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Piecewise Analysis of Probabilistic Programs via 𝑘-Induction

ANONYMOUS AUTHOR(S)

In probabilistic program analysis, quantitative analysis aims at deriving tight numerical bounds for probabilistic

properties such as expectation and assertion probability. Most previous works consider numerical bounds

over the whole program state space monolithically and do not consider piecewise bounds. Not surprisingly,

monolithic bounds are either conservative, or not expressive and succinct enough in general. To derive better

bounds, we propose a novel approach for synthesizing piecewise bounds over probabilistic programs. First,

we show how to extract useful piecewise information from latticed 𝑘-induction operators, and combine the

piecewise information with Optional Stopping Theorem to obtain a general approach to derive piecewise

bounds over probabilistic programs. Second, we develop algorithms to synthesize piecewise polynomial

bounds, and show that the synthesis can be reduced to bilinear programming in the linear case, and soundly

relaxed to semidefinite programming in the polynomial case. Experimental results show that our approach

generates tight piecewise bounds for a wide range of benchmarks when compared with the state of the art.

1 INTRODUCTION
Probabilistic programming [30, 37, 52] is a programming paradigm that extends classical program-

ming languages with probabilistic statements such as sampling and probabilistic branching, and

provides a powerful modelling mechanism for randomized algorithms [6], machine learning [12], re-

liability engineering [14], etc. Therefore, analysis of probabilistic programs is becoming increasingly

significant, and attracting more and more attention in recent years.

In this work, we consider the quantitative analysis problem that aims at automated approaches

that derive quantitative bounds for probabilistic programs. Common quantitative properties in-

clude expected runtime [1, 28, 34, 35], expected resource consumption [45, 53, 56], sensitivity [2],

assertion probabilities [19, 51, 55], and so forth. Most existing works focus on deriving numerical

bounds instead of solving the semantic equations exactly, as the latter is impossible theoretically

in general. In the literature, various approaches have been proposed to address the quantitative

analysis problem, including template-based constraint solving [15, 16, 18, 31], trace abstraction [50],

sampling [47], etc. Most of these approaches consider to synthesize a monolithic bound over the

whole state space of a probabilistic program of interest, and have the following disadvantages: First,

a monolithic bound is either too conservative (e.g., only very coarse bounds exist) or not succinct

enough (e.g., although tight monolithic bounds exist, the tightness usually requires complicated

polynomials with higher degree). Second, it may be even worse that no monolithic polynomial

bounds exist.

It is straightforward to observe that piecewise bounds are more accurate than monolithic bounds.

Moreover, a recent work [9] demonstrates that probabilistic program analysis requires piecewise

feature. However, the synthesis of piecewise bounds for probabilistic programs is not well investi-

gated in the literature. To our best knowledge, a handful relevant work is by [10]. They propose an

approach for generating (piecewise) invariants to verify user-provided linear bounds for proba-

bilistic programs with discrete probabilistic choices, which is based on Counterexample-Guided

Inductive Synthesis (CEGIS) and template refinement. Another relevant work is [5] that proposes a

data-driven approach that can synthesize piecewise (sub-)invariants over probabilistic programs

with discrete probabilistic choices. Their approach prefers a suitable list of numerical program

features (such as multiplication expressions over variables), which requires prior knowledge of

the program or user’s assistance. Both of these related works require a bound to be verified as an

additional program input when synthesizing (super-/sub-) invariants.

In this work, we propose a novel automated approach that synthesizes piecewise polynomial

bounds for probabilistic programs with discrete probability choices without user-provided bounds
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2 Anon.

or piecewise features to assist the derivation of the piecewise bound. The challenges are that (a)

We need to resolve a good criterion to partition the state space of a probabilistic program into

multiple parts in order to derive the form of the target piecewise bound. (b) We need to devise

efficient algorithms to synthesize piecewise bounds given the criterion. Our detailed contributions

to address these challenges are as follows.

To address the first challenge, we consider latticed 𝑘-induction operators [11, 40]. 𝑘-induction is

a powerful proof tactics in software and hardware verification that generalizes normal inductive

reasoning [22, 23, 38, 49]. Latticed 𝑘-induction [11, 40] further adapts 𝑘-induction to lattices and

has application in probabilistic program analysis [11]. We develop a novel combination between

operators from latticed 𝑘-induction and Optional Stopping Theorem (see the classical Optional

Stopping Theorem (OST) [58, Chapter 10]). Our combination allows to synthesize both upper and

lower bounds for quantitative properties over probabilistic programs without requiring a global

bound of program values (such as non-negativity in [10, 11, 40]). Moreover, the combination itself is

non-trivial, since we observe that an extended version of OST from [57] is needed and the classical

OST does not suffice. As a by-product, we slightly extend existing latticed 𝑘-induction operators.

To address the second challenge, we propose novel algorithms for synthesizing piecewise linear

and polynomial bounds w.r.t our combination of latticed 𝑘-induction and OST. It is important

to observe that the latticed 𝑘-induction involves minimum/maximum operation, and therefore

increases the difficulty to synthesize a bound algorithmically. We first introduce a key improvement

in time efficiency on the unrolling of the 𝑘-induction operators. Then, we show that the synthesis

of piecewise linear bounds can be equivalently transformed into a bilinear programming problem.

A bilinear programming problem is that the variables can be decomposed into two groups so that

within each group of variables the constraints are linear, and is a special non-convex programming

that admits efficient constraint solving [41]. Finally, since even on the linear benchmarks we

require piecewise polynomials to upper/lower bound the quantitative properties, we show that the

synthesis of the more general piecewise polynomial bounds can be soundly relaxed to semidefinite

programming. Experimental results over an extensive set of benchmarks that includes various

benchmarks from the literature show that our approach is capable of generating tight or even

accurate piecewise bounds and can solve benchmarks that previous approaches could not handle.

Technical Contributions. Approaches with latticed 𝑘-induction has inherent combinatorial explo-

sion [11, 40]. To address the difficulty, we propose two techniques. The first is a heuristic selection

of a small part of the functions in the minimum operation of latticed 𝑘-induction. The second is the

sound relaxation that over-approximates the minimum operation with convex combination.

2 PRELIMINARIES
In this section, we briefly review probability theory, define the 𝑘-induction operators, present the

probabilistic loops under consideration, nd finally formulate the problem of interest.

2.1 Probability Theory and Martingales
Consider a probability space (Ω, F , P), where Ω is the sample space, F is a 𝜎-algebra on Ω and

P : F → [0, 1] is a probability measure on the measurable space (Ω, F ). A random variable
is an F -measurable function 𝑋 : Ω → R ∪ {+∞,−∞}, i.e., a function satisfying that for all

𝑑 ∈ R ∪ {+∞,−∞}, {𝜔 ∈ Ω : 𝑋 (𝜔) ≤ 𝑑} ∈ F . The expectation of a random variable 𝑋 , denoted by

E(𝑋 ), is the Lebesgue integral of 𝑋 w.r.t. P, i.e., E(𝑋 ) =
∫
𝑋𝑑P. A filtration of the probability space

(Ω, F , P) is an infinite sequence {F𝑛}∞𝑛=0 such that for every 𝑛, the triple (Ω, F𝑛, P) is a probability
space and F𝑛 ⊆ F𝑛+1 ⊆ F . A stopping time w.r.t. {F𝑛}∞𝑛=0 is a random variable 𝜏 : Ω → N ∪ {0,∞}
such that for every 𝑛 ≥ 0, the event {𝜏 ≤ 𝑛} ∈ F𝑛 , i.e., {𝜔 ∈ Ω : 𝜏 (𝜔) ≤ 𝑛} ∈ F𝑛 . Intuitively, 𝜏 is
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𝐶 ::= skip | 𝑥 := 𝑒 | 𝑥 :≈ 𝜇 | 𝐶;𝐶 | {𝐶} [𝑝] {𝐶} | if (𝜑) {𝐶} else {𝐶}
𝜑 ::= 𝑒 < 𝑒 | ¬𝜑 | 𝜑 ∧ 𝜑 𝑒 ::= 𝑐 | 𝑥 | 𝑒 · 𝑒 | 𝑒 + 𝑒 | 𝑒 − 𝑒

Fig. 1. Syntax of Loop Guard and Body in the form (1)

interpreted as the time at which the stochastic process shows a desired behavior. A discrete-time
stochastic process is a sequence Γ = {𝑋𝑛}∞𝑛=0 of random variables in (Ω, F , P). The process Γ is

adapted to a filtration {F𝑛}∞𝑛=0, if for all 𝑛 ≥ 0,𝑋𝑛 is a random variable in (Ω, F𝑛, P). A discrete-time

stochastic process Γ = {𝑋𝑛}∞𝑛=0 adapted to a filtration {F𝑛}∞𝑛=0 is amartingale (resp. supermartingale,

submartingale) if for all 𝑛 ≥ 0, E( |𝑋𝑛 |) < ∞ and it holds almost surely that E(𝑋𝑛+1 |F𝑛) = 𝑋𝑛 (resp.

E(𝑋𝑛+1 |F𝑛) ≤ 𝑋𝑛 , E(𝑋𝑛+1 |F𝑛) ≥ 𝑋𝑛). See Williams [58] for more details about martingale theory.

Applying martingales for probabilistic programs analysis is well-studied [15, 16, 19].

2.2 𝑘-Induction Operators
To present 𝑘-induction operators, we briefly review lattice theory. Informally, a lattice is a partially

ordered set (𝐸, ⊑) (where 𝐸 is a set and ⊑ is a partial order on 𝐸) equipped with a meet operation ⊓
and a join operation ⊔. Given two elements 𝑢, 𝑣 ∈ 𝐸, the meet 𝑢 ⊓ 𝑣 is defined as the infimum of

{𝑢, 𝑣} and dually the join 𝑢 ⊔ 𝑣 is defined as the supremum of {𝑢, 𝑣}. A partially ordered set (𝐸, ⊑)
is a lattice if for any 𝑢, 𝑣 ∈ 𝐸, we have that both 𝑢 ⊓ 𝑣 and 𝑢 ⊔ 𝑣 exist. Given a lattice (𝐸, ⊑), we say
that an operator𝛷 : 𝐸 → 𝐸 is monotone if for all 𝑢, 𝑣 ∈ 𝐸, 𝑢 ⊑ 𝑣 implies𝛷 (𝑢) ⊑ 𝛷 (𝑣). Throughout
this section, we fix a lattice (𝐸, ⊑) and a monotone operator𝛷 : 𝐸 → 𝐸.

We recall the 𝑘-induction operator given in [11] as follows, which we refer to as the upper
𝑘-induction operator.

Definition 2.1 (Upper 𝑘-Induction Operator [11]). Given any element 𝑢 ∈ 𝐸, the upper 𝑘-induction
operator𝛹𝑢 w.r.t. 𝑢 and the monotone operator𝛷 is defined by:𝛹𝑢 : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊓ 𝑢 .

Below we propose a dual version for the upper 𝑘-induction operator. The intuition is simply to

replace the meet operation with join. We call this dual operator as the lower 𝑘-induction operator.

Definition 2.2 (Lower 𝑘-Induction Operator). Let 𝑢 ∈ 𝐸. The dual 𝑘-induction operator𝛹′𝑢 w.r.t. 𝑢

and the aforementioned monotone operator𝛷 is defined by:𝛹′𝑢 : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊔ 𝑢 .

Remark 1. Alterative formulation of the 𝑘-induction operators have also been proposed in [40].
In Appendix A, We show that these formulation are essential equivalent to the definitions adopted in
this work. Therefore, in the rest of this paper, we focus exclusively on the upper and lower 𝑘-induction
operators defined above. □

2.3 Probabilistic Loops
In this work, we use simple probabilistic while loops of the form (1) for easing the explanation of

our basic idea, and will discuss how to extend our approach to general probabilistic while loops

like nested loops without substantial changes in Section 5.2. Below we define the class of single

probabilistic loops.

Syntax. A probabilistic while loop takes the form

while (𝜑) {𝐶} (1)

where 𝜑 is the loop guard and 𝐶 is the loop body without loops. Formally, the loop guard 𝜑 and

loop body 𝐶 are generated by the grammar in Figure 1, where 𝑥 is a program variable taken
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from a countable set Vars of variables, 𝑐 ∈ R is a real constant, 𝑒 is an arithmetic expression

that involves addition and multiplication, 𝜑 is a formula over program variables that is a Boolean

combination of arithmetic inequalities, and 𝜇 is a predefined probability distribution. In this work,

we consider 𝜇 to be a finite discrete probability distribution (i.e., distributions with a finite support)

such as Bernoulli distribution and discrete uniform distribution. The semantics of skip, assignment,

sequential composition, conditional, and while statement can be understood as their counterparts

in imperative programs. The semantics of a probabilistic choice {𝐶1}[𝑝]{𝐶2} is that flips a coin
with bias 𝑝 ∈ [0, 1] and executes the statement 𝐶1 if the coin yields head, and 𝐶2 otherwise. The

semantics of a sampling statement 𝑥 :≈ 𝜇 samples a value according to the predefined distribution

𝜇 and assigns the value to the variable 𝑥 .

Given a probabilistic while loop, a program state is a function that maps every program variable

to a real number. We denote by 𝑆 the set of program states. The initial state for a probabilistic

while loop is denoted by 𝑠∗. The evaluation 𝜑 (𝑠) of a logical formula 𝜑 and the evaluation 𝑒 (𝑠) of
an arithmetic expression 𝑒 over a program state 𝑠 are defined in the standard way. 𝜑 (𝑠) = true is
denoted by 𝑠 |= 𝜑 .

Semantics. The semantics of a probabilistic loop of the form (1) can be interpreted as a discrete-time

Markov chain, where the state space is the set of all program states 𝑆 , and the transition probability

function P is given by the loop body𝐶 and determines the probability P(𝑠, 𝑠′) for 𝑠, 𝑠′ ∈ 𝑆 , meaning

the probability producing output state 𝑠′ from input state 𝑠 . If the loop guard 𝜑 (𝑠) evaluates to false,
then we treat the program state 𝑠 as a sink state, that is P(𝑠, 𝑠) = 1 and P(𝑠, 𝑠′) = 0 for 𝑠 ≠ 𝑠′.
Given the Markov chain of a probabilistic while loop as described above, a path is an infinite

sequence 𝜋 = 𝑠0, 𝑠1, . . . , 𝑠𝑛, . . . of program states such that P(𝑠𝑛, 𝑠𝑛+1) > 0 for all 𝑛 ≥ 0. Intuitively,

each 𝑠𝑛 corresponds to the state right before the (𝑛 + 1)-th loop iteration. A program state 𝑠 is

reachable from an initial program state 𝑠∗ if there exists a path 𝜋 = 𝑠0, 𝑠1, . . . such that 𝑠0 = 𝑠
∗
and

𝑠𝑛 = 𝑠 for some 𝑛 ≥ 0, and define Reach(𝑠∗) as the set of reachable states starting from the initial

state 𝑠∗. By the standard cylinder construction (see e.g. [4, Chapter 10]), the Markov chain with a

designated initial program state 𝑠∗ for the probabilistic loop induces a probability space over paths

and reachable states. We denote the probability measure in this probability space by P𝑠∗ and its

related expectation operator by E𝑠∗ .

Problem formulation. Given a probabilistic loop 𝑃 in the form (1), assuming that 𝑃 terminates with

probability 1, a return function 𝑓 is a function 𝑓 : 𝑆 → R that is used to specify the output of the

loop 𝑃 in the sense that when the loop 𝑃 terminates at a program state 𝑠 , then the return value

is given as 𝑓 (𝑠). A return function is piecewise polynomial if it can be expressed as a piecewise

polynomial expression in program variables. We denote by 𝑋𝑓 the random variable for the return

value of the loop given a return function 𝑓 . In this work, we consider the following problem: Given

a probabilistic while loop 𝑃 in the form (1) and a piecewise polynomial return function 𝑓 , synthesize

piecewise upper and lower bounds on the expected value of 𝑋𝑓 .

3 AN OVERVIEW OF OUR APPROACH
Our approach falls in the background of (latticed) 𝑘-induction [11, 40]. 𝑘-induction is an induction

principle that generalizes the standard induction by considering 𝑘 consecutive transitions together

in the inductive condition. Roughly speaking, given a predicate 𝑃 to be proved via induction, the

𝑘-induction principle considers the inductive condition as (𝑃 (𝑥1) ∧ · · · ∧ 𝑃 (𝑥𝑘 )) → 𝑃 (𝑥𝑘+1), for
which the premise 𝑃 (𝑥1)∧· · ·∧𝑃 (𝑥𝑘 ) means that the predicate 𝑃 holds for 𝑘 consecutive transitions,

and the whole condition states that if 𝑃 holds for 𝑘 consecutive transitions, then 𝑃 holds after these

consecutive transitions. In particular, 1-induction coincides with the usual inductive condition.
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Latticed 𝑘-induction [11] adapts the idea of 𝑘-induction to lattices for deriving bounds of fixed

points. It considers 𝑘 consecutive applications of a monotone operator over a lattice and applies

the meet/join operations iteratively in the 𝑘 consecutive applications. The parameter 𝑘 here does

not matter in the monotone operator (see Definitions 2.1 and 2.2), but is the number of iterative

applications (see Definition 4.5) when the operator is applied. In this work, we propose a novel

combination of latticed 𝑘-induction operators and Optional Stopping Theorem (OST), and propose

novel algorithms for deriving piecewise linear and polynomial bounds on probabilistic programs.

We illustrate the main idea of our approach via the following example, which is a discretized

version of the Growing Walk in Beutner et al. [12]:

Growing Walk: while ( 0 ≤ 𝑥 ) {{𝑥 := 𝑥 + 1;𝑦 := 𝑦 + 𝑥} [0.5] {𝑥 := −1}}
The example models a simple random walk where the step size 𝑥 is increased by 1 with one half

probability, and set to −1 with the other half probability. The program terminates when 𝑥 becomes

negative. The objective is to analyze the expected value of the return function 𝑓 (𝑥,𝑦) = 𝑦, which
corresponds to the total traveled distance 𝑦, after the program terminates. We take the synthesis of

piecewise linear upper bound as an example.

Step 1: Establishing 𝑘-induction operators. Let𝛷 𝑓 be the operator

𝛷 𝑓 (ℎ(𝑥,𝑦)) := [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] (0.5 · ℎ(𝑥 + 1, 𝑦 + 𝑥 + 1) + 0.5 · ℎ(−1, 𝑦))
for function ℎ : R × R → R, and [𝑥 ≥ 0] denotes the Iverson-bracket of the predicate 𝑥 ≥ 0,

which evaluates to 1 if 𝑥 ≥ 0 holds at state 𝑠 and 0 otherwise. Intuitively,𝛷 𝑓 outputs 𝑦 if the loop

guard 𝑥 ≥ 0 is violated, and the expected value of ℎ(𝑥,𝑦) after the execution of the loop body

{𝑥 := 𝑥 + 1;𝑦 := 𝑦 + 𝑥} [0.5] {𝑥 := −1} otherwise. We introduce the 𝑘-induction operator 𝛹ℎ

(c.f. [11]), defined by𝛹ℎ (𝑔) := min{𝛷 𝑓 (𝑔), ℎ} for any fixed function ℎ : R × R → R. Informally,

when applied to a function 𝑔, the operator𝛹ℎ (𝑔) pulls𝛷 𝑓 (𝑔) down via the pointwise minimum

operation with ℎ.

Step 2: Applying 𝑘-induction condition. Let 𝑘 = 2. We unroll the loop 𝑃 (𝑘 = 2) times and examine

the (𝑘 = 2)-induction condition to upper-bound the expected value of 𝑋𝑓 . The resultant inductive

condition from our approach is as follows (here ≤ is taken pointwise), which is obtained by applying
the operator𝛹ℎ to a candidate bound function ℎ once (i.e., 𝑘 − 1 times):

𝛷 𝑓 (𝛹ℎ (ℎ)) ≤ ℎ (2)

We show that under a mild assumption and by using OST, if we have a function ℎ that fulfills this

inductive condition, then 𝛹ℎ (ℎ) is an upper bound for the expected value of 𝑋𝑓 , for which the

pointwise minimum in𝛹ℎ (ℎ) = min{𝛷 𝑓 (ℎ), ℎ} is the key to derive the piecewise partition of the

bound apart from loop unrolling.

Step 3: Simplifying the 𝑘-induction condition. Our approach synthesizes a function ℎ w.r.t the

condition (2). To the end, we reduce the condition (2) to the form below with four functions ℎ𝑖
(1 ≤ 𝑖 ≤ 4) combined with a minimum operation:

min{ℎ1, ℎ2, ℎ3, ℎ4} ≤ ℎ, (3)

where ℎ1 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · ℎ(−1, 𝑦)), ℎ2 = [𝑥 < 0] · 𝑦 + [𝑥 ≥
0]·(0.25·ℎ(−1, 𝑦+𝑥+1)+0.25·ℎ(𝑥+2, 2𝑥+𝑦+3)+0.5·ℎ(−1, 𝑦)),ℎ3 = [𝑥 < 0]·𝑦+[𝑥 ≥ 0]·(0.25·ℎ(−1, 𝑦+
𝑥 +1) +0.25 ·ℎ(𝑥 +2, 2𝑥 +𝑦+3) +0.5 ·𝑦) and ℎ4 = [𝑥 < 0] ·𝑦+ [𝑥 ≥ 0] · (0.5 ·ℎ(𝑥 +1, 𝑥 +𝑦+1) +0.5 ·𝑦).
Using our algorithm, we employ a loop unrolling based approach to efficiently derive the simplified

constraint (3) and we show that each ℎ𝑖 results from the unfolding of the loop up to depth 𝑘 = 2

and corresponds to a loop-free program from the unfolding. See Stage 2 in Section 5 for the details.
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Step 4: Solving the simplified (𝑘 = 2)-induction condition. After Step 3, we obtain the constraint

in (3) and further synthesize the function ℎ in (3) by assuming a template for ℎ and solving the

template w.r.t. the constraint (3). Every synthesized function ℎ leads to a piecewise upper bound

𝛹ℎ (ℎ) = min{𝛷 𝑓 (ℎ), ℎ} for the expected value of 𝑋𝑓 . Since this constraint includes a minimum

operation, it is non-convex and non-trivial to solve. Our approach reduces the synthesis problem

with a linear template to bilinear programming, and obtains a piecewise linear upper bound

[𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 2), which is actually the exact expected value of 𝑦. Similarly, our

method can also obtain a piecewise linear lower bound [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 13/8).

4 PIECEWISE BOUNDS VIA LATTICED 𝑘-INDUCTION
In this section, we propose a novel combination of OST and latticed 𝑘-induction operators to derive

bounds for the expected value of 𝑋𝑓 . We first introduce expectation functions over which we

construct concrete 𝑘-induction operators, then define potential functions, and finally show the

soundness of potential functions to derive expectation bounds via OST. Throughout this section,

we fix a probabilistic while loop 𝑃 = while(𝜑){𝐶} in the form of (1) and a return function 𝑓 .

4.1 Expectation Functions
Definition 4.1 (Expectation Functions). An expectation function is a function ℎ : 𝑆 → R that

assigns to each program state a real value. The partial order ⪯ over expectation functions is

defined in the pointwise fashion, i.e., ℎ1 ⪯ ℎ2 ⇐⇒ ∀𝑠 ∈ 𝑆, ℎ1 (𝑠) ≤ ℎ2 (𝑠). We denote the set of

expectation functions by E and the lattice by (E, ⪯), for which the meet operation ⊓ in the lattice

is given by ℎ1 ⊓ ℎ2 := min{ℎ1, ℎ2},where min is the pointwise minimum on functions, i.e., ∀𝑠 ∈
𝑆,min{ℎ1, ℎ2}(𝑠) = min{ℎ1 (𝑠), ℎ2 (𝑠)}, and the join operation ⊔ is given by ℎ1 ⊔ ℎ2 := max{ℎ1, ℎ2},
where max is the pointwise maximum.

Informally, an expectation function ℎ is that for each program state 𝑠 ∈ 𝑆 , the value ℎ(𝑠) bounds
the expected value of 𝑋𝑓 after the execution of the while loop 𝑃 when the loop starts with the

program state 𝑠 . Although one observes that the partially ordered set (E, ⪯) with the meet and join

operations defined above is a lattice, we do not use lattice properties in our approach.

To instantiate the 𝑘-induction operators for expectation functions, we construct the monotone

operator for the lattice (E, ⪯). To this end, we first define the notion of pre-expectation as follows,

wherein [𝜑] denotes the Iverson-bracket of 𝜑 . Notice that the random assignment command

𝑥 :≈ 𝜇 (where 𝜇 is a discrete distribution of finite support) can be written in an iterative style of

{𝐶1} [𝑝] {𝐶2}, so that we define pre-expectation without random assignment commands.

Definition 4.2 (Pre-expectation [15, 56]). Given an expectation function ℎ : 𝑆 → R. We define its

pre-expectation over a loop-free program 𝑄 , 𝑝𝑟𝑒𝑄 (ℎ) : 𝑆 → R, recursively on the structure of 𝑄 :

• 𝑝𝑟𝑒𝑄 (ℎ) := ℎ, if 𝑄 ≡ skip.

• 𝑝𝑟𝑒𝑄 (ℎ) := ℎ[𝑥/𝑒], if 𝑄 ≡ 𝑥 := 𝑒 , where ℎ[𝑥/𝑒] denotes ℎ[𝑥/𝑒] (𝑠) = ℎ(𝑠 [𝑥/𝑒]) with
𝑠 [𝑥/𝑒] (𝑥) = 𝑒 (𝑠) and 𝑠 [𝑥/𝑒] (𝑦) = 𝑠 (𝑦) for all 𝑦 ∈ Vars\{𝑥}.
• 𝑝𝑟𝑒𝑄 (ℎ) := 𝑝𝑟𝑒𝑄1

(𝑝𝑟𝑒𝑄2
(ℎ)), if 𝑄 ≡ 𝑄1;𝑄2.

• 𝑝𝑟𝑒𝑄 (ℎ) := 𝑝 · 𝑝𝑟𝑒𝑄1
(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝑄2

(ℎ), if 𝑄 ≡ {𝑄1} [𝑝] {𝑄2}.
• 𝑝𝑟𝑒𝑄 (ℎ) := [𝜙] · 𝑝𝑟𝑒𝑄1

(ℎ) + [¬𝜙] · 𝑝𝑟𝑒𝑄2
(ℎ), if 𝑄 ≡ if (𝜙) {𝑄1} else {𝑄2}.

The intuition of pre-expectation is that given an expectation function ℎ, the pre-expectation

𝑝𝑟𝑒𝑄 computes the expected value 𝑝𝑟𝑒𝑄 (ℎ) of ℎ after the execution of the command 𝑄 . With

pre-expectation, we then define the monotone operator to be the characteristic function𝛷 𝑓 of the

probabilistic loop 𝑃 with respect to the return function 𝑓 as follows.
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For the rest of this section, we fix an initial state 𝑠∗ and override the set 𝑆 of program states with

Reach(𝑠∗) in Definition 4.1 so that we consider expectation functions restricted to Reach(𝑠∗).

Definition 4.3 (Characteristic Function [15, 34]). The characteristic function𝛷 𝑓 : E → E is defined

by𝛷 𝑓 (ℎ) := [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (ℎ). The monotone operator for the lattice (E, ⪯) is defined as𝛷 𝑓 .

Informally, the characteristic function𝛷 𝑓 outputs 𝑓 if the loop guard 𝜑 is violated and the loop

terminates in the next step, and the pre-expectation of ℎ w.r.t. the loop body 𝐶 otherwise. It is

straightforward to verify the monotonicity of𝛷 𝑓 . In the following, we omit the subscript 𝑓 in𝛷 𝑓 if

it is clear from the context. Given the monotone operator, we establish the concrete 𝑘-induction

operators as follows.

Definition 4.4 (𝑘-Induction Operators for (E, ⪯)). Given an expectation function ℎ, the upper (resp.
lower) 𝑘-induction operator 𝛹ℎ : E → E (resp.𝛹

′
ℎ : E → E) is defined by𝛹ℎ (𝑔) = min{𝛷 𝑓 (𝑔), ℎ}

(resp.𝛹
′
ℎ (𝑔) = max{𝛷 𝑓 (𝑔), ℎ}) for arbitrary expectation function 𝑔 ∈ E.

Note that 𝑘 does not explicitly appear within the operators; rather, it denotes the number of

times these operators are iteratively applied.

4.2 Potential Functions
We define potential functions as expectation functions satisfying the 𝑘-induction conditions. These

potential functions serve as candidate bounds to be synthesized.

Definition 4.5 (Potential Functions). Let 𝑘 be a positive integer. A 𝑘-upper (resp. 𝑘-lower) potential
function is an expectation function ℎ that satisfies the upper (resp. lower) 𝑘-induction condition

𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ (resp.𝛷 𝑓 ((𝛹

′
ℎ)𝑘−1 (ℎ)) ⪰ ℎ), respectively.

We apply Optional Stopping Theorem (OST) to address our soundness results. We find that the

classical OST [24, 58] cannot handle our problem due to the requirement of bounded step-wise

difference (see Appendix B.1), while the OST variant proposed in [57] can handle our problem.

Theorem 4.6 (Extended OST [57]). Let {𝑋𝑛}∞𝑛=0 be a supermartingale adapted to a filtration
F = {F𝑛}∞𝑛=0 and 𝜏 be a stopping time w.r.t the filtration F . Suppose there exist positive real numbers
𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3 such that 𝑐2 > 𝑐3 and

(a) For all sufficiently large natural numbers 𝑛, it holds that P(𝜏 > 𝑛) ≤ 𝑐1 · 𝑒−𝑐2 ·𝑛 .
(b) For every natural number 𝑛 ≥ 0, it holds almost-surely that |𝑋𝑛+1 − 𝑋𝑛 | ≤ 𝑏1 · 𝑛𝑏2 · 𝑒𝑐3 ·𝑛 .

Then we have that E( |𝑋𝜏 |) < ∞ and E(𝑋𝜏 ) ≤ E(𝑋0).

Under certain side conditions that guarantee the validity of the extended OST, the potential

functions provide upper and lower bounds on the expected value of 𝑋𝑓 . Before presenting this

result, we introduce some concepts that capture the magnitude of updates to program variables

between two consecutive steps.

Definition 4.7 (Termination Time). The termination time 𝑇 of the loop 𝑃 is the random variable

that for any path of the loop, measures the number of total loop iterations in the path.

Definition 4.8 (Uniform Amplifier). Suppose that the loop 𝑃 is affine, i.e., all conditions and

assignments within the loop are affine functions of the program variables. For each program variable

𝑥 , let 𝑥𝑛 denote the random variable representing the value of 𝑥 at the 𝑛-th iteration of the loop. A

uniform amplifier 𝑐 is a constant 𝑐 > 0 such that, for all 𝑛 ≥ 0, |𝑥𝑛+1 | ≤ 𝑐 · |𝑥𝑛 | + 𝑎 holds for some

fixed constant 𝑎.
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Definition 4.9 (Bounded Update). The loop 𝑃 has the bounded-update property if there exists

a real constant 𝑎 > 0 such that for each program variable 𝑥 , |𝑥𝑛+1 − 𝑥𝑛 | ≤ 𝑎 for every 𝑛 ≥ 0

(see Definition 4.8 for the meaning of 𝑥𝑛).

Remark 2. Note that any program satisfying the bounded update property also admits a uniform
amplifier with 𝑐 = 0.

We now present the soundness theorem of 𝑘-upper (resp. lower) potential functions. We distin-

guish between affine programs and polynomial programs, as each requires different side conditions

for potential functions to serve as upper or lower bounds. Notably, the side conditions for affine

programs are weaker than those for polynomial programs.

Theorem 4.10. Suppose the loop 𝑃 is affine. Let 𝑘 be a positive integer and ℎ be a polynomial
potential function in the program variables with degree 𝑑 . If there exist real numbers 𝑐1 > 0 and
𝑐2 > 𝑐3 > 0 such that

(P1) there exists a uniform amplifier 𝑐 satisfying 𝑐 ≤ 𝑒𝑐3/𝑑 , and
(P2) the termination time 𝑇 of 𝑃 has the concentration property, i.e., P(𝑇 > 𝑛) ≤ 𝑐1 · 𝑒−𝑐2 ·𝑛 .

hold, then for any initial program state 𝑠∗, we have:

• E𝑠∗ (𝑋𝑓 ) ≤ 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗) holds for any 𝑘-upper potential function ℎ.

• E𝑠∗ (𝑋𝑓 ) ≥ (𝛹
′
ℎ)𝑘−1 (ℎ) (𝑠∗) ≥ ℎ(𝑠∗) holds for any 𝑘-lower potential function ℎ.

Proof Sketch. (See Appendix B.2 for the full proof) Let 𝑠𝑛 be the random variable of the program

state at the 𝑛-th iteration with 𝑠0 = 𝑠
∗
, and let 𝐻 =𝛹

𝑘−1
ℎ (ℎ). A key point is that since 𝐻 is piecewise

polynomial (by the definition of𝛹ℎ) and condition (P1) holds, condition (b) in Theorem 4.6 holds for

process {𝐻 (𝑠𝑛)}𝑛∈N. Combining with the fact that ℎ is a 𝑘-upper potential function, one can further

deduce {𝐻 (𝑠𝑛)}𝑛∈N is a supermartingale. By applying Theorem 4.6, we have E𝑠∗ (𝑋𝑇 ) ≤ E𝑠∗ (𝑋0) (𝑇
is a stopping time), thus E𝑠∗ (𝑋𝑓 ) ≤ E𝑠∗ (𝑋0) = 𝐻 (𝑠∗). The lower case is derived similarly. □

The side condition (P1) for affine programs requires that the loop 𝑃 possesses a uniform amplifier

constant. In contrast, for polynomial programs, a stronger property is needed: the program must

satisfy the bounded update property, which imposes stricter constraints than (P1).

Theorem 4.11. Let 𝑘 be a positive integer. Suppose there exist real numbers 𝑐1 > 0 and 𝑐2 > 0 such
that condition (P1’) loop 𝑃 has the bounded update property; and condition (P2) in Theorem 4.10 holds,
then for any initial program state 𝑠∗, we have

• E𝑠∗ (𝑋𝑓 ) ≤ 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗) holds for any 𝑘-upper potential function ℎ.

• E𝑠∗ (𝑋𝑓 ) ≥ (𝛹
′
ℎ)𝑘−1 (ℎ) (𝑠∗) ≥ ℎ(𝑠∗) holds for any 𝑘-lower potential function ℎ.

Remark 3. See Appendix B.3 for the proof of Theorem 4.11. The concentration condition (P2), which
ensures exponentially decreasing nontermination probabilities as stated in Theorems 4.10 and 4.11,
guarantees that loop 𝑃 terminates almost surely. This condition has been extensively studied in the
literature (see, e.g., [16, 17, 26]). □

According to Theorems 4.10 and 4.11, synthesizing upper and lower bounds reduces to finding

a potential function ℎ that satisfies the conditions outlined in these theorems. However, solving

the 𝑘-upper and 𝑘-lower potential conditions is challenging due to the intricate combination of

minimum and indicator functions involved. In the following sections, we introduce algorithmic

approaches to systematically synthesize these upper and lower bounds.
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5 ALGORITHMS FOR BOUND SYNTHESIS
In this section, we first present algorithms for synthesizing upper and lower bounds for single-loop

programs. We then demonstrate how our approach naturally extends to handle programs containing

nested or sequential loops.

5.1 Algorithms for Probabilistic Single Loops
In this subsection, we present algorithms for synthesizing 𝑘-upper and lower potential functions

that satisfy the conditions specified in Theorem 4.10 and Theorem 4.11, leading to piecewise bounds

on the expected value of 𝑋𝑓 . Below, we consider a fixed probabilistic loop 𝑃 of the form (1) along

with a return function 𝑓 . Due to the space limit, we only illustrate the synthesis procedure for

upper bounds. The case for lower bounds is nearly analogous, obtained by replacing minimum with

maximum and substituting ⪯ by ⪰. The pseudocode for our algorithm is presented in Algorithm 1.

Our approach consists of the following major steps:

Stage 1: Prerequisites Checking and External Inputs. Our algorithm first verifies the side

conditions (P1) and (P2) (respectively, (P1’) and (P2’)) for affine (respectively, polynomial) programs,

as specified by Theorems 4.10 and 4.11. The algorithm also accepts the hyperparameter 𝑘 and a

program invariant as input parameters.

Prerequisites checking.When 𝑃 is affine, condition (P1) is verified by syntactically inspecting the

loop body to identify a positive constant 𝑐3, ensuring that each program variable is amplified by at

most 𝑒𝑐3/𝑑 , up to an additive constant, within a single loop iteration, where 𝑑 denotes the degree

of the polynomial template potential function ℎ (c.f. Stage 2). Condition (P2) is guaranteed either

by synthesizing a difference-bounded ranking supermartingale (dbRSM) that demonstrates the

exponentially decreasing concentration property [16, 17], or by syntactically analyzing probabilistic

branching within the loop to extract a suitable constant 𝑐2 satisfying 𝑐2 > 𝑐3 > 0. For polynomial

programs, condition (P1’)—the bounded update property—is checked via an SMT solver (e.g.,

Z3 [21]), while condition (P2) is ensured analogously to the affine case.

