - precyc, (h))

1893 +o A @(Co)] - (1= p)p - prec,c, (h) + (1= p)? - prec,c, (),

1894 (=@l f+ 1o A=p(C)]-p-prec,(f) +

1895

[p A @(C1 - (5% - prec.c, (B) + p(1 = p) - precy.c, (h) +

1897 [90] : (1 _P) - prec, (h)’

1898 (=] - f+ 1o A=p(Ca)] - (1-p) - prec,(f) +

1899 [o A @(C2)] - ((1=p)p - precyc, () + (1= p)* - prec,c, (k) +

1900

001 [] - p-prec,(h),

1902 [~¢]- f+1e]l-p-prec,(h)+[¢]-(1-p)-prec,(h)

1903

1904

1905 The first expression corresponds to the case that we unfold for twice at each state we reach
1906 (after the execution of C; and Cy), and the second (resp. third) expression corresponds to the
1907 case that we unfold for twice at the state that we reach after the execution of C; (resp. C,)
1908 and unfold for once at the state that we reach after the execution of C; (resp. Cy). The fourth
1909 expression corresponds to the case that we unfold for once at both states, i.e., 1-induction
1910 principle.

1911
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o case C =if (¢) {C1} else {C,}.

D (Wy(h))
= [=¢]l - f+ o] prec(¥n(h))
= [-¢]-f+[p ¢l prec,(Pn(h) + [p A =¢] - prec,(Py(h))

wherein

prec,(¥p(h) = prec,(min{[-¢] - f +[¢] - ([¢] - prec,(h) + [~¢] - prec, (), h}
= min{[-¢(C1)] - prec, (f) + [¢(C1)] -
([¢(C] - precyc, (B) + [=$(C1)] - prec,ic,(h)), prec, (h)}

and

prec,(Ta(h)) = prec,(min{[~¢] - f + [¢] - ([] - prec, (h) + [~¢] - prec,(h)), b}
= min{[~¢(C)] - prec,(f) + [¢(C2)] -
([¢(C2)] 'PreCz;Cl(h) + [_'¢(C2)] : preC2;C2(h))’preC2 (h)}

Thus we have

¢ (Ph(h))
= [=¢] - f+ ¢ A@d] min{[-¢(C1)] - prec,(f)
+e(C)] - ([#(C)] - precyc, (B) + [=¢(C1)] - prec,c, (), prec, ()} +
[ A =¢] - min{[-¢(C2)] - prec,(f)
+e(C)] - ([#(C2)] - prec,c, () + [¢(C2)] - prec,c,(h)). prec,(h)}
= min{[-¢] - f+[@ AP A=@(C1)] - prec,(f) +
[@ A=p A=p(C2)] - prec,(f) +
[ Ap A @(Cr) AP(C1)] - precyc,(B) + [@ AP A @(Cr) A=¢(Cr)] - prec,c,(h)) +
[p A =p A p(C2) AP(Co)] - precyc, (h) + [@ A = A @(C2) A =§(C2)] - prec,c, (h)),
[~ol - f+leAdA-@(C1)]-prec, (f) +
[ ApA@(Cr) AP(C1)] - precyc,(B) + [@ A A @(Cr) A=¢(Cr)] - prec,c,(h)) +
[ A =¢] - prec,(h),
[—@] - f+ e A=p A=p(C)] - prec,(f) +
[@ A =g A @(C2) AP(C2)] - precye, () + [@ A =p A @(C2) A=¢(C2)] - prec,c, (h)) +
[@ A @] - prec, (h),
[—] - f+[eA¢l-prec,(h) +[p A=d] - prec,(h)

The one-to-one relation is the same as that in the former case (probabilistic choice case).

Then we proof the case of k > 2 by mathematical induction. Suppose that the proposition
holds when k = n, i.e., the upper n-induction condition Ef(i/z_l(h)) = h is equivalent with
min{hy, ho, ..., hm} = h, where each h; uniquely corresponds to one C; € {Cy,..., Cm} and is
equal to prec, (h), where {Cy, ..., Cp} are all the loop-free programs generated by following the
decision process in Stage 2 in Section 5 within m unfolding.
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1961 Then we proof the case of n + 1.
1962
— ,—n - — —n-1
B (T () = B (T (T ()
1964 — . = —n-
1965 = @ (min{® (¥}, (h)),h})
1966 = af(min{min{hl, hy, ..., hm}t, h})

1967

= @p(min{hy, hy, ..., b, h})
= [=¢] - f + [¢] - prec(min{hy, by, ..., hym, h})

Through the same inference on the structure C as above, we show it is equivalent to min{gi, g, . . ., gm },
where M > m + 1 and each g; uniquely corresponds to one C; € {Cy,...,Cy} and is equal to
prec,(h), where {Cy, ...,Cpy} are all the loop-free programs generated by following the decision
process in Stage 2 in Section 5 within n + 1 unfolding. Thus the proposition holds when k = n + 1.
Notice that the operators 5f and pointwise min are noncommutative.

By mathematical induction, the proposition holds for k > 2. O

1968
1969
1970
1971
1972
1973
1974
1975
1976

1977
REMARK 5. In Proposition 5.2, We only propose the case of upper k-induction condition, and the case

of lower k-induction condition is completely dual.

1978
1979
1980

Los1 C.3 Supplementary Material for the Pedagogical Explanation in Stage 2

1082 We now present a detailed mathematical analysis of the program in (5).
1983 Recall that we denote f as the return function, and denote @ r as the function given by
1984

(W) (x) = [~(x)] - F() + [p(x)](p - hlayx +by) + (1= p) - h(ayx +by))

132: for every function A : R — R. We use the k-induction operator ¥, from [11] (k is dummy here)
which is given by ¥, (g) := min{5f(g), h}. We apply the k = 2-induction condition to upper-bound
the expected value of X and perform a key simplification for this condition via loop unfolding as
follows. For the ease of understanding, we let H; = [—¢(a1x + b1)] - f(aix + b1) + [p(a1x + b1)] -
(p-h(ai(a;x+b1)+by)+(1—p)-h(az(a;x+by) +by)), which intuitively represents that we unfold
the loop once at the state of a;x + by, and Hy = [—@(azx + by)] - f(axx + by) + [p(azx + by)] - (p -
h(ay(azx + bz) + by) + (1 — p) - h(az(azx + by) + by)), which intuitively represents that we unfold

the loop once at the state of a;x + b5.

1988
1989
1990
1991
1992
1993
1994

1995 e Case 1: In this case, the loop is executed once, reaching two states a;x + b; and a;x + by, and
1996 does not continue. In other words, we unfold the loop only once and obtain the loop-free
1997 program C; as in Fig. 2a. This amounts to h; = [—¢(x)] - f(x) +[e(x)](p-h(aix+b1) + (1 -
1998 p) - h(azx + by)), which is the expected value of h(x) after the execution of the program C;.
1999 e Case 2: In this case, the loop is first executed once, reaching two states a;x + b; and azx + b,.
2000 Then, we clarify two cases below.

2001 — At the state a;x + by, we stop the execution of the loop and have the value A(a;x + b;).
2002 — At the state a;x + bz, we continue the execution of the loop and obtain two branches: (i)
2003 if ¢ is not satisfied, we directly have the return function f(ayx + by); (ii) if ¢ is satisfied,
2004 we arrive at the states a;(asx + bs) + by and ay(axx + by) + bs.

2005 The unfolding process above generates a loop-free program C; (see Fig. 2b), and h; is derived
2006 from the program C; in a way similar to h;. We have that h, = [-¢(x)] - f(x) + [o(x)] -
2007 (p - h(a1x + b1) + (1 — p) - Hy), which is the expected value of h(x) after the execution of
2008 the program Cs.

2009
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e Case 3: This case is similar to Case 2, with the only difference that we choose to continue
the execution of the loop at the state a;x + b; and do not unfold the loop at a,x + b;. Then,
we clarify two cases below.

— At the state a;x + by, we continue the execution of the loop and we will attain two
branches: (i) if ¢ is not satisfied, output the return function f(a;x + b1); (ii) if ¢ is
satisfied, we will arrive at the states a;(a;x + by) + b; and as(a;x + by) + b,.

— At the state of ayx + b,, we stop the execution of the loop and have the value h(azx +b,).
This generates a loop-free program Cs (see Fig. 2c), from which hs is derived similar to
hi1, hy. We have that hs = [-¢(x)] - f(x) + [@(x)] - (p- H1 + (1 — p) - h(azx + bs)), which is
the expected value of h(x) after the execution of the program Cs.

e Case 4:In this case, at both the states a;x+b; and a;x+b,, we choose to execute the loop once
more. This generates a loop-free program Cy (see Fig. 2d). hy is derived from the program Cy4
similar to the previous cases. We have that by = [-¢(x)]: f(x)+[¢(x)]-(p-Hi+(1—-p) -H,),
which is the expected value of h(x) after the execution of the program C,.

C.4 Supplementary Material for Stage 4

Motzkin’s Transposition Theorem is a classical theorem that provides a dual characterization for
the satisfiability of a system of strict and non-strict inequalities. Below we present the original
Motzkin’s Transposition Theorem.