External inputs. Our algorithm requires the following hyperparameters as input: (1) Induction
parameter 𝑘 : We specify a positive real number 𝑘 as the parameter for 𝑘-induction, along with the

initial program state 𝑠∗. (2) Program invariant: We assume the existence of an invariant 𝐼 at the

entry point of the loop, which over-approximates the set of reachable program states Reach(𝑠∗).
That is, for every 𝑠 ∈ Reach(𝑠∗), we have 𝑠 |= 𝐼 . The state space is thus restricted to program states

satisfying 𝐼 , and the relation ⪯ is interpreted over 𝐼 , i.e., ℎ1 ⪯ ℎ2 ⇐⇒ ∀𝑠 |= 𝐼 , ℎ1 (𝑠) ≤ ℎ2 (𝑠). The
rational of this restriction follows from the over-approximation property of 𝐼 . Invariants can be

obtained using external invariant generators, such as [48].

Example 5.1. We take the following example as a running example, which is a discretized version

of the Growing Walk in [12]:

while ( 0 ≤ 𝑥 ) {{𝑥 := 𝑥 + 1;𝑦 := 𝑦 + 𝑥} [0.5] {𝑥 := −1}}
In this example, our goal is to analyze the expected value of 𝑦 upon program termination. We

check the prerequisites and specify the external inputs as follows: (1) Prerequisite Verification: We

find that 𝑐 = 1 serves as a uniform amplifier, satisfying 𝑐 ≤ 𝑒𝑐3/𝑑 with 𝑐3 = ln 1.5 and 𝑑 = 1. The

concentration condition (P2) is also met with 𝑐2 = ln 2. (2) External Inputs: We set 𝑘 = 2, and choose

the invariant 𝐼 = {𝑥 | −1 ≤ 𝑥} with initial state 𝑠∗ = (𝑥,𝑦) = (1, 1). □

Stage 2: Templates and Constraints.After verifying the prerequisites and identifying the external

inputs as described in Stage 1, our algorithm predefines a 𝑑-degree polynomial template ℎ as the

candidate 𝑘-upper potential function for the loop 𝑃 . This template consists of a linear combination
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of all monomials in the program variables of degree at most 𝑑 , where each monomial is multiplied

by an unknown coefficient.

Next, we apply the 𝑘-induction conditions from Definition 4.5, resulting in the constraint

𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ. The presence of min and indicator operators within this constraint complicates di-

rect simplification. To address this, we reformulate the constraint into the formmin{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯
ℎ, where each ℎ𝑖 is free of the minimum operator. Although a brute-force arithmetic expansion can

achieve this transformation (see Appendix C.1 for details), our algorithm employs a more efficient

unfolding strategy, which we outline below.

The unfolding process for constraint simplification: We symbolically unroll the probabilistic loop from

the initial state up to 𝑘 iterations, exploring all possible unfolding strategies. Here, "symbolic" means

that program variables in each program state retain their original variable names and represent

undetermined values. An unfolding strategy operates at each symbolic program state encountered

during the unfolding process (excluding the initial state), and chooses one of three actions: (i) unfold

the loop iteration once more, (ii) terminate the unfolding, or (iii) forced to stop when the total

number of unfoldings reaches 𝑘 . Each unfolding strategy, determined by the choices made at each

unfolding step, yields a loop-free program. Let 𝐶1, . . . ,𝐶𝑚 denote all loop-free programs generated

by applying the above decision process across all possible unfolding strategies. For each loop-free

program 𝐶𝑑 , we compute the pre-expectation 𝑝𝑟𝑒𝐶𝑑
(ℎ) of ℎ with respect to 𝐶𝑑 (see Definition 4.2),

allowing us to equivalently rewrite the constraint𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ as:

min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ, (4)

where each ℎ𝑖 is given by 𝑝𝑟𝑒𝐶𝑑
(ℎ) for some 𝐶𝑑 . According to the computation of pre-expectation

(Definition 4.2), eachℎ𝑖 can be represented asℎ𝑖 =
∑

𝑟 [𝐵𝑖𝑟 ] ·𝑒𝑖𝑟 , where 𝐵𝑖𝑟 is a predicate independent
of the template’s unknown coefficients, and 𝑒𝑖𝑟 is a monolithic polynomial in the program variables,

potentially containing unknown coefficients. Moreover, the 𝐵𝑖𝑟 ’s are pairwise logically disjoint.

The following proposition formally establishes the relationship between the unfolding process

and the 𝑘-induction condition. The proof is provided in Appendix C.2.

Proposition 5.2. The upper 𝑘-induction condition𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ is equivalent to constraint

min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ, where each ℎ𝑖 equals 𝑝𝑟𝑒𝐶𝑑
(ℎ) for some unique𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} from the

unfolding process above.

By Proposition 5.2, the𝑘-induction constraint can be simplified by computing the pre-expectations

of all programs {𝐶1, . . . ,𝐶𝑚} generated by all possible unfolding strategy within 𝑘 loop itera-

tions. Since these programs are structurally similar, we can efficiently compute 𝑝𝑟𝑒𝐶𝑑
(ℎ) for all

𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} simultaneously by traversing the 𝑘-unfolding of the program loop once. This

approach reduces runtime by eliminating excessive and repeated computations.

Illustrative Example of the Unfolding Process. We demonstrate our unfolding process via a simple

but illustrative example as follows:

𝑃 := while ( 𝜑 (𝑥) ) {{𝑥 := 𝑎1𝑥 + 𝑏1} [𝑝] {𝑥 := 𝑎2𝑥 + 𝑏2}} (5)

where 𝑥 is a real-valued program variable, 𝑎𝑖 , 𝑏𝑖 (𝑖 = 1, 2) are real constants, 𝑝 ∈ [0, 1] and 𝜑 (𝑥) is a
guard condition. Let 𝑓 be the return function, and let𝛷 𝑓 be the operator defined as

𝛷 𝑓 (ℎ) (𝑥) := [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] (𝑝 · ℎ(𝑎1𝑥 + 𝑏1) + (1 − 𝑝) · ℎ(𝑎2𝑥 + 𝑏2))

for any function ℎ : R→ R (with 𝑆 = R), where [𝜑] denotes the Iverson bracket for the predicate 𝜑 .

In this example, we consider the 2-induction operator𝛹ℎ for a fixed function ℎ : R→ R, as defined
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in [11]. Specifically, 𝛹ℎ (𝑔) is given by 𝛹ℎ (𝑔) := min{𝛷 𝑓 (𝑔), ℎ}, and the corresponding 2-upper

induction condition is :

𝛷 𝑓 (𝛹ℎ (ℎ)) ≤ ℎ . (6)

According to Proposition 5.2, we simplify this constraint by transforming (6) into the following

form, which expresses the minimum over four functions ℎ𝑖 (1 ≤ 𝑖 ≤ 4):

min{ℎ1, ℎ2, ℎ3, ℎ4} ⪯ ℎ ,
where each ℎ𝑖 corresponds to a loop-free program 𝐶𝑖 generated during the unfolding process up to

depth 𝑘 = 2. All such unfolded programs are summarized in Fig. 2.

(a) Case 1: Program 𝐶1 (b) Case 2: Program 𝐶2

(c) Case 3: Program 𝐶3 (d) Case 4: Program 𝐶4

Fig. 2. Loop-free programs generated by (𝑘 = 2)-induction

We illustrate the unfolding process as follows. Starting from an initial value 𝑥 , if 𝜑 (𝑥) is not
satisfied, the loop terminates immediately and outputs 𝑓 (𝑥). If 𝜑 (𝑥) holds, we proceed to unfold

the loop, resulting in four distinct cases. Due to space constraints, we describe only the first case in

detail here; the remaining three cases are depicted in Fig. 2, with further explanations provided

in Appendix C.3. In Case 1, the loop executes once and transitions to two possible states, 𝑎1𝑥+𝑏1 and
𝑎2𝑥 +𝑏2, after which it terminates. This corresponds to a single unrolling of the loop and terminating
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the unfolding at both resulting symbolic states, yielding the loop-free program𝐶1 as shown in Fig. 2a.

The associated expression is ℎ1 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] (𝑝 · ℎ(𝑎1𝑥 + 𝑏1) + (1 − 𝑝) · ℎ(𝑎2𝑥 + 𝑏2)),
which represents the expected value of ℎ(𝑥) after executing program 𝐶1. Cases 2, 3, and 4 are

derived analogously by unrolling the loop up to two iterations.

Example 5.3. Returning to the running example in Example 5.1, we establish a 1-degree, i.e., linear

template ℎ = 𝑎 ·𝑥 +𝑏 ·𝑦+𝑐 , where 𝑎, 𝑏, 𝑐 are unknown coefficients. We apply 2-induction condition to

synthesize a piecewise linear upper bound. Starting from a symbolic initial program state 𝑠∗ = (𝑥,𝑦),
we unroll the loop once and arrive at two new symbolic program states (𝑥 + 1, 𝑥 +𝑦 + 1) and (−1, 𝑦).
Over each new state, we take the decision separately and the unfolding strategy produces four

loop-free programs. The 𝑝𝑟𝑒𝐶𝑑
(ℎ) w.r.t. these four programs are as follows:

ℎ1 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · ℎ(−1, 𝑦))
ℎ2 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.25 · ℎ(−1, 𝑦 + 𝑥) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · ℎ(−1, 𝑦))
ℎ3 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.25 · ℎ(−1, 𝑦 + 𝑥) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · 𝑦)
ℎ4 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · 𝑦)

(7)

Thus, we have the simplified constraint ∀(𝑥,𝑦) |= 𝐼 ,min{ℎ1, ℎ2, ℎ3, ℎ4} ⪯ ℎ. □

Branch reduction. During the unfolding process used to simplify the latticed 𝑘-induction condition

𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ, the number of resulting functions ℎ𝑖 in (4) grows rapidly with the number of

probabilistic choices in the loop body. This combinatorial growth occurs because, when computing

the pre-expectation for probabilistic branches, the sum of two minimum expressions results in a new

minimum taken over the Cartesian product of the original function sets. To address this issue, we

introduce a heuristic that selects only a small subset of "representative" functions from the complete

set of ℎ𝑖 in (4). Importantly, this approach does not compromise soundness (see Theorems 4.10

and 4.11), as the minimum over any subset is always at least as the minimum over the full set.

Taking the case of 𝑘 = 2 as an example, by definition of operator𝛹ℎ , we have

𝛷 𝑓 (𝛹ℎ (ℎ)) = 𝛷 𝑓 (min{{𝛷 𝑓 (ℎ), ℎ}}

= [¬𝐺] · 𝑓 + [𝐺] ·
𝑛∑︁
𝑖=1

𝑝𝑖 ·min{{𝛷 𝑓 (ℎ(𝑢𝑖 (𝑠))), ℎ(𝑢𝑖 (𝑠))}

where each 𝑝𝑖 denotes a probabilistic choice in the characteristic function𝛷 𝑓 , and 𝑢𝑖 represents

the corresponding state update function under that choice. Instead of enumerating all possible 2
𝑛

combinations in choosing either𝛷 𝑓 (ℎ(𝑢𝑖 (𝑠))) or ℎ(𝑢𝑖 (𝑠)) for each 𝑝𝑖 (to expand into the minimum

form (4)), one could consider combinations that have at most one𝛷 𝑓 (ℎ(𝑢𝑖 (𝑠))) and at most one

ℎ(𝑢𝑖 (𝑠)), so that only a linear number of combinations are considered while retaining soundness.

For the case of 𝑘 > 2, a possible way for relaxation is to recursively consider combinations that

have at most one𝛷 𝑓 (𝛹
𝑘−2
ℎ (ℎ(𝑢𝑖 (𝑠))) and at most one ℎ(𝑢𝑖 (𝑠)).

Stage 3: Transforming to Canonical Form.At this stage, our algorithm transforms the constraint

of the form (4) from Stage 2 into the following canonical form:

[𝐵1] =⇒ min{𝑒11, . . . , 𝑒𝑚1} ≤ ℎ, . . . , [𝐵𝑙 ] =⇒ min{𝑒1𝑙 , . . . , 𝑒𝑚𝑙 } ≤ ℎ (8)

where ℎ is the predefined polynomial template. Each 𝐵 𝑗 ( 𝑗 ∈ {1, ..., 𝑙}) is a conjunction of predicates

over the program variables that does not involve the template’s unknown coefficients, and each 𝑒𝑖 𝑗
is a polynomial expression in these unknown coefficients. The transformation begins by rewriting

the inequality (4) as

min {∑𝑟 [𝐵1𝑟 ] · 𝑒1𝑟 , . . . ,
∑

𝑟 [𝐵𝑚𝑟 ] · 𝑒𝑚𝑟 } ⪯ ℎ (9)
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where, as described previously, each ℎ𝑖 is expressed as ℎ𝑖 =
∑

𝑟 [𝐵𝑖𝑟 ] · 𝑒𝑖𝑟 . Next, for each conjunction

𝐵 =
∧𝑚

𝑖=1 𝐵𝑖𝑟𝑖 – with each 𝐵𝑖𝑟𝑖 taken from the summation

∑
𝑟 [𝐵𝑖𝑟 ] · 𝑒𝑖𝑟 – we obtain the constraint

Ψ𝐵 = [𝐵] =⇒ min
𝑚
𝑖=1 𝑒𝑖𝑟𝑖 ≤ ℎ. The transformed system of inequalities (8) is thus precisely the

set of all such Ψ𝐵 constraints. Infeasible constraints (i.e., those with unsatisfiable 𝐵) are removed,

whenever possible, using an SMT solver such as Z3 [21].

Example 5.4. Continuing from Example 5.3, we convert (7) into its canonical form by partitioning

the state space 𝑆 into two regions: [𝑥 < 0] and [𝑥 ≥ 0], as indicated in (7). Applying Stage 3 and

eliminating unsatisfiable predicates yields the following canonical form:

[𝑥 < 0] =⇒ min{𝑦} ≤ ℎ

[𝑥 ≥ 0] =⇒ min


0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · ℎ(−1, 𝑦)
0.25 · ℎ(−1, 𝑦 + 𝑥 + 1) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · ℎ(−1, 𝑦)
0.25 · ℎ(−1, 𝑦 + 𝑥 + 1) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · 𝑦
0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · 𝑦


≤ ℎ (10)

□

Stage 4: Solving Constraints. Below, we describe our approach for solving the canonical con-

straints given in (8). It is important to note that the presence of the minimum operator in this

canonical form makes the constraint non-convex. To address this, we develop distinct algorithms for

the linear and polynomial cases. In the linear case, where the program is affine (i.e., all conditions

and assignments are linear), we employ a linear template for the 𝑘-upper potential function ℎ. In

the polynomial case, where the program may be non-affine, we utilize a polynomial template.

Solving constraints (linear case). In our algorithm for the linear case, we require that the return

function be piecewise linear and that the invariant be affine in the program variables. We first

eliminate the minimum operator in (8) by considering its negation. This allows us to transform the

constraint into a set of bilinear constraints using Motzkin’s Transposition Theorem, which can

then be solved with off-the-shelf bilinear programming solvers such as Gurobi.
Below, we present a variant of Motzkin’s Transposition Theorem [43], which will be utilized in

the subsequent analysis. The proof is provided in Appendix C.4.

Theorem 5.5 (Motzkin’s Transposition Theorem [43]). Let 𝑆 = (𝐴1 · x + b1 ≤ 0) and 𝑇 =

(𝐴2 · x + b2 < 0) be systems of linear inequalities, where 𝐴1 = (𝛼𝑖, 𝑗 ) ∈ R𝑚×𝑛 and 𝐴2 = (𝛼𝑚+𝑖, 𝑗 ) ∈
R𝑘×𝑛 are real coefficient matrices, b1 = (𝛽1, ...𝛽𝑚)⊤ and b2 = (𝛽𝑚+1, ...𝛽𝑚+𝑘 )⊤ are real vectors, and
x = (𝑥1, ...𝑥𝑛)⊤. If 𝑆 is satisfiable, then 𝑆 ∧𝑇 is unsatisfiable if and only if there exist non-negative
real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 , with at least one 𝜆𝑖 for 𝑖 ∈ {𝑚 + 1, ...,𝑚 + 𝑘} being nonzero, such that:

𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) = 0, . . . ,

𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) = 0, (
𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛽𝑖 ) − 𝜆0 = 0. (11)

Remark 4. Note that, since 𝜆𝑖 ≥ 0 for 0 ≤ 𝑖 ≤ 𝑚 + 𝑘 , the requirement that at least one 𝜆𝑖 for
𝑖 ∈ {𝑚 + 1, . . . ,𝑚 + 𝑘} is nonzero can be equivalently encoded as the linear constraint

∑𝑚+𝑘
𝑖=𝑚+1 𝜆𝑖 > 0.

In what follows, we demonstrate how to apply Theorem 5.5 to solve the canonical constraints (8).

We begin by conjunct the affine invariant 𝐼 with the antecedent predicates in (8) and eliminating

any constraints with unsatisfiable antecedents, resulting in

[𝐼 ∧ 𝐵 𝑗 ] =⇒ min{𝑒1𝑗 , 𝑒2𝑗 , ..., 𝑒𝑚𝑗 } ≤ ℎ for 𝑗 ∈ {1, 2, . . . , 𝑙} , (12)
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where we assume that each 𝐼 ∧ 𝐵 𝑗 is satisfiable. For each 𝑗 , we have(
[𝐼 ∧ 𝐵 𝑗 ] =⇒ min{𝑒1𝑗 , 𝑒2𝑗 , ..., 𝑒𝑚𝑗 } ≤ ℎ

)
holds

⇐⇒
(
[𝐼 ∧ 𝐵 𝑗 ] ∧

(
∧𝑚𝑖=1 (𝑒𝑖 𝑗 > ℎ)

) )
is not satisfiable [Apply Thm 5.5]

⇐⇒ exists nonnegative real vector 𝝀𝒋 = (𝜆0, 𝑗 , . . . , 𝜆𝑚 𝑗+𝑘 𝑗 , 𝑗 ),
s.t. (𝜆𝑚 𝑗+1, 𝑗 , . . . , 𝜆𝑚 𝑗+𝑘 𝑗 , 𝑗 ) ≠ 0, and eq. (11) holds.

The second equivalence follows from the Motzkin’s Transposition Theorem by setting 𝑆 = 𝐼 ∧ 𝐵 𝑗

and 𝑇 =
(
∧𝑚𝑖=1 (𝑒𝑖 𝑗 > ℎ)

)
for each 𝑗 ∈ {1, 2, . . . , 𝑙}. Note that (11) constitutes a bilinear constraint

problem, as its nonlinearity arises solely from the products of unknown template coefficients and

the variables 𝝀𝒋 . Our approach aggregates all such bilinear constraints and utilizes off-the-shelf

bilinear solvers to obtain concrete solutions for the template ℎ.

Example 5.6. Continuing from Example 5.4, recall that we choose 𝑥 ≥ −1 as the invariant. For
the constraint (10), substituting ℎ(𝑥,𝑦) with the template 𝑎𝑥 + 𝑏𝑦 + 𝑐 and considering its negation

as previously illustrated, we obtain the following inequalities:

−𝑥 ≤ 0 0.5(𝑎 − 𝑏)𝑥 − 0.5𝑏 < 0 0.75(𝑎 − 𝑏)𝑥 − (𝑏 − 0.25𝑎) < 0

0.75(𝑎 − 𝑏)𝑥 + 0.5(𝑏 − 1)𝑦 + (0.5𝑐 − 0.25𝑎 − 𝑏) < 0 0.5(𝑎 − 𝑏)𝑥 + 0.5(𝑏 − 1)𝑦 + 0.5(𝑐 − 𝑎 − 𝑏) < 0.

Then by Theorem 5.5, the constraint (10) is equivalent to solving the following set of bilinear

constraints involving the unknown coefficients 𝑎, 𝑏, and 𝑐 .

∃𝜆0 ≥ 0, 𝜆1 ≥ 0, · · · , 𝜆5 ≥ 0 s.t. (𝜆2 ≠ 0 ∨ 𝜆3 ≠ 0 ∨ 𝜆4 ≠ 0 ∨ 𝜆5 ≠ 0)∧
0 = (−1) · 𝜆1 + 0.5(𝑎 − 𝑏) · 𝜆2 + 0.75(𝑎 − 𝑏) · 𝜆3 + 0.75(𝑎 − 𝑏) · 𝜆4 + 0.5(𝑎 − 𝑏) · 𝜆5 ∧
0 = 0.5(𝑏 − 1) · 𝜆4 + 0.5(𝑏 − 1) · 𝜆5 ∧
0 = −0.5𝑏 · 𝜆2 − (𝑏 − 0.25𝑎) · 𝜆3 + (0.5𝑐 − 0.25𝑎 − 𝑏) · 𝜆4 + 0.5(𝑐 − 𝑎 − 𝑏) · 𝜆5 − 𝜆0 . □

Our algorithm utilizes bilinear solvers to address the derived bilinear constraints. Since these

constraints define only a feasible region, we heuristically select an objective function to guide the

solver toward solutions that yield tighter upper bounds. Specifically, we minimize ℎ(𝑠∗), where 𝑠∗
is a designated initial program state of interest. Once the template coefficients for ℎ are determined

(yielding a candidate ℎ∗), we reconstruct the piecewise linear upper bound by applying the upper

𝑘-induction operator𝛹ℎ∗ iteratively 𝑘 − 1 times, resulting in𝛹
𝑘−1
ℎ∗ (ℎ∗). We claim that our linear

bound algorithm is complete in the sense that the reduction to bilinear programming preserves the

original 𝑘-induction condition.

Example 5.7. Continuing with Example 5.6, we use the objective function ℎ = 𝑎𝑥 +𝑏𝑦 +𝑐 with the

initial state 𝑠∗ = (𝑥,𝑦) = (1, 1). Solving the optimization yields the candidate ℎ∗ (𝑥,𝑦) = 𝑥 + 𝑦 + 2.
We then reconstruct the piecewise upper bound by applying𝛹ℎ∗ once, resulting in the upper bound

[𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 2).

Solving constraints (polynomial case). In our algorithm for the polynomial case, we assume that

the return function is piecewise polynomial and that the invariant is a polynomial predicate over

the program variables. We design a sound approach that relaxes the 𝑘-induction constraint and

reduces the relaxed formulation to a semidefinite programming (SDP) problem using Putinar’s

Positivstellensatz [46]. This relaxation guarantees that the synthesized upper bound ℎ satisfies the

original 𝑘-induction condition (see Definition 4.5). The algorithm is described as follows.

First, for each constraint in the canonical form (8), namely [𝐵 𝑗 ] =⇒ min{𝑒1𝑗 , . . . , 𝑒𝑚𝑗 } ≤ ℎ
for 𝑗 ∈ {1, . . . , 𝑙}, we relax the constraint by replacing the minimum operator with a convex

combination of the terms {𝑒𝑖 𝑗 }𝑚𝑖=1. This results in the following relaxed form:

[𝐵 𝑗 ] =⇒ ∑𝑚
𝑖=1𝑤𝑖 · 𝑒𝑖 𝑗 ≤ ℎ, , 𝑗 ∈ {1, . . . , 𝑙} (13)
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where each weight 𝑤𝑖 ≥ 0 and the set of weights satisfies

∑𝑚
𝑖=1𝑤𝑖 = 1. Various forms of weight

combinations {𝑤𝑖 }𝑚𝑖=1 can be employed, such as uniformweights (where each𝑤𝑖 = 1/𝑚) or randomly

generated weights normalized to sum to one. This relaxation is sound: any function ℎ and set

{𝑒𝑖 𝑗}𝑚𝑖=1 that satisfy the relaxed constraint (13) will also satisfy the original canonical form (8). This

follows from the fact that

∑𝑚
𝑖=1𝑤𝑖 · 𝑒𝑖 𝑗 ≤ ℎ =⇒ min

𝑖∈{1,...,𝑚}
{𝑒𝑖 𝑗 } ≤ ℎ.

Next, we conjunct the invariant 𝐼 with each constraint in (13), resulting in the following form:∧
𝑗∈{1,...,𝑙 }

[𝐼 ∧ 𝐵 𝑗 ] =⇒
𝑚∑︁
𝑖=1

𝑤𝑖 · 𝑒𝑖 𝑗 ≤ ℎ, (14)

We then apply Putinar’s Positivstellensatz [46], following previous work [16, 57], to generate

constraints on the unknown coefficients, which are solved using off-the-shelf SDP solvers (see Ap-

pendix C.5 for details). As these constraints define only a feasible region, we employ a heuristic

objective function to guide the solver towards tighter upper bounds. Specifically, we minimize∑
𝑖 ℎ(𝑠∗𝑖 ), where 𝑠∗𝑖 are selected initial program states of interest. After obtaining the optimal

solution ℎ∗ from the SDP solver, we reconstruct the piecewise polynomial upper bound𝛹
𝑘−1
ℎ∗ (ℎ∗)

by iteratively applying the upper 𝑘-induction operator𝛹ℎ∗ to ℎ
∗
for a total of 𝑘 − 1 times.

Algorithm 1: Synthesizing Bounds

Input :Probabilistic loop 𝑃 in the form of (1) and a return function 𝑓

Output :Piecewise bounds for the expected value of 𝑋𝑓 upon termination of 𝑃

Prerequisites Checking and External Inputs:

(a) Prerequisites Checking: Verify the prerequisites in Theorem 4.10 (Theorem 4.11).

(b) External Inputs: Generate an invariant 𝐼 , select parameter 𝑘 and specify initial program state 𝑠∗.
Templates and Constraints:

(a) Predefining a (monolithic) polynomial template ℎ.

(b) Unfolding the loop within 𝑘 times and calculate 𝑝𝑟𝑒𝐶𝑑
(ℎ) for all 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} (generated by

our unfolding process) to obtain the constraint min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ.
Transforming to Canonical Form:

Transform the constraints (4) into the form of (8) through an iterative approach and obtain 𝑙 canonical

constraints;

Constraints Solving:

if the loop 𝑃 is linear and the template ℎ is linear then

𝐶𝑜𝑛𝑠 ← ∅; ⊲ Linear Case

for 𝑗 ← 1 to 𝑙 do

Extract the coefficients of the variables from canonical-formed constraints;

Construct bilinear constraints 𝐾𝑗 with auxiliary variables 𝝀 𝑗 ;

𝐶𝑜𝑛𝑠 ← 𝐶𝑜𝑛𝑠 ∪ 𝐾𝑗 ;

end

Call bilinear solver to solve 𝐶𝑜𝑛𝑠 and obtain the piecewise bound with the solution ℎ∗

else

(a) Soundly relax the original canonical constraints (8) into (14). ⊲ Polynomial Case

(b) Call SDP solver to solve and obtain the piecewise bound with ℎ∗.
end

Correctness. Our algorithms are guaranteed to produce correct bounds by Theorems 4.10 and 4.11.

The Prerequisites Checking stage ensures that all prerequisites in Theorem 4.10 and Theorem 4.11 are

met, and the function ℎ is determined according to the 𝑘-induction conditions (see Definition 4.5).
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Additionally, the invariants we use over-approximate the set of reachable program states, thereby

preserving the soundness of our approach. Specifically, our linear bound algorithm is both sound

and complete in the sense that the reduction to bilinear programming exactly preserves the original

𝑘-induction condition. In the polynomial case, our algorithm employs a sound relaxation, which

likewise guarantees the correctness of the synthesized bounds.

5.2 Extensions: Handling Probabilistic Programs with Multiple Loops
Below, we describe the extension of our approach to probabilistic programs with multiple loops,

including both sequential compositions of probabilistic loops and nested loops. For brevity, we

focus on the synthesis of upper bounds; the synthesis of lower bounds is entirely analogous.

Sequential Composition. For a sequential composition 𝑃 = 𝑃1; . . . ; 𝑃𝑛 of probabilistic loops 𝑃1, . . . , 𝑃𝑛
with a return function 𝑓 , our method analyzes each loop component in reverse order. To illustrate

the approach, we focus on the case 𝑃 = 𝑃1; 𝑃2. Given a 𝑘-induction parameter 𝑘 , the procedure for

synthesizing upper bounds proceeds as follows:

• Begin by computing a piecewise upper bound ℎ2 for the expected value of 𝑓 after the

execution of loop 𝑃2.

• Then, treat ℎ2 as the return function for 𝑃1 and compute its piecewise upper bound, resulting

in the final bound ℎ1 for the entire composition.

This backward compositional reasoning can be systematically extended to compositions with

more than two loops.

Nested Loops. To address nested loops, we incorporate our approach with the methods proposed

in [26, 27], applying 𝑘-induction exclusively to the innermost loop and 1-induction to the outer

loops. Since the innermost loop can be unfolded independently of the outer loops, we are able to

derive tight piecewise bounds for the inner loop via 𝑘-induction and subsequently propagate these

bounds to the outer loops. For clarity, we focus on the case where the program 𝑅 contains a single

inner loop and has the following structure:

𝑅 = while(𝜓 ){𝑃} with 𝑃 = while( 𝜑 ){𝑄} and 𝑄 loop-free.

Our objective is to analyze the expected value of 𝑋𝑓 upon termination of the loop. Let𝛷𝑜𝑢𝑡
𝑓

denote

the characteristic function (see Definition 4.3) with respect to the outer loop and return function 𝑓 ,

and let𝛷𝑖𝑛
𝑔 denote the characteristic function for the inner loop 𝑃 and return function 𝑔. While𝛷𝑖𝑛

𝑔

can be computed explicitly,𝛷𝑜𝑢𝑡
𝑓

typically cannot. We therefore apply 1-induction to the outer loop

and 𝑘-induction to the inner loop, as summarized below:

• Define a template ℎ𝑜𝑢𝑡 at the entry of the outer loop and a template ℎ𝑖𝑛 at the entry of the

inner loop.

• For the outer loop, the 1-induction rule yields the constraint 𝛷𝑜𝑢𝑡
𝑓
(ℎ𝑜𝑢𝑡 ) ⪯ ℎ𝑜𝑢𝑡 . Since

𝛷𝑜𝑢𝑡
𝑓
(ℎ𝑜𝑢𝑡 ) cannot generally be computed explicitly, we upper-approximate the expected

value ofℎ𝑜𝑢𝑡 after executing the inner loop 𝑃 byℎ𝑖𝑛 , i.e.,𝛷
𝑜𝑢𝑡
𝑓
(ℎ𝑜𝑢𝑡 ) ⪯ [¬𝜓 ] · 𝑓 + [𝜓 ] ·ℎ𝑖𝑛 , and

the original constraint𝛷𝑜𝑢𝑡
𝑓
(ℎ𝑜𝑢𝑡 ) ⪯ ℎ𝑜𝑢𝑡 can be strengthened into [¬𝜓 ] · 𝑓 + [𝜓 ] ·ℎ𝑖𝑛 ⪯ ℎ𝑜𝑢𝑡 .

• For the inner loop, we apply the 𝑘-induction condition (see Definition 4.4) to ensure that ℎ𝑖𝑛
upper-approximates the expected value of ℎ𝑜𝑢𝑡 after executing the inner loop. This leads to

the constraint𝛷𝑖𝑛
ℎ𝑜𝑢𝑡
((𝛹𝑖𝑛

ℎ𝑖𝑛
)𝑘−1 (ℎ𝑖𝑛)) ⪯ ℎ𝑖𝑛 , where𝛹𝑖𝑛

ℎ𝑖𝑛
(𝑔) = min{𝛷𝑖𝑛

ℎ𝑜𝑢𝑡
(𝑔), ℎ𝑖𝑛} is the upper

𝑘-induction operator for the inner loop 𝑃 (see Definition 2.1).

• Collect the resulting constraints and apply our synthesis algorithm as described in Section 5.

Through this process, we obtain ℎ𝑜𝑢𝑡 as a piecewise upper bound for the expected value of 𝑋𝑓

with respect to the return function 𝑓 upon termination of the entire while loop 𝑅.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Piecewise Analysis of Probabilistic Programs via 𝑘-Induction 17

6 EXPERIMENTAL RESULTS
We implement our algorithms

1
in Python 3.9.12 and Julia 1.9.4. We use Gurobi in Python for bilinear

programming and Mosek in Julia for semi-definite programming. All experiments are conducted on

a Windows 10 (64-bit) machine equipped with an Intel(R) Core(TM) i7-9750H CPU at 2.60GHz and

16GB of RAM. We evaluate our algorithms for synthesizing piecewise linear and polynomial upper

bounds, as detailed in Section 6.1 and Section 6.2. Results for lower bound synthesis, which exhibit

similar performance and comparative advantages, are provided in Appendix D.2 and Appendix D.3

due to space limitations.

Evaluation Goals. Our experiments are designed to address the following research questions:

RQ1. How effective is our approach in generating piecewise bounds?

RQ2. How does our approach compare to the most closely related methods?

RQ3. How do our piecewise bounds compare to monolithic polynomial bounds?

Experimental Settings. We address the evaluation goals for our piecewise linear and polynomial

algorithms separately. The experiments are conducted under the following settings:

Invariants.We employ invariants to over-approximate the set of reachable states, which is standard

in various existing results [15, 16, 28]. Note that invariants do not provide information about the

piecewise partitioning of the bounds to be computed. In our experiment, we minimize their impact

by deliberately choosing trivial interval-bound invariants that can be directly derived as the union

of loop guard and its post image under the increment/decrement operations within the loop body.

Prerequisites Checking. Our experiments cover both linear and polynomial probabilistic programs

(see Appendix E for details). For linear programs with monolithic linear return functions, we use

a linear template and apply our linear algorithm. For more general cases involving polynomial

programs with piecewise polynomial return functions, we employ a higher-degree polynomial

template and apply our polynomial algorithm. In our piecewise linear experiments, we ensure

that the prerequisites (P1) and (P2) in Theorem 4.10 are satisfied as follows. For (P1), we verify

syntactically that the uniform amplifier 𝑐 can typically be set to 1 across most benchmarks, ensuring

that (P1) holds for any positive 𝑐2. For the remaining benchmarks, we take the maximum coefficient

of the program variables in the loop body as 𝑐 . For example, in the St-Petersburg benchmark, we

set the uniform amplifier 𝑐 to 2, choosing 𝑐3 = ln 2 (since 𝑒𝑐3 = 2) and 𝑐2 = ln 4 to meet the required

conditions. For (P2), in benchmarks where each loop iteration terminates with probability 𝑝 and

continues with probability 1 − 𝑝 , we can syntactically extract 𝑝 and verify that the concentration

property holds, exhibiting exponential decay at a rate of 𝑒 ln(1−𝑝 ) . For the remaining benchmarks,

we construct difference-bounded ranking supermartingales (dbRSMs) to ensure the concentration

property. Such dbRSMs can be synthesized automatically using methods described in [16, 17]. In our

piecewise polynomial experiments, we ensure that the prerequisites (P1’) and (P2) in Theorem 4.11

are satisfied as follows. For (P1’), we verify the bounded-update property on each polynomial

benchmark using an SMT solver [21]. For (P2), we apply the same approach as in the linear case to

establish the concentration property for polynomial programs.

Bound Optimization. Recall that in our algorithms described on pages 14 and 15, we optimize the

synthesized upper bounds by minimizing their values over the initial states of interest, which serve

as the objective function. In the piecewise linear experiments, we typically set the default initial

state 𝑠∗ by assigning the value 1 to all program variables across most benchmarks. For specific cases,

such as Fair Coin, we assign initial values 𝑥 = 0 and 𝑦 = 0 — since (𝑥,𝑦) = (0, 0) is the only state

from which the loop can be entered — and set the variable 𝑖 to its default value of 1. In the piecewise

polynomial experiments, for path probability estimation benchmarks selected from [13, 29, 47, 57],

1
https://anonymous.4open.science/r/text1-B83C-popl/
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we adopt the default initial state 𝑠∗ used in previous work to ensure consistency. For the remaining

benchmarks, we first define an interval-bound region, with real-valued variables ranging over

[0, 10] and Boolean variables over [0, 1]. We then select 10 initial states comprising the boundary

points of the region, the midpoints of each boundary, the center point, and uniformly distributed

integer points within the region.

Weights Selection. For the polynomial experiments, recall that our algorithm requires a predefined

set of weight combinations (see Eq. (14)). We employ uniformly distributed weights (i.e., each

weight is
1

𝑚
) and additionally generate 10 sets of randomly selected weights, each normalized to

sum to one. Independent computations are performed for each of these 11 weight combinations.

From the resulting solutions, we select the function with the minimum objective value as the

synthesized upper bound ℎ∗. The total execution time is reported as the cumulative runtime for the

11 independent runs with different weight settings.

Numerical Repair. To address the inherent numerical issues associated with numerical solvers,

we apply a post-processing step to repair the computed results. In the linear experiments, we

approximate the output floating-point coefficients with rational numbers using continued fractions

(see Appendix D.1, [33]), and validate these approximations by checking the constraints in (8). This

numerical repair is applied to all benchmarks except Expected Time. For this particular benchmark,

since suitable rational approximations could not be found, we truncate the floating-point results

to a precision of 10
−4

and verify their validity against the same constraints. In the polynomial

experiments, we similarly truncate all floating-point coefficients to 10
−4

precision, then substitute

the results into the constraints in (14) to check feasibility. Of the 20 benchmarks evaluated, the

results for 16 passed our validation procedure, while the remainder remain unknown.

6.1 Piecewise Linear Bound Synthesis
Benchmark Selection. We choose upper-bound benchmarks from existing works [5, 10–12,

20, 26, 27, 29] that fall into our scope and have the following adaptions. First, for those that do

not have linear return functions, we add simple linear return functions. Second, for those whose

upper bound that can be handled directly by 1-induction (except for several classical examples:

k-Geo, RevBin, Fair Coin), we adapt them by reasonable perturbations (such as changing the

assignment statement, changing the probability parameters, reducing the continuous distribution

to discrete distribution, etc) so that they require (𝑘 > 1)-induction. Third, for those whose upper
bound that cannot be handled by 𝑘-induction with small 𝑘 = 1, 2, 3, we adapt them by reasonable

perturbations as above so that they can be handled by (𝑘 > 1)-induction, while still cannot be
handled by 1-induction.

In detail, we consider 7 original examples and 6 adapted examples from the literature. The

examples Geo, k-Geo and Eqal-Prob-Grid are taken from [10, 11], for which we replace the

assertion probability with a linear return function 𝑔𝑜𝑎𝑙 in Eqal-Prob-Grid. We consider the

benchmark Zero-Conf-Variant adapted from [10, 26]. We revise the assignments and probabilistic

parameters in the original program, and add a linear return function 𝑐𝑢𝑟𝑝𝑟𝑜𝑏𝑒 . The benchmark

St-Petersburg variant is taken from [26] where we replace the probability parameter
1

2
with

3

4
since the original program does not satisfy the prerequisites in Theorem 4.10. From [5, 20, 27],

we consider the benchmarks Coin, Mart, RevBin and Fair Coin, and revise the assignments,

guards on the original benchmarks Bin series so that we obtain a more complex version Bin-Ran.

The remaining three examples, Expected Time, Growing Walk and its variant, are all adapted

from [12, 29] by reducing the continuous distributions to discrete distributions.

Answering RQ1. We present the experimental results on these 13 benchmarks in Table 1. As

bilinear solving is an iterative search for optimal solutions, we set the maximum searching time for
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Table 1. Experimental Results for RQ1 and RQ2, Linear Case (Upper Bounds). "𝑓 " stands for the return

function considered in the benchmark, "T(s)" (of our approach) stands for the execution time of our approach

(in seconds), including the parsing from the program input, transforming the 𝑘-induction constraint into

the bilinear problems, bilinear solving time and verification time. "Conventional Approach (𝑘 = 1)" stands

for the monolithic linear upper bound synthesized via 1-induction, "𝑘" stands for the 𝑘-induction we apply,

"Solution" stands for the linear candidate solved by Gurobi, and "Piecewise Linear Upper Bound" stands for

our piecewise results. "Result" stands for the synthesized results by other tools and "T(s)" (of their approaches)

stands for the execution time of their tools.

Benchmark 𝑓

Conventional

Approach

(𝑘 = 1)

Our Approach cegispro2 exist

𝑘 Solution Piecewise Linear Upper Bound T(s) Result T(s) Result T(s)

Geo 𝑥 ✗ 3 𝑥 + 1 [𝑐 > 0] · 𝑥+ [𝑐 ≤ 0] · (𝑥 + 1) 1.92
[𝑐 > 0] · 𝑥+
[𝑐 ≤ 0] · (𝑥 + 1) 0.05 𝑥 + [𝑐 = 0] 17.29

k-Geo 𝑦
−𝑘 + 𝑁+
𝑥 + 𝑦 + 1 3

−𝑘 + 𝑁
+𝑥 + 𝑦 + 1

[𝑘 > 𝑁 ] · 𝑦 + [𝑘 ≤ 𝑁 − 1]·
(−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1)+
[𝑁 − 1 < 𝑘 ≤ 𝑁 ]·

(−0.5𝑘 + 0.5𝑁 + 𝑥 + 𝑦 + 1)

132.76

[𝑘 > 𝑁 ] · 𝑦 + [𝑘 ≤ 𝑁 ]
·(−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1) 0.38

𝑦 + [𝑘 ≤ 𝑛]·
(𝑥 − 𝑘 + 𝑛 + 1) 76.74

Bin-ran 𝑦 ✗ 2

0.9𝑥 − 21𝑖
+𝑦 + 233

[𝑖 > 10] · 𝑦+
[ 90
11

< 𝑖 ≤ 10] · (0.9𝑥 − 21𝑖 + 𝑦 + 233)
+[𝑖 ≤ 90

11
] · (0.9𝑥 − 18.8𝑖 + 𝑦 + 215)

106.29

inconsistent

results

- inner error -

Coin 𝑖 ✗ 2 𝑖 + 8

3

[𝑥 ≠ 𝑦] · 𝑖+
[𝑥 = 𝑦] · (𝑖 + 8

3
) 104.13 not terminate - fail -

Mart 𝑖 ✗ 3 𝑖 + 2 [𝑥 ≤ 0] · 𝑖 + [𝑥 > 0] · (𝑖 + 2) 19.29
violation of

non-negativity

- 𝑖 + [𝑥 > 0] ∗ 2 37.23

GrowingWalk 𝑦 ✗ 3 𝑥 + 𝑦 + 2 [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 2) 4.03
violation of

non-negativity

-

𝑦 + [𝑥 ≥ 0]·
(𝑥 + 2) 21.98

GrowingWalk

-variant

𝑦 𝑥 + 𝑦 + 1 3 𝑥 + 𝑦 + 1
[𝑥 < 0] · 𝑦+

[0 ≤ 𝑥 < 1] · (0.5𝑥 + 𝑦 + 0.25)
+[𝑥 ≥ 1] · (𝑥 + 𝑦)

125.19
violation of

non-negativity

- not terminate -

Expected

Time

𝑡 ✗ 3

4.4280𝑥 + 𝑡
+6.2461

[𝑥 < 0] · 𝑡 + [0 ≤ 𝑥 < 1] · (𝑡 + 1)+
[1 ≤ 𝑥 < 3.258] · (3.9852𝑥 + 𝑡 + 7.39)

+[3.258 ≤ 𝑥 < 3.3772]·
(4.4280𝑥 + 𝑡 + 6.2461)+

[3.3772 ≤ 𝑥] · (3.5867𝑥 + 𝑡 + 9.0874)

109.35
violation of

non-negativity

- not terminate -

Zero-Conf

-variant

cur ✗ 3 cur + 140
[est > 0] · cur+

[start = 0 ∧ est ≤ 0] · (cur + 140)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 42)

180.42

violation of

non-negativity

-

𝑐𝑢𝑟 + [est = 0]
·(−49 · start2−
49 · start + 141)

392.19

Eqal-

Prob-Grid

goal ✗ 2 goal + 1.5 [𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal
+[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5 142.68

[𝑎 > 10 ∨ 𝑏 > 10∨
goal ≠ 0] · goal+
[𝑎 ≤ 10 ∧ 𝑏 ≤ 10

∧goal = 0] · 1.5

0.11 fail -

RevBin 𝑧 2𝑥 + 𝑧 3 2𝑥 + 𝑧 [𝑥 < 1] · 𝑧+ [1 ≤ 𝑥 < 2] · (𝑧 + 𝑥 + 1)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥) 70.30

[𝑥 < 1] · 𝑧+
[𝑥 ≥ 1] · (𝑧 + 2𝑥) 0.22 𝑧 + [𝑥 > 0] · 2𝑥 151.26

Fair Coin 𝑖 𝑖 − 2𝑦 + 2 3 𝑖 + 4

3

[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0] · (𝑖 + 4

3
) 129.34

[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0]·
(𝑖 + 4

3
)

0.06

[𝑥 + 𝑦 = 0]·
4

3
+ 𝑖 17.95

St-Petersburg

variant

𝑦 ✗ 3
3

2
𝑦 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 3

2
𝑦 1.53

[𝑥 > 0] · 𝑦+
[𝑥 ≤ 0] · 3

2
𝑦

0.04

𝑦 + [𝑥 = 0]·
0.5𝑦

13.39

Gurobi to 100s. On most benchmarks, we find that a monolithic linear bound with 1-induction does

not exist but obtain a piecewise linear upper bound via (𝑘 > 1)-induction in a few minutes. Our

approach derives the exact bound, i.e., the tightest upper bound, on the benchmarks Geo, Coin,

k-Geo, Mart, Growing Walk, Eqal-Prob-Grid, RevBin, Fair Coin, St-Petersburg variant.

The exactness of these bounds is established by comparison with the exact invariants synthesized

in [5] (seeRQ2) and with the piecewise lower bounds presented in Appendix D.2. We also show that

on a significant number of benchmarks (e.g., k-Geo, Bin-Ran, Growing Walk-variant, Expected

Time, etc), the piecewise bounds we synthesize are non-trivial (i.e., the program state space 𝑆 is

partitioned into more than [𝜑] and [¬𝜑]).
Answering RQ2.We answerRQ2 by comparing our approach with the most related approaches [5,

10]. We present our comparison results in Table 1. The main difference between cegispro2 [10] and

our approach is that cegispro2 requires an upper bound to be verified as an additional program

input and it will only return a super-invariant (i.e., a possibly piecewise upper-bound) that is

sufficient to verify (i.e., smaller than) the input upper bound, while we intend to synthesize a tight
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piecewise upper bound directly. The benchmarks Geo, k-Geo are the common benchmarks in

these two works and the direct comparisons are as follows: For the benchmark Geo, the piecewise

upper bounds of the two methods are the same. For k-Geo, their piecewise result is consistent

with our result over Z≥0. While in the scope of real numbers, our piecewise upper bound is tighter

than theirs. To have a richer comparison with cegispro2, we give cegispro2 an advantage by

feeding our benchmarks (including the above two benchmarks) in Table 1 to cegispro2 paired with

the piecewise upper bounds synthesized by our approach. We find cegispro2 cannot adequately

handle piecewise inputs. Additionally, it reports violation of non-negativity on 5 of our benchmarks

(see Table 1). By feeding one segment from the piecewise bounds synthesized via our approaches

for the remaining 8 benchmarks, we find on 6 benchmarks, cegispro2 produce the consistent

results with our inputs on Z≥0, while some of them (e.g., k-Geo) are incorrect over R. On Bin-Ran,

the results they produce are impossible to compare since it produces sophisticated and different

results when we feed different segments from our piecewise upper bound. On Coin, the execution

using their tool does not terminate, which prevents the output of a result.

The work [5] considers the probabilistic invariant synthesis via data-driven approach. Note that

the synthesis of upper bounds (i.e., super-invariants) is not considered in their work, and the only

relevant work in [5] with our upper bound synthesis is the exact invariant synthesis. For a further

comparison, We apply their tool exist on our benchmarks to try to generate exact invariants. On

the benchmarks Geo, k-Geo, Mart, Growing Walk, RevBin, Fair Coin, St-Petersburg variant,

exist can generate an exact invariant for each benchmark and we show that on these benchmarks,

the piecewise upper bounds we synthesize are equal to their exact invariants so that the upper

bounds we synthesize are actually the exact expected value of 𝑋𝑓 . On the benchmark Zero-Conf-

Variant, they spend about 400s while we obtain a respectable piecewise linear bound in around

180s. For the remaining benchmarks, their tool fails or the computation seems to be stuck.

In conclusion, our approach can handle many benchmarks that these two works [5, 10] cannot

handle. When feeding our benchmarks with the bounds synthesized through our approach to

cegispro2 and exist, they fail on about 40% of our benchmarks. Over most of the benchmarks that

their and our approaches can handle, our bounds are comparable with theirs.

Answering RQ3. In addition RQ2, we compare our piecewise linear upper bounds with monolithic

polynomial bounds via 1-induction in Table 2. Following [16, 57], we implement the polynomial

synthesis with Putinar’s Positivstellensatz [46] (see Appendix C.5). For a fair comparison, we

generate the polynomial bounds with the same invariant and optimal objective function for each

benchmark. All the numerical results in the polynomial bounds are cut to 10
−4

precision. We

compare two results by uniformly taking the grid points in the invariant and evaluate two results,

and we compute the percentage of the points that our piecewise upper bound are larger (i.e.,

not better) than monolithic polynomial, which is shown in the last column "PCT" in Table 2. We

show that on most of our benchmarks, our piecewise linear bounds are significantly tighter than

monolithic polynomial bounds.

6.2 Piecewise Polynomial Bound Synthesis

Benchmark Selection. We select all remaining benchmarks from [5, 10] that are not used in the

previous linear experiments, as well as path probability estimation benchmarks from [13, 29, 47, 57],

including all unbounded loop benchmarks from [47] in particular. For the former 7 benchmarks

from [5], we instantiate the probability parameters with commonly used values (such as 0.5). Note

that among them, the benchmarks GeoAr, Bin0, Bin2, Sum0, Duel cannot be handled by our

piecewise linear algorithm with 𝑘-induction when 𝑘 = 1, 2, 3, even though both the program and

the return function are linear. For the benchmarks from [10], the benchmarks chain, brp exhibit
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Table 2. Experimental Results for RQ3, Linear Case (Upper Bounds). "𝑓 " stands for the return function

considered in the benchmark, "𝑘" stands for the𝑘-induction condition we apply in this comparison, "Monolithic

Polynomial via 1-Induction" stands for the monolithic polynomial bounds synthesized via 1-induction, and

"d" stands for the degree of polynomial template we use, "PCT" stands for the percentage of the points that

our piecewise upper bound are larger (i.e., not better) than monolithic polynomial.

Benchmark 𝑓
Our Approach Monolithic Polynomial via 1-Induction

PCT

𝑘 Piecewise Linear Upper Bound d Monolithic Polynomial Upper Bound

Geo 𝑥 3 [𝑐 > 0] · 𝑥 + [𝑐 ≤ 0] · (𝑥 + 1) 3

1.0000 − 1.9996 ∗ 𝑐 + 1.0000 ∗ 𝑥+
0.9996 ∗ 𝑐2 − 0.0002 ∗ 𝑥 ∗ 𝑐 + 0.0002 ∗ 𝑥 ∗ 𝑐2 0.0%

k-Geo 𝑦 3

[𝑘 > 𝑁 ] · 𝑦+
[𝑘 ≤ 𝑁 − 1] · (−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1)+

[𝑁 − 1 < 𝑘 ≤ 𝑁 ] · (−0.5𝑘 + 0.5𝑁 + 𝑥 + 𝑦 + 1)
2

274.1142 − 53.62281 ∗ 𝑁 − 1.0000 ∗ 𝑘+
1.0000 ∗ 𝑦 + 1.0000 ∗ 𝑥 + 2.7311 ∗ 𝑁 2

2.82%

Bin-ran 𝑦 2

[𝑖 > 10] · 𝑦+
[ 90
11

< 𝑖 ≤ 10] · (0.9𝑥 − 21𝑖 + 𝑦 + 233)
+[𝑖 ≤ 90

11
] · (0.9𝑥 − 18.8𝑖 + 𝑦 + 215)

3

66.8036 + 21.0161 ∗ 𝑖 − 29.5267 ∗ 𝑦−
17.6524 ∗ 𝑥 − 1.5735 ∗ 𝑖2 − 0.2059 ∗ 𝑦 ∗ 𝑖−

0.0157 ∗ 𝑦2 − 0.4056 ∗ 𝑥 ∗ 𝑖 − 0.2380 ∗ 𝑥 ∗ 𝑦−
1.7910 ∗ 𝑥2 − 0.0102 ∗ 𝑖3 + 0.2917 ∗ 𝑦 ∗ 𝑖2+

0.0103 ∗ 𝑦2 ∗ 𝑖 − 0.0045 ∗ 𝑦3 + 0.4251 ∗ 𝑥 ∗ 𝑖2−
0.0036 ∗ 𝑥 ∗ 𝑦 ∗ 𝑖 − 0.0095 ∗ 𝑥 ∗ 𝑦2 + 0.6938 ∗ 𝑥2 ∗ 𝑖−

0.03827 ∗ 𝑥2 ∗ 𝑦 + 0.6886 ∗ 𝑥3

49.59%

Coin 𝑖 3 [𝑥 ≠ 𝑦] · 𝑖 + [𝑥 = 𝑦] · (𝑖 + 8

3
) 2

2.6667 + 1.0000 ∗ 𝑖 − 0.6381 ∗ 𝑦 + 4.2840 ∗ 𝑥
−2.0286 ∗ 𝑦2 − 2.0067 ∗ 𝑥 ∗ 𝑦 + 0.3893 ∗ 𝑥2 0.0%

Mart 𝑖 3 [𝑥 ≤ 0] · 𝑖 + [𝑥 > 0] · (𝑖 + 2) 2 0.0248 + 1.0000 ∗ 𝑖 + 199999.6588 ∗ 𝑥 + 0.1643 ∗ 𝑥2 0.0%

Growing

Walk
𝑦 3 [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 2) 3

2.5000 + 1.0000 ∗ 𝑦 + 1.900 ∗ 𝑥
−0.5000 ∗ 𝑥2 + 0.1000 ∗ 𝑥3 0.0%

GrowingWalk

variant
𝑦 3

[𝑥 < 0] · 𝑦+
[0 ≤ 𝑥 < 1] · (0.5𝑥 + 𝑦 + 0.25)

+[𝑥 ≥ 1] · (𝑥 + 𝑦)
3

1.0000 ∗ 𝑦 − 0.2380 ∗ 𝑥 + 0.1041 ∗ 𝑦2−
0.0686 ∗ 𝑥 ∗ 𝑦 + 0.0951 ∗ 𝑥2 + 0.03558 ∗ 𝑥 ∗ 𝑦2

+0.0686 ∗ 𝑥2 ∗ 𝑦 + 0.1430 ∗ 𝑥3
5.52%

Expected

Time
𝑡 3

[𝑥 < 0] · 𝑡 + [0 ≤ 𝑥 < 1] · (𝑡 + 1)+
[1 ≤ 𝑥 < 3.258] · (3.9852𝑥 + 𝑡 + 7.39)+

[3.258 ≤ 𝑥 < 3.3772] · (4.4280𝑥 + 𝑡 + 6.2461)
+[3.3772 ≤ 𝑥] · (3.5867𝑥 + 𝑡 + 9.0874)

3

3.1203 + 0.9622 ∗ 𝑡 + 2.8278 ∗ 𝑥+
0.0015 ∗ 𝑡2 − 0.01558 ∗ 𝑥 ∗ 𝑡 − 0.1397 ∗ 𝑥2−
0.0003 ∗ 𝑥 ∗ 𝑡2 − 0.0002 ∗ 𝑥2 ∗ 𝑡 + 0.0025 ∗ 𝑥3

50.0%

Zero-Conf

-variant
cur 3

[est > 0] · cur+
[start == 0 ∧ est ≤ 0] · (cur + 140)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 42)

2

109.8660 − 0.1357 ∗ 𝑐𝑢𝑟 + 293795.0410 ∗ 𝑠𝑡𝑎𝑟𝑡+
209178.7117 ∗ 𝑒𝑠𝑡 + 0.0019 ∗ 𝑐𝑢𝑟 2 + 0.7202 ∗ 𝑠𝑡𝑎𝑟𝑡 ∗ 𝑐𝑢𝑟−

293865.0570 ∗ 𝑠𝑡𝑎𝑟𝑡2 + 1.0313 ∗ 𝑒𝑠𝑡 ∗ 𝑐𝑢𝑟+
274251.8886 ∗ 𝑒𝑠𝑡 ∗ 𝑠𝑡𝑎𝑟𝑡 − 209283.0750 ∗ 𝑒𝑠𝑡2

0.5 %

Eqal-

Prob-Grid
goal 2

[𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal
+[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5 2

1.6661 + 5.7396 ∗ 𝑔𝑜𝑎𝑙 − 9.4857 ∗ 10−5 ∗ 𝑏+
1.5707 ∗ 10−5 ∗ 𝑎 + 0.6003 ∗ 𝑔𝑜𝑎𝑙2 − 0.6740 ∗ 𝑏 ∗ 𝑔𝑜𝑎𝑙
+1.597510−5 ∗ 𝑏2 + 2.2074 ∗ 10−5 ∗ 𝑎 ∗ 𝑔𝑜𝑎𝑙

0.0%

RevBin 𝑧 3

[𝑥 < 1] · 𝑧 + [1 ≤ 𝑥 < 2] · (𝑧 + 𝑥 + 1)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥) 2 1.0000 ∗ 𝑧 + 2.0000 ∗ 𝑥 0.0%

Fair Coin 𝑖 3

[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0] · (𝑖 + 4

3
) 2

1.3333 + 1.0000 ∗ 𝑖 − 0.4141 ∗ 𝑦 − 0.4141 ∗ 𝑥
+1.1743 ∗ 𝑖2 − 2.3486 ∗ 𝑦 ∗ 𝑖 + 0.2551 ∗ 𝑦2
−2.3486 ∗ 𝑥 ∗ 𝑖 + 3.6820 ∗ 𝑥 ∗ 𝑦 + 0.2551 ∗ 𝑥2

0.0%

St-Petersburg

variant
𝑦 3 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 3

2
𝑦 3

0.0197 + 1.5047 ∗ 𝑦 + 371727.7656 ∗ 𝑥
−0.5028 ∗ 𝑥 ∗ 𝑦 − 371727.7734 ∗ 𝑥2 0.0%

numerical pathologies due to extremely large constants, which can cause numerical instability

and render our algorithms ineffective. To address this issue, we scale down these pathological

values to more moderate magnitudes—for instance, replacing 1000000000000 with 100 in the chain

benchmark and 8000000000 with 800 in the brp benchmark—so that our numerical algorithm

can operate reliably. For the benchmarks from [13, 29, 47, 57], since 5 of 9 benchmarks contain

continuous distributions originally, we make simple adaptions on these benchmarks by replacing

each continuous distribution (e.g. uniform distribution over [0, 1]) with a uniform discrete choice of

the same range (e.g. 0 with probability 0.5 and 1 also with 0.5), resulting in 5 adapted benchmarks.

The benchmark inv-Pend in [47] does not pass our checking of prerequisite (P2). Therefore we

make minor modifications to the coefficients in this benchmark so that we can synthesize a dbRSM

to satisfy (P2), thereby obtaining the benchmark inv-Pend variant. We apply 2-induction on these

24 benchmarks.
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Answering RQ1. Our algorithm successfully handles all of the aforementioned benchmarks

except for four. The failures in these cases are attributed to excessive branching introduced by our

algorithm based on Proposition 5.2 (see Stage 2 in Section 5), and branch reduction techniques

(see Page 12) have not yet been incorporated into our implementation. Nevertheless, our current

implementation is capable of addressing a wide range of complex benchmarks. For example, the

benchmark cav5 comprises 35 lines of code (see Appendix E), the benchmark inv-Pend variant

benchmark features 4 variables with complex polynomial updates, posing significant challenges

for analysis. We leave further optimization for future work. We present the experimental results

for the synthesis of piecewise polynomial upper bounds on the remaining 20 benchmarks in

Table 3. Our approach successfully derives piecewise polynomial upper bounds for 16 out of 20

benchmarks within seconds. Of the remaining four, two benchmarks (fig-6 and fig-7) are solved

within tens of seconds, while only inv-Pend variant and cav-5 require more than five minutes

to compute a result. Our algorithms obtain the exact bound (i.e., the tightest upper bound) on

the benchmarks Bin0, Bin2, DepRV, Prinsys, Sum0. The exactness of these results is verified by

comparison with the exact invariants synthesized in [5] (see RQ2) and with our corresponding

lower bounds in Appendix D.3.

Answering RQ2.We answer RQ2 by comparing our approach with the relevant work exist [5]

in Table 3, whose illustration is the same to Table 1. It is worth noting that cegispro2 only supports

linear bounds and does not accept nonlinear expressions as additional program input. Therefore,

we exclude it from our comparison. Note that the only relevant aspect of [5] with respect to

upper bound synthesis (i.e., super-invariants) is their method for exact invariant synthesis. For

comparison, we apply their tool exist to our benchmarks in an attempt to generate exact invariants.

On the benchmarks Bin0, Bin2, Prinsys, and Sum0, we show that the piecewise polynomial upper

bounds we synthesize are actually the exact expected value of 𝑋𝑓 , i.e., the tightest upper bounds,

by comparing them with the exact invariants synthesized by exist. Among these benchmarks,

exist spends about 80s on Bin0, about 250s on Bin2, and about 100s on Sum0, while we spend only

several seconds to obtain the specific results. Thus, our algorithm is much more efficient. For the

benchmarks Duel, chain, and cav2, the tool exist is able to identify candidates for exact invariants

but fails to verify them, and thus does not produce exact invariants. Additionally, exist does not

support the benchmarks grid small and grid big. For the remaining benchmarks, exist fails to

generate results due to internal errors. Moreover, for the benchmark DepRV, we demonstrate that

the piecewise polynomial upper bound synthesized by our approach is exact, as it coincides with

the corresponding lower bound (see Appendix D.3). Thus, our method yields the tightest upper

bound for 5 out of the 20 benchmarks in this table. In summary, our approach successfully handles

more benchmarks than [5], and for those benchmarks that both methods can process, our approach

is more efficient and produces comparable bounds.

Answering RQ3. In addition to the comparisons in RQ2, we further evaluate our piecewise

polynomial upper bounds (obtained via 𝑘-induction) against monolithic polynomial bounds of

higher degree synthesized using simple induction (i.e., 1-induction). The synthesis of these mono-

lithic polynomial bounds is implemented using Putinar’s Positivstellensatz [46] (see Appendix C.5

for details). For a fair comparison, we use the same invariant and optimal objective function for

each benchmark. We also verify the validity of the monolithic polynomial bounds (see Numerical
Repair). In our experimental evaluation, we observe that for most benchmarks, when the degree

of the polynomial template exceeds 5, numerical performance deteriorates and the synthesized

monolithic bounds fail our validation process. Therefore, in this experiment, we restrict the degree

of monolithic polynomial bounds to at most 5.
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Table 3. Experimental Results for RQ1 and RQ2, Polynomial Case (Upper Bounds). "𝑓 " stands for the return

function considered in the benchmark, "T(s)" stands for the execution time of our approach (in seconds),

including the parsing procedure from the program input, relaxing the 𝑘-induction constraint into the SDP

problems, the SDP solving time and verification time. "d" stands for the degree of polynomial template we

use and "Solution ℎ∗" is the candidate polynomial solved directly by the solver. "Piecewise Polynomial upper

Bound" stands for the piecewise bound we synthesize. "Exact" stands for the exact expected value synthesized

by exist.

Benchmark 𝑓
Our Approach exist

d Solution ℎ∗ T(s) Piecewise Polynomial Upper Bound Exact T(s)

GeoAr 𝑥 2

0.0001 ∗ 𝑥2 − 0.0004 ∗ 𝑥 ∗ 𝑦 + 0.0005 ∗ 𝑥 ∗ 𝑧
+0.0011 ∗ 𝑦2 + 0.0079 ∗ 𝑧2 + 0.9998 ∗ 𝑥
+1.5398 ∗ 𝑦 − 0.0085 ∗ 𝑧 + 5.0078

7.28

min{[𝑧 > 0] · (0.0001𝑥2 − 0.0003 ∗ 𝑥 ∗ 𝑦+
0.0003 ∗ 𝑥 ∗ 𝑧 + 0.0010𝑦2 + 0.0003 ∗ 𝑦 ∗ 𝑧
+0.0040𝑧2 + 0.9995𝑥 + 2.0416𝑦−
0.004𝑧 + 7.0485) + [𝑧 ≤ 0] · 𝑥, ℎ∗}

inner error -

Bin0 𝑥 2 𝑥 + 0.5 ∗ 𝑦 ∗ 𝑛 10.31 𝑥 + [𝑛 > 0] · 0.5 ∗ 𝑦 ∗ 𝑛 𝑥 + [𝑛 > 0]·
0.5 ∗ 𝑦 ∗ 𝑛 79.04

Bin2 𝑥 2 0.25 ∗ 𝑛 + 𝑥 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛 10.12

𝑥 + [𝑛 > 0] · (0.25 ∗ 𝑛 + 𝑥
+0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛)

𝑥 + [𝑛 > 0]·
(0.25 ∗ 𝑛

+𝑥 + 0.25 ∗ 𝑛2
+0.5 ∗ 𝑦 ∗ 𝑛)

250.60

DepRV 𝑥 ∗ 𝑦 2

−0.25 ∗ 𝑛 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛
+0.5 ∗ 𝑥 ∗ 𝑛 + 𝑥 ∗ 𝑦 9.57

[𝑛 > 0] · (−0.25 ∗ 𝑛 + 0.25 ∗ 𝑛2+
0.5 ∗ 𝑦 ∗ 𝑛 + 0.5 ∗ 𝑥 ∗ 𝑛 + 𝑥 ∗ 𝑦)

+[𝑛 ≤ 0] · 𝑥 ∗ 𝑦
inner error -

Prinsys [𝑥 == 1] 2 0.5 + 0.5 ∗ 𝑥 2.35 [𝑥 == 1] ∗ 1 + [𝑥 == 0] ∗ 0.5 [𝑥 == 1] ∗ 1+
[𝑥 == 0] ∗ 0.5 3.02

Sum0 𝑥 2 0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖 + 𝑥 2.33 [𝑖 > 0] ∗ (0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖) + 𝑥 𝑥 + [𝑖 > 0]∗
(0.25𝑖 + 0.25𝑖2) 105.01

Duel 𝑡 2

−20.267 ∗ 𝑥2 − 0.4198 ∗ 𝑥 ∗ 𝑡 − 2.5502 ∗ 𝑡2
+20.6657 ∗ 𝑥 + 3.5505 ∗ 𝑡 + 0.0013 6.9

min{[𝑡 > 0 ∧ 𝑥 ≥ 1] · (−10.1335𝑥2 − 2.5502𝑡2
+0.2099 ∗ 𝑥 ∗ 𝑡 + 10.1230 ∗ 𝑥 + 2.5502 ∗ 𝑡
+0.5015) + [𝑡 ≤ 0 ∧ 𝑥 ≥ 1] · (−5.0668 ∗ 𝑥2
+0.1050 ∗ 𝑥 ∗ 𝑡 − 2.5502 ∗ 𝑡2 + 5.0615 ∗ 𝑥
+3.0504 ∗ 𝑡 + 0.2514) + [𝑥 < 1] · 𝑡, ℎ∗}

fail -

brp
[𝑓 𝑎𝑖𝑙𝑒𝑑
= 10] 2

38912.3699 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 + 0.7329 ∗ 𝑠𝑒𝑛𝑡2+
3.2173 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡 + 1486.258 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑

−573.6644 ∗ 𝑠𝑒𝑛𝑡 − 2459.9909
10.12

min{[𝑓 𝑎𝑖𝑙𝑒𝑑 < 10 ∧ 𝑠𝑒𝑛𝑡 < 800] · (0.7329𝑠𝑒𝑛𝑡2
+0.0322 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡 + 389.1237 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2
+793.1100 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 − 572.1811 ∗ 𝑠𝑒𝑛𝑡
−2623.2068) + [𝑓 𝑎𝑖𝑙𝑒𝑑 = 10], ℎ∗}

not

terminate

-

chain [𝑦 = 1] 2

−0.006 ∗ 𝑥 ∗ 𝑦 + 0.4841 ∗ 𝑦2−
0.0021 ∗ 𝑥 + 0.4477 ∗ 𝑦 + 0.1007 4.79

min{[𝑦 = 0 ∧ 𝑥 < 100] · (−0.0059 ∗ 𝑥 ∗ 𝑦
+0.4793 ∗ 𝑦2 − 0.0022 ∗ 𝑥 + 0.4373 ∗ 𝑦

+0.1079) + [𝑦 = 1], ℎ∗}
fail -

grid small
[𝑎 < 10∧
𝑏 ≥ 10] 3

0.0018 ∗ 𝑎 ∗ 𝑏2 − 0.0003 ∗ 𝑎3 − 0.0008 ∗ 𝑎2 ∗ 𝑏
−0.0011 ∗ 𝑏3 + 0.0117 ∗ 𝑎2 − 0.0154 ∗ 𝑎 ∗ 𝑏+
0.0136 ∗ 𝑏2 − 0.097 ∗ 𝑎 + 0.0239 ∗ 𝑏 + 0.5355

6.71

min{[𝑎 < 10 ∧ 𝑏 < 10] · (−0.0003 ∗ 𝑎3−
0.0011 ∗ 𝑏3 − 0.0008 ∗ 𝑎2 ∗ 𝑏 + 0.0018 ∗ 𝑎 ∗ 𝑏2

+0.0109 ∗ 𝑎2 · · · + 0.0277 ∗ 𝑏
+0.5109) + [𝑎 < 10 ∧ 𝑏 ≥ 10], ℎ∗}

Not support -

grid big
[𝑎 < 1000∧
𝑏 ≥ 1000] 2

0.0159 ∗ 𝑎2 − 0.0319 ∗ 𝑎 ∗ 𝑏 + 0.0159 ∗ 𝑏2
+0.2715 ∗ 𝑎 − 0.3086 ∗ 𝑏 − 0.437 7.74

min{[𝑎 < 1000 ∧ 𝑏 < 1000] · (0.0159 ∗ 𝑎2
−0.0319 ∗ 𝑎 ∗ 𝑏 + 0.0159 ∗ 𝑏2 + 0.2714 ∗ 𝑎

−0.3087 ∗ 𝑏 − 0.4397)+
[𝑎 < 1000 ∧ 𝑏 ≥ 1000], ℎ∗}

Not support -

CAV-2 [ℎ > 1 + 𝑡] 3 0.0 3.78 [ℎ > 𝑡 + 1] fail -

CAV-4 [𝑥 ≤ 10] 2 1.0 2.75 1.0 inner error -

fig-6 [𝑦 ≤ 5] 4

0.0011 ∗ 𝑥3 ∗ 𝑦 − 0.0001 ∗ 𝑥4 − 0.0001 ∗ 𝑦4
+0.0008 ∗ 𝑥 ∗ 𝑦3 − 0.001 ∗ 𝑥2 ∗ 𝑦2 + · · ·
+0.5712 ∗ 𝑥 − 0.281 ∗ 𝑦 + 0.6009

109.03

min{[𝑥 ≤ 4] · (−0.0001 ∗ 𝑥4 + 0.0011 ∗ 𝑥3 ∗ 𝑦
−0.001 ∗ 𝑥2 ∗ 𝑦2 + 0.0008 ∗ 𝑥 ∗ 𝑦3 − 0.0001 ∗ 𝑦4
+0.0023 ∗ 𝑥3 · · · − 0.0094 ∗ 𝑦2 + 0.5530 ∗ 𝑥−
0.2782 ∗ 𝑦 + 0.6027) + [𝑥 > 4 ∧ 𝑦 ≤ 5], ℎ∗}

inner error -

fig-7 [𝑥 ≤ 1000] 2

0.0005 ∗ 𝑦2 − 0.0008 ∗ 𝑦 ∗ 𝑖
+0.0002 ∗ 𝑖2 − 0.0001 ∗ 𝑥+

0.001 ∗ 𝑦 − 0.0005 ∗ 𝑖 + 1.0003
24.32

min{[𝑦 ≤ 0] · (0.0002 ∗ 𝑖2 − 0.0002 ∗ 𝑥−
0.0005 ∗ 𝑖 + 1.0004) + [𝑦 > 0 ∧ 𝑥 ≤ 1000], ℎ∗} inner error -

inv-Pend

variant

[𝑝𝐴 ≤ 1] 3

0.0058 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴 + 0.0023 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑉−
0.1313 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑃 − 0.6278 ∗ 𝑝𝐴𝐷 ∗ 𝑝𝐴2−
0.2352𝑝𝐴𝐷 ∗ 𝑝𝐴 ∗ 𝑐𝑉 · · · − 5.002𝑐𝑉 ∗ 𝑐𝑃
−44.9405 ∗ 𝑐𝑃2 − 5.7109 ∗ 𝑐𝑉 + 1.0

412.20

min{[𝑐𝑝 > 0.5 ∨ 𝑐𝑝 < −0.5 ∨ 𝑝𝐴 > 0.1∨
𝑝𝐴 < −0.1] · (0.0058𝑝𝐴𝐷2𝑝𝐴 − 0.0011𝑝𝐴𝐷2𝑐𝑉

−0.1313𝑝𝐴𝐷2 ∗ 𝑐𝑃 + · · · + 0.0689 ∗ 𝑐𝑃 + 0.3238)
+[−0.5 ≤ 𝑐𝑝 ≤ 0.5 ∧ −0.1 ≤ 𝑝𝐴 ≤ 0.1], ℎ∗}

inner error -

CAV-7 [𝑥 ≤ 30] 3

−0.0001 ∗ 𝑖3 + 0.0002 ∗ 𝑖2 ∗ 𝑥
+0.0011 ∗ 𝑖2 − 0.0012 ∗ 𝑖 ∗ 𝑥−
0.0009 ∗ 𝑖 − 0.0001 ∗ 𝑥 + 0.9993

5.26

min{[𝑖 < 5] · (0.0001 ∗ 𝑖2 ∗ 𝑥 + 0.0005 ∗ 𝑖2−
0.0006 ∗ 𝑖 ∗ 𝑥 + 0.0004 ∗ 𝑖 − 0.0011 ∗ 𝑥
+0.9983) + [𝑖 < 5 ∧ 𝑥 ≤ 30], ℎ∗}

inner error -

cav-5 [𝑖 ≤ 10] 3

−0.0001 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2 − 0.0004 ∗ 𝑖2−
0.0006 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦 + 0.1029 ∗𝑚𝑜𝑛𝑒𝑦2

+0.0037 ∗ 𝑖 + 1.0
892.6

min{[𝑚𝑜𝑛𝑒𝑦 ≥ 10] · (−0.0001 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2−
0.0004 ∗ 𝑖2 − 0.0004 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦 + 0.0015 ∗ 𝑖
+0.1028 ∗𝑚𝑜𝑛𝑒𝑦2 − 0.2118 ∗𝑚𝑜𝑛𝑒𝑦+
3.1283) + [𝑚𝑜𝑛𝑒𝑦 < 10 ∧ 𝑖 ≤ 10], ℎ∗}

inner error -

Add [𝑥 > 5] 3

0.0005 ∗ 𝑥3 − 0.0055 ∗ 𝑥2 ∗ 𝑦 + 0.0272 ∗ 𝑥 ∗ 𝑦2
−0.0491 ∗ 𝑦3 − 0.0109 ∗ 𝑥2 + 0.0513 ∗ 𝑥 ∗ 𝑦−
0.0224 ∗ 𝑦2 + 0.0819 ∗ 𝑥 − 0.2123 ∗ 𝑦 + 0.9308

3.63

min{[𝑦 ≤ 1] · (−0.0491 ∗ 𝑥3 + 0.0272 ∗ 𝑥2 ∗ 𝑦−
0.0055 ∗ 𝑥 ∗ 𝑦2 + 0.0005 ∗ 𝑦3 − 0.1348 ∗ 𝑥2+
0.0926 ∗ 𝑥 ∗ 𝑦 − 0.015 ∗ 𝑦2 − 0.3568 ∗ 𝑥+
0.1406 ∗ 𝑦 + 0.7181) + [𝑦 > 1 ∧ 𝑥 > 5], ℎ∗}

inner error -

GrowingWalk

variant2

𝑦 2

0.0622 ∗ 𝑥2 − 1.2722 ∗ 𝑥 ∗ 𝑟 + 6.5027 ∗ 𝑟 2
+0.6396 ∗ 𝑥 + 𝑦 − 6.5379 ∗ 𝑟 + 1.6433 5.33

min{[𝑟 ≤ 0] · (0.0622 ∗ 𝑥2 + 0.6279 ∗ 𝑥
+𝑦 + 1.6914) + [𝑟 > 0] · 𝑦,ℎ∗} inner error -
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24 Anon.