THEOREM C.1 (MOTZKIN’S TRANSPOSITION THEOREM [43]). Given the set of linear, and strict linear,
inequalities over real-valued variables x1, x3, ..., Xy,

. ) . )
Z i) X+ P <0 Z A(mri) " Xi+ P <0
i=1 i=1

S = and T =

n n
Z A(m,i) " Xi + Pm <0 Z X (m+k,i) " Xi t Pk <0
i=1 ] =

in which a(1,1), ..., Q(m+k,n) and Pi, ..., Pm+k are real-valued, we have that S and T simultaneously
are not satisfiable (i.e., they have no solution in x) if and only if there exist non-negative real numbers
A0s A, ooy Amak such that either the condition (A):

0= Z?i?" Aiaginy, - 0= Ziﬁ?k AiQ(in), 1= (Z?:h;k AiBi) = Ao,
or condition (Ay): at least one coefficient A; fori in the range {m + 1, ...,m + k} is non-zero and
0= XM D), - 0 = TP i), 0 = (S35 i) = Ao

In our work, we consider the variant form of Motzkin’s Transposition Theorem (see Theorem 5.5).

Theorem 5.5 is first proposed in [18, Theorem 4.5 and Remark 4.6] without proof. We give a complete
proof here.
Theorem 5.5. [Corollary of Motzkin’s Transposition Theorem] Let S and T be the same systems
of linear inequalities as that in Theorem C.1. If S is satisfiable, then S A T is unsatisfiable iff there
exist non-negative reals Ay, A1, ..., A4k and at least one coefficient A; fori € {m + 1,...,m + k} is
non-zero, such that:

0= 2 iy, 0 0= S Di(im), 0 = (S5 2i8) = o.
i.e., the condition (A;) in Theorem C.1.

Before we proof the theorem, we introduce the desired theorem: Farkas’s Lemma:
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LEmMMA C.2 (FARKAS’S LEMMA [25]). Consider the following system of linear inequalities over
real-valued variables x1, xs, ..., Xp,

aqnxt  +o+ aamxn 1 <0
S= :
Am1)X1  + o+ Amn)Xn +Pm <0
When S is satisfiable, it entails a given linear inequality
prexi+ o+, +d <0

if and only if there exist non-negative real numbers Ay, A1, ..., A, such that

m m m
c1= Z Ai@(i1)s s Cn = Z AiC(iny, d = (Z Aifi) = Ao
i=1 i=1 i=1

Furthermore, S is unsatisfiable if and only if the inequality 1 < 0 can be derived as shown above.

Now we proof the corollary (Theorem 5.5).

Proor. Proof by contradiction. According to Motzkin’s Transposition Theorem, S and T have no
solution in x if and only if there exists non-negative real numbers Ay, A, ..., A4 such that either
condition (A;) or (Ay) is satisfied. We first proof (4,41 # 0) V (A2 # 0) V ... V (Apik # 0).

If it is not satisfied, we assume that A,,4; = ... = Adpex = 0. Then we know the condition (A;)
must be satisfied and we have (By applying the assumption A1 = ... = A4k = 0):

m m m
0= ZI/L'OC(M), 0= leia(i,n),zllliﬁi = /10 +12>1,
1= 1= i=

By applying Farkas’s Lemma, we have:

m m m
1= Z/lia(i,l) =0,..,cp = Z/lia(i,n) =0,d= (Z Aifi) —A=A+1-1 =1,
i=1 i=1

i=1
Thus we have:
p=c1x1+..+epxp+d=d=1<0
if and only if S is not satisfiable, which contradicts the assumption, so the assumption does not
hold. We have proved (Ap41 # 0) V (A2 2 0) V ... V (Aak £ 0).

If condition (A;) is satisfied, then exists non-negative real numbers Ao, A1, ..., Ak and (Ape1 #
0) V (Amsz #0) V... V (Aysk # 0)(what we just prove) such that

m+k m+k m+k

0= Z Aia(iys - 0 = Z Ait(in), 1 = (Z AiBi) = Ao,
i1 im1 im1

let Ay = Ao +1 > 0 and we can find that it also satisfies the condition (A), thatis A; = A,.
Thus, Motzkin’s Transposition Theorem can be simplified as: If S is satisfiable, then S and T have
no solution in x if and only if there exists non-negative real numbers Ay, Ay, ..., A4k, such that:

(ALVA) A (A = Ay)) &= A

Thus we prove Theorem 5.5. O
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C.5 Application of Putinar’s Positivstellensatz [46]

We recall Putinar’s Positivstellensatz below.

THEOREM C.3 (PUTINAR’S POSITIVSTELLENSATZ [46]). Let V be a finite set of real-valued variables
and g, g1, ..., 9m € R[V] be polynomials over V with real coefficients. Consider the set S := {x €
RY | gi(x) > 0 forall1 < i < m} which is the set of all real vectors at which every g; is non-negative.
If (i) there exists some gy such that the set {x € RV | gi(x) = 0} is compact and (ii) g(x) > 0 for all
x € S, then we have that

9= Jo+ 21 fi- 9i (15)
for some polynomials fy, fi ..., fm € R[V] such that each polynomial f; is the a sum of squares (of
polynomials inR[V]), i.e. f; = Zf:o qij for polynomials q; ;’s in R[V].

In our comparison, we utilize the sound form in (15) for witnessing a polynomial g to be non-
negative over a semi-algebraic set P for each inductive constraint Vx € P, g(x) > 0.

In our experiments, the maximum degree of unknown SOS polynomials is set to the degree of
the polynomial template plus 2.

D SUPPLEMENTARY MATERIAL FOR SECTION 6
D.1 Continued Fraction

Continued fraction can represent a real number r by an expression as follows:
1

r=ap+ 1
G+ T

and r is abbreviated as [ay, a, a, ...]. In our implementation, we first transform each output float
coefficient into its continued fraction form [ag, a;, ay, ...]. Then we perform the truncation operation
that we find the first a;(i > 1) that is greater than a large threshold, for which we choose 100,

and truncate from there (including this number). We keep only the previous parts, as our rational
approximation results.

D.2 Experimental Results of Piecewise Linear Lower Bounds

We present the experimental results of piecewise linear lower bounds in this section. For the linear
lower bounds, we consider the same benchmarks and return functions f as in Section 6.1, and use
the same invariant from the External Inputs for each benchmark.

Answering RQ1. We present the experimental results for the synthesis of piecewise linear lower
bounds on the 13 benchmarks in Table 5. In this table, we only show the piecewise results with
(k < 3)-induction. We observe that on most of the benchmarks, we can obtain a linear lower
bound via the conventional approach, i.e., 1-induction, while the piecewise linear lower bounds
we synthesize are better (tighter) with (k > 1)-induction. Only on the benchmark GrRowING
WALK-VARIANT, we require (k > 1)-induction to synthesize a lower bound. Moreover, our k-
induction-based approach can produce results within a few minutes.

Answering RQ2. We answer RQ2 by comparing our approach with the most related approaches [5,
10] in Table 5. The relevant explanations for RQ2 in Table 5 are totally the same to Table 1. These
two relevant works require a (possibly piecewise) lower bound to be verified as an additional
program input and return a sub-invariant that is sufficient to verify the input lower bound, which
is the most different aspect from our work. cEGIsPrRO2 produce the results by a proof rule derived
from the original OST (see Section 6 in [10] and Appendix B.1), while we apply an extended
OST (see Theorem 4.6). To have a richer comparison, we also feed our benchmarks paired with
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Table 5. Experimental Results for RQ1 and RQ2, Linear Case (Lower Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" (of our approach) stands for the execution time of our approach
(in seconds), including the parsing from the program input, transforming the k-induction constraint into
the bilinear problems, bilinear solving time and verification time. "Conventional Approach (k = 1)" stands
for the monolithic linear upper bound synthesized via 1-induction, "k" stands for the k-induction we apply,
"Solution" stands for the linear candidate solved by Gurobi, and "Piecewise Linear Upper Bound" stands for
our piecewise results. "Result” stands for the synthesized results by other approaches and "T(s)" (of their
approaches) stands for the execution time of their tools.

Conventional

Our Approach CEGISPRO2 EXIST
Benck k f Approach (k = 1) PP
Result T(s) | k| Solution Piecewise Linear Lower Bound T(s) Result T(s) Result T(s)
Geo . . 3 [e> 0] -x+ =

x x 033 |3 x [e>0] - x+[c<0] (x+73) 2.19 le<0]-(x+ %) 0.06 x+[c=0] 83.01

[k>NJ]-y+ y+ [k <nl
x-GEO y y 100.18 | 3 y Ik (T) ;\?x +y ++”; ;I)\” 133.81 [k < N- 02 | (0.8x—03k |239.95

. y+o (-k+N+x+y+1) +0.3n +0.5)

o . . . k [i>10]-y+[i<10]
BIN-RAN y | -05i+y+s5| 118 |2| BETY i>10]-y+[1<i< 0] 106.59 (L x+y- 0.26 fail -
+o (—55i+y+px+ 55 53059 o f L2000
112 22

Coin i i i N —x]-(i+12 ly#x] i+ i =y]-:

i i 100.51 | 2 i l[y#x]-i+[y=x] (i+%) 5.99 ly=x]-(i+ %) 0.07 | i+[x=y] 2.2 | 116.67
iolati f

Mart i i 037 |3 i [x<0]-i+[x>0]-(i+15) 244 violation o o | it[x>0]%2 | 12293

non-negativity

GROWINGWALK . S ol 5 violation of R f .
3 y x+y 100.16 | 3 x+y [x<0]-y+[x20]-(x+y+3) 101.80 non-negativity fail