We present the comparison results in Table 4, whose illustration is the same to Table 2. To

compare the two synthesized bounds, we uniformly sample grid points from a region of interest

(typically a subset of the invariant) and evaluate both results at these points. We then compute the

percentage of points at which our piecewise polynomial upper bound is larger (i.e., not better) than

the (higher degree) monolithic polynomial, which is shown in the last column "PCT" in Table 4. We

show that on all the benchmarks except grid small, grid big, fig-6, add, our piecewise polynomial

bounds are significantly tighter and simpler than monolithic polynomial bounds. Although our

running time is a bit longer than that of monolithic polynomial experiments, our approach allows

to synthesize lower-degree polynomials while achieving better precision against higher-degree

polynomials. This advantage is critical as the synthesis of higher-degree polynomials suffers from

a large amount of numerical errors as stated previously.

7 RELATEDWORKS & CONCLUSION
In this work, we propose a novel approach to synthesize piecewise probabilistic bounds for prob-

abilistic programs. Further improvements include optimization on the branch reduction and the

constraint solving of latticed 𝑘-induction constraints with minimum. Below we compare our

approach with most related approaches.

Compared with previous approaches (e.g. [15, 16, 18]) that mostly focus on synthesizing mono-

lithic bounds over probabilistic programs, our approach targets piecewise bounds, and hence is

orthogonal. The work [11] proposes latticed 𝑘-induction. We claim that their work differs signifi-

cantly from ours. They do not synthesize bounds and only verify whether a given bound is an upper

bound or not. The work [10] synthesize piecewise linear bounds to verify the input upper bound

via counterexample-guided inductive synthesis (CEGIS), while we do not need this additional input

bound and we solve the bounds by bilinear and semidefinite programming rather than CEGIS.

For the verification of lower bounds, their work applies a proof rule in [28, 32] derived from the

original OST, while our approach applies extended OST. The work [5] synthesizes (piecewise)

exact invariants and sub-invariants (to verify the input lower bound) via data-driven learning.

Their work additionally requires a list of features composed of numerical expressions, while our

approach captures the piecewise feature via 𝑘-induction automatically and without such additional

inputs. The works [13, 57, 59] focus on deriving bounds for the posterior distribution in Bayesian

probabilistic programs, whereas our work aims at deriving piecewise bounds for the expected

output of the probabilistic programs.

Other approaches [3, 7, 8, 36] focus on moment-based invariants generation and high-order

moments derivation for probabilistic programs. These works can even handle the probabilistic

program with non-polynomial expressions and continuous distributions, but they only consider the

probabilistic while loop in a rather restricted form: while true {𝐶}. The work [42] enlarges the

theoretical foundation through the assumption that all variables appearing in if-conditions (loop

guards) are finitely valued , and [44] further provides an algorithm about computing the strongest

polynomial moment invariants for this kind of loops, but their works still cannot handle most of our

benchmarks. Our approach can handle all the polynomial forms of loop guards and if-conditions.

In a similar vein, the works [39, 53] bound higher central moments for running time and other

monotonically increasing quantities, but are limited to programs with constant size increments.
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Table 4. Experimental Results for RQ3, Polynomial Case (Upper Bounds). "𝑓 " stands for the return function

considered in the benchmark. "Piecewise Polynomial Upper Bound" stands for the results synthesized by our

algorithm. "Monolithic Polynomial via 1-Induction" stands for the monolithic polynomial bounds synthesized

via 1-induction, "T(s)" stands for the total execution time. "PCT" stands for the percentage of the points that

our piecewise polynomial upper bound are lower (i.e., not better) than (higher degree) monolithic polynomial.

Benchmark 𝑓
Our Approach Monolithic Polynomial via 1-induction

PCT

d T(s) Piecewise Polynomial Upper Bound d T(s) Monolithic Polynomial Upper Bound

GeoAr 𝑥 2 7.28

min{[𝑧 > 0] · (0.0001𝑥2 − 0.0003 ∗ 𝑥 ∗ 𝑦+
0.0003 ∗ 𝑥 ∗ 𝑧 + 0.0010𝑦2 + 0.0003 ∗ 𝑦 ∗ 𝑧
+0.0040𝑧2 + 0.9995𝑥 + 2.0416𝑦−
0.004𝑧 + 7.0485) + [𝑧 ≤ 0] · 𝑥, ℎ∗}

3 1.52

−0.0001𝑥3 + 0.0001 ∗ 𝑥2 ∗ 𝑦 − 0.0011 ∗ 𝑥2 ∗ 𝑧−
0.0004 ∗ 𝑥 ∗ 𝑦2 − 0.0112 ∗ 𝑥 ∗ 𝑦 ∗ 𝑧 + 0.164 ∗ 𝑥 ∗ 𝑧2
+0.0012 ∗ 𝑦3 + · · · − 0.0137 ∗ 𝑦2 + 2.7194 ∗ 𝑦 ∗ 𝑧
+0.9993 ∗ 𝑥 + 0.0417 ∗ 𝑦 + 89867.2768 ∗ 𝑧 + 0.078

5.0%

Bin0 𝑥 2 10.31 𝑥 + [𝑛 > 0] · 0.5 ∗ 𝑦 ∗ 𝑛 3 1.0 0.5 ∗ 𝑦 ∗ 𝑛 + 𝑥 0.0%

Bin2 𝑥 2 10.12

𝑥 + [𝑛 > 0] · (0.25 ∗ 𝑛+
𝑥 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛) 3 1.03

−0.0001 ∗ 𝑥 ∗ 𝑦2 − 0.0002 ∗ 𝑥 ∗ 𝑦 ∗ 𝑛−
0.0001 ∗ 𝑥 ∗ 𝑛2 + 0.0009 ∗ 𝑦3 − 0.0009 ∗ 𝑦2 ∗ 𝑛
−0.0011 ∗ 𝑦 ∗ 𝑛2 − 0.0001 ∗ 𝑛3 + 0.0004 ∗ 𝑥 ∗ 𝑦
−0.0093 ∗ 𝑦2 + 0.5117 ∗ 𝑦 ∗ 𝑛 + 0.2496 ∗ 𝑛2
+0.9986 ∗ 𝑥 + 0.033 ∗ 𝑦 + 0.2641 ∗ 𝑛 + 0.051

21.4%

DepRV 𝑥 ∗ 𝑦 2 9.57

[𝑛 > 0] · (−0.25 ∗ 𝑛 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛
+0.5 ∗ 𝑥 ∗ 𝑛 + 𝑥 ∗ 𝑦) + [𝑛 ≤ 0] · 𝑥 ∗ 𝑦 3 1.02

𝑥 ∗ 𝑦 + 0.5 ∗ 𝑥 ∗ 𝑛 + 0.5 ∗ 𝑦 ∗ 𝑛+
0.25 ∗ 𝑛2 − 0.2499 ∗ 𝑛 + 0.0001 0.0%

Prinsys [𝑥 == 1] 2 2.35 [𝑥 == 1] ∗ 1 + [𝑥 == 0] ∗ 0.5 3 0.75 0.2973 ∗ 𝑥3 + 0.2027 ∗ 𝑥 + 0.5 0.0%

Sum0 𝑥 2 2.33 0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖 + 𝑥 4 0.7 0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖 + 𝑥 0.0%

Duel 𝑡 2 6.90

min{[𝑡 > 0 ∧ 𝑥 ≥ 1] · (−10.1335𝑥2 − 2.5502𝑡2
+0.2099 ∗ 𝑥 ∗ 𝑡 + 10.1230 ∗ 𝑥 + 2.5502 ∗ 𝑡
+0.5015) + [𝑡 ≤ 0 ∧ 𝑥 ≥ 1] · (−5.0668 ∗ 𝑥2
+0.1050 ∗ 𝑥 ∗ 𝑡 − 2.5502 ∗ 𝑡2 + 5.0615 ∗ 𝑥
+3.0504 ∗ 𝑡 + 0.2514) + [𝑥 < 1] · 𝑡, ℎ∗}

4 0.92

−175.0474𝑥4 − 33.1201𝑥3𝑡 − 256.8154 ∗ 𝑥2 ∗ 𝑡2
+74.5673 ∗ 𝑥 ∗ 𝑡3 + 81.1314 ∗ 𝑡4 − 115.4608 ∗ 𝑥3+
153.7459 ∗ 𝑥2 ∗ 𝑡 − 125.7204 ∗ 𝑥 ∗ 𝑡2 − 104.9856𝑡3
+78.3171 ∗ 𝑥2 + 186.7714 ∗ 𝑥 ∗ 𝑡 − 135.7646 ∗ 𝑡2

+212.334 ∗ 𝑥 + 160.6187 ∗ 𝑡

0.02%

brp
[𝑓 𝑎𝑖𝑙𝑒𝑑
= 10] 2 10.12

min{[𝑓 𝑎𝑖𝑙𝑒𝑑 < 10 ∧ 𝑠𝑒𝑛𝑡 < 800] · (0.7329𝑠𝑒𝑛𝑡2
+0.0322 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡 + 389.1237 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2
+793.1100 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 − 572.1811 ∗ 𝑠𝑒𝑛𝑡
−2623.2068) + [𝑓 𝑎𝑖𝑙𝑒𝑑 = 10], ℎ∗}

4 1.27

5.6049𝑓 𝑎𝑖𝑙𝑒𝑑4 + 4.902𝑓 𝑎𝑖𝑙𝑒𝑑3𝑠𝑒𝑛𝑡 + 3.2666𝑓 𝑎𝑖𝑙𝑒𝑑3
−0.0035𝑓 𝑎𝑖𝑙𝑒𝑑2𝑠𝑒𝑛𝑡2 − 7.0269 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 ∗ 𝑠𝑒𝑛𝑡
+0.0019 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡2 + 2.9608 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡
−0.0001𝑠𝑒𝑛𝑡3 + 5.1816 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 − 0.0288 ∗ 𝑠𝑒𝑛𝑡2
+2.4293 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 − 7.3179 ∗ 𝑠𝑒𝑛𝑡 − 0.9176

28.8%

chain [𝑦 = 1] 2 4.79

min{[𝑦 = 0 ∧ 𝑥 < 100] · (−0.0059 ∗ 𝑥 ∗ 𝑦
+0.4793 ∗ 𝑦2 − 0.0022 ∗ 𝑥 + 0.4373 ∗ 𝑦

+0.1079) + [𝑦 = 1], ℎ∗}
3 1.15

−0.0449 ∗ 𝑥3 − 0.5045 ∗ 𝑥2 ∗ 𝑦 + 5.611 ∗ 𝑥 ∗ 𝑦2−
155242.5616 ∗ 𝑦3 + 5.5921 ∗ 𝑥2 + 43.0661 ∗ 𝑥 ∗ 𝑦

−668140.0947 ∗ 𝑦2 − 117.5705 ∗ 𝑥+
823721.7882 ∗ 𝑦 + 160.1718

0.85%

grid small
[𝑎 < 10∧
𝑏 ≥ 10] 3 6.71

min{[𝑎 < 10 ∧ 𝑏 < 10] · (−0.0003 ∗ 𝑎3−
0.0011 ∗ 𝑏3 − 0.0008 ∗ 𝑎2 ∗ 𝑏 + 0.0018 ∗ 𝑎 ∗ 𝑏2

+0.0109 ∗ 𝑎2 · · · + 0.0277 ∗ 𝑏
+0.5109) + [𝑎 < 10 ∧ 𝑏 ≥ 10], ℎ∗}

4 1.16

0.0001 ∗ 𝑎3 − 0.0003 ∗ 𝑎2 ∗ 𝑏 + 0.0002 ∗ 𝑎 ∗ 𝑏2
−0.0001 ∗ 𝑏3 − 0.0002 ∗ 𝑎2 + 0.0001 ∗ 𝑎 ∗ 𝑏
+0.0003 ∗ 𝑏2 − 0.0326 ∗ 𝑎 + 0.0322 ∗ 𝑏 + 0.4628

43.54%

grid big
[𝑎 < 1000∧
𝑏 ≥ 1000] 2 7.74

min{[𝑎 < 1000 ∧ 𝑏 < 1000] · (0.0159 ∗ 𝑎2
−0.0319 ∗ 𝑎 ∗ 𝑏 + 0.0159 ∗ 𝑏2 + 0.2714 ∗ 𝑎

−0.3087 ∗ 𝑏 − 0.4397)+
[𝑎 < 1000 ∧ 𝑏 ≥ 1000], ℎ∗}

3 0.83

0.0005 ∗ 𝑎3 − 0.0044 ∗ 𝑎2 ∗ 𝑏 + 0.0052 ∗ 𝑎 ∗ 𝑏2−
0.0023𝑏3 + 2.3321 ∗ 𝑎2 − 4.6674 ∗ 𝑎 ∗ 𝑏 + 2.3399𝑏2

+34.489 ∗ 𝑎 − 42.4502 ∗ 𝑏 − 83.5854
45.78%

cav-2 [ℎ > 𝑡 + 1] 3 3.78 [ℎ > 𝑡 + 1] 4 0.75

0.0008 ∗ ℎ2 − 0.001 ∗ ℎ ∗ 𝑡 + 0.001 ∗ 𝑡2
−0.0066 ∗ ℎ − 0.0073 ∗ 𝑡 + 0.0885 0.0%

cav-4 [𝑥 ≤ 10] 2 2.75 1.0 3 0.62

0.0007 ∗ 𝑥 ∗ 𝑦2 − 20.236 ∗ 𝑦3 − 0.0007 ∗ 𝑥 ∗ 𝑦
+13.2821 ∗ 𝑦2 + 6.9539 ∗ 𝑦 + 1.0 0.0%

fig-6 [𝑦 ≤ 5] 4 109.03

min{[𝑥 ≤ 4] · (−0.0001 ∗ 𝑥4 + 0.0011 ∗ 𝑥3 ∗ 𝑦
−0.001 ∗ 𝑥2 ∗ 𝑦2 + 0.0008 ∗ 𝑥 ∗ 𝑦3 − 0.0001 ∗ 𝑦4
+0.0023 ∗ 𝑥3 · · · − 0.0094 ∗ 𝑦2 + 0.5530 ∗ 𝑥−
0.2782 ∗ 𝑦 + 0.6027) + [𝑥 > 4 ∧ 𝑦 ≤ 5], ℎ∗}

5 1.12

−0.0001 ∗ 𝑥5 − 0.0002 ∗ 𝑥4 ∗ 𝑦 − 0.0003 ∗ 𝑥2 ∗ 𝑦3
+0.0001 ∗ 𝑥 ∗ 𝑦4 − 0.0002 ∗ 𝑦5 + 0.0011 ∗ 𝑥4+

0.0037 ∗ 𝑥3 ∗ 𝑦 · · · + 0.1432 ∗ 𝑥 ∗ 𝑦 + 0.0064 ∗ 𝑦2
+0.9708 ∗ 𝑥 − 0.6526 ∗ 𝑦 + 0.575

42.73%

fig-7 [𝑥 ≤ 1000] 2 24.32

min{[𝑦 ≤ 0] · (0.0002 ∗ 𝑖2 − 0.0002 ∗ 𝑥−
0.0005 ∗ 𝑖 + 1.0004) + [𝑦 > 0 ∧ 𝑥 ≤ 1000], ℎ∗} 3 2.65

0.0003 ∗ 𝑥2 ∗ 𝑖 − 0.083 ∗ 𝑥2 ∗ 𝑦 + 48.5638 ∗ 𝑥 ∗ 𝑦2+
0.5267 ∗ 𝑥 ∗ 𝑦 ∗ 𝑖 − 0.018 ∗ 𝑥 ∗ 𝑖2 + 2600.9691 ∗ 𝑦3
−36.705 ∗ 𝑦2 ∗ 𝑖 − 2.646 ∗ 𝑦 ∗ 𝑖2 · · · − 3.3923 ∗ 𝑥
+56310.8279 ∗ 𝑦 − 0.0114 ∗ 𝑖 + 7.2868

2.58%

inv-Pend

variant
[𝑝𝐴 ≤ 1] 3 412.20

min{[𝑐𝑝 > 0.5 ∨ 𝑐𝑝 < −0.5 ∨ 𝑝𝐴 > 0.1∨
𝑝𝐴 < −0.1] · (0.0058𝑝𝐴𝐷2𝑝𝐴 − 0.0011𝑝𝐴𝐷2𝑐𝑉

−0.1313𝑝𝐴𝐷2 ∗ 𝑐𝑃 + · · · + 0.0689 ∗ 𝑐𝑃 + 0.3238)
+[−0.5 ≤ 𝑐𝑝 ≤ 0.5 ∧ −0.1 ≤ 𝑝𝐴 ≤ 0.1], ℎ∗}

4 7.42

0.2264 ∗ 𝑝𝐴𝐷4 + 1.1448 ∗ 𝑝𝐴𝐷3 ∗ 𝑝𝐴
−0.1026 ∗ 𝑝𝐴𝐷3 ∗ 𝑐𝑉 − 0.1107 ∗ 𝑝𝐴𝐷3 ∗ 𝑐𝑃+
5.2869 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴2 + · · · + 10.6625 ∗ 𝑐𝑃2
−0.0001 ∗ 𝑝𝐴 + 53.8573 ∗ 𝑐𝑉 + 1.0

4.04%

CAV-7 [𝑥 ≤ 30] 3 5.26

min{[𝑖 < 5] · (0.0001 ∗ 𝑖2 ∗ 𝑥 + 0.0005 ∗ 𝑖2−
0.0006 ∗ 𝑖 ∗ 𝑥 + 0.0004 ∗ 𝑖 − 0.0011 ∗ 𝑥
+0.9983) + [𝑖 < 5 ∧ 𝑥 ≤ 30], ℎ∗}

4 1.17

0.0007 ∗ 𝑖4 − 0.0011 ∗ 𝑖3 ∗ 𝑥 + 0.0005 ∗ 𝑖2 ∗ 𝑥2
−0.0001 ∗ 𝑖 ∗ 𝑥3 − 0.0045 ∗ 𝑖3 + 0.0052 ∗ 𝑖2 ∗ 𝑥
−0.0012 ∗ 𝑖 ∗ 𝑥2 + 0.0134 ∗ 𝑖2 − 0.012 ∗ 𝑖 ∗ 𝑥+
0.002 ∗ 𝑥2 − 0.0135 ∗ 𝑖 + 0.0046 ∗ 𝑥 + 1.0034

37.37%

cav-5 [𝑖 ≥ 10] 3 892.6

min{[𝑚𝑜𝑛𝑒𝑦 ≥ 10] · (−0.0001 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2−
0.0004 ∗ 𝑖2 − 0.0004 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦 + 0.0015 ∗ 𝑖
+0.1028 ∗𝑚𝑜𝑛𝑒𝑦2 − 0.2118 ∗𝑚𝑜𝑛𝑒𝑦+
3.1283) + [𝑚𝑜𝑛𝑒𝑦 < 10 ∧ 𝑖 ≤ 10], ℎ∗}

4 1.27

0.0001 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦2 + 0.0002 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦3+
0.0001 ∗𝑚𝑜𝑛𝑒𝑦4 + 0.0184 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦
−0.0396 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2 − 0.0168 ∗𝑚𝑜𝑛𝑒𝑦3
+0.0009 ∗ 𝑖3 − 0.0291 ∗ 𝑖2 + 2.8701 ∗ 𝑖

+0.2414 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦 + 4.264 ∗𝑚𝑜𝑛𝑒𝑦2 + 1.0

0.0%

add [𝑥 > 5] 3 3.63

min{[𝑦 ≤ 1] · (−0.0491 ∗ 𝑥3 + 0.0272 ∗ 𝑥2 ∗ 𝑦−
0.0055 ∗ 𝑥 ∗ 𝑦2 + 0.0005 ∗ 𝑦3 − 0.1348 ∗ 𝑥2+
0.0926 ∗ 𝑥 ∗ 𝑦 − 0.015 ∗ 𝑦2 − 0.3568 ∗ 𝑥+
0.1406 ∗ 𝑦 + 0.7181) + [𝑦 > 1 ∧ 𝑥 > 5], ℎ∗}

4 0.81

0.0637𝑥4 + 4.4802 ∗ 𝑥3 ∗ 𝑦 − 4.4386 ∗ 𝑥2 ∗ 𝑦2
+3.8156 ∗ 𝑥 ∗ 𝑦3 − 2.5543 ∗ 𝑦4 − 4.6104 ∗ 𝑥3+
4.8566 ∗ 𝑥2 ∗ 𝑦 − 7.0417 ∗ 𝑥 ∗ 𝑦2 + 6.8972 ∗ 𝑦3−

0.4752 ∗ 𝑥2 − 1.6341 ∗ 𝑥 ∗ 𝑦 − 2.8078 ∗ 𝑦2
+5.0331 ∗ 𝑥 − 1.5381 ∗ 𝑦

43.94%

GrowingWalk

variant2
𝑦 2 5.33

min{[𝑟 ≤ 0] · (0.0622 ∗ 𝑥2 + 0.6279 ∗ 𝑥
+𝑦 + 1.6914) + [𝑟 > 0] · 𝑦,ℎ∗} 3 1.22

0.999 ∗ 𝑥 ∗ 𝑟 2 + 0.0008 ∗ 𝑦 ∗ 𝑟 2 + 700.3292 ∗ 𝑟 3
−1.999 ∗ 𝑥 ∗ 𝑟 − 0.0008 ∗ 𝑦 ∗ 𝑟 − 1399.6591 ∗ 𝑟 2

+𝑥 + 𝑦 + 698.3298 ∗ 𝑟 + 1.0001
5.0 %
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A SUPPLEMENTARY MATERIAL FOR SECTION 2.2

In this section, we supplement the introduction of the variant of 𝑘-induction operators proposed

in [40], some important properties of these two 𝑘-induction operators, the equivalence between

them and all their proofs.

Recall that in Section 2.2, we fix a lattice (𝐸, ⊑) and a monotone operator𝛷 : 𝐸 → 𝐸.

A.1 Property of the Upper 𝑘-Induction Operator in [11]
We attach an important property of the upper 𝑘-induction operator𝛹𝑢 in [11] here.

Theorem A.1 (Park Induction from 𝑘-Induction [11]). For any 𝑢 ∈ 𝐸 and 𝑘 ∈ N, we have that
𝛷 (𝛹𝑘

𝑢 (𝑢)) ⊑ 𝑢 ⇐⇒ 𝛷 (𝛹𝑘
𝑢 (𝑢)) ⊑𝛹𝑘

𝑢 (𝑢) .

The proof is given in [11, Lemma 2].

A.2 Upper 𝑘-Induction Operator in [40]
First we recall the definition of the upper 𝑘-induction operator proposed in [40].

Definition A.2 (The 𝑘-Induction Operator in [40]). The upper 𝑘-induction operator Ψ is defined

by: Ψ : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊓ 𝑣 .

Intuitively, it can be seen as a natural tightening of the operator𝛹𝑢 , which considers the meet

with the input element 𝑣 itself. Below we introduce some important properties of the operator Ψ.

Lemma A.3. Let Ψ be the 𝑘-induction operator in [40] w.r.t.𝛷 . Then

(1) Ψ is monotonic, i.e., ∀𝑣1, 𝑣2 ∈ 𝐸, 𝑣1 ⊑ 𝑣2 implies Ψ(𝑣1) ⊑ Ψ(𝑣2).
(2) Iterations of Ψ starting from 𝑢 are descending, i.e.,

. . . ⊑ Ψ𝑘 (𝑢) ⊑ Ψ𝑘−1 (𝑢) ⊑ . . . ⊑ Ψ(𝑢) ⊑ 𝑢

And thus we have for all𝑚 < 𝑛 ∈ N,Ψ𝑛 (𝑢) ⊑ Ψ𝑚 (𝑢).

Proof. For item (1), observe that if we have𝑤1 ⊑ 𝑤2 and 𝑣1 ⊑ 𝑣2, then we have𝑤1⊓𝑣1 ⊑ 𝑤2⊓𝑣2.

Ψ(𝑣1) = 𝛷 (𝑣1) ⊓ 𝑣1 (by definition of Ψ)

⊑ 𝛷 (𝑣2) ⊓ 𝑣2 (by monotonicity of𝛷 and above property)

= Ψ(𝑣2) (by definition of Ψ)

For item (2), we can immediately derived from the definition of Ψ as

Ψ𝑘 (𝑢) = Ψ(Ψ𝑘−1 (𝑢)) (by definition of Ψ𝑘 (𝑢))
= 𝛷 (Ψ𝑘−1 (𝑢)) ⊓ Ψ𝑘−1 (𝑢) (by definition of Ψ)

⊑ Ψ𝑘−1 (𝑢) (by definition of ⊓)

□

Proposition A.4. For any 𝑢 ∈ 𝐸,𝛷 (Ψ𝑘 (𝑢)) ⊑ 𝑢 ⇐⇒ 𝛷 (Ψ𝑘 (𝑢)) ⊑ Ψ𝑘 (𝑢).

Proof. The if-direction is trivial as Ψ𝑘 (𝑢) ⊑ 𝑢 (by Lemma A.3(2)). For the only-if direction:



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Piecewise Analysis of Probabilistic Programs via 𝑘-Induction 31

Ψ𝑘 (𝑢) ⊒ Ψ𝑘+1 (𝑢) (by Lemma A.3(2))

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘 (𝑢) (by definition of Ψ)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ(Ψ𝑘−1 (𝑢)) (by definition of Ψ𝑘 (𝑢))
= 𝛷 (Ψ𝑘 (𝑢)) ⊓ (𝛷 (Ψ𝑘−1 (𝑢)) ⊓ Ψ𝑘−1 (𝑢)) (by definition of Ψ)

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (Ψ𝑘−1 (𝑢))) ⊓ Ψ𝑘−1 (𝑢)) (by associative law)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.3(2))

...

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (𝑢)) ⊓ 𝑢 (by unfolding Ψ𝑘
until 𝑘 = 1)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ 𝑢 (by monotonicity of𝛷 and Lemma A.3(2))

= 𝛷 (Ψ𝑘 (𝑢)) (by the premise)

□

A.3 Equivalence between𝛹𝑢 and Ψ
Theorem A.5 (Eqivalence between 𝛹𝑢 and Ψ). For any element 𝑢 ∈ 𝐸, the sequence
{𝛹𝑘

𝑢 (𝑢)}𝑘≥0 of elements in 𝐸 coincides with the sequence {Ψ𝑘 (𝑢)}𝑘≥0. In other words, for any natural
number 𝑘 ≥ 0, we have that𝛹𝑘

𝑢 (𝑢) = Ψ𝑘 (𝑢).

Proof. Proof by mathematical induction. We denote 𝑋𝑘 =𝛹𝑘
𝑢 (𝑢) and 𝑌𝑘 = Ψ𝑘 (𝑢). when 𝑘 = 0,

𝑋0 = 𝑢 = 𝑌0. When 𝑘 = 1, 𝑋1 = 𝛷 (𝑢) ⊓ 𝑢 = 𝑌1, by definition of two operators, respectively.

Now we suppose that 𝑋𝑘 = 𝑌𝑘 , i.e.,𝛹
𝑘
𝑢 (𝑢) = Ψ𝑘 (𝑢), and we aim to prove that𝛹𝑘+1

𝑢 (𝑢) = Ψ𝑘+1 (𝑢).

𝑋𝑘+1 =𝛹𝑢 (𝛹𝑘
𝑢 (𝑢)) (by definition of𝛹𝑘+1

𝑢 (𝑢))
= 𝛷 (𝛹𝑘

𝑢 (𝑢) ⊓ 𝑢 (by definition of𝛹𝑢 )

𝑌𝑘+1 = Ψ(Ψ𝑘 (𝑢)) (by definition of Ψ𝑘+1 (𝑢))
= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘 (𝑢) (by definition of Ψ)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ(Ψ𝑘−1 (𝑢)) (by definition of Ψ𝑘 (𝑢))
= 𝛷 (Ψ𝑘 (𝑢)) ⊓ (𝛷 (Ψ𝑘−1 (𝑢)) ⊓ Ψ𝑘−1 (𝑢)) (by definition of Ψ)

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (Ψ𝑘−1 (𝑢))) ⊓ Ψ𝑘−1 (𝑢)) (by associative law)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.3(2))

...

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (𝑢)) ⊓ 𝑢 (by unfolding Ψ𝑘
until 𝑘 = 1)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ 𝑢 (by monotonicity of𝛷 and Lemma A.3(2))

Since we suppose that𝛹𝑘
𝑢 (𝑢) = Ψ𝑘 (𝑢), we obtain that𝛷 (𝛹𝑘

𝑢 (𝑢) ⊓ 𝑢 = 𝛷 (Ψ𝑘 (𝑢)) ⊓ 𝑢, thus we have
𝛹𝑘+1
𝑢 (𝑢) = Ψ𝑘+1 (𝑢), i.e., 𝑋𝑘+1 = 𝑌𝑘+1. □
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A.4 Supplementary Materials for the Dual 𝑘-Induction Operators𝛹′𝑢 and Ψ′

We first give the definition of the Dual 𝑘-Induction Operators Ψ′, which has been examined

in [40].

Definition A.6 (Dual 𝑘-Induction Operator in [40]). The lower 𝑘-induction operator Ψ′ is given
by: Ψ′ : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊔ 𝑣 .

Lemma A.7. Fix a lattice (𝐸, ⊑) and a monotone operator𝛷 . For any element 𝑢 ∈ 𝐸, both of these
two dual 𝑘-induction operators𝛹′𝑢 and Ψ′ have the following properties:

(1) 𝛹′𝑢 (resp. Ψ
′) is monotone.

(2) Iterations of𝛹′𝑢 (resp. Ψ′) starting from 𝑢 are ascending, i.e.,

𝑢 ⊑𝛹′𝑢 (𝑢) ⊑ . . . (𝛹′𝑢)𝑘−1 (𝑢) ⊑ (𝛹′𝑢)𝑘 (𝑢) . . .

𝑢 ⊑ Ψ′ (𝑢) ⊑ . . . (Ψ′)𝑘−1 (𝑢) ⊑ (Ψ′)𝑘 (𝑢) . . .
Thus we have for all𝑚 < 𝑛 ∈ N, (𝛹′𝑢)𝑚 (𝑢) ⊑ (𝛹′𝑢)𝑛 (𝑢) and (Ψ′)𝑚 (𝑢) ⊑ (Ψ′)𝑛 (𝑢).

Proof. We only prove the case of dual 𝑘-induction operator𝛹′𝑢 , since the proof of the properties
of the dual 𝑘-induction operator Ψ′ is similar with that of𝛹′𝑢 .

For item (1), observe that if we have𝑤1 ⊑ 𝑤2, then we have𝑤1⊔𝑢 ⊑ 𝑤2⊔𝑢. Assume that 𝑣1 ⊑ 𝑣2

𝛹′𝑢 (𝑣1) = 𝛷 (𝑣1) ⊔ 𝑢 (by definition of𝛹′
ℎ
)

⊑ 𝛷 (𝑣2) ⊔ 𝑢 (by monotonicity of𝛷 and above property)

=𝛹′𝑢 (𝑣2) (by definition of𝛹′
ℎ
)

For item (2), we prove it by mathematical induction. We have 𝑢 ⊑ 𝛹′𝑢 (𝑢) as𝛹′𝑢 (𝑢) = 𝛷 (𝑢) ⊔ 𝑢.
We then assume that (𝛹′𝑢)𝑘 (𝑢) ⊒ (𝛹′ℎ)

𝑘−1 (𝑢), and we prove that

(𝛹′𝑢)𝑘+1 (𝑢) =𝛹′𝑢 ((𝛹′𝑢)𝑘 (𝑢)) (by definition of (𝛹′𝑢)𝑘+1 (𝑢))
⊒𝛹′𝑢 ((𝛹′𝑢)𝑘−1 (𝑢)) (by monotonicity of𝛹′𝑢 and assumption)

= (𝛹′𝑢)𝑘 (𝑢) (by definition of (𝛹′𝑢)𝑘 (𝑢))

Thus the value sequence is an ascending chain. □
Proposition A.8. For any element 𝑢 ∈ 𝐸, the lower 𝑘-induction operators𝛹′𝑢 and Ψ′ have the

following properties:

𝛷 ((𝛹′𝑢 )𝑘 (𝑢)) ⊒ 𝑢 ⇐⇒ 𝛷 ((𝛹′𝑢 )𝑘 (𝑢)) ⊒ (𝛹′𝑢 )𝑘 (𝑢)

𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ 𝑢 ⇐⇒ 𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ (Ψ′)𝑘 (𝑢)

Proof. For the case of the dual 𝑘-induction operator𝛹′𝑢 :
The if-direction is trivial as (𝛹′𝑢)𝑘 (𝑢) ⊒ 𝑢 (by Lemma A.7(2)). For the only-if direction:

(𝛹′𝑢)𝑘 (𝑢) ⊑ (𝛹′𝑢)𝑘+1 (𝑢) (by Lemma A.7(2)))

=𝛹′𝑢 ((𝛹′𝑢)𝑘 (𝑢)) (by the definition of (𝛹′𝑢)𝑘+1 (𝑢))
= 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊔ 𝑢 (by the definition of𝛹′𝑢 )

=𝛹 ((𝛹′𝑢)𝑘 (𝑢)) (by the premise)

For the case of the dual 𝑘-induction operator Ψ′:



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Piecewise Analysis of Probabilistic Programs via 𝑘-Induction 33

The if-direction is trivial as (Ψ′)𝑘 (𝑢) ⊒ 𝑢 (by Lemma A.7(2)). For the only-if direction:

(Ψ′)𝑘 (𝑢) ⊑ (Ψ′)𝑘+1 (𝑢) (by Lemma A.7(2)))

= Ψ′ ((Ψ′)𝑘 (𝑢)) (by the definition of (Ψ′)𝑘+1 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘 (𝑢) (by the definition of Ψ′)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ Ψ′ ((Ψ′)𝑘−1 (𝑢)) (by the definition of (Ψ′)𝑘 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 ((Ψ′)𝑘−1 (𝑢)) ⊔ (Ψ′)𝑘−1 (𝑢) (by the definition of Ψ′)

= (𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 ((Ψ′)𝑘−1 (𝑢))) ⊔ (Ψ′)𝑘−1 (𝑢) (by associate law)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.7(2)))

...

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ Ψ′ (𝑢) (by unfolding (Ψ′)𝑘 (𝑢) until 𝑘 = 1)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 (𝑢) ⊔ 𝑢 (by definition of Ψ′)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ 𝑢 (by monotonicity of𝛷 and Lemma A.7(2)))

= 𝛷 ((Ψ′)𝑘 (𝑢)) (by the premise)

□

A.5 Equivalence between𝛹′𝑢 and Ψ′

Theorem A.9 (Eqivalence between𝛹′𝑢 and Ψ′). For any element 𝑢 ∈ 𝐸, we have that the
sequence {(𝛹′𝑢)𝑘 (𝑢)}𝑘≥0 of elements in 𝐸 coincides with the sequence {(Ψ′)𝑘 (𝑢)}𝑘≥0. In other words,
for any natural number 𝑘 ≥ 0, we have that (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢).

Proof. Analogously, we proof it by mathematical induction. 𝑋𝑘 = (𝛹′𝑢)𝑘 (𝑢) and 𝑌𝑘 = (Ψ′)𝑘 (𝑢).
when 𝑘 = 0, 𝑋0 = 𝑢 = 𝑌0. When 𝑘 = 1, 𝑋1 = 𝛷 (𝑢) ⊔ 𝑢 = 𝑌1, by definition of two dual operators,

respectively.

Now we suppose that 𝑋𝑘 = 𝑌𝑘 , i.e., (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢), and we aim to prove that (𝛹′𝑢)𝑘+1 (𝑢) =
(Ψ′)𝑘+1 (𝑢).

𝑋𝑘+1 =𝛹
′
𝑢 ((𝛹′𝑢)𝑘 (𝑢)) (by definition of (𝛹′𝑢)𝑘+1 (𝑢))

= 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊔ 𝑢 (by definition of𝛹′𝑢 )

𝑌𝑘+1 = Ψ′ ((Ψ′)𝑘 (𝑢)) (by definition of (Ψ′)𝑘+1 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘 (𝑢) (by definition of Ψ′)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ Ψ′ ((Ψ′)𝑘−1 (𝑢)) (by definition of (Ψ′)𝑘 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (𝛷 ((Ψ′)𝑘−1 (𝑢)) ⊔ Ψ′𝑘−1 (𝑢)) (by definition of Ψ′)

= (𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 ((Ψ′)𝑘−1 (𝑢))) ⊔ Ψ′𝑘−1 (𝑢)) (by associative law)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.7(2)))

...

= (𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 (𝑢)) ⊔ 𝑢 (by unfolding (Ψ′)𝑘 until 𝑘 = 1)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ 𝑢 (by monotonicity of𝛷 and Lemma A.7(2))
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Since we suppose that (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢), we obtain that 𝛷 ((𝛹′𝑢)𝑘 (𝑢) ⊔ 𝑢 = 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ 𝑢,
thus we have (𝛹′𝑢)𝑘+1 (𝑢) = (Ψ′)𝑘+1 (𝑢), i.e., 𝑋𝑘+1 = 𝑌𝑘+1. □

B SUPPLEMENTARY MATERIAL FOR SECTION 4

B.1 Classical OST
Optional Stopping Theorem (OST) is a classical theorem in martingale theory that characterizes

the relationship between the expected values initially and at a stopping time in a supermartingale.

Below we present the classical form of OST.

Theorem B.1 (Optional Stopping Theorem (OST) [58, Chapter 10]). Let {𝑋𝑛}∞𝑛=0 be a martin-
gale (resp. supermartingale) adapted to a filtration F = {F𝑛}∞𝑛=0 and 𝜏 be a stopping time w.r.t the
filtration F . If we have that:
• E(𝜏) < ∞;
• exists an𝑀 ∈ [0,∞) such that |𝑋𝑛+1 − 𝑋𝑛 | ≤ 𝑀 holds almost surely for every 𝑛 ≥ 0,

then it follows that ( |𝑋𝜏 |) < ∞ and E(𝑋𝜏 ) = E(𝑋0)(resp. E(𝑋𝜏 ) ≤ E(𝑋0)).

Since the classical Optional Stopping Theorem [24, 58] requires bounded step-wise difference

|𝑋𝑛+1−𝑋𝑛 | in a stochastic process {𝑋𝑛}𝑛≥0, which cannot handle our problem due to the assignment

commands in the loop body. To address this difficulty, We have sought several extended versions of

OST, as proposed in [54, 56, 57], etc. Among which we find the OST variant proposed in [57] can

handle our problem.

B.2 Proof of Theorem 4.10
Theorem 4.10. Suppose the loop 𝑃 is affine. Let 𝑘 be a positive integer and ℎ be a polynomial

potential function in the program variables with degree 𝑑 . If there exist real numbers 𝑐1 > 0 and

𝑐2 > 𝑐3 > 0 such that

(P1) there exists a uniform amplifier 𝑐 satisfying 𝑐 ≤ 𝑒𝑐3/𝑑 , and
(P2) the termination time 𝑇 of 𝑃 has the concentration property, i.e., P(𝑇 > 𝑛) ≤ 𝑐1 · 𝑒−𝑐2 ·𝑛 .

hold, then for any initial program state 𝑠∗, we have:

• E𝑠∗ (𝑋𝑓 ) ≤ 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗) holds for any 𝑘-upper potential function ℎ.

• E𝑠∗ (𝑋𝑓 ) ≥ (𝛹
′
ℎ)𝑘−1 (ℎ) (𝑠∗) ≥ ℎ(𝑠∗) holds for any 𝑘-lower potential function ℎ.

Proof. We first proof the soundness of upper potential functions. Let 𝑠𝑛 be the random vector

(random variable) of the program state at the 𝑛-th iteration of the probabilistic while loop 𝑃 , where

𝑠0 = 𝑠∗, and let {F𝑛}𝑛≥0 be the filtration such that each F𝑛 is the 𝜎-algebra that describes the

first 𝑛 iterations of the loop, i.e., the smallest 𝜎-algebra that makes the random values during

the first 𝑛 executions measurable. This choice of F𝑛 is standard in previous martingale-based

results [17–19, 56].

We also define 𝐻 =𝛹
𝑘−1
ℎ (ℎ). Note that 𝐻 is piecewise linear or polynomial (by the definition of

𝛹ℎ in Definition 4.4) . By Definition 4.5 and the property that𝛷 (𝛹𝑘−1
ℎ (ℎ)) ⪯ ℎ ⇐⇒ 𝛷 (𝛹𝑘−1

ℎ (ℎ)) ⪯
𝛹
𝑘−1
ℎ (ℎ) (Theorem A.1), we obtain that ∀𝑠 ∈ Reach(𝑠∗),𝛷 (𝐻 ) (𝑠) ≤ 𝐻 (𝑠). We define the stochastic

process {𝑋𝑛}∞𝑛=0 by
𝑋𝑛 := 𝐻 (𝑠𝑛).

We first prove that the stochastic process {𝑋𝑛} is a supermartingale. We discuss this in the following

two scenarios:
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• if 𝑠𝑛 ̸ |= 𝜑 , by the semantics of probabilistic while loop (see Section 2.3), 𝑠𝑛+1 = 𝑠𝑛 , and thus

𝑋𝑛+1 = 𝑋𝑛 , which satisfies the conditions of supermartingale;

• if 𝑠𝑛 |= 𝜑 , we have
E𝑠∗ [𝑋𝑛+1 |F𝑛] = E𝑠∗ [𝐻 (𝑠𝑛+1) |F𝑛]

= E𝑠𝑛 [𝐻 (𝑠𝑛+1) |F𝑛] (by definition of conditional expectation)

= 𝑝𝑟𝑒𝐶 (𝐻 ) (𝑠𝑛) (by definition of pre-expectation)

= 𝛷 (𝐻 ) (𝑠𝑛) (by definition of characteristic function)

≤ 𝐻 (𝑠𝑛) (by property of 𝐻 )

= 𝑋𝑛

where the property of conditional expectation is the “take out what is known” property

of conditional expectation (see [58]). From (P1) and the definition of uniform amplifier

(see Definition 4.8), for each program variable 𝑥 , the value of 𝑥𝑛 is bounded by |𝑋𝑛 | ≤
𝑐𝑛 · |𝑥0 | + 𝑎 · (𝑐0 + · · · 𝑐𝑛−1) ≤ 𝐾𝑛 · 𝑐𝑛 ≤ 𝐾𝑛 · 𝑒𝑐3∗𝑛/𝑑 for some positive constant 𝐾𝑛 . From that

𝐻 is piecewise linear (resp. polynomial with degree 𝑑), i.e., 𝐻 is linear (resp. polynomial

with degree 𝑑) on each segment, we can obtain E𝑠∗ [𝑋𝑛] = E𝑠∗ [𝐻 (𝑠𝑛)] = E𝑠∗ [𝑀𝑛 · 𝑐𝑛] < ∞
for some positive constant𝑀𝑛 > 0 by the definition of 𝑋𝑛 . Thus {𝑋𝑛} is a supermartingale.

The condition (a) in Theorem 4.6 follows from the assumption that (P2) 𝑃 has the concentration

property.

Then we prove the condition (b) in Theorem 4.6. From (P1), we have that for each program

variable 𝑥 , the value of 𝑥𝑛 at 𝑛-th iteration, i.e., at the program state 𝑠𝑛 , is bounded by 𝐾𝑛 · 𝑐𝑛 . When

𝐻 is piecewise linear, i.e., 𝑑 = 1, we have that 𝐻 (𝑠𝑛) ≤ 𝑀𝑛 · 𝑐𝑛 for𝑀𝑛 > 0.

|𝑋𝑛+1 − 𝑋𝑛 | = |𝐻 (𝑠𝑛+1) − 𝐻 (𝑠𝑛) |
≤ |𝐻 (𝑠𝑛+1) | + |𝐻 (𝑠𝑛) |
≤ 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1 · |𝑐 |𝑛+1

≤ (𝑀𝑛 + |𝑐 | ·𝑀𝑛+1) · |𝑐 |𝑛

≤ 𝑏1 · 𝑒𝑐3𝑛

When 𝐻 is piecewise polynomial with degree 𝑑 , we have that 𝐻 (𝑠𝑛) ≤ 𝑀𝑛 · 𝑐𝑛𝑑 for𝑀𝑛 > 0.

|𝑋𝑛+1 − 𝑋𝑛 | = |𝐻 (𝑠𝑛+1) − 𝐻 (𝑠𝑛) |
≤ |𝐻 (𝑠𝑛+1) | + |𝐻 (𝑠𝑛) |
≤ 𝑀𝑛 · |𝑐 |𝑛𝑑 +𝑀𝑛+1 · |𝑐 | (𝑛+1)𝑑

≤ (𝑀𝑛 + |𝑐𝑑 | ·𝑀𝑛+1) · |𝑐 |𝑛𝑑

≤ 𝑏1 · (𝑒𝑐3/𝑑 )𝑛𝑑

≤ 𝑏1 · 𝑒𝑐3𝑛

Especially, if the uniform amplifier 𝑐 is chosen as 1, then 𝑐3 can be chosen arbitrarily small, the

prerequisites of this theorem always holds regardless of the values taken by 𝑐2 and 𝑑 .

By applying Theorem 4.6, we have that E𝑠∗ (𝑋𝑇 ) ≤ E𝑠∗ (𝑋0). Since the termination time 𝑇 is a

stopping time w.r.t. the filtration {F𝑛}𝑛≥0, and there will be 𝑠𝑇 ̸ |= 𝜑 , thus 𝑋𝑇 = 𝑓 (𝑠𝑇 ) = 𝑋𝑓 . We have

E𝑠∗ (𝑋𝑓 ) ≤ E𝑠∗ (𝑋0) = 𝐻 (𝑠∗). The second inequality, i.e.,𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗) (∀𝑠∗) can be derived

directly from the property that𝛹
𝑘−1
ℎ (ℎ) ⪯ ℎ holds (see Appendix A.2 and [11]). The case of lower

potential functions is completely dual to the case of upper potential functions since we can consider



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Anon.

the stochastic process {−𝑋𝑛}, that is, define the stochastic process by 𝑌𝑛 := −𝐻 (𝑠𝑛). The remaining

proof is essentially the same.

□

B.3 Proof of Theorem 4.11
Theorem 4.11. Let 𝑘 be a positive integer. Suppose there exist real numbers 𝑐1 > 0 and 𝑐2 > 0 such

that condition (P1’) loop 𝑃 has the bounded update property; and condition (P2) in Theorem 4.10

holds, then for any initial program state 𝑠∗, we have

• E𝑠∗ (𝑋𝑓 ) ≤ 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗) holds for any 𝑘-upper potential function ℎ.

• E𝑠∗ (𝑋𝑓 ) ≥ (𝛹
′
ℎ)𝑘−1 (ℎ) (𝑠∗) ≥ ℎ(𝑠∗) holds for any 𝑘-lower potential function ℎ.

Proof. We first proof the soundness of upper potential functions. Let 𝑠𝑛 be the random vector

(random variable) of the program state at the 𝑛-th iteration of the probabilistic while loop 𝑃 , where

𝑠0 = 𝑠∗, and let {F𝑛}𝑛≥0 be the filtration such that each F𝑛 is the 𝜎-algebra that describes the

first 𝑛 iterations of the loop, i.e., the smallest 𝜎-algebra that makes the random values during

the first 𝑛 executions measurable. This choice of F𝑛 is standard in previous martingale-based

results [17–19, 56].

We also define 𝐻 =𝛹
𝑘−1
ℎ (ℎ). Note that 𝐻 is piecewise linear or polynomial (by the definition of

𝛹ℎ in Definition 4.4) . By Definition 4.5 and the property that𝛷 (𝛹𝑘−1
ℎ (ℎ)) ⪯ ℎ ⇐⇒ 𝛷 (𝛹𝑘−1

ℎ (ℎ)) ⪯
𝛹
𝑘−1
ℎ (ℎ) (Theorem A.1), we obtain that ∀𝑠 ∈ Reach(𝑠∗),𝛷 (𝐻 ) (𝑠) ≤ 𝐻 (𝑠). We define the stochastic

process {𝑋𝑛}∞𝑛=0 by

𝑋𝑛 := 𝐻 (𝑠𝑛).

We first prove that the stochastic process {𝑋𝑛} is a supermartingale. We discuss this in the following

two scenarios:

• if 𝑠𝑛 ̸ |= 𝜑 , by the semantics of probabilistic while loop (see Section 2.3), 𝑠𝑛+1 = 𝑠𝑛 , and thus

𝑋𝑛+1 = 𝑋𝑛 , which satisfies the conditions of supermartingale;

• if 𝑠𝑛 |= 𝜑 , we have

E𝑠∗ [𝑋𝑛+1 |F𝑛] = E𝑠∗ [𝐻 (𝑠𝑛+1) |F𝑛]
= E𝑠𝑛 [𝐻 (𝑠𝑛+1) |F𝑛] (by definition of conditional expectation)

= 𝑝𝑟𝑒𝐶 (𝐻 ) (𝑠𝑛) (by definition of pre-expectation)

= 𝛷 (𝐻 ) (𝑠𝑛) (by definition of characteristic function)

≤ 𝐻 (𝑠𝑛) (by property of 𝐻 )

= 𝑋𝑛

where the property of conditional expectation is the “take out what is known” property of con-

ditional expectation (see [58]). From (P1’) that 𝑃 has the bounded update property and 𝐻 is a

piecewise polynomial with degree 𝑑 , i.e., 𝐻 is a polynomial with degree 𝑑 on each segment, we can

obtain E𝑠∗ [𝑋𝑛] = E𝑠∗ [𝐻 (𝑠𝑛)] ≤ 𝜁 · 𝑛𝑑 for a positive constant 𝜁 > 0, thus {𝑋𝑛} is a supermartingale.

The condition (a) in Theorem 4.6 follows from the assumption that (P2) 𝑃 has the concentration

property.

Then we prove the condition (b) in Theorem 4.6. From that 𝑃 has the bounded update property

and 𝐻 is a piecewise polynomial with degree 𝑑 , we also have that |𝑋𝑛 | ≤ 𝜁 · 𝑛𝑑 for a positive
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constant 𝜁 > 0, thus we have

|𝑋𝑛+1 − 𝑋𝑛 | ≤ |𝑋𝑛+1 | + |𝑋𝑛 |
≤ 𝜁 · 𝑛𝑑 + 𝜁 · (𝑛 + 1)𝑑

≤ 𝑏1 · 𝑛𝑑

Note that in this theorem, 𝑐3 in Theorem 4.6(b) is chosen arbitrarily small, therefore the prerequisites

of Theorem 4.6 always holds regardless of the values taken by 𝑐2.

By applying Theorem 4.6, we have that E𝑠∗ (𝑋𝑇 ) ≤ E𝑠∗ (𝑋0). Since the termination time 𝑇 is a

stopping time w.r.t. the filtration {F𝑛}𝑛≥0, and there will be 𝑠𝑇 ̸ |= 𝜑 , thus 𝑋𝑇 = 𝑓 (𝑠𝑇 ) = 𝑋𝑓 . We

have E𝑠∗ (𝑋𝑓 ) ≤ E𝑠∗ (𝑋0) = 𝐻 (𝑠∗). The second inequality, i.e., 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗) (∀𝑠∗), can be

derived directly from the property that𝛹
𝑘−1
ℎ (ℎ) ⪯ ℎ holds (see Appendix A.2 and [11]). The case of

lower potential functions is completely dual to the case of upper potential functions since we can

consider the stochastic process {−𝑋𝑛}, that is, define the stochastic process by 𝑌𝑛 := −𝐻 (𝑠𝑛). The
remaining proof is essentially the same.

□

C SUPPLEMENTARY MATERIAL FOR SECTION 5

C.1 Supplementary Material for Brute-Force Arithmetic Expansion in Stage 2

In this section, we supplement the brute-force arithmetic expansion that can simplify the𝑘-induction

constraint. To transform the 𝑘-induction constraint 𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ into a simpler form, our

algorithm further unrolls this 𝑘-induction conditions so that the minimum operations appear at

the outermost of the left-hand-side of the inequality. In detail, from the definition of the operator

𝛹ℎ (Definition 4.4), the unrolling is reduced to the recursive computation of pre-expectation and

the pointwise minimum operation. Following the definition of pre-expectation (Definition 4.2), the

unrolling can be done by the following reduction rules for functions 𝑓1, . . . , 𝑓𝑚 , 𝑔1, . . . , 𝑔𝑛 :

(R1) min{𝑓1, . . . , 𝑓𝑚} +min{𝑔1, . . . , 𝑔𝑛} = min1≤𝑖≤𝑚,1≤ 𝑗≤𝑛{𝑓𝑖 + 𝑔 𝑗 };
(R2) 𝑐 ·min{𝑓1, . . . , 𝑓𝑚} = min{𝑐 · 𝑓1, . . . , 𝑓𝑚} for constant 𝑐 ≥ 0;

(R3) [𝐵] ·min{𝑓1, . . . , 𝑓𝑚} = min{[𝐵] · 𝑓1, . . . , [𝐵] · 𝑓𝑚} for predicate 𝐵.
By iterative applications of the reduction rules, the constraint𝛷 𝑓 (𝛹

𝑘−1
ℎ (ℎ)) ⪯ ℎ can be trans-

formed into a succinct form with only one minimum operation:

min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ
where ℎ is the predefined polynomial template and each ℎ𝑖 (𝑖 = 1, . . . ,𝑚) is a piecewise expression
derived from the unrolling that does not contain the minimum operation.

C.2 Proof of Proposition 5.2
We give a proof for Proposition 5.2 in this section.

Proposition 5.2. The upper 𝑘-induction condition𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ is equivalent to constraint

min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ, where each ℎ𝑖 equals 𝑝𝑟𝑒𝐶𝑑
(ℎ) for some unique 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} from

the unfolding process above.

Proof. We concentrate on the left side of the constraint:𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ.

We first proof the case of 𝑘 = 2, i.e., 𝛷 𝑓 (𝛹
1

ℎ (ℎ)) ⪯ ℎ. Since our syntax of the probabilistic

programs is defined in a compositional style (see Fig. 1 in Section 2.3 for more details), we proof
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by induction on the structure of programs. For simplicity, we denote 𝑝𝑟𝑒𝐶 ( [𝛷]) by [𝛷 (𝐶)], which
represent the evaluation of [𝛷] after the execution of 𝐶 .

• Case 𝐶 ≡ skip.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] ·𝛹ℎ (ℎ)
= [¬𝜑] · 𝑓 + [𝜑] ·min{𝛷 𝑓 (ℎ), ℎ}
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑] · 𝑓 + [𝜑] · ℎ,ℎ}
= [¬𝜑] · 𝑓 +min{[𝜑] · ℎ, [𝜑] · ℎ}
= [¬𝜑] · 𝑓 + [𝜑] · ℎ
= 𝛷 𝑓 (ℎ)

It corresponds to pre-expectation of the loop-free program unfolded with twice (only one

program).

• Case 𝐶 ≡ 𝑥 := 𝑒 .

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] ·𝛹ℎ (ℎ) ( [𝑥/𝑒])
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑] · 𝑓 + [𝜑] · ℎ( [𝑥/𝑒]), ℎ}([𝑥/𝑒])
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑 ( [𝑥/𝑒])] · 𝑓 ( [𝑥/𝑒]) +
[𝜑 ( [𝑥/𝑒])] · ℎ( [𝑥/𝑒]) ( [𝑥/𝑒]), ℎ( [𝑥/𝑒])}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 ( [𝑥/𝑒])] · 𝑓 ( [𝑥/𝑒]) +
[𝜑 ∧ 𝜑 ( [𝑥/𝑒])] · ℎ( [𝑥/𝑒]) ( [𝑥/𝑒]), [¬𝜑] · 𝑓 + [𝜑] · ℎ( [𝑥/𝑒])}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 ( [𝑥/𝑒])] · 𝑓 ( [𝑥/𝑒]) +
[𝜑 ∧ 𝜑 ( [𝑥/𝑒])] · 𝑝𝑟𝑒𝐶 ;𝐶 (ℎ), [¬𝜑] · 𝑓 + [𝜑] · ℎ( [𝑥/𝑒])}

the expressions in the minimize operator correspond to pre-expectation of the two loop-free

programs unfolded within twice (one for once, and another for twice).

• Case 𝐶 ≡ 𝐶1;𝐶2.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑]𝑝𝑟𝑒𝐶1

(𝑝𝑟𝑒𝐶2
(min{[¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶1

(𝑝𝑟𝑒𝐶2
(ℎ)), ℎ}))

= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2
(𝑓 ) +

[𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ), 𝑝𝑟𝑒𝐶1;𝐶2

(ℎ)}
= min{[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2

(𝑓 ) +
[𝜑 ∧ ¬𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2

(ℎ),
[¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶1;𝐶2

(ℎ)}

the expressions in the minimize operator correspond to pre-expectation of the two loop-free

programs unfolded within twice (one for once, and another for twice)
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• case 𝐶 ≡ {𝐶1}[𝑝]{𝐶2}.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝 · 𝑝𝑟𝑒𝐶1

(𝛹ℎ (ℎ)) + [𝜑] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2
(𝛹ℎ (ℎ))

wherein

𝑝𝑟𝑒𝐶1
(𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶1

(min{[¬𝜑] · 𝑓 + [𝜑] · (𝑝 · 𝑝𝑟𝑒𝐶1
(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2

(ℎ)), ℎ}
= min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1

(𝑓 ) + [𝜑 (𝐶1)] ·
(𝑝 · 𝑝𝑟𝑒𝐶1;𝐶1

(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶1

(ℎ)}

and

𝑝𝑟𝑒𝐶2
(𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶2

(min{[¬𝜑] · 𝑓 + [𝜑] · (𝑝 · 𝑝𝑟𝑒𝐶1
(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2

(ℎ)), ℎ}
= min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2

(𝑓 ) + [𝜑 (𝐶2)] ·
(𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1

(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶2

(ℎ)}

Thus we have

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝 ·min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1

(𝑓 )
+[𝜑 (𝐶1)] · (𝑝 · 𝑝𝑟𝑒𝐶1;𝐶1

(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶1

(ℎ)} +
[𝜑] · (1 − 𝑝) ·min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2

(𝑓 )
+[𝜑 (𝐶2)] · (𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1

(ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶2

(ℎ)}
= min{[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 (𝐶1)] · 𝑝 · 𝑝𝑟𝑒𝐶1

(𝑓 ) + [𝜑 ∧ ¬𝜑 (𝐶2)] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2
(𝑓 )

+[𝜑 ∧ 𝜑 (𝐶1)] · (𝑝2 · 𝑝𝑟𝑒𝐶1;𝐶1
(ℎ) + 𝑝 (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2

(ℎ))
+[𝜑 ∧ 𝜑 (𝐶2)] · ((1 − 𝑝)𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1

(ℎ) + (1 − 𝑝)2 · 𝑝𝑟𝑒𝐶2;𝐶2
(ℎ)),

[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 (𝐶1)] · 𝑝 · 𝑝𝑟𝑒𝐶1
(𝑓 ) +

[𝜑 ∧ 𝜑 (𝐶1)] · (𝑝2 · 𝑝𝑟𝑒𝐶1;𝐶1
(ℎ) + 𝑝 (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2

(ℎ)) +
[𝜑] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2

(ℎ),
[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 (𝐶2)] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2

(𝑓 ) +
[𝜑 ∧ 𝜑 (𝐶2)] · ((1 − 𝑝)𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1

(ℎ) + (1 − 𝑝)2 · 𝑝𝑟𝑒𝐶2;𝐶2
(ℎ)) +

[𝜑] · 𝑝 · 𝑝𝑟𝑒𝐶1
(ℎ),

[¬𝜑] · 𝑓 + [𝜑] · 𝑝 · 𝑝𝑟𝑒𝐶1
(ℎ) + [𝜑] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2

(ℎ)

The first expression corresponds to the case that we unfold for twice at each state we reach

(after the execution of𝐶1 and𝐶2), and the second (resp. third) expression corresponds to the

case that we unfold for twice at the state that we reach after the execution of 𝐶1 (resp. 𝐶2)

and unfold for once at the state that we reach after the execution of𝐶2 (resp.𝐶1). The fourth

expression corresponds to the case that we unfold for once at both states, i.e., 1-induction

principle.
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• case 𝐶 ≡ if (𝜙) {𝐶1} else {𝐶2}.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙] · 𝑝𝑟𝑒𝐶1

(𝛹ℎ (ℎ)) + [𝜑 ∧ ¬𝜙] · 𝑝𝑟𝑒𝐶2
(𝛹ℎ (ℎ))

wherein

𝑝𝑟𝑒𝐶1
(𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶1

(min{[¬𝜑] · 𝑓 + [𝜑] · ( [𝜙] · 𝑝𝑟𝑒𝐶1
(ℎ) + [¬𝜙] · 𝑝𝑟𝑒𝐶2

(ℎ)), ℎ}
= min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1

(𝑓 ) + [𝜑 (𝐶1)] ·
( [𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1

(ℎ) + [¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶1

(ℎ)}

and

𝑝𝑟𝑒𝐶2
(𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶2

(min{[¬𝜑] · 𝑓 + [𝜑] · ( [𝜙] · 𝑝𝑟𝑒𝐶1
(ℎ) + [¬𝜙] · 𝑝𝑟𝑒𝐶2

(ℎ)), ℎ}
= min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2

(𝑓 ) + [𝜑 (𝐶2)] ·
( [𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1

(ℎ) + [¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶2

(ℎ)}

Thus we have

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙] ·min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1

(𝑓 )
+[𝜑 (𝐶1)] · ( [𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1

(ℎ) + [¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶1

(ℎ)} +
[𝜑 ∧ ¬𝜙] ·min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2

(𝑓 )
+[𝜑 (𝐶2)] · ( [𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1

(ℎ) + [¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2
(ℎ)), 𝑝𝑟𝑒𝐶2

(ℎ)}
= min{[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙 ∧ ¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1

(𝑓 ) +
[𝜑 ∧ ¬𝜙 ∧ ¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2

(𝑓 ) +
[𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ 𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1

(ℎ) + [𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ ¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ)) +

[𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ 𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1
(ℎ) + [𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ ¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2

(ℎ)),
[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙 ∧ ¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1

(𝑓 ) +
[𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ 𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1

(ℎ) + [𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ ¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2
(ℎ)) +

[𝜑 ∧ ¬𝜙] · 𝑝𝑟𝑒𝐶2
(ℎ),

[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜙 ∧ ¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2
(𝑓 ) +

[𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ 𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1
(ℎ) + [𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ ¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2

(ℎ)) +
[𝜑 ∧ 𝜙] · 𝑝𝑟𝑒𝐶1

(ℎ),
[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙] · 𝑝𝑟𝑒𝐶1

(ℎ) + [𝜑 ∧ ¬𝜙] · 𝑝𝑟𝑒𝐶2
(ℎ)

The one-to-one relation is the same as that in the former case (probabilistic choice case).

Then we proof the case of 𝑘 > 2 by mathematical induction. Suppose that the proposition

holds when 𝑘 = 𝑛, i.e., the upper 𝑛-induction condition 𝛷 𝑓 (𝛹
𝑛−1
ℎ (ℎ)) ⪯ ℎ is equivalent with

min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ , where each ℎ𝑖 uniquely corresponds to one 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} and is

equal to 𝑝𝑟𝑒𝐶𝑑
(ℎ), where {𝐶1, . . . ,𝐶𝑚} are all the loop-free programs generated by following the

decision process in Stage 2 in Section 5 within𝑚 unfolding.
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Then we proof the case of 𝑛 + 1.

𝛷 𝑓 (𝛹
𝑛

ℎ (ℎ)) = 𝛷 𝑓 (𝛹ℎ (𝛹
𝑛−1
ℎ (ℎ)))

= 𝛷 𝑓 (min{𝛷 𝑓 (𝛹
𝑛−1
ℎ (ℎ)), ℎ})

= 𝛷 𝑓 (min{min{ℎ1, ℎ2, . . . , ℎ𝑚}, ℎ})
= 𝛷 𝑓 (min{ℎ1, ℎ2, . . . , ℎ𝑚, ℎ})
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (min{ℎ1, ℎ2, . . . , ℎ𝑚, ℎ})

Through the same inference on the structure𝐶 as above, we show it is equivalent tomin{𝑔1, 𝑔2, . . . , 𝑔𝑀 },
where 𝑀 ≥ 𝑚 + 1 and each 𝑔𝑖 uniquely corresponds to one 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑀 } and is equal to

𝑝𝑟𝑒𝐶𝑑
(ℎ), where {𝐶1, . . . ,𝐶𝑀 } are all the loop-free programs generated by following the decision

process in Stage 2 in Section 5 within 𝑛 + 1 unfolding. Thus the proposition holds when 𝑘 = 𝑛 + 1.
Notice that the operators𝛷 𝑓 and pointwise min are noncommutative.

By mathematical induction, the proposition holds for 𝑘 ≥ 2. □

Remark 5. In Proposition 5.2, We only propose the case of upper 𝑘-induction condition, and the case
of lower 𝑘-induction condition is completely dual.

C.3 Supplementary Material for the Pedagogical Explanation in Stage 2
We now present a detailed mathematical analysis of the program in (5).

Recall that we denote 𝑓 as the return function, and denote𝛷 𝑓 as the function given by

𝛷 𝑓 (ℎ) (𝑥) := [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] (𝑝 · ℎ(𝑎1𝑥 + 𝑏1) + (1 − 𝑝) · ℎ(𝑎2𝑥 + 𝑏2))

for every function ℎ : R → R. We use the 𝑘-induction operator𝛹ℎ from [11] (𝑘 is dummy here)

which is given by𝛹ℎ (𝑔) := min{𝛷 𝑓 (𝑔), ℎ}. We apply the 𝑘 = 2-induction condition to upper-bound

the expected value of 𝑋𝑓 and perform a key simplification for this condition via loop unfolding as

follows. For the ease of understanding, we let 𝐻1 = [¬𝜑 (𝑎1𝑥 + 𝑏1)] · 𝑓 (𝑎1𝑥 + 𝑏1) + [𝜑 (𝑎1𝑥 + 𝑏1)] ·
(𝑝 ·ℎ(𝑎1 (𝑎1𝑥 +𝑏1) +𝑏1) + (1−𝑝) ·ℎ(𝑎2 (𝑎1𝑥 +𝑏1) +𝑏2)), which intuitively represents that we unfold

the loop once at the state of 𝑎1𝑥 + 𝑏1, and 𝐻2 = [¬𝜑 (𝑎2𝑥 + 𝑏2)] · 𝑓 (𝑎2𝑥 + 𝑏2) + [𝜑 (𝑎2𝑥 + 𝑏2)] · (𝑝 ·
ℎ(𝑎1 (𝑎2𝑥 + 𝑏2) + 𝑏1) + (1 − 𝑝) · ℎ(𝑎2 (𝑎2𝑥 + 𝑏2) + 𝑏2)), which intuitively represents that we unfold

the loop once at the state of 𝑎2𝑥 + 𝑏2.
• Case 1: In this case, the loop is executed once, reaching two states 𝑎1𝑥 +𝑏1 and 𝑎2𝑥 +𝑏2, and
does not continue. In other words, we unfold the loop only once and obtain the loop-free

program𝐶1 as in Fig. 2a. This amounts to ℎ1 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] (𝑝 ·ℎ(𝑎1𝑥 +𝑏1) + (1−
𝑝) · ℎ(𝑎2𝑥 + 𝑏2)), which is the expected value of ℎ(𝑥) after the execution of the program 𝐶1.

• Case 2: In this case, the loop is first executed once, reaching two states 𝑎1𝑥 +𝑏1 and 𝑎2𝑥 +𝑏2.
Then, we clarify two cases below.

– At the state 𝑎1𝑥 + 𝑏1, we stop the execution of the loop and have the value ℎ(𝑎1𝑥 + 𝑏1).
– At the state 𝑎2𝑥 +𝑏2, we continue the execution of the loop and obtain two branches: (i)

if 𝜑 is not satisfied, we directly have the return function 𝑓 (𝑎2𝑥 +𝑏2); (ii) if 𝜑 is satisfied,

we arrive at the states 𝑎1 (𝑎2𝑥 + 𝑏2) + 𝑏1 and 𝑎2 (𝑎2𝑥 + 𝑏2) + 𝑏2.
The unfolding process above generates a loop-free program𝐶2 (see Fig. 2b), and ℎ2 is derived

from the program 𝐶2 in a way similar to ℎ1. We have that ℎ2 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] ·
(𝑝 · ℎ(𝑎1𝑥 + 𝑏1) + (1 − 𝑝) · 𝐻2), which is the expected value of ℎ(𝑥) after the execution of

the program 𝐶2.
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• Case 3: This case is similar to Case 2, with the only difference that we choose to continue

the execution of the loop at the state 𝑎1𝑥 + 𝑏1 and do not unfold the loop at 𝑎2𝑥 + 𝑏2. Then,
we clarify two cases below.

– At the state 𝑎1𝑥 + 𝑏1, we continue the execution of the loop and we will attain two

branches: (i) if 𝜑 is not satisfied, output the return function 𝑓 (𝑎1𝑥 + 𝑏1); (ii) if 𝜑 is

satisfied, we will arrive at the states 𝑎1 (𝑎1𝑥 + 𝑏1) + 𝑏1 and 𝑎2 (𝑎1𝑥 + 𝑏1) + 𝑏2.
– At the state of 𝑎2𝑥 +𝑏2, we stop the execution of the loop and have the value ℎ(𝑎2𝑥 +𝑏2).

This generates a loop-free program 𝐶3 (see Fig. 2c), from which ℎ3 is derived similar to

ℎ1, ℎ2. We have that ℎ3 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] · (𝑝 ·𝐻1 + (1 − 𝑝) · ℎ(𝑎2𝑥 + 𝑏2)), which is

the expected value of ℎ(𝑥) after the execution of the program 𝐶3.

• Case 4: In this case, at both the states 𝑎1𝑥+𝑏1 and 𝑎2𝑥+𝑏2, we choose to execute the loop once
more. This generates a loop-free program𝐶4 (see Fig. 2d). ℎ4 is derived from the program𝐶4

similar to the previous cases. We have thatℎ4 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] · (𝑝 ·𝐻1+ (1−𝑝) ·𝐻2),
which is the expected value of ℎ(𝑥) after the execution of the program 𝐶4.