[x <0]-y+
GROWINGWALK < 1] - 5x — 1 iolati f
y R } 3 y-1 [0<x<1] - (y+05x—1) + 125.53 vio! atlon'o. R fail B
-VARIANT [1<x<2] (y+0.5x—-15) non-negativity
+[2 < x]-(y+0.75x - 2)
[x <0]-t+ -
EXPECTED lat; f
i ¢ | Llllx+t | 025 | 3| 1.2d0x+¢t [0<x<1]-(0.124x + 1 +0.9) 125.54 n::l"rf’e“;’;;’n - fail -
[1<x<10]-(1.1284x +t +1.9116) gativity
0] - cur+ P
ZERO-C [est >
i‘:;mf!lf cur cur 100.32 | 3 cur [start == 0 A est < 0] - (cur+1.9502) | 183.63 Vl?lanort‘. Oi - inner error -
+[start > 1 A est < 0] - (cur+0.287) non-negativity
[a>10Vb>10v
EquaL- [a>10Vb > 10V goal # 0] - goal goal # 0] - goal+ .
PROB-GRID goal goal 100.38 | 2 goal [a<10Ab <10 A goal=0] - 1.5 139.80 l[a<10Ab <10 0.1 inner error -
Agoal=0] - 1.5
[x <1]-z+
RevBIN z | z+2x—2 |10014 |3 | z+2x—2 [1<x<2]-(z+%) 129.46 lx<1]-z+ o | FHIEOL e
tx>2] (z42x—2) [x>1] - (z+2x-2) -2x
. [x>0vy>0]- i+ .
v . =
Far Comn i i 10034 | 3 i [x>0vy>o]-i+ 43.84 [x=0Ay=0] 006 | HIxry=0l| o
[x=0Ay=0]-(i+3) (i43) 1.3
4
ST-PETERSBURG 1 [x>0] - y+ y+[x=0]
vARIANT y y 032 |3 y [x>0]-y+[x<o0]-iy 228 [x<0]- iy 0.21 0y 98.05

the piecewise lower bounds synthesized by our approach to cEgispro2. On 5 of our benchmarks
(e.g., GROWING WALK-VARIANT, ZERO-CONF-VARIANT, etc), it reports failure (violation of non-
negativity). On 6 of our benchmarks, CEGISPRO2 produce the same results with our inputs. Only on
two benchmarks (k-Geo, BIN-RAN) cEGISPRO2 produce a different result to verify our inputs.

For the comparison with EXIST, we note that EXIST synthesizes sub-invariants without the
application of OST, which might be unsound for proving the input lower bounds (see also Section
7 in [10]). We compare with their tool on our benchmarks by assuming the soundness of their
lower bounds and feed them our piecewise lower bounds as an additional program input. On
benchmarks Geo, k-Geo, CoiN, REVBIN, MART, FAIR COIN, ST-PETERSBURG VARIANT, their tool can
generate a tighter sub-invariant to verify our piecewise lower bound. On these benchmarks, due to
the existence of exact invariants, they are usually able to find a tighter sub-invariant by a heuristic
search based on sampling and machine learning at the cost of the long time (usually about or even
more than 100s) . For the remaining benchmarks, either they cannot generate sub-invariants or
there are internal errors within their tool.
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In conclusion, our approaches can handle many benchmarks that these two works [5, 10] cannot
handle. When feeding our benchmarks with the bounds synthesized through our approach to
CEGISPRO2 and EXIST, they fail on about 40% of our benchmarks. Over most of the benchmarks that
CEGISPRO2 and our approach can handle, our bounds are comparable with theirs. Over most of the
benchmarks that ExIsT and our approach can handle, they spend much more time to generate a
slightly tighter bound.

Answering RQ3. Similarly to the upper case, we compare our piecewise linear lower bounds with
monolithic polynomial lower bounds synthesized via 1-induction, as shown in Table 6. From the
comparison result "PCT" in Table 6, we observe that on most of our benchmarks , our piecewise
linear lower bounds are significantly tighter (i.e., greater) than monolithic polynomial lower bounds.

D.3 Experimental Results of Piecewise Polynomial Lower Bound

In this section, we present the experimental results of piecewise polynomial lower bounds. For the
piecewise polynomial lower bounds, we consider the same benchmarks and return functions f as
in Section 6.2, and use the same invariant as the External Inputs for each benchmark.

Answering RQ1. We present the experimental results for the synthesis of piecewise polynomial
lower bounds on the 20 benchmarks in Table 7. The experimental results show that our approach
can compute piecewise polynomial lower bounds for most of the benchmarks within around 10
seconds. Especially, on the benchmarks Bin0, Bin2, DEPRV, Sum0, Prinsys, the lower bounds we
obtain are the same with the upper bounds we obtain in Section 6.2 (see Table 3 for more details),
which shows that we obtain the exact expected value of X after the execution of the loop, i.e., the
tightest lower bounds, on these 5 benchmarks.

Answering RQ2. We answer RQ2 by comparing our approach with the relevant work ExisT
in Table 7. Since their tool requires a lower bound to be verified as an extra program input, we feed
them our lower bounds (the column "Solution A*" in Table 7) synthesized by our approach. Over
these benchmarks, they only successfully synthesize a sub-invariant to verify our lower bounds on
PriNsys and the sub-invariant they generate is the same as our piecewise lower bound. For the
benchmarks Bin0, Bin2,Sum0, they can learn some candidates for sub-invariants but they are not
able to verify them so that they fail to generate a sub-invariant. For the other 16 benchmarks, they
fail to generate due to some inner errors within their tool.

Answering RQ3. Similarly to the upper case, we compare our piecewise polynomial lower bounds
with higher degree monolithic polynomial lower bounds synthesized via 1-induction, as shown
in Table 8. For a fair comparison, we generate the polynomial bounds with the same invariant and
optimal objective function for each benchmark. The degree of monolithic polynomial bounds is
also set to be not greater than 5 in this experiment.

From the comparison results "PCT", We show that on all the benchmarks except BRP, F1G-6, CAV-5,
our piecewise polynomial bounds are significantly tighter than monolithic polynomial bounds.
Although our running time is also a bit longer than that of monolithic polynomial experiments, our
approach allows to synthesize lower-degree polynomials while achieving better precision against
higher-degree polynomials. This advantage is critical as the synthesis of higher-degree polynomials
suffers from a large amount of numerical errors as stated previously. Thus our approach has a value
to use lower-degree piecewise polynomials to surpass the numerical problem of higher-degree
polynomials.
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Table 6. Experimental Results for RQ3, Linear Case (Lower Bounds). "f" stands for the return function
considered in the benchmark, "k" stands for the k-induction condition we apply in this comparison, "Monolithic
Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized via 1-induction, and
"d" stands for the degree of polynomial template we use, "PCT" stands for the percentage of the points that
our piecewise lower bound are lower (i.e., not better) than monolithic polynomial.

Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
k Piecewise Linear Lower Bound | d Monolithic Polynomial Lower Bound
0 —0.0313 — 0.1902 * ¢ + 1.0478 % x—
Gro x |4 [ le g] _](' x:z) 3| 039802 +0.0695%xxc—0.0019 % x*~ | 0.0%
e=0lr iy 0.1595 % x # % +0.07227  x% ¢ — 0.0147 # x°
«-GEO g |3 [k > N]-y+ , | 446223 % N — 2212813 — 0.77291 wk+ 1.00(;0 U1 100
[k < NJ-(0.75x +y +0.25) +0.9281 # x — 2.1922 % N? — 0.1043 * x°
—22.0746 — 24.4593 * i + 33.7063 * y+
20.7709 * x + 1.4945  i% +0.2057 * y * i+
[i>10] - g+ 0.0232 # i + 0.4741 % X * i + 0.2689 * X * y+
BIN-RAN Y| 2| [ <i<10]: (-Bityas 24 loay | 3 1.9807 % x +0.0006  i* — 0.3133 + y # i~ | 33.39%
Ps ' TYT YT s 0.0111 * 2 i +0.0049 * > — 0.4668 * x i+
0.0036 * x * y * i + 0.0105 * x * y* — 0.7437 * x°
+0.04213 * x%  y — 0.7531  x° * i
2.6655 + 1.0002 * | — 3622.3830 * y—
2 7o
CoiN i |4 [yzx]-i+[y=x]-(i+Z 2 5419'22?79;;(5530;05;)1_’;.10022'3101 ;y H 2.0%
1827.4383 * x * y + 3594.2952 * x?
MaRT il a lx=0]-i+ 2 1.0000 # i +39.9996 % x — 199.9958 # x2 1.0%
[x>0]-(i+])
GROWING [c<0] - y+ ~0.0004 +1.0003 * y + 1.3463 x x—
WaLx y | 4 c2 0] (x+y+ 1) 3 0.0001 * 2 — 0.0010 * x * y — 0.0590 * x? 0.0%
= 8 +0.0007 * x? % y — 0.0022 * x>
[x <0] -y+
GROWING WALK [0<x<1]- (0.5117 +y—1) _1'00020 +1.0000 + y = 0.3903 * x~ 2
y |3 3 0.0734 % 12 + 0.0484 * x # y + 0.4758 # x2— 0.01%
VARIANT I sx<2]-(05x+y-15) 0.0250 % x * % — 0.0484 % x° #  — 0.0855 * x°
+2<x]-(0.75x +y —2) : y -5 y=o
EXPECTED [x <0] - t+ —0.0784 + 1.0093 * £ + 3.1426 * x—
Tive t 3 [0<x<1]-(0.124x + t +0.9)+ 3 0.0010 * t2-+‘—0.0083 % x %t —0.1576 % x>+ 64.6 %
[1<x<10]-(1.1284x +t +1.9116) 0.0002 * x * t? +0.0002 # x% * t +0.0043 * x>
[est> 0] - cur+ 140.2458 + 1.0098 * cur — 424365.5964 * start—
ZERO-CONE | 3 | [start == 0 A est < 0] - (cur +19502) | 2 | 20/075:0179 » est = 0.0066 « start x cur+ |,
-VARIANT +[start > 1 A est < 0] - (cur-+0.287) 424267.3602 * start® — 0.0095 * est * cur—
- - 504437.5495 * est * start + 587534.7143 x est?
Equar- [a> 10V b > 10V goal # 0] - goal 0.4950 * goal — 0.2020 * goal®+
Pron-Grio | 8% 2 | 4a<10Ab<10A goal=0]-15 | > 0.0053 % b * goal — 0.0011 * a * goal 0.0%
[x <1]-z+
REVBIN z |3 [1<x<2]-(z+x) 2 —2.0000 + 1.0000 * z + 2.0000 * x 0.0%
+[x>2]-(z+2x—2)
0 ol i 1.0000 * i — 0.3932 * y — 0.39325 * x
FaIr ColN i |4 [ [<"0>A V<yo> 1 2 —0.3153 * 2 +0.6305 * y # i — 0.7242 % i 0.0%
XSO0Ay<0]-(i+3g +0.6305 % X # i — 0.1796  x * y — 0.7242 * x>
ST-PETERSBURG 1 —0.0017 + 1.0023 * y — 121479.0179 * x
VARIANT y |3 x>0l -y+[x=<0]- 5y 3 —0.0550 * x * y + 121479.0185 * x2 0.0%