C.4 Supplementary Material for Stage 4
Motzkin’s Transposition Theorem is a classical theorem that provides a dual characterization for

the satisfiability of a system of strict and non-strict inequalities. Below we present the original

Motzkin’s Transposition Theorem.

Theorem C.1 (Motzkin’s Transposition Theorem [43]). Given the set of linear, and strict linear,
inequalities over real-valued variables 𝑥1, 𝑥2, ..., 𝑥𝑛 ,

𝑆 =



𝑛∑︁
𝑖=1

𝛼 (1,𝑖 ) · 𝑥𝑖 + 𝛽1 ≤ 0

...

𝑛∑︁
𝑖=1

𝛼 (𝑚,𝑖 ) · 𝑥𝑖 + 𝛽𝑚 ≤ 0


𝑎𝑛𝑑 𝑇 =



𝑛∑︁
𝑖=1

𝛼 (𝑚+1,𝑖 ) · 𝑥𝑖 + 𝛽𝑚+1 < 0

...

𝑛∑︁
𝑖=1

𝛼 (𝑚+𝑘,𝑖 ) · 𝑥𝑖 + 𝛽𝑚+𝑘 < 0


in which 𝛼 (1,1) , ..., 𝛼 (𝑚+𝑘,𝑛) and 𝛽1, ..., 𝛽𝑚+𝑘 are real-valued, we have that 𝑆 and 𝑇 simultaneously

are not satisfiable (i.e., they have no solution in 𝑥) if and only if there exist non-negative real numbers
𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 such that either the condition (𝐴1):

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 1 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖 ) − 𝜆0,
or condition (𝐴2): at least one coefficient 𝜆𝑖 for 𝑖 in the range {𝑚 + 1, ...,𝑚 + 𝑘} is non-zero and

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 0 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖 ) − 𝜆0.

In our work, we consider the variant form of Motzkin’s Transposition Theorem (see Theorem 5.5).

Theorem 5.5 is first proposed in [18, Theorem 4.5 and Remark 4.6] without proof. We give a complete

proof here.

Theorem 5.5. [Corollary of Motzkin’s Transposition Theorem] Let 𝑆 and 𝑇 be the same systems

of linear inequalities as that in Theorem C.1. If 𝑆 is satisfiable, then 𝑆 ∧𝑇 is unsatisfiable iff there

exist non-negative reals 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 and at least one coefficient 𝜆𝑖 for 𝑖 ∈ {𝑚 + 1, ...,𝑚 + 𝑘} is
non-zero, such that:

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 0 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖 ) − 𝜆0.
i.e., the condition (𝐴2) in Theorem C.1.

Before we proof the theorem, we introduce the desired theorem: Farkas’s Lemma:
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Lemma C.2 (Farkas’s lemma [25]). Consider the following system of linear inequalities over
real-valued variables 𝑥1, 𝑥2, ..., 𝑥𝑛 ,

𝑆 =


𝛼 (1,1)𝑥1 + · · · + 𝛼 (1,𝑛)𝑥𝑛 +𝛽1 ≤ 0

...
...

...
...

𝛼 (𝑚,1)𝑥1 + · · · + 𝛼 (𝑚,𝑛)𝑥𝑛 +𝛽𝑚 ≤ 0


When 𝑆 is satisfiable, it entails a given linear inequality

𝜙 : 𝑐1𝑥1 + ... + 𝑐𝑛𝑥𝑛 + 𝑑 ≤ 0

if and only if there exist non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚 , such that

𝑐1 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) , ..., 𝑐𝑛 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) , 𝑑 = (
𝑚∑︁
𝑖=1

𝜆𝑖𝛽𝑖 ) − 𝜆0

Furthermore, 𝑆 is unsatisfiable if and only if the inequality 1 ≤ 0 can be derived as shown above.

Now we proof the corollary (Theorem 5.5).

Proof. Proof by contradiction. According to Motzkin’s Transposition Theorem, 𝑆 and𝑇 have no

solution in 𝑥 if and only if there exists non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 such that either

condition (𝐴1) or (𝐴2) is satisfied. We first proof (𝜆𝑚+1 ≠ 0) ∨ (𝜆𝑚+2 ≠ 0) ∨ ... ∨ (𝜆𝑚+𝑘 ≠ 0).
If it is not satisfied, we assume that 𝜆𝑚+1 = ... = 𝜆𝑚+𝑘 = 0. Then we know the condition (𝐴1)

must be satisfied and we have (By applying the assumption 𝜆𝑚+1 = ... = 𝜆𝑚+𝑘 = 0):

0 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) ,
𝑚∑︁
𝑖=1

𝜆𝑖𝛽𝑖 = 𝜆0 + 1 ≥ 1,

By applying Farkas’s Lemma, we have:

𝑐1 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) = 0, ..., 𝑐𝑛 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) = 0, 𝑑 = (
𝑚∑︁
𝑖=1

𝜆𝑖𝛽𝑖 ) − 𝜆0 = 𝜆0 + 1 − 𝜆0 = 1,

Thus we have:

𝜙 = 𝑐1𝑥1 + ... + 𝑐𝑛𝑥𝑛 + 𝑑 = 𝑑 = 1 ≤ 0

if and only if 𝑆 is not satisfiable, which contradicts the assumption, so the assumption does not

hold. We have proved (𝜆𝑚+1 ≠ 0) ∨ (𝜆𝑚+2 ≠ 0) ∨ ... ∨ (𝜆𝑚+𝑘 ≠ 0).
If condition (𝐴1) is satisfied, then exists non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 and (𝜆𝑚+1 ≠

0) ∨ (𝜆𝑚+2 ≠ 0) ∨ ... ∨ (𝜆𝑚+𝑘 ≠ 0)(what we just prove) such that

0 =

𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) , 1 = (
𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛽𝑖 ) − 𝜆0,

let 𝜆′
0
= 𝜆0 + 1 ≥ 0 and we can find that it also satisfies the condition (𝐴2), that is 𝐴1 =⇒ 𝐴2.

Thus, Motzkin’s Transposition Theorem can be simplified as: If 𝑆 is satisfiable, then 𝑆 and 𝑇 have

no solution in 𝑥 if and only if there exists non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 , such that:

((𝐴1 ∨𝐴2) ∧ (𝐴1 =⇒ 𝐴2)) ⇐⇒ 𝐴2

Thus we prove Theorem 5.5. □
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C.5 Application of Putinar’s Positivstellensatz [46]
We recall Putinar’s Positivstellensatz below.

Theorem C.3 (Putinar’s Positivstellensatz [46]). Let 𝑉 be a finite set of real-valued variables
and 𝑔,𝑔1, . . . , 𝑔𝑚 ∈ R[𝑉 ] be polynomials over 𝑉 with real coefficients. Consider the set S := {x ∈
R𝑉 | 𝑔𝑖 (x) ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑚} which is the set of all real vectors at which every 𝑔𝑖 is non-negative.
If (i) there exists some 𝑔𝑘 such that the set {x ∈ R𝑉 | 𝑔𝑘 (x) ≥ 0} is compact and (ii) 𝑔(x) > 0 for all
x ∈ S, then we have that

𝑔 = 𝑓0 +
∑𝑚

𝑖=1 𝑓𝑖 · 𝑔𝑖 (15)

for some polynomials 𝑓0, 𝑓1 . . . , 𝑓𝑚 ∈ R[𝑉 ] such that each polynomial 𝑓𝑖 is the a sum of squares (of
polynomials in R[𝑉 ]), i.e. 𝑓𝑖 =

∑𝑘
𝑗=0 𝑞

2

𝑖, 𝑗 for polynomials 𝑞𝑖, 𝑗 ’s in R[𝑉 ].

In our comparison, we utilize the sound form in (15) for witnessing a polynomial 𝑔 to be non-

negative over a semi-algebraic set 𝑃 for each inductive constraint ∀𝑥 ∈ 𝑃,𝑔(𝑥) ≥ 0.

In our experiments, the maximum degree of unknown SOS polynomials is set to the degree of

the polynomial template plus 2.

D SUPPLEMENTARY MATERIAL FOR SECTION 6
D.1 Continued Fraction
Continued fraction can represent a real number 𝑟 by an expression as follows:

𝑟 = 𝑎0 +
1

𝑎1 + 1

𝑎2+ 1

. . .

and 𝑟 is abbreviated as [𝑎0, 𝑎1, 𝑎2, ...]. In our implementation, we first transform each output float

coefficient into its continued fraction form [𝑎0, 𝑎1, 𝑎2, ...]. Then we perform the truncation operation

that we find the first 𝑎𝑖 (𝑖 ≥ 1) that is greater than a large threshold, for which we choose 100,

and truncate from there (including this number). We keep only the previous parts, as our rational

approximation results.

D.2 Experimental Results of Piecewise Linear Lower Bounds
We present the experimental results of piecewise linear lower bounds in this section. For the linear

lower bounds, we consider the same benchmarks and return functions 𝑓 as in Section 6.1, and use

the same invariant from the External Inputs for each benchmark.

Answering RQ1. We present the experimental results for the synthesis of piecewise linear lower

bounds on the 13 benchmarks in Table 5. In this table, we only show the piecewise results with

(𝑘 ≤ 3)-induction. We observe that on most of the benchmarks, we can obtain a linear lower

bound via the conventional approach, i.e., 1-induction, while the piecewise linear lower bounds

we synthesize are better (tighter) with (𝑘 > 1)-induction. Only on the benchmark Growing

Walk-variant, we require (𝑘 > 1)-induction to synthesize a lower bound. Moreover, our 𝑘-

induction-based approach can produce results within a few minutes.

Answering RQ2.We answer RQ2 by comparing our approach with the most related approaches [5,

10] in Table 5. The relevant explanations for RQ2 in Table 5 are totally the same to Table 1. These

two relevant works require a (possibly piecewise) lower bound to be verified as an additional

program input and return a sub-invariant that is sufficient to verify the input lower bound, which

is the most different aspect from our work. cegispro2 produce the results by a proof rule derived

from the original OST (see Section 6 in [10] and Appendix B.1), while we apply an extended

OST (see Theorem 4.6). To have a richer comparison, we also feed our benchmarks paired with
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Table 5. Experimental Results for RQ1 and RQ2, Linear Case (Lower Bounds). "𝑓 " stands for the return

function considered in the benchmark, "T(s)" (of our approach) stands for the execution time of our approach

(in seconds), including the parsing from the program input, transforming the 𝑘-induction constraint into

the bilinear problems, bilinear solving time and verification time. "Conventional Approach (𝑘 = 1)" stands

for the monolithic linear upper bound synthesized via 1-induction, "𝑘" stands for the 𝑘-induction we apply,

"Solution" stands for the linear candidate solved by Gurobi, and "Piecewise Linear Upper Bound" stands for

our piecewise results. "Result" stands for the synthesized results by other approaches and "T(s)" (of their

approaches) stands for the execution time of their tools.

Benchmark 𝑓

Conventional

Approach (𝑘 = 1)

Our Approach cegispro2 exist

Result T(s) 𝑘 Solution Piecewise Linear Lower Bound T(s) Result T(s) Result T(s)

Geo 𝑥 𝑥 0.33 3 𝑥 [𝑐 > 0] · 𝑥 + [𝑐 ≤ 0] · (𝑥 + 3

4
) 2.19

[𝑐 > 0] · 𝑥+
[𝑐 ≤ 0] · (𝑥 + 3

4
) 0.06 𝑥 + [𝑐 = 0] 83.01

k-Geo 𝑦 𝑦 100.18 3 𝑦
[𝑘 > 𝑁 ] · 𝑦 + [𝑘 ≤ 𝑁 ]·
(0.75𝑥 + 𝑦 + 0.25) 133.81

[𝑘 > 𝑁 ] · 𝑦+
[𝑘 ≤ 𝑁 ]·

(−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1)
0.2

𝑦 + [𝑘 ≤ 𝑛]·
(0.8𝑥 − 0.3𝑘
+0.3𝑛 + 0.5)

239.95

Bin-ran 𝑦 −0.5𝑖 + 𝑦 + 5 1.18 2

− 21

29
∗ 𝑖 + 𝑦
+ 210

29

[𝑖 > 10] · 𝑦 + [1 < 𝑖 ≤ 10]·
(− 21

29
𝑖 + 𝑦 + 9

20
𝑥 + 1068

145
) 106.59

[𝑖 > 10] · 𝑦 + [𝑖 ≤ 10]·
( 9
19
∗ 𝑥 + 𝑦−

53059

112955
∗ 𝑖 + 154900

22591
)

0.26 fail -

Coin 𝑖 𝑖 100.51 2 𝑖 [𝑦 ≠ 𝑥] · 𝑖 + [𝑦 = 𝑥] · (𝑖 + 13

8
) 5.99

[𝑦 ≠ 𝑥] · 𝑖+
[𝑦 = 𝑥] · (𝑖 + 13

8
) 0.07 𝑖 + [𝑥 = 𝑦] · 2.2 116.67

Mart 𝑖 𝑖 0.37 3 𝑖 [𝑥 ≤ 0] · 𝑖 + [𝑥 > 0] · (𝑖 + 1.5) 2.44

violation of

non-negativity

- 𝑖 + [𝑥 > 0] ∗ 2 122.93

GrowingWalk 𝑦 𝑥 + 𝑦 100.16 3 𝑥 + 𝑦 [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 5

4
) 101.80

violation of

non-negativity

- fail -

GrowingWalk

-variant
𝑦 - - 3 𝑦 − 1

[𝑥 < 0] · 𝑦+
[0 ≤ 𝑥 < 1] · (𝑦 + 0.5𝑥 − 1) +
[1 ≤ 𝑥 < 2] · (𝑦 + 0.5𝑥 − 1.5)
+[2 ≤ 𝑥] · (𝑦 + 0.75𝑥 − 2)

125.53

violation of

non-negativity

- fail -

Expected

Time
𝑡 1.1111𝑥 + 𝑡 0.25 3 1.240𝑥 + 𝑡

[𝑥 < 0] · 𝑡+
[0 ≤ 𝑥 < 1] · (0.124𝑥 + 𝑡 + 0.9)

[1 ≤ 𝑥 ≤ 10] · (1.1284𝑥 + 𝑡 + 1.9116)
125.54

violation of

non-negativity

- fail -

Zero-Conf

-variant
cur cur 100.32 3 cur

[est > 0] · cur+
[start == 0 ∧ est ≤ 0] · (cur + 1.9502)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 0.287)

183.63

violation of

non-negativity

- inner error -

Eqal-

Prob-Grid
goal goal 100.38 2 goal

[𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal
[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5 139.80

[𝑎 > 10 ∨ 𝑏 > 10∨
goal ≠ 0] · goal+
[𝑎 ≤ 10 ∧ 𝑏 ≤ 10

∧goal = 0] · 1.5

0.1 inner error -

RevBin 𝑧 𝑧 + 2𝑥 − 2 100.14 3 𝑧 + 2𝑥 − 2
[𝑥 < 1] · 𝑧+

[1 ≤ 𝑥 < 2] · (𝑧 + 𝑥)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥 − 2)

129.46

[𝑥 < 1] · 𝑧+
[𝑥 ≥ 1] · (𝑧 + 2𝑥 − 2) 0.11

𝑧 + [𝑥 > 0]
·2𝑥 122.85

Fair Coin 𝑖 𝑖 100.34 3 𝑖
[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 = 0 ∧ 𝑦 = 0] · (𝑖 + 5

4
) 43.84

[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 = 0 ∧ 𝑦 = 0]
·(𝑖 + 5

4
)

0.06

𝑖 + [𝑥 + 𝑦 = 0]
·1.3 82.67

St-Petersburg

variant
𝑦 𝑦 0.32 3 𝑦 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 11

8
𝑦 2.28

[𝑥 > 0] · 𝑦+
[𝑥 ≤ 0] · 11

8
𝑦

0.21

𝑦 + [𝑥 = 0]
·0.4𝑦 98.05

the piecewise lower bounds synthesized by our approach to cegispro2. On 5 of our benchmarks

(e.g., Growing Walk-variant, Zero-Conf-variant, etc), it reports failure (violation of non-

negativity). On 6 of our benchmarks, cegispro2 produce the same results with our inputs. Only on

two benchmarks (k-Geo, Bin-Ran) cegispro2 produce a different result to verify our inputs.

For the comparison with exist, we note that exist synthesizes sub-invariants without the

application of OST, which might be unsound for proving the input lower bounds (see also Section

7 in [10]). We compare with their tool on our benchmarks by assuming the soundness of their

lower bounds and feed them our piecewise lower bounds as an additional program input. On

benchmarks Geo, k-Geo, Coin, RevBin, Mart, Fair Coin, St-Petersburg variant, their tool can

generate a tighter sub-invariant to verify our piecewise lower bound. On these benchmarks, due to

the existence of exact invariants, they are usually able to find a tighter sub-invariant by a heuristic

search based on sampling and machine learning at the cost of the long time (usually about or even

more than 100s) . For the remaining benchmarks, either they cannot generate sub-invariants or

there are internal errors within their tool.
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In conclusion, our approaches can handle many benchmarks that these two works [5, 10] cannot

handle. When feeding our benchmarks with the bounds synthesized through our approach to

cegispro2 and exist, they fail on about 40% of our benchmarks. Over most of the benchmarks that

cegispro2 and our approach can handle, our bounds are comparable with theirs. Over most of the

benchmarks that exist and our approach can handle, they spend much more time to generate a

slightly tighter bound.

Answering RQ3. Similarly to the upper case, we compare our piecewise linear lower bounds with

monolithic polynomial lower bounds synthesized via 1-induction, as shown in Table 6. From the

comparison result "PCT" in Table 6, we observe that on most of our benchmarks , our piecewise

linear lower bounds are significantly tighter (i.e., greater) than monolithic polynomial lower bounds.

D.3 Experimental Results of Piecewise Polynomial Lower Bound
In this section, we present the experimental results of piecewise polynomial lower bounds. For the

piecewise polynomial lower bounds, we consider the same benchmarks and return functions 𝑓 as

in Section 6.2, and use the same invariant as the External Inputs for each benchmark.

Answering RQ1.We present the experimental results for the synthesis of piecewise polynomial

lower bounds on the 20 benchmarks in Table 7. The experimental results show that our approach

can compute piecewise polynomial lower bounds for most of the benchmarks within around 10

seconds. Especially, on the benchmarks Bin0, Bin2, DepRV, Sum0, Prinsys, the lower bounds we

obtain are the same with the upper bounds we obtain in Section 6.2 (see Table 3 for more details),

which shows that we obtain the exact expected value of 𝑋𝑓 after the execution of the loop, i.e., the

tightest lower bounds, on these 5 benchmarks.

Answering RQ2. We answer RQ2 by comparing our approach with the relevant work Exist

in Table 7. Since their tool requires a lower bound to be verified as an extra program input, we feed

them our lower bounds (the column "Solution ℎ∗" in Table 7) synthesized by our approach. Over

these benchmarks, they only successfully synthesize a sub-invariant to verify our lower bounds on

Prinsys and the sub-invariant they generate is the same as our piecewise lower bound. For the

benchmarks Bin0, Bin2,Sum0, they can learn some candidates for sub-invariants but they are not

able to verify them so that they fail to generate a sub-invariant. For the other 16 benchmarks, they

fail to generate due to some inner errors within their tool.

Answering RQ3. Similarly to the upper case, we compare our piecewise polynomial lower bounds

with higher degree monolithic polynomial lower bounds synthesized via 1-induction, as shown

in Table 8. For a fair comparison, we generate the polynomial bounds with the same invariant and

optimal objective function for each benchmark. The degree of monolithic polynomial bounds is

also set to be not greater than 5 in this experiment.

From the comparison results "PCT", We show that on all the benchmarks except brp, fig-6, cav-5,

our piecewise polynomial bounds are significantly tighter than monolithic polynomial bounds.

Although our running time is also a bit longer than that of monolithic polynomial experiments, our

approach allows to synthesize lower-degree polynomials while achieving better precision against

higher-degree polynomials. This advantage is critical as the synthesis of higher-degree polynomials

suffers from a large amount of numerical errors as stated previously. Thus our approach has a value

to use lower-degree piecewise polynomials to surpass the numerical problem of higher-degree

polynomials.
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Table 6. Experimental Results for RQ3, Linear Case (Lower Bounds). "𝑓 " stands for the return function

considered in the benchmark, "𝑘" stands for the𝑘-induction condition we apply in this comparison, "Monolithic

Polynomial via 1-Induction" stands for the monolithic polynomial bounds synthesized via 1-induction, and

"d" stands for the degree of polynomial template we use, "PCT" stands for the percentage of the points that

our piecewise lower bound are lower (i.e., not better) than monolithic polynomial.

Benchmark 𝑓
Our Approach Monolithic Polynomial via 1-induction

PCT

𝑘 Piecewise Linear Lower Bound d Monolithic Polynomial Lower Bound

Geo 𝑥 4

[𝑐 > 0] · 𝑥+
[𝑐 ≤ 0] · (𝑥 + 7

8
) 3

−0.0313 − 0.1902 ∗ 𝑐 + 1.0478 ∗ 𝑥−
0.3980 ∗ 𝑐2 + 0.0695 ∗ 𝑥 ∗ 𝑐 − 0.0019 ∗ 𝑥2−

0.1595 ∗ 𝑥 ∗ 𝑐2 + 0.07227 ∗ 𝑥2 ∗ 𝑐 − 0.0147 ∗ 𝑥3
0.0%

k-Geo 𝑦 3

[𝑘 > 𝑁 ] · 𝑦+
[𝑘 ≤ 𝑁 ] · (0.75𝑥 + 𝑦 + 0.25) 2

44.6223 ∗ 𝑁 − 221.2813 − 0.7791 ∗ 𝑘 + 1.0000 ∗ 𝑦
+0.9281 ∗ 𝑥 − 2.1922 ∗ 𝑁 2 − 0.1043 ∗ 𝑥2 4.19%

Bin-ran 𝑦 2

[𝑖 > 10] · 𝑦+
[1 < 𝑖 ≤ 10] · (− 21

29
𝑖 + 𝑦 + 9

20
𝑥 + 1068

145
) 3

−22.0746 − 24.4593 ∗ 𝑖 + 33.7063 ∗ 𝑦+
20.7709 ∗ 𝑥 + 1.4945 ∗ 𝑖2 + 0.2057 ∗ 𝑦 ∗ 𝑖+

0.0232 ∗ 𝑦2 + 0.4741 ∗ 𝑥 ∗ 𝑖 + 0.2689 ∗ 𝑥 ∗ 𝑦+
1.9807 ∗ 𝑥2 + 0.0006 ∗ 𝑖3 − 0.3133 ∗ 𝑦 ∗ 𝑖2−

0.0111 ∗ 𝑦2 ∗ 𝑖 + 0.0049 ∗ 𝑦3 − 0.4668 ∗ 𝑥 ∗ 𝑖2+
0.0036 ∗ 𝑥 ∗ 𝑦 ∗ 𝑖 + 0.0105 ∗ 𝑥 ∗ 𝑦2 − 0.7437 ∗ 𝑥3

+0.04213 ∗ 𝑥2 ∗ 𝑦 − 0.7531 ∗ 𝑥2 ∗ 𝑖

33.39%

Coin 𝑖 4 [𝑦 ≠ 𝑥] · 𝑖 + [𝑦 = 𝑥] · (𝑖 + 129

64
) 2

2.6655 + 1.0002 ∗ 𝑖 − 3622.3830 ∗ 𝑦−
5419.0667 ∗ 𝑥 − 0.0001 ∗ 𝑖2 + 0.0007 ∗ 𝑦 ∗ 𝑖+

3619.71553 ∗ 𝑦2 − 0.0008 ∗ 𝑥 ∗ 𝑖+
1827.4383 ∗ 𝑥 ∗ 𝑦 + 3594.2952 ∗ 𝑥2

2.0%

Mart 𝑖 4

[𝑥 ≤ 0] · 𝑖+
[𝑥 > 0] · (𝑖 + 7

4
) 2 1.0000 ∗ 𝑖 + 39.9996 ∗ 𝑥 − 199.9958 ∗ 𝑥2 1.0%

Growing

Walk
𝑦 4

[𝑥 < 0] · 𝑦+
[𝑥 ≥ 0] · (𝑥 + 𝑦 + 13

8
) 3

−0.0004 + 1.0003 ∗ 𝑦 + 1.3463 ∗ 𝑥−
0.0001 ∗ 𝑦2 − 0.0010 ∗ 𝑥 ∗ 𝑦 − 0.0590 ∗ 𝑥2

+0.0007 ∗ 𝑥2 ∗ 𝑦 − 0.0022 ∗ 𝑥3
0.0%

Growing Walk

variant
𝑦 3

[𝑥 < 0] · 𝑦+
[0 ≤ 𝑥 < 1] · (0.5𝑥 + 𝑦 − 1)
+[1 ≤ 𝑥 < 2] · (0.5𝑥 + 𝑦 − 1.5)
+[2 ≤ 𝑥] · (0.75𝑥 + 𝑦 − 2)

3

−1.0000 + 1.0000 ∗ 𝑦 − 0.3903 ∗ 𝑥−
0.0734 ∗ 𝑦2 + 0.0484 ∗ 𝑥 ∗ 𝑦 + 0.4758 ∗ 𝑥2−

0.0250 ∗ 𝑥 ∗ 𝑦2 − 0.0484 ∗ 𝑥2 ∗ 𝑦 − 0.0855 ∗ 𝑥3
0.01%

Expected

Time
𝑡 3

[𝑥 < 0] · 𝑡+
[0 ≤ 𝑥 < 1] · (0.124𝑥 + 𝑡 + 0.9)+
[1 ≤ 𝑥 ≤ 10] · (1.1284𝑥 + 𝑡 + 1.9116)

3

−0.0784 + 1.0093 ∗ 𝑡 + 3.1426 ∗ 𝑥−
0.0010 ∗ 𝑡2 + 0.0083 ∗ 𝑥 ∗ 𝑡 − 0.1576 ∗ 𝑥2+

0.0002 ∗ 𝑥 ∗ 𝑡2 + 0.0002 ∗ 𝑥2 ∗ 𝑡 + 0.0043 ∗ 𝑥3
64.6 %

Zero-Conf

-variant
cur 3

[est > 0] · cur+
[start == 0 ∧ est ≤ 0] · (cur + 1.9502)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 0.287)

2

140.2458 + 1.0098 ∗ 𝑐𝑢𝑟 − 424365.5964 ∗ 𝑠𝑡𝑎𝑟𝑡−
587675.0179 ∗ 𝑒𝑠𝑡 − 0.0066 ∗ 𝑠𝑡𝑎𝑟𝑡 ∗ 𝑐𝑢𝑟+
424267.3602 ∗ 𝑠𝑡𝑎𝑟𝑡2 − 0.0095 ∗ 𝑒𝑠𝑡 ∗ 𝑐𝑢𝑟−

504437.5495 ∗ 𝑒𝑠𝑡 ∗ 𝑠𝑡𝑎𝑟𝑡 + 587534.7143 ∗ 𝑒𝑠𝑡2
0.64%

Eqal-

Prob-Grid
goal 2

[𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal
+[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5 2

0.4950 ∗ 𝑔𝑜𝑎𝑙 − 0.2020 ∗ 𝑔𝑜𝑎𝑙2+
0.0053 ∗ 𝑏 ∗ 𝑔𝑜𝑎𝑙 − 0.0011 ∗ 𝑎 ∗ 𝑔𝑜𝑎𝑙 0.0%

RevBin 𝑧 3

[𝑥 < 1] · 𝑧+
[1 ≤ 𝑥 < 2] · (𝑧 + 𝑥)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥 − 2)

2 −2.0000 + 1.0000 ∗ 𝑧 + 2.0000 ∗ 𝑥 0.0%

Fair Coin 𝑖 4

[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0] · (𝑖 + 21

16
) 2

1.0000 ∗ 𝑖 − 0.3932 ∗ 𝑦 − 0.39325 ∗ 𝑥
−0.3153 ∗ 𝑖2 + 0.6305 ∗ 𝑦 ∗ 𝑖 − 0.7242 ∗ 𝑦2
+0.6305 ∗ 𝑥 ∗ 𝑖 − 0.1796 ∗ 𝑥 ∗ 𝑦 − 0.7242 ∗ 𝑥2

0.0%

St-Petersburg

variant
𝑦 3 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 11

8
𝑦 3

−0.0017 + 1.0023 ∗ 𝑦 − 121479.0179 ∗ 𝑥
−0.0550 ∗ 𝑥 ∗ 𝑦 + 121479.0185 ∗ 𝑥2 0.0%

D.4 Full Expressions for Experimental Results
For readability and conciseness, some of the experimental results in the main text were partially

omitted and denoted with · · · . In this appendix, we provide the complete expressions corresponding

to those abbreviated entries.

Piecewise polynomial upper bound of grid-small: min{[𝑎 < 10∧𝑏 < 10]·(−0.0003∗𝑎3−0.0011∗𝑏3−
0.0008∗𝑎2∗𝑏+0.0018∗𝑎∗𝑏2+0.0109∗𝑎2−0.0144∗𝑎∗𝑏+0.0129∗𝑏2−0.0926∗𝑎+0.0277∗𝑏+0.5109)+[𝑎 <

10 ∧ 𝑏 ≥ 10], ℎ∗}.
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Table 7. Experimental Results for RQ1 and RQ2, Polynomial Case (Lower Bounds). "𝑓 " stands for the return

function considered in the benchmark, "T(s)" stands for the execution time of our approach (in seconds),

including the parsing procedure from the program input, relaxing the 𝑘-induction constraint into the SDP

problems, the SDP solving time and verification time. "d" stands for the degree of polynomial template we

use and "Solution ℎ∗" is the candidate polynomial solved directly by the solver. "Piecewise Polynomial upper

Bound" stands for the piecewise bound we synthesize, where ℎ∗ is the column "Solution ℎ∗". "Sub-invariant"
stands for the sub-invariant synthesized by exist, and "T(s)" stands for the execution time of their tool.

Benchmark 𝑓
Our Approach exist

d Solution ℎ∗ T(s) Piecewise Polynomial lower Bound Sub-invariant T(s)

GeoAr 𝑥 2

−0.0467 ∗ 𝑦2 + 0.8036 ∗ 𝑦 ∗ 𝑧−
7.1202 ∗ 𝑧2 + 𝑥 + 0.6668 ∗ 𝑦
+10.2222 ∗ 𝑧 − 2.3795

7.22

max{[𝑧 > 0] · (−0.0467𝑦2 + 0.4018 ∗ 𝑦 ∗ 𝑧
−3.5601 ∗ 𝑧2 + 𝑥 + 1.0734 ∗ 𝑦 + 5.5129 ∗ 𝑧

−1.2594) + [𝑧 ≤ 0] · 𝑥, ℎ∗}
inner error -

Bin0 𝑥 2 𝑥 + 0.5 ∗ 𝑦 ∗ 𝑛 10.04 𝑥 + [𝑛 > 0] · 0.5 ∗ 𝑦 ∗ 𝑛 fail -

Bin2 𝑥 2 0.25 ∗ 𝑛 + 𝑥 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛 10.25

𝑥 + [𝑛 > 0] · (0.25 ∗ 𝑛 + 𝑥
+0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛) fail -

DepRV 𝑥 ∗ 𝑦 2

−0.25 ∗ 𝑛 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛
+0.5 ∗ 𝑥 ∗ 𝑛 + 𝑥 ∗ 𝑦 9.08

[𝑛 > 0] · (−0.25 ∗ 𝑛 + 0.25 ∗ 𝑛2+
0.5 ∗ 𝑦 ∗ 𝑛 + 0.5 ∗ 𝑥 ∗ 𝑛 + 𝑥 ∗ 𝑦)

+[𝑛 ≤ 0] · 𝑥 ∗ 𝑦
inner error -

Prinsys [𝑥 == 1] 2 0 2.10 [𝑥 == 1] ∗ 1 + [𝑥 == 0] ∗ 0.5 [𝑥 == 1] ∗ 1+
[𝑥 == 0] ∗ 0.5 7.29

Sum0 𝑥 2 0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖 + 𝑥 1.98 [𝑖 > 0] ∗ (0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖) + 𝑥 fail -

Duel 𝑡 2

21.7319 ∗ 𝑥2 − 0.4706 ∗ 𝑥 ∗ 𝑡 + 1.3703 ∗ 𝑡2
−21.7099 ∗ 𝑥 − 0.3707 ∗ 𝑡 − 0.0011 6.66

max{[𝑡 > 0 ∧ 𝑥 ≥ 1] · (10.8660𝑥2+
0.2353 ∗ 𝑥 ∗ 𝑡 + 1.3703 ∗ 𝑡2 − 11.0903 ∗ 𝑥
−1.3703 ∗ 𝑡 + 0.4987) + [𝑡 ≤ 0 ∧ 𝑥 ≥ 1]·
(5.4330 ∗ 𝑥2 + 0.1177 ∗ 𝑥 ∗ 𝑡 + 1.3703 ∗ 𝑡2
−5.5451 ∗ 𝑥 − 0.8705 ∗ 𝑡 + 0.2488)

+[𝑥 < 1] · 𝑡, ℎ∗}

inner error -

brp [𝑓 𝑎𝑖𝑙𝑒𝑑 = 10] 2

−41834.4189 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 − 6.0771 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡
−0.8349 ∗ 𝑠𝑒𝑛𝑡2 − 1710.0678 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑
+655.2652 ∗ 𝑠𝑒𝑛𝑡 + 2695.5257

9.85

max{[𝑓 𝑎𝑖𝑙𝑒𝑑 < 10 ∧ 𝑠𝑒𝑛𝑡 < 800]·
(−418.3442 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 − 0.0608 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡−
0.8349 ∗ 𝑠𝑒𝑛𝑡2 − 853.7891𝑓 𝑎𝑖𝑙𝑒𝑑 + 653.5513𝑠𝑒𝑛𝑡

+2907.9668) + [𝑓 𝑎𝑖𝑙𝑒𝑑 = 10], ℎ∗}

inner error -

chain [𝑦 = 1] 2

−0.0001 ∗ 𝑥 ∗ 𝑦 − 0.0052 ∗ 𝑦2+
0.0032 ∗ 𝑥 + 0.0173 ∗ 𝑦 − 0.0347 4.09

max{[𝑦 = 0 ∧ 𝑥 < 100] · (−0.0001 ∗ 𝑥 ∗ 𝑦
−0.0051 ∗ 𝑦2 + 0.0032 ∗ 𝑥+

0.0170 ∗ 𝑦 − 0.0314) + [𝑦 = 1], ℎ∗}
inner error -

grid small
[𝑎 < 10∧
𝑏 ≥ 10] 3

0.0006 ∗ 𝑎3 − 0.0012 ∗ 𝑎2 ∗ 𝑏 + 0.0008 ∗ 𝑎 ∗ 𝑏2
−0.0071 ∗ 𝑎2 + 0.008 ∗ 𝑎 ∗ 𝑏 − 0.0056 ∗ 𝑏2−

0.046 ∗ 𝑎 + 0.0822 ∗ 𝑏 + 0.4185
6.75

max{[𝑎 < 10 ∧ 𝑏 < 10] · (0.0006 ∗ 𝑎3−
0.0012 ∗ 𝑎2 ∗ 𝑏 + 0.0008 ∗ 𝑎 ∗ 𝑏2 − 0.0068 ∗ 𝑎2
+0.0076 ∗ 𝑎 ∗ 𝑏 − 0.0052 ∗ 𝑏2 − 0.0478 ∗ 𝑎+
0.0800 ∗ 𝑏 + 0.4306) + [𝑎 < 10 ∧ 𝑏 ≥ 10], ℎ∗}

inner error -

grid big
[𝑎 < 1000∧
𝑏 ≥ 1000] 2

−0.0231 ∗ 𝑎2 + 0.0462 ∗ 𝑎 ∗ 𝑏 − 0.0231 ∗ 𝑏2
−0.1895 ∗ 𝑎 + 0.2425 ∗ 𝑏 + 0.9503 7.21

max{[𝑎 < 1000 ∧ 𝑏 < 1000] · (−0.0231 ∗ 𝑎2+
0.0462 ∗ 𝑎 ∗ 𝑏 − 0.0231 ∗ 𝑏2 − 0.1895 ∗ 𝑎+

0.2425𝑏 + 0.9537) + [𝑎 < 1000 ∧ 𝑏 ≥ 1000], ℎ∗}
inner error -

CAV-2 [ℎ > 1 + 𝑡] 3

0.0001 ∗ ℎ3 − 0.0003 ∗ ℎ2 ∗ 𝑡
+0.0003 ∗ ℎ ∗ 𝑡2 − 0.0001 ∗ 𝑡3 + 0.0018 ∗ ℎ2
−0.0057 ∗ ℎ ∗ 𝑡 + 0.0032 ∗ 𝑡2 − 0.002 ∗ ℎ

+0.054 ∗ 𝑡 − 0.6863

3.45

max{[𝑡 ≥ ℎ] · (0.0001 ∗ ℎ3 − 0.0003 ∗ ℎ2 ∗ 𝑡+
0.0003 ∗ ℎ ∗ 𝑡2 − 0.0001 ∗ 𝑡3 + 0.0023 ∗ ℎ2
−0.0066 ∗ ℎ ∗ 𝑡 + 0.0037 ∗ 𝑡2 + 0.0076 ∗ ℎ+
0.0399 ∗ 𝑡 − 0.5852) + [ℎ > 1 + 𝑡], ℎ∗}

inner error -

CAV-4 [𝑥 ≤ 10] 2

−0.0148 ∗ 𝑥2 − 0.0597 ∗ 𝑥 ∗ 𝑦 + 0.3443 ∗ 𝑦2
+0.0523 ∗ 𝑥 − 0.3282 ∗ 𝑦 + 0.9537 2.47

max{[𝑦 ≥ 1] · (−0.0148 ∗ 𝑥2 − 0.0072 ∗ 𝑥+
0.9694) + [𝑦 < 1 ∧ 𝑥 ≤ 10], ℎ∗} inner error -

fig-6 [𝑦 ≤ 5] 4

0.0001 ∗ 𝑥4 − 0.0007 ∗ 𝑥3 ∗ 𝑦 + 0.0009 ∗ 𝑥2 ∗ 𝑦2
−0.0006 ∗ 𝑥 ∗ 𝑦3 − 0.0011 ∗ 𝑥3 + 0.0143 ∗ 𝑥2 ∗ 𝑦
−0.0035 ∗ 𝑥 ∗ 𝑦2 + 0.0032 ∗ 𝑦3 + 0.0556 ∗ 𝑥2−

0.1077 ∗ 𝑥 ∗ 𝑦 + 0.0085 ∗ 𝑦2−
0.3753 ∗ 𝑥 + 0.1362 ∗ 𝑦 + 0.5438

109.28

max{[𝑥 ≤ 4] · (0.0001 ∗ 𝑥4 − 0.0007 ∗ 𝑥3 ∗ 𝑦+
0.0009 ∗ 𝑥2 ∗ 𝑦2 − 0.0006 ∗ 𝑥 ∗ 𝑦3 − 0.0014 ∗ 𝑥3
+0.0140 ∗ 𝑥2 ∗ 𝑦 − 0.0035 ∗ 𝑥 ∗ 𝑦2 + 0.0026 ∗ 𝑦3
+0.0690 ∗ 𝑥2 − 0.0960 ∗ 𝑥 ∗ 𝑦 + 0.0173 ∗ 𝑦2
−0.3696 ∗ 𝑥 + 0.1229 ∗ 𝑦 + 0.5508)

+[𝑥 > 4 ∧ 𝑦 ≤ 5], ℎ∗}

inner error -

fig-7 [𝑥 ≤ 1000] 2

−0.0002 ∗ 𝑥 ∗ 𝑦 − 0.0029 ∗ 𝑦2 + 0.0038 ∗ 𝑦 ∗ 𝑖
−0.0009 ∗ 𝑖2 + 0.0002 ∗ 𝑥 − 0.0037 ∗ 𝑦

+0.002 ∗ 𝑖 + 0.9978
21.38

max{[𝑦 ≤ 0] · (−0.0009 ∗ 𝑖2 + 0.0002 ∗ 𝑥+
0.0021 ∗ 𝑖 + 0.997) + [𝑦 > 0 ∧ 𝑥 ≤ 1000], ℎ∗} inner error -

inv-Pend

variant

[𝑝𝐴 ≤ 1] 3

0.0008 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴 − 0.0023 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑉+
0.0991 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑃 + 0.4931 ∗ 𝑝𝐴𝐷 ∗ 𝑝𝐴2+
0.1464 ∗ 𝑝𝐴𝐷 ∗ 𝑝𝐴 ∗ 𝑐𝑉 · · · − 5.002 ∗ 𝑐𝑉 ∗ 𝑐𝑃

−44.9405 ∗ 𝑐𝑃2 − 5.7109 ∗ 𝑐𝑉 + 1.0

436.04

max{[𝑐𝑃 > 0.5 ∨ 𝑝𝐴 < −0.1 ∨ 𝑐𝑃 < −0.5∨
𝑝𝐴 > 0.1] · (0.0011 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴+

0.0011 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑉 + · · · + 0.999 ∗ 𝑐𝑉
−0.0688 ∗ 𝑐𝑃 + 1.6061) + [𝑐𝑃 ≤ 0.5

∧𝑝𝐴 ≤ 0.1 ∧ 𝑐𝑃 ≥ −0.5 ∧ 𝑐𝑃 ≤ 0.5], ℎ∗}

inner error -

CAV-7 [𝑥 ≤ 30] 3

0.0001 ∗ 𝑖3 − 0.0002 ∗ 𝑖2 ∗ 𝑥 + 0.0001 ∗ 𝑖 ∗ 𝑥2−
0.0006 ∗ 𝑖2 + 0.001 ∗ 𝑖 ∗ 𝑥 − 0.0002 ∗ 𝑥2
+0.0007 ∗ 𝑖 − 0.0005 ∗ 𝑥 + 0.9981

5.17

max{[𝑖 < 5] · (−0.0001 ∗ 𝑖2 ∗ 𝑥 − 0.0001 ∗ 𝑖2
+0.0006 ∗ 𝑖 ∗ 𝑥 − 0.0001 ∗ 𝑥2 + 0.0003 ∗ 𝑖+
0.0001 ∗ 𝑥 + 0.9985) + [𝑖 ≥ 5 ∧ 𝑥 ≤ 30], ℎ∗}

inner error -

cav-5 [𝑖 ≥ 10] 3

0.0009 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦 + 0.0043 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2
+0.0013 ∗𝑚𝑜𝑛𝑒𝑦3 − 0.9614 ∗ 𝑖2−

17.8117 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦 − 66.2212 ∗𝑚𝑜𝑛𝑒𝑦2
−29.2611 ∗ 𝑖 + 1.0

897.32

max{[𝑚𝑜𝑛𝑒𝑦 ≥ 10] · (0.0009 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦+
0.0043 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2 + 0.0013 ∗𝑚𝑜𝑛𝑒𝑦3
−0.9624 ∗ 𝑖2 − 17.8205 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦−
66.2275 ∗𝑚𝑜𝑛𝑒𝑦2 − 12.8062 ∗ 𝑖+
118.2861 ∗𝑚𝑜𝑛𝑒𝑦 − 1379.4033)
+[𝑚𝑜𝑛𝑒𝑦 < 10 ∧ 𝑖 ≤ 10], ℎ∗}

inner error -

Add [𝑥 > 5] 3

−0.0002 ∗ 𝑥3 + 0.002 ∗ 𝑥2 ∗ 𝑦
−0.0092 ∗ 𝑥 ∗ 𝑦2 + 0.0088 ∗ 𝑦3 + 0.0049 ∗ 𝑥2
−0.0267 ∗ 𝑥 ∗ 𝑦 + 0.0425 ∗ 𝑦2 + 0.0167 ∗ 𝑥

−0.1369 ∗ 𝑦 + 0.0314

3.74

max{[𝑦 ≤ 1] · (0.0088 ∗ 𝑥3 − 0.0092 ∗ 𝑥2 ∗ 𝑦+
0.002 ∗ 𝑥 ∗ 𝑦2 − 0.0002 ∗ 𝑦3 + 0.0618 ∗ 𝑥2
−0.0406 ∗ 𝑥 ∗ 𝑦 + 0.0064 ∗ 𝑦2 − 0.0527 ∗ 𝑥−
0.0102 ∗ 𝑦 − 0.0328) + [𝑦 > 1 ∧ 𝑥 > 5], ℎ∗}

inner error -

GrowingWalk

Variant2

𝑦 2

−0.0055 ∗ 𝑥2 − 0.0013 ∗ 𝑥 ∗ 𝑦 − 0.0132 ∗ 𝑥 ∗ 𝑟
−0.0027 ∗ 𝑦2 + 0.0123 ∗ 𝑦 ∗ 𝑟 − 0.0261 ∗ 𝑟 2
+0.0288 ∗ 𝑥 + 1.0125 ∗ 𝑦 + 0.0111 ∗ 𝑟 − 0.0454

4.83

max{[𝑟 ≤ 0] · (−0.0075 ∗ 𝑥2 − 0.004 ∗ 𝑥 ∗ 𝑦
−0.0027 ∗ 𝑦2 + 0.5230 ∗ 𝑥 + 1.0174 ∗ 𝑦

−0.0362) + [𝑟 > 0] · 𝑦,ℎ∗}
inner error -



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Piecewise Analysis of Probabilistic Programs via 𝑘-Induction 49

Table 8. Experimental Results for RQ3, Polynomial Case (Lower Bounds). "𝑓 " stands for the return function

considered in the benchmark, "Piecewise Polynomial Lower Bound" stands for the results synthesized by our

algorithm. "Monolithic Polynomial via 1-Induction" stands for the monolithic polynomial bounds synthesized

via 1-induction, "T(s)" stands for the total execution time. "PCT" stands for the percentage of the points that

our piecewise polynomial lower bound are larger (i.e., not better) than (higher degree) monolithic polynomial.

Benchmark 𝑓
Our Approach Monolithic Polynomial via 1-induction

PCT

d T(s) Piecewise Polynomial lower Bound d T(s) Monolithic Polynomial lower Bound

GeoAr 𝑥 2 7.22

max{[𝑧 > 0] · (−0.0467𝑦2 + 0.4018 ∗ 𝑦 ∗ 𝑧
−3.5601 ∗ 𝑧2 + 𝑥 + 1.0734 ∗ 𝑦 + 5.5129 ∗ 𝑧

−1.2594) + [𝑧 ≤ 0] · 𝑥, ℎ∗
3 1.25

0.0021 ∗ 𝑥2 ∗ 𝑧 + 0.0003 ∗ 𝑥 ∗ 𝑦2 + 0.0128 ∗ 𝑥 ∗ 𝑦 ∗ 𝑧
−0.0745 ∗ 𝑥 ∗ 𝑧2 − 0.0013 ∗ 𝑦3 + 0.0006 ∗ 𝑦2 ∗ 𝑧
−0.9011 ∗ 𝑦 ∗ 𝑧2 − 34359.8787 ∗ 𝑧3 − 0.0001 ∗ 𝑥2
−0.0028 ∗ 𝑥 ∗ 𝑦 + 0.0294 ∗ 𝑥 ∗ 𝑧 + 0.0154 ∗ 𝑦2
+1.9735 ∗ 𝑦 ∗ 𝑧 + 68717.1029 ∗ 𝑧2 + 1.0025 ∗ 𝑥
−0.0476 ∗ 𝑦 − 34355.4581 ∗ 𝑧 − 0.0973

5.0%

Bin0 𝑥 2 10.04 𝑥 + [𝑛 > 0] · 0.5 ∗ 𝑦 ∗ 𝑛 3 0.81 0.5 ∗ 𝑦 ∗ 𝑛 + 𝑥 0.0%

Bin2 𝑥 2 10.25

𝑥 + [𝑛 > 0] · (0.25 ∗ 𝑛+
𝑥 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛) 3 1.14

−0.0001 ∗ 𝑦3 + 0.0001 ∗ 𝑦2 ∗ 𝑛 + 0.0001 ∗ 𝑦 ∗ 𝑛2
+0.0006 ∗ 𝑦2 + 0.4992 ∗ 𝑦 ∗ 𝑛 + 0.25 ∗ 𝑛2 + 𝑥

−0.0021 ∗ 𝑦 + 0.249 ∗ 𝑛 − 0.0028
16.2%

DepRV 𝑥 ∗ 𝑦 2 9.08

[𝑛 > 0] · (−0.25 ∗ 𝑛 + 0.25 ∗ 𝑛2 + 0.5 ∗ 𝑦 ∗ 𝑛
+0.5 ∗ 𝑥 ∗ 𝑛 + 𝑥 ∗ 𝑦) + [𝑛 ≤ 0] · 𝑥 ∗ 𝑦 3 0.83

𝑥 ∗ 𝑦 + 0.5 ∗ 𝑥 ∗ 𝑛 + 0.5 ∗ 𝑦 ∗ 𝑛+
0.25 ∗ 𝑛2 − 0.2501 ∗ 𝑛 − 0.0001 5.4%

Prinsys [𝑥 == 1] 2 2.10 [𝑥 == 1] ∗ 1 + [𝑥 == 0] ∗ 0.5 3 0.45 0.0 0.0%

Sum0 𝑥 2 1.98 [𝑖 > 0] ∗ (0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖) + 𝑥 4 0.50 0.25 ∗ 𝑖2 + 0.25 ∗ 𝑖 + 𝑥 0.0%

Duel 𝑡 2 7.24

max{[𝑡 > 0 ∧ 𝑥 ≥ 1] · (10.8660𝑥2+
0.2353 ∗ 𝑥 ∗ 𝑡 + 1.3703 ∗ 𝑡2 − 11.0903 ∗ 𝑥
−1.3703 ∗ 𝑡 + 0.4987) + [𝑡 ≤ 0 ∧ 𝑥 ≥ 1]·
(5.4330 ∗ 𝑥2 + 0.1177 ∗ 𝑥 ∗ 𝑡 + 1.3703 ∗ 𝑡2
−5.5451 ∗ 𝑥 − 0.8705 ∗ 𝑡 + 0.2488)

+[𝑥 < 1] · 𝑡, ℎ∗}

4 0.58

57.6107 ∗ 𝑥4 − 0.3086 ∗ 𝑥3 ∗ 𝑡 + 32.5537 ∗ 𝑥2 ∗ 𝑡2
−0.9734 ∗ 𝑥 ∗ 𝑡3 − 8.9958 ∗ 𝑡4 + 31.3993 ∗ 𝑥3
−17.8531 ∗ 𝑥2 ∗ 𝑡 + 10.7254 ∗ 𝑥 ∗ 𝑡2 + 26.343 ∗ 𝑡3

−27.2812 ∗ 𝑥2 − 24.7154 ∗ 𝑥 ∗ 𝑡
+13.3805 ∗ 𝑡2 − 61.5859 ∗ 𝑥 − 29.7278 ∗ 𝑡

0.02%

brp [𝑓 𝑎𝑖𝑙𝑒𝑑 = 10] 2 9.85

max{[𝑓 𝑎𝑖𝑙𝑒𝑑 < 10 ∧ 𝑠𝑒𝑛𝑡 < 800]·
(−418.3442 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 − 0.0608 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡−
0.8349 ∗ 𝑠𝑒𝑛𝑡2 − 853.7891𝑓 𝑎𝑖𝑙𝑒𝑑 + 653.5513𝑠𝑒𝑛𝑡

+2907.9668) + [𝑓 𝑎𝑖𝑙𝑒𝑑 = 10], ℎ∗}

4 1.24

−5.1928 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑4 − 0.992 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑3 ∗ 𝑠𝑒𝑛𝑡−
0.0002 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 ∗ 𝑠𝑒𝑛𝑡2 − 1.6946 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑3+

2.1022 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑2 ∗ 𝑠𝑒𝑛𝑡 + 0.0001 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡2−
3.3782𝑓 𝑎𝑖𝑙𝑒𝑑2 − 1.0916𝑓 𝑎𝑖𝑙𝑒𝑑 ∗ 𝑠𝑒𝑛𝑡 − 0.0057𝑠𝑒𝑛𝑡2

−2.09 ∗ 𝑓 𝑎𝑖𝑙𝑒𝑑 + 1.1127 ∗ 𝑠𝑒𝑛𝑡 + 0.7991

53.54%

chain [𝑦 = 1] 2 4.09

max{[𝑦 = 0 ∧ 𝑥 < 100] · (−0.0001 ∗ 𝑥 ∗ 𝑦
−0.0051 ∗ 𝑦2 + 0.0032 ∗ 𝑥+

0.0170 ∗ 𝑦 − 0.0314) + [𝑦 = 1], ℎ∗}
3 0.74

0.0429 ∗ 𝑥3 + 0.6155 ∗ 𝑥2 ∗ 𝑦 + 12.0075 ∗ 𝑥 ∗ 𝑦2
+124904.4081 ∗ 𝑦3 − 5.4506 ∗ 𝑥2

−67.0765 ∗ 𝑥 ∗ 𝑦 + 869301.3767 ∗ 𝑦2+
119.3344 ∗ 𝑥 − 994786.2786 ∗ 𝑦 + 4.4144

1.00%

grid small [𝑦 = 1] 3 6.75

max{[𝑎 < 10 ∧ 𝑏 < 10] · (0.0006 ∗ 𝑎3−
0.0012 ∗ 𝑎2 ∗ 𝑏 + 0.0008 ∗ 𝑎 ∗ 𝑏2 − 0.0068 ∗ 𝑎2
+0.0076 ∗ 𝑎 ∗ 𝑏 − 0.0052 ∗ 𝑏2 − 0.0478 ∗ 𝑎+
0.0800 ∗ 𝑏 + 0.4306) + [𝑎 < 10 ∧ 𝑏 ≥ 10], ℎ∗}

4 0.90

−0.0002 ∗ 𝑎2 ∗ 𝑏 + 0.0001 ∗ 𝑎 ∗ 𝑏2+
0.0002 ∗ 𝑎2 − 0.0007 ∗ 𝑎 ∗ 𝑏 + 0.0004 ∗ 𝑏2
−0.0371 ∗ 𝑎 + 0.0364 ∗ 𝑏 + 0.4437

0.62%

grid big
[𝑎 < 1000∧
𝑏 ≥ 1000] 2 7.24

max{[𝑎 < 1000 ∧ 𝑏 < 1000] · (−0.0231 ∗ 𝑎2+
0.0462 ∗ 𝑎 ∗ 𝑏 − 0.0231 ∗ 𝑏2 − 0.1895 ∗ 𝑎+

0.2425𝑏 + 0.9537) + [𝑎 < 1000 ∧ 𝑏 ≥ 1000], ℎ∗}
3 0.56

0.001 ∗ 𝑎3 − 0.0005 ∗ 𝑎2 ∗ 𝑏 − 0.0018 ∗ 𝑎 ∗ 𝑏2
+0.0008 ∗ 𝑏3 − 2.9594 ∗ 𝑎2 + 5.9103 ∗ 𝑎 ∗ 𝑏−
2.9631𝑏2 − 499.9807𝑎 + 511.5109𝑏 + 253.0223

4.73%

cav-2 [ℎ > 𝑡 + 1] 3 3.45

max{[𝑡 ≥ ℎ] · (0.0001 ∗ ℎ3 − 0.0003 ∗ ℎ2 ∗ 𝑡+
0.0003 ∗ ℎ ∗ 𝑡2 − 0.0001 ∗ 𝑡3 + 0.0023 ∗ ℎ2
−0.0066 ∗ ℎ ∗ 𝑡 + 0.0037 ∗ 𝑡2 + 0.0076 ∗ ℎ+
0.0399 ∗ 𝑡 − 0.5852) + [ℎ > 1 + 𝑡], ℎ∗}

4 0.47

0.0001 ∗ ℎ4 + 0.0001 ∗ ℎ3 ∗ 𝑡 − 0.0009 ∗ ℎ2 ∗ 𝑡2
+0.0013 ∗ ℎ ∗ 𝑡3 − 0.0007 ∗ 𝑡4 − 0.0062 ∗ ℎ3
+0.0306 ∗ ℎ2 ∗ 𝑡 − 0.0831 ∗ ℎ ∗ 𝑡2 + 0.0777 ∗ 𝑡3
−0.1378 ∗ ℎ2 + 1.2065 ∗ ℎ ∗ 𝑡 − 1.9084 ∗ 𝑡2
−6.4628 ∗ ℎ + 21.3167 ∗ 𝑡 − 92.5531

33.33%

cav-4 [𝑥 ≤ 10] 2 2.47

max{[𝑦 ≥ 1] · (−0.0148 ∗ 𝑥2 − 0.0072 ∗ 𝑥+
0.9694) + [𝑦 < 1 ∧ 𝑥 ≤ 10], ℎ∗} 3 0.34

−0.0017 ∗ 𝑥3 − 0.0105 ∗ 𝑥2 ∗ 𝑦 − 0.0514 ∗ 𝑥 ∗ 𝑦2+
11.376 ∗ 𝑦3 + 0.0085 ∗ 𝑥2 + 0.0539 ∗ 𝑥 ∗ 𝑦−
5.0983 ∗ 𝑦2 − 0.0103 ∗ 𝑥 − 6.2928 ∗ 𝑦 + 1.0

0.76%

fig-6 [𝑦 ≤ 5] 4 109.28

max{[𝑥 ≤ 4] · (0.0001 ∗ 𝑥4 − 0.0007 ∗ 𝑥3 ∗ 𝑦+
0.0009 ∗ 𝑥2 ∗ 𝑦2 − 0.0006 ∗ 𝑥 ∗ 𝑦3 − 0.0014 ∗ 𝑥3
+0.0140 ∗ 𝑥2 ∗ 𝑦 − 0.0035 ∗ 𝑥 ∗ 𝑦2 + 0.0026 ∗ 𝑦3
+0.0690 ∗ 𝑥2 − 0.0960 ∗ 𝑥 ∗ 𝑦 + 0.0173 ∗ 𝑦2
−0.3696 ∗ 𝑥 + 0.1229 ∗ 𝑦 + 0.5508)

+[𝑥 > 4 ∧ 𝑦 ≤ 5], ℎ∗}

5 0.94

0.0002 ∗ 𝑥5 + 0.0001 ∗ 𝑥4 ∗ 𝑦 + 0.0001 ∗ 𝑥2 ∗ 𝑦3
−0.0001 ∗ 𝑥 ∗ 𝑦4 − 0.0021 ∗ 𝑥4 − 0.0033 ∗ 𝑥3 ∗ 𝑦

+0.001 ∗ 𝑥2 ∗ 𝑦2 − 0.0016 ∗ 𝑥 ∗ 𝑦3
−0.0001 ∗ 𝑦4 + 0.0072 ∗ 𝑥3 + 0.033 ∗ 𝑥2 ∗ 𝑦
−0.008 ∗ 𝑥 ∗ 𝑦2 + 0.0017 ∗ 𝑦3 + 0.0817 ∗ 𝑥2
−0.2069 ∗ 𝑥 ∗ 𝑦 + 0.0347 ∗ 𝑦2 − 0.8681 ∗ 𝑥

+0.5271 ∗ 𝑦 + 0.5958

40.77%

fig-7 [𝑥 ≤ 1000] 2 21.38

max{[𝑦 ≤ 0] · (−0.0009 ∗ 𝑖2 + 0.0002 ∗ 𝑥
+0.0021 ∗ 𝑖 + 0.997) + [𝑦 > 0 ∧ 𝑥 ≤ 1000], ℎ∗} 3 2.40

0.0616 ∗ 𝑥2 ∗ 𝑦 − 0.0002 ∗ 𝑥2 ∗ 𝑖 − 47.1183 ∗ 𝑥 ∗ 𝑦2
−0.4059 ∗ 𝑥 ∗ 𝑦 ∗ 𝑖 + 0.014 ∗ 𝑥 ∗ 𝑖2 − 3529.0989 ∗ 𝑦3
+23.9641 ∗ 𝑦2 ∗ 𝑖 + 2.4655 ∗ 𝑦 ∗ 𝑖2 − 0.38 ∗ 𝑖3
−0.0401 ∗ 𝑥2 + 43.7495 ∗ 𝑥 ∗ 𝑦 + 0.318 ∗ 𝑥 ∗ 𝑖
+86697.7958 ∗ 𝑦2 − 25.0167 ∗ 𝑦 ∗ 𝑖 − 0.5461 ∗ 𝑖2
+3.2993 ∗ 𝑥 − 83167.42 ∗ 𝑦 − 0.0624 ∗ 𝑖 − 5.0013

2.37%

inv-Pend [𝑝𝐴 ≤ 1] 3 436.04

max{[𝑐𝑃 > 0.5 ∨ 𝑝𝐴 < −0.1 ∨ 𝑐𝑃 < −0.5∨
𝑝𝐴 > 0.1] · (0.0011 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴+

0.0011 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑉 + · · · + 0.999 ∗ 𝑐𝑉
−0.0688 ∗ 𝑐𝑃 + 1.6061) + [𝑐𝑃 ≤ 0.5

∧𝑝𝐴 ≤ 0.1 ∧ 𝑐𝑃 ≥ −0.5 ∧ 𝑐𝑃 ≤ 0.5], ℎ∗}

4 6.71

−0.2235 ∗ 𝑝𝐴𝐷4 − 1.1293 ∗ 𝑝𝐴𝐷3 ∗ 𝑝𝐴+
0.1015 ∗ 𝑝𝐴𝐷3 ∗ 𝑐𝑉 + 0.1091 ∗ 𝑝𝐴𝐷3 ∗ 𝑐𝑃−
5.2183 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴2 + · · · − 10.4965 ∗ 𝑐𝑃2+

0.0001 ∗ 𝑝𝐴 − 53.2106 ∗ 𝑐𝑉 + 1.0

1.18%

CAV-7 [𝑥 ≤ 30] 3 5.17

max{[𝑖 < 5] · (−0.0001 ∗ 𝑖2 ∗ 𝑥 − 0.0001 ∗ 𝑖2
+0.0006 ∗ 𝑖 ∗ 𝑥 − 0.0001 ∗ 𝑥2 + 0.0003 ∗ 𝑖+
0.0001 ∗ 𝑥 + 0.9985) + [𝑖 ≥ 5 ∧ 𝑥 ≤ 30], ℎ∗}

4 0.78

−0.0007 ∗ 𝑖4 + 0.001 ∗ 𝑖3 ∗ 𝑥 − 0.0005 ∗ 𝑖2 ∗ 𝑥2+
0.0001 ∗ 𝑖 ∗ 𝑥3 + 0.0044 ∗ 𝑖3 − 0.0052 ∗ 𝑖2 ∗ 𝑥
+0.0011 ∗ 𝑖 ∗ 𝑥2 − 0.0134 ∗ 𝑖2 + 0.0121 ∗ 𝑖 ∗ 𝑥
−0.0019 ∗ 𝑥2 + 0.0128 ∗ 𝑖 − 0.004 ∗ 𝑥 + 0.9966

25.83%
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Benchmark 𝑓
Our Approach Monolithic Polynomial via 1-induction

PCT

d T(s) Piecewise Polynomial lower Bound d T(s) Monolithic Polynomial lower Bound

cav-5 [𝑖 ≥ 10] 3 897.32

max{[𝑚𝑜𝑛𝑒𝑦 ≥ 10] · (0.0009 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦+
0.0043 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2 + 0.0013 ∗𝑚𝑜𝑛𝑒𝑦3
−0.9624 ∗ 𝑖2 − 17.8205 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦−
66.2275 ∗𝑚𝑜𝑛𝑒𝑦2 − 12.8062 ∗ 𝑖+
118.2861 ∗𝑚𝑜𝑛𝑒𝑦 − 1379.4033)
+[𝑚𝑜𝑛𝑒𝑦 < 10 ∧ 𝑖 ≤ 10], ℎ∗}

4 1.08

−0.0001 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦2 − 0.0004 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦3
−0.0002 ∗𝑚𝑜𝑛𝑒𝑦4 − 0.001 ∗ 𝑖3 + 0.0222 ∗ 𝑖2−
0.0257 ∗ 𝑖2 ∗𝑚𝑜𝑛𝑒𝑦 + 0.0526 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦2
+0.0298 ∗𝑚𝑜𝑛𝑒𝑦3 − 0.4528 ∗ 𝑖 ∗𝑚𝑜𝑛𝑒𝑦
−4.1462 ∗𝑚𝑜𝑛𝑒𝑦2 − 3.6304 ∗ 𝑖 + 1.0

50.0%

add [𝑥 > 5] 3 3.74

max{[𝑦 ≤ 1] · (0.0088 ∗ 𝑥3 − 0.0092 ∗ 𝑥2 ∗ 𝑦+
0.002 ∗ 𝑥 ∗ 𝑦2 − 0.0002 ∗ 𝑦3 + 0.0618 ∗ 𝑥2
−0.0406 ∗ 𝑥 ∗ 𝑦 + 0.0064 ∗ 𝑦2 − 0.0527 ∗ 𝑥−
0.0102 ∗ 𝑦 − 0.0328) + [𝑦 > 1 ∧ 𝑥 > 5], ℎ∗}

5 0.57

−0.3566 ∗ 𝑥5 − 2.2831 ∗ 𝑥4 ∗ 𝑦 + 3.1151 ∗ 𝑥3 ∗ 𝑦2−
0.2365 ∗ 𝑥2 ∗ 𝑦3 − 0.5919 ∗ 𝑥 ∗ 𝑦4 + 0.5847 ∗ 𝑦5+
4.2396 ∗ 𝑥4 − 7.1539 ∗ 𝑥3 ∗ 𝑦 + 1.3284 ∗ 𝑥2 ∗ 𝑦2−
2.0416 ∗ 𝑥 ∗ 𝑦3 + 1.1293 ∗ 𝑦4 + 0.0868 ∗ 𝑥3−

0.2857 ∗ 𝑥2 ∗ 𝑦 + 6.5688 ∗ 𝑥 ∗ 𝑦2 − 6.7823 ∗ 𝑦3+
2.7185 ∗ 𝑥2 + 1.5398 ∗ 𝑥 ∗ 𝑦 + 3.6667 ∗ 𝑦2
−6.7017 ∗ 𝑥 + 1.4053 ∗ 𝑦 + 0.0001

32.66%

GrowingWalk

Variant2
𝑦 2 4.83

max{[𝑟 ≤ 0] · (−0.0075 ∗ 𝑥2 − 0.004 ∗ 𝑥 ∗ 𝑦
−0.0027 ∗ 𝑦2 + 0.5230 ∗ 𝑥 + 1.0174 ∗ 𝑦

−0.0362) + [𝑟 > 0] · 𝑦,ℎ∗}
3 1.09

−0.0013 ∗ 𝑥3 + 0.0006 ∗ 𝑥2 ∗ 𝑦 − 0.0026 ∗ 𝑥2 ∗ 𝑟
+0.0001 ∗ 𝑥 ∗ 𝑦2 + 0.0082 ∗ 𝑥 ∗ 𝑦 ∗ 𝑟 + 3.1974 ∗ 𝑥 ∗ 𝑟 2
+0.001 ∗ 𝑦2 ∗ 𝑟 − 1.1091 ∗ 𝑦 ∗ 𝑟 2 − 19675.0498 ∗ 𝑟 3
−0.0103 ∗ 𝑥2 + 0.0017 ∗ 𝑥 ∗ 𝑦 − 4.1484 ∗ 𝑥 ∗ 𝑟
−0.0057 ∗ 𝑦2 + 1.0965 ∗ 𝑦 ∗ 𝑟 + 39349.552 ∗ 𝑟 2+
1.048 ∗ 𝑥 + 1.0165 ∗ 𝑦 − 19675.6056 ∗ 𝑟 + 0.8489

5.03%

Monolithic polynomial upper bound of GeoAr: −0.0001∗𝑥3+0.0001∗𝑥2∗𝑦−0.0011∗𝑥2∗𝑧−0.0004∗
𝑥∗𝑦2−0.0112∗𝑥∗𝑦∗𝑧+0.164∗𝑥∗𝑧2+0.0012∗𝑦3+0.0046∗𝑦2∗𝑧−1.8186∗𝑦∗𝑧2+89866.1344∗𝑧3+0.0027∗𝑥∗
𝑦−0.1236∗𝑥∗𝑧−0.0137∗𝑦2+2.7194∗𝑦∗𝑧−179731.0721∗𝑧2+0.9993∗𝑥+0.0417∗𝑦+89867.2768∗𝑧+0.078.
Solutionℎ∗ of Fig-6: −0.0001∗𝑥4+0.0011∗𝑥3∗𝑦−0.001∗𝑥2∗𝑦2+0.0008∗𝑥∗𝑦3−0.0001∗𝑦4+0.0016∗𝑥3−
0.0195∗𝑥2∗𝑦+0.006∗𝑥∗𝑦2−0.003∗𝑦3−0.0627∗𝑥2+0.1018∗𝑥∗𝑦−0.0028∗𝑦2+0.5712∗𝑥−0.281∗𝑦+0.6009.
Piecewise polynomial upper bound of Fig-6: min{[𝑥 ≤ 4] · (−0.0001 ∗ 𝑥4 + 0.0011 ∗ 𝑥3 ∗𝑦 − 0.001 ∗
𝑥2 ∗𝑦2 + 0.0008 ∗ 𝑥 ∗𝑦3 − 0.0001 ∗𝑦4 + 0.0023 ∗ 𝑥3 − 0.0182 ∗ 𝑥2 ∗𝑦 + 0.0064 ∗ 𝑥 ∗𝑦2 − 0.0026 ∗𝑦3 −
0.0788 ∗ 𝑥2 + 0.0913 ∗ 𝑥 ∗ 𝑦 − 0.0094 ∗ 𝑦2 + 0.5530 ∗ 𝑥 − 0.2782 ∗ 𝑦 + 0.6027) + [𝑥 > 4 ∧ 𝑦 ≤ 5], ℎ∗}.
Monolithic polynomial upper bound of Fig-6: −0.0001∗𝑥5−0.0002∗𝑥4∗𝑦−0.0003∗𝑥2∗𝑦3+0.0001∗𝑥∗
𝑦4−0.0002∗𝑦5+0.0011∗𝑥4+0.0037∗𝑥3∗𝑦−0.0008∗𝑥2∗𝑦2+0.0021∗𝑥∗𝑦3+0.0005∗𝑦4−0.0012∗𝑥3−0.0361∗
𝑥2∗𝑦+0.0088∗𝑥 ∗𝑦2−0.0042∗𝑦3−0.084∗𝑥2+0.1432∗𝑥 ∗𝑦+0.0064∗𝑦2+0.9708∗𝑥−0.6526∗𝑦+0.575.
Monolithic polynomial upper bound of Fig-7: −0.083∗𝑥2∗𝑦+0.0003∗𝑥2∗𝑖+48.5638∗𝑥 ∗𝑦2+0.5267∗
𝑥∗𝑦∗𝑖−0.018∗𝑥∗𝑖2+2600.9691∗𝑦3−36.705∗𝑦2∗𝑖−2.646∗𝑦∗𝑖2+0.4053∗𝑖3+0.0539∗𝑥2−45.1036∗𝑥∗𝑦−
0.4109∗𝑥 ∗𝑖−58912.9534∗𝑦2+37.7582∗𝑦∗𝑖+0.6223∗𝑖2−3.3923∗𝑥+56310.8279∗𝑦−0.0114∗𝑖+7.2868.
Solution (upper) ℎ∗ of inv-Pend variant: 0.0058∗𝑝𝐴𝐷2 ∗𝑝𝐴+0.0023∗𝑝𝐴𝐷2 ∗𝑐𝑉 −0.1313∗𝑝𝐴𝐷2 ∗
𝑐𝑃−0.6278∗𝑝𝐴𝐷 ∗𝑝𝐴2−0.2352∗𝑝𝐴𝐷 ∗𝑝𝐴∗𝑐𝑉 −4.2984∗𝑝𝐴𝐷 ∗𝑝𝐴∗𝑐𝑃 +0.0034∗𝑝𝐴𝐷 ∗𝑐𝑉 2−0.0776∗
𝑝𝐴𝐷∗𝑐𝑉 ∗𝑐𝑃+0.2901∗𝑝𝐴𝐷∗𝑐𝑃2−3.3499∗𝑝𝐴3+1.2174∗𝑝𝐴2∗𝑐𝑉−18.4697∗𝑝𝐴2∗𝑐𝑃+0.8063∗𝑝𝐴∗𝑐𝑉 2+
7.4278∗𝑝𝐴∗𝑐𝑉 ∗𝑐𝑃+2.1607∗𝑝𝐴∗𝑐𝑃2+0.1664∗𝑐𝑉 3+0.0048∗𝑐𝑉 2∗𝑐𝑃−0.5863∗𝑐𝑉 ∗𝑐𝑃2−101.7368∗𝑐𝑃3+
0.7678∗𝑝𝐴𝐷2+4.7849∗𝑝𝐴𝐷∗𝑝𝐴−0.1664∗𝑝𝐴𝐷∗𝑐𝑉−3.5565∗𝑝𝐴𝐷∗𝑐𝑃+28.2784∗𝑝𝐴2−2.7311∗𝑝𝐴∗𝑐𝑉−
20.9853∗𝑝𝐴∗𝑐𝑃−1.1597∗𝑐𝑉 2+5.9637∗𝑐𝑉 ∗𝑐𝑃+60.4194∗𝑐𝑃2−0.0002∗𝑝𝐴+7.1495∗𝑐𝑉 +0.001∗𝑐𝑃+1.0.
Piecewise polynomial upper bound of inv-Pend variant: min{[𝑐𝑝 > 0.5 ∨ 𝑐𝑝 < −0.5 ∨ 𝑝𝐴 >