D.4 Full Expressions for Experimental Results

For readability and conciseness, some of the experimental results in the main text were partially
omitted and denoted with - - - . In this appendix, we provide the complete expressions corresponding
to those abbreviated entries.

Piecewise polynomial upper bound of GRID-sMALL: min{[a < 10Ab < 10]-(—0.0003%a>~0.0011b>—
0.00085a®#b+0.0018axb?+0.0109xa*—0.0144xa*b+0.0129%b*—0.0926+a+0.0277xb+0.5109) +[a <
10 A b > 10],h*}.
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Table 7. Experimental Results for RQ1 and RQ2, Polynomial Case (Lower Bounds). "f" stands for the return
function considered in the benchmark, "T(s)" stands for the execution time of our approach (in seconds),
including the parsing procedure from the program input, relaxing the k-induction constraint into the SDP
problems, the SDP solving time and verification time. "d" stands for the degree of polynomial template we
use and "Solution h*" is the candidate polynomial solved directly by the solver. "Piecewise Polynomial upper
Bound" stands for the piecewise bound we synthesize, where h* is the column "Solution A*". "Sub-invariant”
stands for the sub-invariant synthesized by ExisT, and "T(s)" stands for the execution time of their tool.

Our Approach EXIST
Benchmark f
d Solution h* T(s) Piecewise Polynomial lower Bound Sub-invariant | T(s)
—0.0467 * Y +0.8036 * y * z— max{[z > 0] - (—0.0467y% + 0.4018 * y * z
GEOAR x 2 7.1202 # 2% + x + 0.6668 * y 7.22 —3.5601 * 22 + x + 1.0734 % y + 5.5129 = z inner error -
+10.2222 % z — 2.3795 ~1.2594) + [z < 0] - x, b}
Bin0 x 2 X+05%y*n 10.04 x+[n>0]-05%yxn fail -
Bin2 2 x+[n>0]-(025%n+x . ~
x 2 0.25%n+x+025%n*+05%y=*n 10.25 +0.25 %1 4055y xn) fail
~ B [n> 0] - (=0.25 % n+0.25 * n’+
DEPRV Xy 2 025xn+0.25+n"+0.5xy*n 9.08 0.5%y*n+0.5%x%n+x%y) inner error | -
+05xx*n+x*y
+[n<0]-xxy
PrINsys == 3 ==1]*1+ [x==0] =0. .
[x==1] 2 0 2.10 [x 11+ [x ]+0.5 e==0] <05 |72
Sum0 x 2 0.25 % i% 4 0.25 % i + x 1.98 [i > 0] * (0.25 % > +0.25 % i) + x fail -
max{[t > 0 A x > 1] - (10.8660x+
0.2353 # x * ¢ + 1.3703 * £ — 11.0903 * x
21.7319 % x? — 0.4706 * x * t + 1.3703 * t? —1.3703 * t +0.4987) + [t <O Ax > 1]-
DuEeL . = = i -
t 2 —21.7099 # x — 0.3707  t — 0.0011 6.66 (5.4330 % X% +0.1177 # x £ + 1.3703 * 12 nner error
—5.5451 % x — 0.8705 * ¢ + 0.2488)
+[x <1]-t,h*}
—41834.4189 * failed® — 6.0771 * failed * sent max{[failed <10 A sent < 800]-
. 2 X (—418.3442 * failed” — 0.0608 * failed  sent— .
BRP [failed = 10] | 2 —0.8349 * sent” — 1710.0678 = failed 9.85 g N inner error -
+655.2652 % sent + 2695.5357 0.8349 * sent” — 853.7891 failed + 653.5513sent
. . +2907.9668) + [ failed = 10],h*}
B _ 2 max{[y = 0 Ax < 100] - (—0.0001  x * y
CHAIN ly=1] 2 o (;)dggo*l;fgglnofosfgéz 4.09 —0.0051 * y* +0.0032 * x+ inner error -
0038w+ O y-0 0.0170 + y — 0.0314) + [y = 1], h*}
2 . 3_
0.0006 % @* — 0.0012 * @* % b +0.0008 * a * b? max{[a < 10Ab < 10] - (0.0006 *a’~
[a < 10A . ;N 2 0.0012 * a® % b +0.0008 * a * b* — 0.0068 * a .
GRID SMALL 3 —0.0071 = a* + 0.008 * a * b — 0.0056 * b*— 6.75 2 inner error -
b > 10] 0,046 + @4 0.0822 + b +0.4185 +0.0076 * @ + b — 0.0052 * b? — 0.0478 * a+
) : ’ 0.0800 # b +0.4306) + [a < 10 A b > 10], h*}
B B B 2 max{[a < 1000 A b < 1000] - (—0.0231 * a’+
GRID BIG [Z j 11888]/\ 2 0.02—3011*825 :2'_[:4062:2: : l; N gggg; *b 7.21 0.0462 * a * b — 0.0231 * b? — 0.1895 * a+ inner error -
= ) ) ' 0.2425b +0.9537) + [a < 1000 A b > 1000], h*}
0.0001 * h> —0.0003 * h? * t max{[t > h] - (0.0001 * h® — 0.0003 * h? * t+
+0.0003 % h % t2 = 0.0001 = £* +0.0018 * h? 0.0003 * h % t2 = 0.0001 * > + 0.0023 * h? .
CAV-2 , ; .
[h>1+1] |3 ~0.0057 # o £ +0.0032 * £2 — 0.002 * h 345 —0.0066 * h % £ +0.0037 * £2 + 0.0076 * h+ nner error
+0.054 * t — 0.6863 0.0399 # t — 0.5852) + [h > 1+1],h*}
—0.0148 * x* — 0.0597 * x * y + 0.3443 = y max{[y > 1] - (-0.0148 % x* — 0.0072 * x+ .
CAV-4 < .
lxs10] 2 +0.0523 % x — 0.3282 * y + 0.9537 247 0.9694) + [y < 1 Ax < 10], h*} inner error
) ; < 4] - (0.0001 * x* = 0. syt
0.0001 * x* — 0.0007 * x> * y + 0.0009 * x* * y° max{[x S | Z(0 0001 * x* = 0, 9007 +x eyt
P A o, 0.0009 # x? * y* — 0.0006 * x * y* — 0.0014 * x
—0.0006 # x * y* = 0.0011 # x* +0.0143 + x? x y ) ) 5
N 5 ) +0.0140 * x? % y — 0.0035 * x * y? + 0.0026 * y )
FIG-6 [y <5] 4| —0.0035 * x * y* +0.0032 * y* + 0.0556 * x°— | 109.28 2 ;s inner error -
0.1077 % x % g + 0.0085 77— +0.0690 % x? — 0.0960 * X * y +0.0173 * yf
y : —0.3696 * x +0.1229 % y + 0.5508)
. +0.1362 * y + 0.543:
0.3753 * X +0.1362 * y + 0.5438 Hlx>4ny <SLAY
—0.0002 * x * y — 0.0029 * 4 +0.0038 * y i A
< 0] - (~0.0009 * i? +0.0002 * x+ )
FIG-7 [x < 1000] |2 —0.0009  i% +0.0002  x — 0.0037 % y 21.38 or(r)l;;]{ Eyi 3 01995) tlos T)l/\ T 1000*} "h‘} inner error .
+0.002 * i +0.9978 i : Y = ’
P> 05V pA<—0.1VcP<—05V
0.0008 % pAD? % pA — 0.0023 * pAD? % cV+ max{ e P s
: 0.0991 % pAD? * cP +0.4931 * pAD * pA>+ pA > 0.1] - (00011 pAD® + pA+
INV-PEND pA<1] |3| - 436.04 0.0011  pAD? % cV + -+ +0.999 % cV/ inner error -
VARIANT 0.1464 * pAD % pA ¢V -+ —5.002  cV  cP
449405 % cP — 57109 1 ¢V 4 1.0 —0.0688 * cP +1.6061) + [cP < 0.5
) ) ) ApA <0.1AcP>-05AcP £05],h"}
0.0001 # i — 0.0002 * % % x + 0.0001 * i * x>— max{[i < 5] - (~0.0001 % iZ ¥ x — 0.0001 * iZ
CAV-7 [x < 30] 3 0.0006 * i? +0.001 * i * x — 0.0002 * x° 5.17 +0.0006 * i * x — 0.0001 * x? + 0.0003 * i+ inner error -
+0.0007 i — 0.0005 * x +0.9981 0.0001 * x +0.9985) + [i > 5 A x < 30],h"}
max{[money > 10] - (0.0009 * i* * money+
0.0009 * i * money + 0.0043 x i * money® 0.0043 i * money?® + 0.0013 * money®
. +0.0013 * money® — 0.9614 * i>~ —0.9624 * i2 — 17.8205 * i * money— .
CAV-5 > 5 P -
liz10] 3 17.8117 * i * money — 66.2212  money? 897.32 66.2275 * money? — 12.8062 i+ inner error
—29.2611 % i+ 1.0 118.2861 * money — 1379.4033)
+[money < 10 Ai < 10],h*}
—0.0002 * x> +0.002 * x? x y max{[y < 1] - (0.0088 * x> — 0.0092 * x? * y+
—0.0092 * x * y* + 0.0088 * y* + 0.0049 * x? 0.002 * x * y* — 0.0002 * y +0.0618 * x* .
App -
=513 0067 v w  + 0.0425 % 4 +0.0167 # x 374 10,0406 % x % y +0.0064 * y? — 0.0527 * x— nner error
—0.1369 * y +0.0314 0.0102 * y — 0.0328) + [y > 1 Ax > 5], h"}
—0.0055 * x% — 0.0013 * x * y — 0.0132 % x * r max{[r < 0] - (—0.0075 * x? — 0.004 * x * y
GROWINGWALK y 2| =0.0027 * y? +0.0123 * y + r — 0.0261 * r? 4.83 —0.0027 * y? +0.5230 # x + 1.0174 * y inner error -
VARIANT2 +0.0288 % x +1.0125 % y + 0.0111 * r — 0.0454 —0.0362) + [r > 0] - y, h*}
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Table 8. Experimental Results for RQ3, Polynomial Case (Lower Bounds). "f" stands for the return function
considered in the benchmark, "Piecewise Polynomial Lower Bound" stands for the results synthesized by our
algorithm. "Monolithic Polynomial via 1-Induction” stands for the monolithic polynomial bounds synthesized
via 1-induction, "T(s)" stands for the total execution time. "PCT" stands for the percentage of the points that
our piecewise polynomial lower bound are larger (i.e., not better) than (higher degree) monolithic polynomial.

Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
d ‘ T(s) ‘ Piecewise Polynomial lower Bound d ‘ T(s) ‘ Monolithic Polynomial lower Bound
0.0021 % x% * 2 +0.0003 * x * 4% + 0.0128 * X % y * 2
—0.0745 2 —0.0013 * y* +0.0006 * y*
max{[z > 0] - (~0.0467y" +0.4018 + y » 2 00011 = 2  34350.8767 :z" 00001 » 22
GEOAR x 2| 722 —3.5601 * 22 + x + 1.0734 * y + 5.5129 % z 3| 125 . Y . . s 5.0%
C12504) 4 [z 2 0] -x —0.0028 * x * Y +0.0294 % x * 2+ 0.0154 * y
: = ’ +1.9735 * y * z + 68717.1029 * 2% + 1.0025 * x
—0.0476 * y — 34355.4581 * z — 0.0973
Bino x 2 | 10.04 x+[n>0]-05%y*n 3081 0.5%y*n+x 0.0%
Z0.0001 * 4 +0.0001 * y? * n + 0.0001 * y * n?
(0.2
Bin2 x 2| 1025 ’:;[ngi 02]+((;)52*Z+) 3| 114 +0.0006 % % +0.4992 % # 1+ 0.25 % n’ + x 16.2%
Xroeowm Aoy n ~0.0021 % y +0.249 % n — 0.0028
2
DEPRV ) [n>0] (-0.25%n+025%n*+05xy=*n X*y+05%xxn+0.5%y*n+
**y 9-08 H05xxxn+xxy)+[n<0] xxy 3|08 0.25 % n? — 0.2501 * n — 0.0001 4%
PRINsYS [x==1] |2 210 [x==1]*1+[x==0] 0.5 30045 0.0 0.0%
Sumo x 2| 198 [i > 0] * (0.25 # i2 +0.25 % i) + x 4050 0.25% i2 +0.25 % i +x 0.0%
>1]- 2
max{[t >0 Ax 2 1] - (10.8660x%+ 57.6107 # x* — 0.3086 X3 # £ +32.5537  x2 # 12
0.2353 % x # t + 1.3703 * t? — 11.0903 * x 3 A 3
—0.9734 % x * £3 — 8.9958 * 14 + 31.3993 % x°
—1.3703 %t +0.4987) + [t <0 A x > 1]- 5 > N
DuEr t 2| 7.24 2 2 4| 058 | —17.8531 % x% # t +10.7254 % x # t2 +26.343 % ¢ 0.02%
(5.4330 % x% +0.1177 % x * £ + 1.3703 * 1 72812 % X% — 247154 8 x 2 1
—5.5451 % x — 0.8705 * £ +0.2488 - '
X o1 ) +13.3805 % t2 — 61.5859 * x — 29.7278 *
+[x <1]-t,h*}
. -5.1928 iled® —0.992 iled t—
max{|failed < 10 A sent < 800]- *f.azez 2 * faile *.sen?
(~418.3442 * failed? — 0.0608 + failed * sent— 0.0002 # failed” + sent® ~ 1.6946  failed+
BRP [failed =10] | 2 | 9.85 . . 4| 1.24 | 2.1022  failed® « sent +0.0001 = failed = sent’~ | 53.54%

0.8349 * sent? — 853.7891f ailed + 653.5513sent

o Failed? — ; _ 2
+2907.9668) + [ failed = 10], h*) 3.3782failed* — 1.0916f ailed * sent — 0.0057sent

—2.09 * failed + 1.1127 * sent +0.7991
0.0429 # x° + 0.6155 * X% * y + 12.0075 * x * y°
+124904.4081 * > — 5.4506 * x?
—67.0765 * X * y + 869301.3767 * y*+
119.3344 * x — 994786.2786 = y + 4.4144

max{[y =0 Ax < 100] - (—=0.0001 * x * y
CHAIN [y=1] 2| 4.09 —0.0051 * 2 + 0.0032  x+ 3] 074
0.0170  y — 0.0314) + [y = 1], "}

1.00%

max{[a < 10 A b < 10] - (0.0006 * @>°—

— 2 2
0.0012 # a® % b +0.0008 * @ * b — 0.0068 * a> 00002+ a* b +0.0001 x ax b+

GRID SMALL = \ X 2 0. . 2 .62%
=1 3] 675 | " 00076asb-00052+b" 004780+ |+ | O 0 008(2) o *(;(?270;::*}’;}003:7* b 0.62%
0.0800 * b +0.4306) + [a < 10 A b > 10], h*} ) ) )
[a < 10001 max{[a < 1000 A b < 1000] - (=0.0231 * a’+ 0.001 * a> — 0.0005 * a® * b — 0.0018 * a * b?
GRID BIG b > 1000] 2| 7.24 0.0462 = a = b — 0.0231 * b® — 0.1895 = a+ 3056 +0.0008 * b — 2.9594 * a® +5.9103 * a * b— 4.73%
- 0.2425b +0.9537) + [a < 1000 A b > 1000], h*} 2.9631b° — 499.9807a + 511.5109b + 253.0223
T 3 _ v
max{[t > h] - (0.0001 + & — 0.0003 «  « 1+ 0.0001 * i +0.03001 YRt 40.0009 «h *f
0.0003 % 7 £ — 0.0001 % £ + 0.0023 & h +0.0013  h # £3 = 0.0007 * t4 = 0.0062 * h
CAV-2 [h>t+1] | 3| 345 . ' e 4| 047 | +0.0306 + h? x t — 0.0831 % h » 2 +0.0777 = £* | 33.33%
~0.0066 * h ¢ +0.0037 * t +0.0076 * h+ 2 2
00399 + £ - 0.5852) + [h > 1+ 1], I"} —0.1378 * h? + 1.2065 * h + t — 1.9084  t
’ ) ’ —6.4628 * h+ 21.3167 * t — 92.5531
—0.0017 * x> — 0.0105 * x% % y — 0.0514 * x * y>+
> - (=0. 2 _ (. P
cav-4 [x<10] |2]| 247 max(gygggi]) +([ Oflfi* " 10(1 0;7}2 s 034 11.376 % 4 +0.0085 * x? + 0.0539 % x # y— 0.76%
: y =10 5.0983 % y? — 0.0103 % x — 6.2928 % y + 1.0
0.0002 * x° +0.0001 * x* 0.0001 = x? * y°
max{[x < 4] - (0.0001 = x* — 0.0007 * x> * y+ e A *y: Y
s ) p 5 —0.0001 * x * y* — 0.0021 * x* — 0.0033 * x> x y
0.0009 * x2 * 42 — 0.0006 * x * y* — 0.0014 * x P 5
+0.0140 % x2 % y — 0.0035 * x * y? +0.0026 * * +0-001 %2 % y” = 0.0016 % x * y
FIG-6 [y <5] 4] 109.28 : IS : 2 |5 094 ~0.0001 * y* +0.0072 * x> +0.033 % x% * y 40.77%
+0.0690 * X2 — 0.0960 * X * y +0.0173 * p . 4
20,3696 + x + 01229 * 3 + 0.5508) —0.008 * x * y? +0.0017 % y° + 0.0817 * x°
’ N pon 5]yh*}' —0.2069 * x *  +0.0347 » y? — 0.8681 * x
y=sb +0.5271 % +0.5958
0.0616 * x2 * y — 0.0002 * x * i — 47.1183 * x * y
—0.4059 # x % y * i +0.014 # x * i¥ — 3529.0989 * y*
< 0] - (=0.0009 * % + 0.0002 * x +23.9641 * y? x i + 2.4655 * y x i — 0.38 = i*
FIG-7 < max{[y < : A
[x<1000] | 21 2138 | o 00914t 0.997) + [y > 0 A x < 1000], h*} 5| 240 —0.0401 * x? +43.7495 % X * y + 0.318 % x * i 237%
+86697.7958 * y? — 25.0167 * y * i — 0.5461  i?
+3.2993 % x — 83167.42 * y — 0.0624 * i — 5.0013
5V =0.1Vv -0.5v
max{[cP > 05V pA < —01V cP < =0.5 ~0.2235 * pAD® — 1.1293 + pAD® % pA+
pA > 0] - (00011 pAD® « pA+ 0.1015  pAD? % cV +0.1091 % pAD® % cP—
INV-PEND [pA<1] |3 43604 0.0011 % pAD? % ¢V + -+ - +0.999 % ¢V 4| 671 S8 ;};ADZ Yo 10"4%5 e 1.18%
« .
—0.0688 * cP + 1.6061) + [cP < 0.5 : :
.0001 * pA — 53.21 1.
APA<0.1ACP>—05AcP<05],h'} 0-0001 x pA = 53.2106 x ¢V + 1.0
—0.0007 # iT +0.001 * i3 % x — 0.0005 * i% * x7
max{[i < 5] - (~0.0001 x i » x —0.0001 « 0.0001 :xl*tc* +0 0*0;4**)2 -0 0052*»: i;*x;
CAV-7 [x < 30] 3| 517 +0.0006 * i * x — 0.0001 * x? + 0.0003 * i+ 4078 . . . 25.83%

+0.0011 * i # x? — 0.0134  i* +0.0121 i * x

0-0001+x+0.9985) + [ 2 5 A x < 30 "} 200019 # x? + 0.0128 % i — 0.004 % X + 0.9966
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Our Approach Monolithic Polynomial via 1-induction
Benchmark f PCT
d ‘ T(s) Piecewise Polynomial lower Bound d ‘ T(s) Monolithic Polynomial lower Bound
>10] - (0. i’
max{[mone.y 2 10] 2(0 0009 i x moniy+ —0.0001 * i% * money® — 0.0004 * i * money>
0.0043 * i * money” + 0.0013 * money 4 3 2
~0.9624 * 2 — 17.8205 » i * money~— —0.0002 * money” — 0.001 * i” +0.0222 * i“—
cav-5 [i>10] | 3]|897.32 ) s o 4108 0.0257 * i2 * money + 0.0526 * i * money® 50.0%
66.2275 * money” — 12.8062 * i+ 3 .
+0.0298 * money” — 0.4528 * i * money
118.2861 * money — 1379.4033) 5 .
. M —4.1462 * money” — 3.6304 x i + 1.0
+[money < 10 A i < 10],h*}
—0.3566  x° — 2.2831 * xT * y + 3.1151 = x° * y>—
. 2xyd - 0. 440, St
max{[y < 1] - (0.0088 » x° ~ 0.0092 » x* # y+ 2 ZSZ :;“ ’ 7 153095*9;2 . ;H 328045*85 . Zz
2 _ 3 2 . -7. . -
ADD [x>5] | 3] 374 | 0002xxxy —00002xy +0.0618%x" | 51, o, 2.0416 % x % 1 + 1.1293 % y* + 0.0868 + x3— 32.66%
—0.0406 * x * y +0.0064 * y* — 0.0527 * x— : 5 ) N
0.0102 % y — 0.0328) + [y > 1 A x > 5], h*} 0.2857 * x° * y + 6.5688 * x * y° — 6.7823 * y’+
! ’ ? 2.7185 % X% + 1.5398 * x * y + 3.6667 * y*
—6.7017 * x + 1.4053 * y + 0.0001
—0.0013 * x° +0.0006 * X% * y — 0.0026 * x° * 1
N 2 2
max{[r < 0] - (=0.0075 * x? — 0.004 x x * y +0.0001 xz* y° +0.0082 * x * yz* r+3.1974 x x *sr
GROWINGWALK 2 +0.001 # y° * r — 1.1091 * y * r* — 19675.0498 * r
y 2| 483 —0.0027 * y* +0.5230 * x + 1.0174 * y 3| 1.09 ) 5.03%
VARIANT2 ~0.0362) + [r > 0] - y, b} —0.0103 * x* +0.0017 * x * y — 4.1484 * x * 1
: L& —0.0057 # y* + 1.0965 * 1 * r +39349.552 x 2+
1.048 * x +1.0165 * y — 19675.6056 * r + 0.8489

Monolithic polynomial upper bound of GEOAR: —0.0001 x> +0.0001x? %y —0.0011*x%%z—0.0004*
x#y?—0.0112%x%y#2+0.164%x%2%+0.0012+1°+0.0046 %1% x2—1.8186%y+22+89866.1344%2°+0.0027 +x*
y—0.1236%x%2—0.0137y+2.7194%y*2—179731.0721x2%+0.9993%x+0.0417 xy+89867.27682+0.078.

Solution h* of F16-6: —0.0001%x%+0.0011x3%y—0.001+x2%1y%+0.0008*x 3> —0.0001+y*+0.0016+x> -
0.0195%x%%y+0.006+x%1%—0.003%1°—0.0627+x%+0.1018xx+y—0.0028*y+0.5712%x—0.28 15y +0.6009.

Piecewise polynomial upper bound of F16-6: min{[x < 4] - (=0.0001 % x* +0.0011 x> % y — 0.001 =
x2 % 4% +0.0008 * x * y> — 0.0001 * y* +0.0023 * x> — 0.0182 * x2 * y + 0.0064 * x * y* — 0.0026 * y°> —
0.0788 * x% + 0.0913 * x * y — 0.0094 * y® + 0.5530 * x — 0.2782 * y + 0.6027) + [x > 4 Ay < 5], h*}.

Monolithic polynomial upper bound of F1G-6: —0.0001%x°—0.0002x*%1y—0.0003x2 33 +0.0001%x*
y*—0.0002%1°+0.0011xx*+0.0037x>%y—0.0008x251%+0.0021xx%y>+0.0005%y*—0.0012xx>~0.036 1 *
x2#y+0.0088 xx xy® —0.0042% y> —0.084 % x% +0.1432 x x xy+0.0064  y* +0.9708 x x —0.6526 * y+0.575.

Monolithic polynomial upper bound of F1G-7: —0.083%x2xy+0.0003 % x% % i+48.5638 % x * % +0.5267
x#y#i—0.018%x%124+2600.9691xy> —36.705%y? i —2.646xyxi°+0.4053%1°+0.0539x2 —45.1036xx *y —
0.4109%x %i—58912.9534 %y +37.7582 %y *i+0.6223 %> —3.3923 % x +56310.8279y—0.0114%i+7.2868.

Solution (upper) h* of INV-PEND VARIANT: 0.0058 * pAD? % pA+0.0023* pAD? xcV —0.1313 % pAD? %
cP—0.6278+ pAD* pA2—0.2352% pAD * pAxcV —4.2984% pAD * pA+cP+0.0034x pAD +cV?Z—0.0776 %
PAD*cVxcP+0.2901% pAD*cP?—3.3499xpA3+1.2174% pA?5cV —18.4697% p A% cP+0.8063# pAxcV 2+
7.4278xpAxcVxcP+2.1607pA%cP?+0.1664+cV3+0.0048xcV 2 %cP—0.5863%cV +cP?—101.7368%cP*+
0.7678+pAD?*+4.7849%pAD*+pA—0.1664xpAD+cV —3.5565+pAD*cP+28.2784xpA%—2.7311xpAxcV —
20.9853xpA*cP—1.1597%cV2+5.9637cV xcP+60.4194%cP? —0.0002pA+7.1495%cV +0.001xcP+1.0.