0.1∨ 𝑝𝐴 < −0.1] · (0.0058 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴 − 0.0011 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑉 − 0.1313 ∗ 𝑝𝐴𝐷2 ∗ 𝑐𝑃 − 0.6279 ∗ 𝑝𝐴𝐷 ∗
𝑝𝐴2 − 0.2408 ∗ 𝑝𝐴𝐷 ∗ 𝑝𝐴 ∗ 𝑐𝑉 − 4.2984 ∗ 𝑝𝐴𝐷 ∗ 𝑝𝐴 ∗ 𝑐𝑃 − 0.0124 ∗ 𝑝𝐴𝐷 ∗ 𝑐𝑉 2 − 0.0021 ∗ 𝑝𝐴𝐷 ∗ 𝑐𝑉 ∗
𝑐𝑃 + 0.2901 ∗ 𝑝𝐴𝐷 ∗ 𝑐𝑃2 − 3.3498 ∗ 𝑝𝐴3 + 0.4776 ∗ 𝑝𝐴2 ∗ 𝑐𝑉 − 18.4697 ∗ 𝑝𝐴2 ∗ 𝑐𝑃 + 0.4734𝑝𝐴 ∗ 𝑐𝑉 2 +
5.5455 ∗ 𝑝𝐴 ∗ 𝑐𝑉 ∗ 𝑐𝑃 + 2.1607 ∗ 𝑝𝐴 ∗ 𝑐𝑃2 + 0.1014 ∗ 𝑐𝑉 3 − 0.0334 ∗ 𝑐𝑉 2 ∗ 𝑐𝑃 − 3.4879 ∗ 𝑐𝑉 ∗ 𝑐𝑃2 −
101.7368∗𝑐𝑃3+0.5916∗𝑝𝐴𝐷2+4.0443∗𝑝𝐴𝐷 ∗𝑝𝐴+0.0057∗𝑝𝐴𝐷 ∗𝑐𝑉 −3.5023∗𝑝𝐴𝐷 ∗𝑐𝑃 +26.6426∗
𝑝𝐴2 − 1.1436 ∗𝑝𝐴 ∗𝑐𝑉 − 20.7584 ∗𝑝𝐴 ∗𝑐𝑃 − 0.5132 ∗𝑐𝑉 2 + 5.5468 ∗𝑐𝑉 ∗𝑐𝑃 + 60.3921 ∗𝑐𝑃2 − 0.4489 ∗
𝑝𝐴𝐷 − 1.5038 ∗ 𝑝𝐴 + 5.2348 ∗ 𝑐𝑉 + 0.0688 ∗ 𝑐𝑃 + 0.3238) + [−0.5 ≤ 𝑐𝑝 ≤ 0.5∧−0.1 ≤ 𝑝𝐴 ≤ 0.1], ℎ∗}.
Monolithic polynomial upper bound of inv-Pend variant: 0.2264 ∗ 𝑝𝐴𝐷4 + 1.1448 ∗ 𝑝𝐴𝐷3 ∗ 𝑝𝐴 −
0.1026 ∗ 𝑝𝐴𝐷3 ∗ 𝑐𝑉 − 0.1107 ∗ 𝑝𝐴𝐷3 ∗ 𝑐𝑃 + 5.2869 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴2 − 0.4937 ∗ 𝑝𝐴𝐷2 ∗ 𝑝𝐴 ∗ 𝑐𝑉 − 0.8938 ∗
𝑝𝐴𝐷2 ∗𝑝𝐴 ∗𝑐𝑃 +0.3036∗𝑝𝐴𝐷2 ∗𝑐𝑉 2 +0.0478∗𝑝𝐴𝐷2 ∗𝑐𝑉 ∗𝑐𝑃 +0.4208∗𝑝𝐴𝐷2 ∗𝑐𝑃2 +6.8201∗𝑝𝐴𝐷 ∗
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𝑝𝐴3−3.2518∗𝑝𝐴𝐷 ∗𝑝𝐴2 ∗𝑐𝑉 −2.3942∗𝑝𝐴𝐷 ∗𝑝𝐴2 ∗𝑐𝑃 +1.3927∗𝑝𝐴𝐷 ∗𝑝𝐴∗𝑐𝑉 2+0.7868∗𝑝𝐴𝐷 ∗𝑝𝐴∗
𝑐𝑉 ∗𝑐𝑃 +4.5143∗𝑝𝐴𝐷 ∗𝑝𝐴∗𝑐𝑃2−0.1912∗𝑝𝐴𝐷 ∗𝑐𝑉 3−0.1023∗𝑝𝐴𝐷 ∗𝑐𝑉 2 ∗𝑐𝑃 −0.1906∗𝑝𝐴𝐷 ∗𝑐𝑉 ∗
𝑐𝑃2−2.8734∗𝑝𝐴𝐷∗𝑐𝑃3+53.6801∗𝑝𝐴4+1.323∗𝑝𝐴3∗𝑐𝑉 −6.8123∗𝑝𝐴3∗𝑐𝑃+5.2663∗𝑝𝐴2∗𝑐𝑉 2+2.473∗
𝑝𝐴2 ∗𝑐𝑉 ∗𝑐𝑃 +47.9517∗𝑝𝐴2 ∗𝑐𝑃2−0.5451∗𝑝𝐴∗𝑐𝑉 3−0.7983∗𝑝𝐴∗𝑐𝑉 2 ∗𝑐𝑃 −0.9821∗𝑝𝐴∗𝑐𝑉 ∗𝑐𝑃2−
20.6044∗𝑝𝐴 ∗𝑐𝑃3 + 0.0986∗𝑐𝑉 4 + 0.0333∗𝑐𝑉 3 ∗𝑐𝑃 + 0.3483∗𝑐𝑉 2 ∗𝑐𝑃2 + 4.5559∗𝑐𝑉 ∗𝑐𝑃3 + 30.7504∗
𝑐𝑃4−0.3716∗𝑝𝐴𝐷3+3.8∗𝑝𝐴𝐷2 ∗𝑝𝐴+0.4985∗𝑝𝐴𝐷2 ∗𝑐𝑉 −0.0606∗𝑝𝐴𝐷2 ∗𝑐𝑃 −9.7537∗𝑝𝐴𝐷 ∗𝑝𝐴2−
6.8904∗𝑝𝐴𝐷 ∗𝑝𝐴 ∗𝑐𝑉 +0.4876∗𝑝𝐴𝐷 ∗𝑝𝐴 ∗𝑐𝑃 −0.748∗𝑝𝐴𝐷 ∗𝑐𝑉 2−0.1874∗𝑝𝐴𝐷 ∗𝑐𝑉 ∗𝑐𝑃 −3.858∗
𝑝𝐴𝐷 ∗𝑐𝑃2 − 11.7619 ∗𝑝𝐴3 + 18.5549 ∗𝑝𝐴2 ∗𝑐𝑉 − 0.4732 ∗𝑝𝐴2 ∗𝑐𝑃 + 4.6011 ∗𝑝𝐴 ∗𝑐𝑉 2 − 0.8554 ∗𝑝𝐴 ∗
𝑐𝑉 ∗𝑐𝑃 −9.3429∗𝑝𝐴∗𝑐𝑃2+1.9127∗𝑐𝑉 3+0.0857∗𝑐𝑉 2 ∗𝑐𝑃 +5.2916∗𝑐𝑉 ∗𝑐𝑃2−3.7534∗𝑐𝑃3+4.1573∗
𝑝𝐴𝐷2 + 17.8582 ∗ 𝑝𝐴𝐷 ∗ 𝑝𝐴 + 0.2247 ∗ 𝑝𝐴𝐷 ∗ 𝑐𝑉 − 2.5151 ∗ 𝑝𝐴𝐷 ∗ 𝑐𝑃 + 34.1498 ∗ 𝑝𝐴2 + 1.7805 ∗ 𝑝𝐴 ∗
𝑐𝑉 −5.4381∗𝑝𝐴∗𝑐𝑃 −10.9045∗𝑐𝑉 2 +1.196∗𝑐𝑉 ∗𝑐𝑃 +10.6625∗𝑐𝑃2−0.0001∗𝑝𝐴+53.8573∗𝑐𝑉 +1.0.
Solution (lower) ℎ∗ of inv-Pend variant: 0.0008∗𝑝𝐴𝐷2 ∗𝑝𝐴−0.0023∗𝑝𝐴𝐷2 ∗𝑐𝑉 +0.0991∗𝑝𝐴𝐷2 ∗
𝑐𝑃 +0.4931∗𝑝𝐴𝐷 ∗𝑝𝐴2+0.1464∗𝑝𝐴𝐷 ∗𝑝𝐴∗𝑐𝑉 +3.1026∗𝑝𝐴𝐷 ∗𝑝𝐴∗𝑐𝑃−0.0138∗𝑝𝐴𝐷 ∗𝑐𝑉 2+0.0529∗
𝑝𝐴𝐷 ∗𝑐𝑉 ∗𝑐𝑃 −0.2253∗𝑝𝐴𝐷 ∗𝑐𝑃2 +2.4945∗𝑝𝐴3−1.1719∗𝑝𝐴2 ∗𝑐𝑉 +13.2225∗𝑝𝐴2 ∗𝑐𝑃 −0.66∗𝑝𝐴∗
𝑐𝑉 2 − 5.8813 ∗𝑝𝐴 ∗𝑐𝑉 ∗𝑐𝑃 − 1.6276 ∗𝑝𝐴 ∗𝑐𝑃2 − 0.1308 ∗𝑐𝑉 3 − 0.0137 ∗𝑐𝑉 2 ∗𝑐𝑃 − 0.2948 ∗𝑐𝑉 ∗𝑐𝑃2 +
70.0898 ∗𝑐𝑃3 − 0.6053 ∗𝑝𝐴𝐷2 − 3.6586 ∗𝑝𝐴𝐷 ∗𝑝𝐴+ 0.2164 ∗𝑝𝐴𝐷 ∗𝑐𝑉 + 2.8831 ∗𝑝𝐴𝐷 ∗𝑐𝑃 − 20.411 ∗
𝑝𝐴2+2.3725∗𝑝𝐴∗𝑐𝑉 +16.7142∗𝑝𝐴∗𝑐𝑃+0.9814∗𝑐𝑉 2−5.002∗𝑐𝑉 ∗𝑐𝑃−44.9405∗𝑐𝑃2−5.7109∗𝑐𝑉 +1.0.
Piecewise polynomial lower bound of inv-Pend variant: max{[𝑐𝑝 > 0.5 ∨ 𝑐𝑝 < −0.5 ∨ 𝑝𝐴 >

0.1∨𝑝𝐴 < −0.1] · (0.0011∗𝑝𝐴𝐷2 ∗𝑝𝐴+0.0012∗𝑝𝐴𝐷2 ∗𝑐𝑉 +0.0983∗𝑝𝐴𝐷2 ∗𝑐𝑃 +0.5052∗𝑝𝐴𝐷 ∗𝑝𝐴+
0.1661∗𝑝𝐴𝐷∗𝑝𝐴∗𝑐𝑉 +3.1298∗𝑝𝐴𝐷∗𝑝𝐴∗𝑐𝑃+0.0035∗𝑝𝐴𝐷∗𝑐𝑉 2−0.0028∗𝑝𝐴𝐷∗𝑐𝑉 ∗𝑐𝑃−0.1801∗𝑝𝐴𝐷∗
𝑐𝑃2+2.5528∗𝑝𝐴3−0.5263∗𝑝𝐴2∗𝑐𝑉 +13.3751∗𝑝𝐴2∗𝑐𝑃−0.3872∗𝑝𝐴∗𝑐𝑉 2−4.3942∗𝑝𝐴∗𝑐𝑉 ∗𝑐𝑃−1.4142∗
𝑝𝐴∗𝑐𝑃2−0.0803∗𝑐𝑉 3+0.0045∗𝑐𝑉 2∗𝑐𝑃+1.8662∗𝑐𝑉 ∗𝑐𝑃2+70.0747∗𝑐𝑃3−0.4694∗𝑝𝐴𝐷2−3.0860∗𝑝𝐴𝐷∗
𝑝𝐴+0.0414∗𝑝𝐴𝐷 ∗𝑐𝑉 +2.8487∗𝑝𝐴𝐷 ∗𝑐𝑃−19.2280∗𝑝𝐴2+0.9998∗𝑝𝐴∗𝑐𝑉 +16.5897∗𝑝𝐴∗𝑐𝑃+0.4500∗
𝑐𝑉 2−4.5457∗𝑐𝑉 ∗𝑐𝑃 −44.9216∗𝑐𝑃2 +0.3480∗𝑝𝐴𝐷 +1.1902∗𝑐𝑉 2−4.5456∗𝑐𝑉 ∗𝑐𝑃 −44.9216∗𝑐𝑃2 +
0.3480∗𝑝𝐴𝐷+1.1903∗𝑝𝐴+0.999∗𝑐𝑉 −0.0688∗𝑐𝑃+1.606)+[−0.5 ≤ 𝑐𝑝 ≤ 0.5∧−0.1 ≤ 𝑝𝐴 ≤ 0.1], ℎ∗}.
Monolithic polynomial lower bound of inv-Pend variant: −0.2235 ∗𝑝𝐴𝐷4 − 1.1293 ∗𝑝𝐴𝐷3 ∗𝑝𝐴 +
0.1015∗𝑝𝐴𝐷3∗𝑐𝑉 +0.1091∗𝑝𝐴𝐷3∗𝑐𝑃−5.2183∗𝑝𝐴𝐷2∗𝑝𝐴2+0.4869∗𝑝𝐴𝐷2∗𝑝𝐴∗𝑐𝑉 +0.8825∗𝑝𝐴𝐷2∗
𝑝𝐴∗𝑐𝑃−0.3∗𝑝𝐴𝐷2∗𝑐𝑉 2−0.0472∗𝑝𝐴𝐷2∗𝑐𝑉 ∗𝑐𝑃−0.4159∗𝑝𝐴𝐷2∗𝑐𝑃2−6.7225∗𝑝𝐴𝐷∗𝑝𝐴3+3.227∗𝑝𝐴𝐷∗
𝑝𝐴2∗𝑐𝑉+2.3658∗𝑝𝐴𝐷∗𝑝𝐴2∗𝑐𝑃−1.3787∗𝑝𝐴𝐷∗𝑝𝐴∗𝑐𝑉 2−0.7789∗𝑝𝐴𝐷∗𝑝𝐴∗𝑐𝑉 ∗𝑐𝑃−4.4659∗𝑝𝐴𝐷∗𝑝𝐴∗
𝑐𝑃2+0.189∗𝑝𝐴𝐷∗𝑐𝑉 3+0.1012∗𝑝𝐴𝐷∗𝑐𝑉 2∗𝑐𝑃+0.189∗𝑝𝐴𝐷∗𝑐𝑉 ∗𝑐𝑃2+2.8456∗𝑝𝐴𝐷∗𝑐𝑃3−53.0957∗𝑝𝐴4−
1.3037∗𝑝𝐴3∗𝑐𝑉 +6.7519∗𝑝𝐴3∗𝑐𝑃−5.2076∗𝑝𝐴2∗𝑐𝑉 2−2.4518∗𝑝𝐴2∗𝑐𝑉 ∗𝑐𝑃−47.4808∗𝑝𝐴2∗𝑐𝑃2+0.54∗
𝑝𝐴∗𝑐𝑉 3+0.7896∗𝑝𝐴∗𝑐𝑉 2∗𝑐𝑃+0.9738∗𝑝𝐴∗𝑐𝑉 ∗𝑐𝑃2+20.4078∗𝑝𝐴∗𝑐𝑃3−0.0975∗𝑐𝑉 4−0.033∗𝑐𝑉 3∗𝑐𝑃−
0.3448∗𝑐𝑉 2∗𝑐𝑃2−4.5124∗𝑐𝑉 ∗𝑐𝑃3−30.4568∗𝑐𝑃4+0.3659∗𝑝𝐴𝐷3−3.7578∗𝑝𝐴𝐷2∗𝑝𝐴−0.4937∗𝑝𝐴𝐷2∗
𝑐𝑉 +0.06∗𝑝𝐴𝐷2∗𝑐𝑃+9.654∗𝑝𝐴𝐷∗𝑝𝐴2+6.8253∗𝑝𝐴𝐷∗𝑝𝐴∗𝑐𝑉 −0.4846∗𝑝𝐴𝐷∗𝑝𝐴∗𝑐𝑃+0.7351∗𝑝𝐴𝐷∗
𝑐𝑉 2+0.1847∗𝑝𝐴𝐷∗𝑐𝑉 ∗𝑐𝑃+3.8138∗𝑝𝐴𝐷∗𝑐𝑃2+11.671∗𝑝𝐴3−18.344∗𝑝𝐴2∗𝑐𝑉+0.4762∗𝑝𝐴2∗𝑐𝑃−4.5653∗
𝑝𝐴∗𝑐𝑉 2+0.8466∗𝑝𝐴∗𝑐𝑉 ∗𝑐𝑃+9.2637∗𝑝𝐴∗𝑐𝑃2−1.8886∗𝑐𝑉 3−0.0833∗𝑐𝑉 2∗𝑐𝑃−5.2318∗𝑐𝑉 ∗𝑐𝑃2+3.7165∗
𝑐𝑃3−4.1093∗𝑝𝐴𝐷2−17.6591∗𝑝𝐴𝐷 ∗𝑝𝐴−0.204∗𝑝𝐴𝐷 ∗𝑐𝑉 +2.4836∗𝑝𝐴𝐷 ∗𝑐𝑃−33.745∗𝑝𝐴2−1.6881∗
𝑝𝐴∗𝑐𝑉 +5.3915∗𝑝𝐴∗𝑐𝑃+10.7733∗𝑐𝑉 2−1.1846∗𝑐𝑉 ∗𝑐𝑃−10.4965∗𝑐𝑃2+0.0001∗𝑝𝐴−53.2106∗𝑐𝑉 +1.0.

E BENCHMARK PROGRAMS
This section presents the benchmark programs used in our experiments, along with the invari-

ants employed in our algorithms. In addition, we show the results of checking the prerequisites

of Theorems 4.10 and 4.11(P2), as discussed in Section 6.

E.1 Programs in Linear Experiments
This section contains the benchmark programs in our linear experiments, i.e., in Tables 1 and 5.
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Example E.1 (Geo).

𝐶Geo : while ( 0 ≤ 𝑐 ) {
{𝑐 := 1} [0.5] {𝑥 := 𝑥 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 , and every loop iteration terminates

directly with probability 𝑝 = 0.5.

Example E.2 (k-geo).

𝐶k-geo : while ( 𝑘 ≤ 𝑁 ) {
{𝑘 := 𝑘 + 1;𝑦 := 𝑦 + 𝑥 ;𝑥 := 0} [0.5] {𝑥 := 𝑥 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ∧ 𝑘 ≤ 𝑁 + 1 , and

synthesize dbRSM 𝑘 − 𝑁 .

Example E.3 (Binomial-random).

𝐶Bin-ran : while ( 𝑖 ≤ 10 ) {
{𝑥 := 𝑥 + 1} [0.5] {𝑥 := 0}
{𝑦 := 𝑦 + 𝑥 ; 𝑖 := 𝑖 + 1} [0.9] {𝑦 := 𝑦 + 1; 𝑖 := 0}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑖 ≤ 11 ∧ 0 ≤ 𝑥 ∧ 0 ≤ 𝑦, and there is

a probability 𝑝 ≥ 0.910 that the program will terminate immediately for every ten loop iterations.

Example E.4 (Coin).

𝐶Coin : while ( 𝑥 = 𝑦 ) {
{𝑥 := 0} [3/4] {𝑥 := 1}
{𝑦 := 0} [3/4] {𝑦 := 1}
𝑖 := 𝑖 + 1;
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑖 ∧ 0 ≤ 𝑥 ≤ 1 ∧ 0 ≤ 𝑦 ≤ 1, and

every loop iteration terminates directly with probability 𝑝 = 5

8
.

Example E.5 (Martingale).

𝐶Mart : while ( 0 < 𝑥 ) {
{𝑦 := 𝑦 + 𝑥 ;𝑥 := 0} [0.5] {𝑦 := 𝑦 − 𝑥 ;𝑥 := 2 ∗ 𝑥}
𝑖 := 𝑖 + 1;
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 , and every loop iteration terminates

directly with probability 𝑝 = 0.5.

Example E.6 (Growing Walk).

𝐶Growing Walk : while ( 0 ≤ 𝑥 ) {
{𝑥 := 𝑥 + 1;𝑦 := 𝑦 + 𝑥} [0.5] {𝑥 := −1}
}
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In this probabilistic program, we take the invariant 𝐼 = −1 ≤ 𝑥 , and every loop iteration

terminates directly with probability 𝑝 = 0.5.

Example E.7 (Growing Walk variant1).

𝐶Growing Walk1 : while ( 0 ≤ 𝑥 ) {
{𝑥 := 𝑥 − 1;𝑦 := 𝑦 + 𝑥} [0.5] {𝑥 := 1}
}

In this probabilistic program, we take the invariant 𝐼 = −1 ≤ 𝑥 , and every loop iteration

terminates directly with probability 𝑝 = 0.5.

Example E.8 (Expected Time).

𝐶Expected Time : while ( 0 ≤ 𝑥 ) {
{𝑥 := 𝑥 − 1; 𝑡 := 𝑡 + 1} [0.9] {𝑥 := 10; 𝑡 := 𝑡 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = −1 ≤ 𝑥 ≤ 10, and there is a probability

𝑝 ≥ 0.910 that the program will terminate immediately for every ten loop iterations.

Example E.9 (Zero Conference variant).

𝐶Zero-Conf-Var : while ( established ≤ 0 ∧ start ≤ 1 ) {
if ( start ≥ 1 ) {
{start := 0} [0.3] {start := 0; established := 1 } }

else { {curprobe := curprobe + 1} [0.99] {start := 1; curprobe := curprobe − 1} }
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑠𝑡𝑎𝑟𝑡 ≤ 1 ∧ 0 ≤ 𝑒𝑠𝑡 ≤ 1, and for the

prerequisite (P2) checking, when start = 1, the loop iteration terminates directly with probability

𝑝 = 0.7. When start = 0, the value of start has the probability of 0.01 to become 1 and turn to the

branch of start = 1.

Example E.10 (Equal Probability Grid Family).

𝐶Equal-Prob-Grid-Family : while ( 𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0 ) {
if ( 𝑏 ≥ 10 ) {
{goal := 1} [0.5] {goal := 2} }

else {
if ( 𝑎 ≥ 10 ) {
𝑎 := 𝑎 − 1 }

else {
{𝑎 := 𝑎 + 1} [0.5] {𝑏 := 𝑏 + 1} }

}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑎 ≤ 10 ∧ 0 ≤ 𝑏 ≤ 10 ∧ 𝑔𝑜𝑎𝑙 ≥ 0,

and we synthesize dbRSM 10 − 𝑏.
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Example E.11 (RevBin).

𝐶RevBin : while ( 1 ≤ 𝑥 ) {
{𝑥 := 𝑥 − 1; 𝑧 := 𝑧 + 1} [0.5] {𝑧 := 𝑧 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 , and we synthesize dbRSM 𝑥 .

Example E.12 (Fair Coin).

𝐶Fair Coin : while ( 𝑥 ≤ 0 ∧ 𝑦 ≤ 0 ) {
{𝑥 := 0} [0.5] {𝑥 := 1; 𝑖 := 𝑖 + 1}
{𝑦 := 0} [0.5] {𝑦 := 1; 𝑖 := 𝑖 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ≤ 1 ∧ 0 ≤ 𝑦 ≤ 1, and every loop

iteration terminates directly with probability 𝑝 = 0.25.

Example E.13 (Bernoulli’s St. Petersburg Paradox variant).

𝐶St. Petersburg1 : while ( 𝑥 ≤ 0 ) {
{𝑥 := 1} [0.75] {𝑦 := 2 ∗ 𝑦}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ≤ 1 ∧ 𝑦 ≤ 0, and every loop

iteration terminates directly with probability 𝑝 = 0.75.

E.2 Programs in Polynomial Experiments
This section contains the benchmarks in our polynomial experiments, i.e., in Tables 3 and 7.

Example E.14 (GeoAr).

𝐶GeoAr : while ( 0 < 𝑧 ) {
𝑦 := 𝑦 + 1;
{𝑥 := 𝑥 + 𝑦} [0.9] {𝑧 := 0}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ∧ 0 ≤ 𝑧, and every loop

iteration terminates directly with probability 𝑝 = 0.1.

Example E.15 (Bin0).

𝐶Bin0 : while ( 𝑛 > 0 ) {
{𝑥 := 𝑥 + 𝑦;𝑛 := 𝑛 − 1} [0.5] {𝑛 := 𝑛 − 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ∧ 0 ≤ 𝑛, and synthesize

dbRSM 𝑛.

Example E.16 (Bin2).

𝐶Bin2 : while ( 𝑛 > 0 ) {
{𝑥 := 𝑥 + 1;𝑛 := 𝑛 − 1} [0.5] {𝑥 := 𝑥 + 𝑦;𝑛 := 𝑛 − 1}
}
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In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧0 ≤ 𝑦∧0 ≤ 𝑛, and we synthesize
dbRSM 𝑛.

Example E.17 (DepRV).

𝐶DepRV : while ( 𝑛 > 0 ) {
{𝑥 := 𝑥 + 1;𝑛 := 𝑛 − 1} [0.5] {𝑦 := 𝑦 + 1;𝑛 := 𝑛 − 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ∧ 0 ≤ 𝑛, and synthesize

dbRSM 𝑛.

Example E.18 (Prinsys).

𝐶Prinsys : while ( 𝑥 = 0 ) {
{𝑥 := 0} [0.5] {{𝑥 := −1} [0.5] {𝑥 := 1}}
}

In this probabilistic program, we take the invariant 𝐼 = −1 ≤ 𝑥 ≤ 1, and every loop iteration

terminates directly with probability 𝑝 = 0.5.

Example E.19 (Sum0).

𝐶Sum0 : while ( 𝑛 > 0 ) {
{𝑥 := 𝑥 + 𝑛;𝑛 := 𝑛 − 1} [0.5] {𝑛 := 𝑛 − 1}
}

In this probabilistic program, we take the invariant 𝐼 = 𝑖 ≥ 0, and synthesize dbRSM 𝑛.

Example E.20 (Duel Boy).

𝐶Duel : while ( 𝑥 ≥ 1) {
if ( 𝑡 > 0 ) {
{x := 0} [0.5] {t := 1 − 𝑡}
}else{{x := 0} [0.75] {t := 1 − 𝑡}}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ≤ 1 ∧ 0 ≤ 𝑡 ≤ 1, and every loop

iteration terminates directly with probability 𝑝 ≥ 0.5.

Example E.21 (brp).

𝐶brp : while ( 𝑠𝑒𝑛𝑡 < 800 ∧ 𝑓 𝑎𝑖𝑙𝑒𝑑 < 10 ) {
{𝑠𝑒𝑛𝑡 := 𝑠𝑒𝑛𝑡 + 1; 𝑓 𝑎𝑖𝑙𝑒𝑑 = 0} [0.99] {𝑓 𝑎𝑖𝑙𝑒𝑑 := 𝑓 𝑎𝑖𝑙𝑒𝑑 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑓 𝑎𝑖𝑙𝑒𝑑 ≤ 10 ∧ 0 ≤ 𝑠𝑒𝑛𝑡 ≤ 800, and

there is a probability 𝑝 = 0.0110 that the program will terminate immediately for every ten loop

iterations.

Example E.22 (chain).

𝐶chain : while (𝑦 ≤ 0 ∧ 𝑥 < 100 ) {
{𝑦 := 1} [0.01] {𝑥 := 𝑥 + 1}
}
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In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ≤ 100 ∧ 0 ≤ 𝑦 ≤ 1, and every

loop iteration terminates directly with probability 𝑝 = 0.01.

Example E.23 (grid-small).

𝐶grid-small : while ( 𝑎 < 10 ∧ 𝑏 < 10 ) {
{𝑎 := 𝑎 + 1} [0.5] {𝑏 := 𝑏 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑎 ≤ 11∧ 0 ≤ 𝑏 ≤ 11, and synthesize

dbRSM 19 − (𝑎 + 𝑏).

Example E.24 (grid-big).

𝐶grid-big : while ( 𝑎 < 1000 ∧ 𝑏 < 1000 ) {
{𝑎 := 𝑎 + 1} [0.5] {𝑏 := 𝑏 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑎 ≤ 1001 ∧ 0 ≤ 𝑏 ≤ 1001, and

synthesize dbRSM 1999 − (𝑎 + 𝑏).

Example E.25 (cav-2).

𝐶cav-2 : while ( ℎ ≤ 𝑡 ) {
{ℎ := ℎ + 10} [0.25] {skip};
{𝑡 := 𝑡 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑡 ∧ 0 ≤ ℎ ∧ℎ ≥ 𝑡 + 1, and synthesize
dbRSM 𝑡 − ℎ.

Example E.26 (cav-4).

𝐶cav-4 : while (𝑦 ≥ 1 ) {
{𝑦 := 1} [0.5] {𝑦 := 0};
{𝑥 := 𝑥 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑦 ≤ 1 ∧ 𝑥 ≥ 0, and every loop

iteration terminates directly with probability 𝑝 = 0.5.

Example E.27 (fig-6).

𝐶fig-6 : while ( 𝑥 ≤ 4 ) {
{𝑥 := 𝑥 − 1} [0.5] {𝑥 := 𝑥 + 3};
{skip} [0.3333] {{𝑦 := 𝑦 + 1} [0.5] {𝑦 := 𝑦 + 2}};
}

In this probabilistic program, we take the invariant 𝑦 ≥ 0 ∧ 𝑥 ≤ 7, and synthesize dbRSM 4 − 𝑥 .
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Example E.28 (fig-7).

𝐶fig-7 : while (𝑦 ≤ 0 ) {
{𝑦 := 0} [0.5] {𝑦 := 1};
𝑥 := 2 ∗ 𝑥 ;
𝑖 := 𝑖 + 1;
}

In this probabilistic program, we take the invariant 𝐼 = 𝑖 ≥ 0 ∧ 𝑥 > 0 ∧ 0 ≤ 𝑦 ≤ 1, and every

loop iteration terminates directly with probability 𝑝 = 0.5.

Example E.29 ( inv-Pend variant).

𝐶inv-Pend variant : while ( 𝑒𝑥𝑖𝑡𝑐𝑜𝑛𝑑 ≤ 0 ) {
if (−0.5 ≤ 𝑐𝑃) {
if (𝑐𝑃 ≤ 0.5) {
if (−0.1 ≤ 𝑝𝐴) {
if (𝑝𝐴 ≤ 0.1) {
𝑒𝑥𝑖𝑡𝑐𝑜𝑛𝑑 := 1;

}else{skip}
}else{skip}
}else{skip}
}else{skip}

𝑐𝑃 := 𝑐𝑃 + 0.01 ∗ 𝑐𝑉 ;
{𝑐𝑉 := 0.02 ∗ 𝑐𝑃 + 0.5 ∗ 𝑐𝑉 − 0.3 ∗ 𝑝𝐴 − 0.06 ∗ 𝑝𝐴𝐷 − 1} [0.5]
{𝑐𝑉 := 0.02 ∗ 𝑐𝑃 + 0.5 ∗ 𝑐𝑉 − 0.3 ∗ 𝑝𝐴 − 0.06 ∗ 𝑝𝐴𝐷 + 1};
𝑝𝐴 := 𝑝𝐴 + 0.01 ∗ 𝑝𝐴𝐷 ;
{𝑝𝐴𝐷 := 0.04 ∗ 𝑐𝑃 + 0.07 ∗ 𝑐𝑉 − 0.51 ∗ 𝑝𝐴 + 0.85 ∗ 𝑝𝐴𝐷 − 0.8} [0.5]
{𝑝𝐴𝐷 := 0.04 ∗ 𝑐𝑃 + 0.07 ∗ 𝑐𝑉 − 0.51 ∗ 𝑝𝐴 + 0.85 ∗ 𝑝𝐴𝐷 + 0.8};
}

In this probabilistic program, we take the invariant 𝐼 = 𝑐𝑉 ≥ 0, and synthesize a dbRSM

0.7747 ∗ 𝑐𝑃2 + 0.0004 ∗ 𝑐𝑉 2 + 0.0222 ∗ 𝑝𝐴2 + 0.0005 ∗ 𝑝𝐴𝐷2 + 0.0298 ∗ 𝑐𝑃 ∗ 𝑐𝑉 − 0.0919 ∗ 𝑐𝑃 ∗ 𝑝𝐴 −
0.0168 ∗𝑐𝑃 ∗𝑝𝐴𝐷 − 0.0019 ∗𝑐𝑉 ∗𝑝𝐴− 0.0003 ∗𝑐𝑉 ∗𝑝𝐴𝐷 + 0.0014 ∗𝑝𝐴 ∗𝑝𝐴𝐷 (cut to 10

−4
precision).

Example E.30 (CAV-7).

𝐶CAV-7 : while ( 𝑖 ≤ 4 ) {
{𝑥 := 𝑥 + 1; 𝑖 := 𝑖 + 1} [1 − 0.2 ∗ 𝑖] {𝑥 := 𝑥 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑖 ≤ 5 ∧ 0 ≤ 𝑥 , and synthesize

dbRSM −𝑖 .
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Example E.31 (cav-5).

𝐶cav-5 : while ( 10 ≤ money ) {
{𝑏𝑒𝑡 := 5} [0.5] {𝑏𝑒𝑡 := 10};
𝑚𝑜𝑛𝑒𝑦 :=𝑚𝑜𝑛𝑒𝑦 − 𝑏𝑒𝑡 ;
𝑏𝑎𝑛𝑘_𝑔𝑢𝑎𝑟𝑑 :≈ Uniform(0.0, 1.0)
if (𝑏𝑎𝑛𝑘_𝑔𝑢𝑎𝑟𝑑 ≤ 0.94737) {
𝑐𝑜𝑙1_𝑔𝑢𝑎𝑟𝑑 :≈ Uniform(0.0, 1.0);
if (𝑐𝑜𝑙1_𝑔𝑢𝑎𝑟𝑑 ≤ 0.33333) {
𝑓 𝑙𝑖𝑝_𝑔𝑢𝑎𝑟𝑑1 :≈ Uniform(0.0, 1.0);
if (𝑓 𝑙𝑖𝑝_𝑔𝑢𝑎𝑟𝑑1 ≤ 0.5) {
𝑚𝑜𝑛𝑒𝑦 :=𝑚𝑜𝑛𝑒𝑦 + 1.5 ∗ 𝑏𝑒𝑡 ;
}else{𝑚𝑜𝑛𝑒𝑦 :=𝑚𝑜𝑛𝑒𝑦 + 1.1 ∗ 𝑏𝑒𝑡 ; }
}else{
𝑐𝑜𝑙2_𝑔𝑢𝑎𝑟𝑑 :≈ Uniform(0.0, 1.0);
if (𝑐𝑜𝑙2_𝑔𝑢𝑎𝑟𝑑1 ≤ 0.5) {
𝑓 𝑙𝑖𝑝_𝑔𝑢𝑎𝑟𝑑2 :≈ Uniform(0.0, 1.0);
if (𝑓 𝑙𝑖𝑝_𝑔𝑢𝑎𝑟𝑑2 ≤ 0.33333) {
𝑚𝑜𝑛𝑒𝑦 :=𝑚𝑜𝑛𝑒𝑦 + 1.5 ∗ 𝑏𝑒𝑡 ;
}else{𝑚𝑜𝑛𝑒𝑦 :=𝑚𝑜𝑛𝑒𝑦 + 1.1 ∗ 𝑏𝑒𝑡 ; }
}else{
𝑓 𝑙𝑖𝑝_𝑔𝑢𝑎𝑟𝑑3 :≈ Uniform(0.0, 1.0);
if (𝑓 𝑙𝑖𝑝_𝑔𝑢𝑎𝑟𝑑3 ≤ 0.66667) {
𝑚𝑜𝑛𝑒𝑦 :=𝑚𝑜𝑛𝑒𝑦 + 0.3 ∗ 𝑏𝑒𝑡 ;
}else{skip}
}
}
}
𝑖 := 𝑖 + 1
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑖 ∧ −1 ≤ 𝑚𝑜𝑛𝑒𝑦, and synthesize

dbRSM𝑚𝑜𝑛𝑒𝑦 − 10.

Example E.32 (add).

𝐶add : while (𝑦 ≤ 1 ) {
{𝑦 := 𝑦 + 1} [0.2] {𝑥 := 𝑥 + 1}
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ≤ 2, and synthesize

dbRSM 1 − 𝑦.
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Example E.33 (Growing Walk Variant2).

𝐶Growing Walk Variant2 : while ( 𝑟 ≤ 0 ) {
{𝑟 := 0} [0.5] {𝑟 := 1};
{𝑦 := 𝑦 + 𝑥 ∗ 𝑟 ;
{𝑥 := 𝑥 + 1;
}

In this probabilistic program, we take the invariant 𝐼 = 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ∧ 0 ≤ 𝑟 ≤ 1, and every

loop iteration terminates directly with probability 𝑝 = 0.5.
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