Piecewise polynomial upper bound of INV-PEND VARIANT: min{[cp > 0.5V ¢p < —0.5V pA >
0.1V pA < —0.1] - (0.0058 * pAD? x pA — 0.0011 * pAD? * ¢V — 0.1313 % pAD?  cP — 0.6279 * pAD *
PA? —0.2408 5 pAD * pA s cV — 4.2984 x pAD * pA * cP — 0.0124 % pAD * cV? — 0.0021 x pAD * cV =
cP +0.2901 * pAD * cP? — 3.3498 + pA% +0.4776 * pA% x cV — 18.4697 x pA? * cP + 0.4734pA + cV? +
5.5455 % pA x ¢V * cP + 2.1607 * pA % cP? +0.1014 % cV® — 0.0334  cV? % cP — 3.4879 x ¢V * cP? —
101.7368 * cP3 +0.5916 * pAD? +4.0443 « pAD * pA+0.0057 % pAD * ¢V —3.5023 * pAD * cP +26.6426 *
PA? —1.1436 % pA x cV — 20.7584 x pA + cP —0.5132 % cV? +5.5468 % ¢V % cP + 60.3921 * cP? — 0.4489 *
PAD —1.5038 % pA +5.2348 % cV +0.0688 % cP +0.3238) + [-0.5 < cp < 0.5A —0.1 < pA < 0.1], h*}.
Monolithic polynomial upper bound of INV-PEND VARIANT: 0.2264 * pAD* + 1.1448 * pAD? = pA —
0.1026 * pAD3 % ¢V — 0.1107 * pAD? * cP + 5.2869 * pAD? x pA? — 0.4937  pAD? x pA * cV — 0.8938 *
PAD? % pA+cP+0.3036 x pAD? % V2 +0.0478 + pAD? # ¢V  cP +0.4208 = pAD? % cP? +6.8201 * pAD
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PA®—3.2518 % pAD * pA? xcV —2.3942% pAD x pA% % cP+1.3927 x pAD * pA* cV?+0.7868 % pAD * pA =
cV xcP+4.5143 % pAD * pAxcP* —0.1912 % pAD x cV> —0.1023 % pAD # cV? 5 cP — 0.1906 * pAD = cV *
cP?-2.8734% pAD*cP3+53.6801% pA*+1.323x pA3 5V —6.8123% pA3 5 cP+5.2663% pA® xcV2 +2.473%
PA% 5V xcP+47.9517 % pA% 5 cP? —0.5451 % pA*cV> —0.7983 % pAx V% xcP—0.9821% pAscV * cP? —
20.6044 % pA + cP* +0.0986 * cV* +0.0333 % V>  cP +0.3483 * cV? * cP? + 4.5559 % ¢V % cP> +30.7504 *
cP*—0.3716 % pAD®+3.8 % pAD? x pA+0.4985 % pAD? + ¢V —0.0606 * pAD? 5 cP—9.7537 * pAD * pA®? —
6.8904 % pAD * pA s cV +0.4876 x pAD * pA % cP—0.748 % pAD % cV? —0.1874 % pAD % cV % cP — 3.858 *
PAD x cP? —11.7619 % pA® +18.5549 % pA% x ¢V — 0.4732 % pA?  cP +4.6011  pA x cV? — 0.8554 x pA *
eV #cP—9.3429% pA s+ cP? +1.9127 % cV>+0.0857 % cV? % cP+5.2916 * ¢V * cP? —3.7534 % cP® + 4.1573 %
PAD? +17.8582 % pAD * pA +0.2247 * pAD * cV — 2.5151 * pAD * cP +34.1498 * pA? + 1.7805 * pA =
¢V —5.4381 % pA*cP—10.9045+cV?+1.196 % cV % cP+10.6625 + cP? — 0.0001 * pA+53.8573 % ¢V +1.0.

Solution (lower) h* of INV-PEND VARIANT: 0.0008 + pAD? % pA—0.0023 % pAD? % cV +0.0991 x pAD? *
cP+0.4931% pAD * pA®+0.1464 % pAD x pA*cV +3.1026 % pAD x pA*cP—0.0138 « pAD xcV > +0.0529 *
PAD ¢V 5 cP —0.2253 % pAD  cP? +2.4945 % pA® — 1.1719 % pA? % ¢V +13.2225 % pA® 5 cP — 0.66 * pA =
cV? —5.8813 % pAxcV % cP—1.6276 % pA* cP? —0.1308 % V> = 0.0137 V2 % cP — 0.2948 * ¢V x cP% +
70.0898 * cP* — 0.6053  pAD? — 3.6586 * pAD * pA+0.2164 % pAD % cV +2.8831 % pAD * cP — 20.411 *
PA?+2.3725%pAxcV +16.7142% pA*cP+0.9814%cV? —5.002xcV cP—44.9405%cP?—5.7109cV +1.0.

Piecewise polynomial lower bound of INV-PEND VARIANT: max{[cp > 0.5V c¢p < —0.5V pA >
0.1VpA < —0.1]-(0.0011 % pAD? * pA+0.0012 % pAD? % cV +0.0983 x pAD? % cP+0.5052 % pAD * pA+
0.1661%pAD*pA*cV+3.1298+pAD*pA%cP+0.0035%pAD*cV?2—0.0028*pADs*cV +cP—0.1801% pADx*
cP?+2.5528%pA%—0.5263%pA%+cV+13.3751% pA%xcP—0.3872+ pAxcV?—4.3942+ pAxcV xcP—1.4142x
PAxcP?—0.0803%cV3+0.0045%cV 25 cP+1.8662+cV cP?+70.0747%cP*—0.4694% pAD?*—3.0860+pAD*
PA+0.0414%pAD*cV +2.8487« pAD*cP—19.2280 pA2+0.9998 % pA+cV +16.5897  pA*cP+0.4500
cV2 —4.5457 % ¢V % cP — 44.9216 % cP? +0.3480 + pAD +1.1902  cV% — 4.5456 * ¢V x cP — 44.9216 * cP? +
0.3480%pAD+1.1903%pA+0.999%cV —0.0688xcP+1.606)+[—0.5 < cp < 0.5A—0.1 < pA < 0.1], h*}.

Monolithic polynomial lower bound of INV-PEND VARIANT: —0.2235 * pAD* — 1.1293 % pAD? « pA +
0.1015%pAD3cV +0.1091 % pAD3 xcP—5.2183% pAD?* x pA*+0.4869+ pAD? x p A cV +0.8825% pAD? %
PpA*cP—0.35pAD?%cV2—0.0472xpAD?*cV +cP—0.4159%pAD?*cP?—6.7225%pAD*p A3+3.227+p AD*
PAZxcV+2.3658+pAD*pA2xcP—1.3787pADxpAscV2—0.7789xp ADxpAxcV +cP—4.4659xp ADxp Ax
cP?+0.189+pAD+cV3+0.1012xp AD*cV2xcP+0.189xp AD*cV cP?+2.8456xp AD*cP3—53.0957 pA* —
1.3037pA35cV+6.7519% pA3xcP—5.2076% pA%xc V2 —2.4518% p A%V *cP—47.4808+ p A% cP?+0.54
PAxcV3+0.7896xpAxcV?xcP+0.9738% pAxcV xcP?+20.4078% pAxcP3—0.0975%cV*~0.033%cV3xcP—
0.3448+cV2xcP?—4.5124%cV xcP®—30.4568%cP*+0.3659% pAD3—3.7578+ pAD?+ pA—0.4937x pAD? x
cV+0.06xpAD?cP+9.654% pAD* pA®+6.8253% pAD* pAxcV —0.4846% pAD* pAxcP+0.7351xpAD*
cV?+0.1847+pAD+cVcP+3.8138+pAD*cP?+11.671xpA3—18.344xp A% +cV+0.4762xp A*xcP—4.5653
PAxCV?+0.8466% pAxcV xcP+9.2637xpAxcP?—1.8886xcV>—0.0833%cV 2xcP—5.2318xcV*cP?+3.7165%
cP?-4.1093%pAD?—17.6591% pAD* pA—0.204% pAD +cV +2.4836 % pAD *cP—33.745% pA> —1.6881 %
PA*cV+5.3915%pA%cP+10.7733%cV2—1.1846+cV +cP—10.4965%cP?+0.0001 % pA—53.2106%cV +1.0.

E BENCHMARK PROGRAMS

This section presents the benchmark programs used in our experiments, along with the invari-
ants employed in our algorithms. In addition, we show the results of checking the prerequisites
of Theorems 4.10 and 4.11(P2), as discussed in Section 6.

E.1 Programs in Linear Experiments

This section contains the benchmark programs in our linear experiments, i.e., in Tables 1 and 5.
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Example E.1 (Geo).
Cieo: While (0 <c¢){
{c:=1} [0.5] {x =x+1}
}

In this probabilistic program, we take the invariant ] = 0 < x, and every loop iteration terminates
directly with probability p = 0.5.

Example E.2 (k-geo).
Ciegeo:  While (k < N){
{k:==k+Ly=y+xx:=0}[05] {x :=x+1}
}

In this probabilistic program, we take the invariant ] = 0 < x A0 < yAk < N+1,and
synthesize dbRSM k — N.

Example E.3 (Binomial-random).
Chinran: While (i <10){
{x = x+1} [0.5] {x := 0}
{ly=y+x;i=i+1}[09] {y:=y+1;i:=0}
}

In this probabilistic program, we take the invariant I =0 < i <11 A0 < x A 0 < y, and there is
a probability p > 0.9'° that the program will terminate immediately for every ten loop iterations.

Example E.4 (Coin).
Ccoin:  while(x=y){
{x = 0} [Ya] {x =1}
{y=0} [3s] {y =1}
i=i+1;
}

In this probabilistic program, we take the invariant ] =0 <iA0 <x <1A0<y < 1,and
every loop iteration terminates directly with probability p = %.
Example E.5 (Martingale).
Cmart: Wwhile(0<x){
{y==y+x;x:=0} [05] {y =y —x;x:=2xx}
i=i+1;
}

In this probabilistic program, we take the invariant I = 0 < x, and every loop iteration terminates
directly with probability p = 0.5.

Example E.6 (Growing Walk).

CGrowingWalk: while (0 <x){
{x =x+Ly:=y+x}[05] {x =-1}
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In this probabilistic program, we take the invariant ] = —1 < x, and every loop iteration
terminates directly with probability p = 0.5.

Example E.7 (Growing Walk variant1).

CGmwmgWhml5 While(O S.x){
{x:=x-1y:=y+x}[05] {x =1}
}

In this probabilistic program, we take the invariant ] = —1 < x, and every loop iteration
terminates directly with probability p = 0.5.

Example E.8 (Expected Time).

CExpected Time : while (0 < x){
{X ::x—l;t::t+1} [0.9] {x = 10;t;:t+1}

}

In this probabilistic program, we take the invariant I = —1 < x < 10, and there is a probability
p > 0.9 that the program will terminate immediately for every ten loop iterations.

Example E.9 (Zero Conference variant).

Czero-Confvar:  While (‘established < 0 A start < 1) {
if (start > 1){
{start := 0} [0.3] {start := 0; established := 1} }
else { {curprobe := curprobe+ 1} [0.99] {start := 1; curprobe := curprobe — 1} }

}

In this probabilistic program, we take the invariant I = 0 < start < 1A 0 < est < 1, and for the
prerequisite (P2) checking, when start = 1, the loop iteration terminates directly with probability
p = 0.7. When start = 0, the value of start has the probability of 0.01 to become 1 and turn to the
branch of start = 1.

Example E.10 (Equal Probability Grid Family).

CEqual-Prob-Grid-Family:  While (a < 10 A b < 10 A goal = 0) {
if(b=10){
{goal := 1} [0.5] {goal := 2} }
else{
if (a>10){
a=a-1}
else{
{a=a+1}[05] {b:=b+1}}
}

In this probabilistic program, we take the invariant =0 <a <10 A0 < b < 10 A goal > 0,
and we synthesize dbRSM 10 — b.
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Example E.11 (RevBin).
CRevBin: While (1 < x){
{x=x—-1z:=2z+1}[05] {z:=z+1}
}
In this probabilistic program, we take the invariant I = 0 < x, and we synthesize dbRSM x.
Example E.12 (Fair Coin).
Crair Coin:  While(x <0Ay <0){
{x:=0} [0.5] {x =1;i:=i+1}
{y:=0} [05] {y:=1;i:=i+1}
}

In this probabilistic program, we take the invariant ] =0 < x < 1A 0 <y < 1, and every loop
iteration terminates directly with probability p = 0.25.

Example E.13 (Bernoulli’s St. Petersburg Paradox variant).
Cst. Petersburg1 while (X <0) {
}

In this probabilistic program, we take the invariant I = 0 < x < 1 Ay < 0, and every loop
iteration terminates directly with probability p = 0.75.
E.2 Programs in Polynomial Experiments
This section contains the benchmarks in our polynomial experiments, i.e., in Tables 3 and 7.
Example E.14 (GeoAr).
CGeoar: While(0<z){
y=y+1;
{x:=x+y} [09] {z :=0}
}

In this probabilistic program, we take the invariant ] =0 < x A0 < y A 0 < z, and every loop
iteration terminates directly with probability p = 0.1.

Example E.15 (Bin0).
CBinO3 while(n>0){
{x=x+y;n:=n-1} [05] {n:=n-1}
}

In this probabilistic program, we take the invariantI =0 < x A 0 < y A 0 < n, and synthesize
dbRSM n.

Example E.16 (Bin2).
Cginz: While(n>0){
{x=x+Ln:=n-1} [05] {x =x+y;n:=n—-1}
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In this probabilistic program, we take the invariant ] = 0 < x A0 < y A0 < n, and we synthesize
dbRSM n.

Example E.17 (DepRV).
Cpeprv: while(n>0){
{x=x+Ln:=n-1} [05]{y:==y+Ln:=n—-1}
}

In this probabilistic program, we take the invariantI =0 < x A 0 < y A 0 < n, and synthesize
dbRSM n.

Example E.18 (Prinsys).
CPrinsys: while (x = 0) {
{x =0} [0.5] {{x := -1} [0.5] {x:=1}}
}

In this probabilistic program, we take the invariant I = -1 < x < 1, and every loop iteration
terminates directly with probability p = 0.5.

Example E.19 (Sum0).
Csumo: while(n>0){
{x=x+mn=n-1}[05] {n:=n-1}
}
In this probabilistic program, we take the invariant I =i > 0, and synthesize dbRSM n.
Example E.20 (Duel Boy).
Cpuel: While(x > 1)1
if(t>0){
{x:=0}[05] {t:=1—1}
telse{{x:=0} [0.75] {t:=1—1t}}
}

In this probabilistic program, we take the invariant ] =0 < x < 1A 0 <t < 1, and every loop
iteration terminates directly with probability p > 0.5.

Example E.21 (brp).
Cprp: while (sent < 800 A failed < 10) {
{sent := sent + 1; failed = 0} [0.99] {failed := failed + 1}
}

In this probabilistic program, we take the invariant I = 0 < failed < 10 A 0 < sent < 800, and
there is a probability p = 0.01!° that the program will terminate immediately for every ten loop
iterations.

Example E.22 (chain).
Cchain: While (y < 0Ax <100){
{y :== 1} [0.01] {x :=x+1}
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In this probabilistic program, we take the invariant ] = 0 < x < 100 A0 < y < 1, and every
loop iteration terminates directly with probability p = 0.01.

Example E.23 (grid-small).

Cgrid-sma:  while (a<10Ab<10){
{a=a+1} [05] {b:=Db+1}
}

In this probabilistic program, we take the invariant I =0 < g < 11 A0 < b < 11, and synthesize
dbRSM 19 — (a + b).

Example E.24 (grid-big).

Cyriabig:  While (@ < 1000 A b < 1000) {
{a==a+1} [05] {b:=b+1}
}

In this probabilistic program, we take the invariant ] = 0 < a
synthesize dbRSM 1999 — (a + b).

< 1001 A0 < b < 1001, and

Example E.25 (cav-2).
Ceav2:  while(h <t){
{h = h+10} [0.25] {skip};
{t=t+1}

}

In this probabilistic program, we take the invariant [ =0 < t A0 < hAh > t +1, and synthesize
dbRSM ¢t — h.

Example E.26 (cav-4).

Ceav-a: while(y >1){

{y =1} [0.5] {y =0}
{x =x+1}

}

In this probabilistic program, we take the invariant ] = 0 < y < 1 Ax > 0, and every loop
iteration terminates directly with probability p = 0.5.

Example E.27 (fig-6).
Chge: Wwhile(x <4){
{x:=x—-1}[05] {x =x+3};
{skip} [0.3333] {{y ==y + 1} [0.5] {y ==y +2}};
¥

In this probabilistic program, we take the invariant y > 0 A x < 7, and synthesize dbRSM 4 — x.
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Example E.28 (fig-7).

Crg7: while(y <0){
{y =0} [0.5] {y =1}
X = 2% X;
i=i+1;

}

In this probabilistic program, we take the invariant I =i > 0Ax > 0A 0 < y < 1, and every
loop iteration terminates directly with probability p = 0.5.

Example E.29 (inv-Pend variant).

Ciny-Pend variant: ~ While (exitcond < 0) {
if (0.5 < cP) {
if (cP <£0.5){
if (0.1 < pA){
if (pA<0.1){
exitcond := 1;
telse{skip}
Jelse{skip}
telse{skip}
telse{skip}

cP :=cP+0.01*cV;

{c¢V :=0.02%cP+0.5%cV —0.3%pA—0.06*pAD — 1} [0.5]

{cV :=0.02%cP+0.5%cV —0.3%pA—0.06*pAD + 1};

pA = pA+0.01*pAD;

{pAD 1= 0.04 % cP +0.07 + ¢V — 0.51 % pA + 0.85 = pAD — 0.8} [0.5]
{PAD = 0.04 % cP +0.07 % ¢V — 0.51 % pA + 0.85  pAD +0.8};

}

In this probabilistic program, we take the invariant I = ¢V > 0, and synthesize a dbRSM
0.7747 # cP? +0.0004 * cV? + 0.0222 * pA? + 0.0005 = pAD? +0.0298 + cP * ¢V — 0.0919 * cP * pA —
0.0168 * cP * pAD —0.0019 ¢V * pA — 0.0003 * ¢V * pAD +0.0014 * pA * pAD (cut to 10~ precision).

Example E.30 (CAV-7).

Ccav7: while(i<4){
{x=x+1;i=i+1} [1-02=i] {x =x+1}
}

In this probabilistic program, we take the invariant I = 0 < i < 5 A 0 < x, and synthesize
dbRSM —i.



2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

58 Anon.

Example E.31 (cav-5).

Ceav-5:  While (10 < money) {
{bet := 5} [0.5] {bet := 10};
money := money — bet;
bank_guard :~ Uniform(0.0, 1.0)
if (bank_guard < 0.94737) {
coll_guard :~ Uniform(0.0, 1.0);
if (coll_guard < 0.33333) {
flip_guardl :~ Uniform(0.0, 1.0);
if (flip_guardl < 0.5) {
money := money + 1.5 * bet;
}else{money := money + 1.1 = bet; }
telse{
col2_guard :~ Uniform(0.0, 1.0);
if (col2_guardl < 0.5) {
flip_guard2 :~ Uniform(0.0, 1.0);
if (flip_guard2 < 0.33333) {
money := money + 1.5 * bet;
telse{money := money + 1.1 = bet; }
telse{
flip_guard3 :~ Uniform(0.0, 1.0);
if (flip_guard3 < 0.66667) {
money := money + 0.3 * bet;
telse{skip}

i=i+1
}

In this probabilistic program, we take the invariant I = 0 < i A —1 < money, and synthesize
dbRSM money — 10.

Example E.32 (add).
Cagd: Wwhile(y<1){

{y:==y+1} [0.2] {x =x+1}
}

In this probabilistic program, we take the invariant ] = 0 < x A 0 < y < 2, and synthesize
dbRSM 1 — y.
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Example E.33 (Growing Walk Variant2).
CGrowing Walk Variant2: ~ While (r <0){
{r =0} [0.5] {r =1}
{y:==y+xx*r;
{x=x+1;

}

In this probabilistic program, we take the invariant [ =0 < x A0 <y A0 <r < 1, and every
loop iteration terminates directly with probability p = 0.5.
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