
For Review Only
Active Learning of Deterministic Timed Automata via Timed

Classification Tree

Journal: SCIENCE CHINA Information Sciences

Manuscript ID SCIS-2024-0780.R1

Manuscript Type: Research Paper

Date Submitted by the
Author: 12-Apr-2025

Complete List of Authors: Teng, Yu; Tongji University
Chen, Hanyue; Tongji University, School of Software Engineering
Mi, Junri; Tongji University
Zhang, Miaomiao; Tongji University
An, Jie; Institute of Software Chinese Academy of Sciences,
Zhan, NaiJun; Institute of Software Chinese Academy of Sciences

Keywords:
Formal Method, Reliability, Model Learning, Software Engineer, Active
Learning, Timed Automata, Timed Classification Tree, Counterexample
Processing

Speciality: Theoretical Computer Science\Algorithm and Complexity\Formal Methods
< Computer Science & Technology

Note: The following files were submitted by the author for peer review, but cannot be converted to
PDF. You must view these files (e.g. movies) online.

Supplementary Materials.zip

SCIENCE CHINA Information Sciences

For Review Only

SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

Active learning of deterministic timed automata via
timed classification tree

Yu Teng1, Hanyue Chen1, Junri Mi1, Miaomiao Zhang1*, Jie An2 & Naijun Zhan3

1School of Computer Science and Technology, Tongji University, Shanghai 200092, China;
2National Key Laboratory of Space Integrated Information System,

Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China;
3School of Computer Science, Peking University, Beijing 100871, China

Abstract Active learning of timed automata is a crucial research topic. While a recent algorithm has been
proposed for active learning of deterministic timed automata, it exhibits slow learning speed, particularly for
automata with large sizes, posing challenges for application in complex systems. In this paper, we propose an
enhanced learning algorithm, leveraging the idea of tree-based active learning. Our approach utilizes a data
structure named timed classification tree, instead of an observation table, to store information acquired during
the learning process. By avoiding checking the tree status and processing useless prefixes of counterexamples,
it reduces the number of membership queries and equivalence queries, thereby also accelerating the practical
learning speed. The experimental results demonstrate the effectiveness of our approach.

Keywords model learning, active learning, timed automata, timed classification tree, counterexample
processing

1 Introduction

Model learning [1] serves as a method for generating a formal model of a system from its input-output
behaviors, typically classified into two types: passive learning and active learning. Passive learning aims
to deduce a consistent model from a given set of samples [2], a topic extensively explored across various
models [3–14]. However, it does not guarantee the acquisition of a fully correct formal model. In contrast,
active learning furnishes a mechanism for a learner to choose sample sets. Angluin introduced the well-
known L∗ algorithm within the active learning framework MAT, where the learner can make membership
and equivalence queries to a teacher [15]. In a membership query, the learner asks whether a word belongs
to the target regular language. In an equivalence query, the learner provides a hypothesis automaton
and asks whether it recognizes the target regular language exactly. The learning process iterates until it
yields an exact model. Following this framework, active learning algorithms for many kinds of automata
have been proposed, such as Mealy machines [16,17], nondeterministic finite-state automata [18], register
automata [19–21], I/O automata [22] and symbolic automata [23,24], etc.

Active learning for timed models has gained notable focus lately. For instance, Vaandrager et al.
introduced an active learning algorithm for Mealy machines with a single timer [25]. For real-time
automata, active learning algorithms have been proposed for both deterministic [26] and nondeterministic
cases [27]. Furthermore, active learning of deterministic one-clock timed automata has been outlined [28].
Subsequent advancements include techniques such as PAC learning [29], mutation testing [30], and SMT
solving [31], among others, aimed at enhancing effectiveness. It is noteworthy that these algorithms are
limited in the ability to learn timed automata with multiple clocks. Recently, an active learning algorithm
for learning deterministic timed automata (DTAs) with multiple clocks was introduced in [32]. However,
the number of locations in the learned automata significantly increased compared to the target automata.

To yield deterministic timed automata with smaller sizes, a novel learning algorithm was proposed
in [33]. The authors first considered learning from a powerful teacher who can answer reset information
queries additionally. Then, the learning is performed with a normal teacher, with the learner guessing the

*Corresponding author (email: miaomiao@tongji.edu.cn)

Page 1 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 2

possible clock resets. Therefore, each resulting situation after guessing can be viewed as learning from a
powerful teacher. However, its current limitation is that it can only learn very small-scale systems, which
poses a challenge to its application to complex systems. In this paper, we address the following primary
drawbacks associated with learning from a powerful teacher via the observation table [33].
Additional overheads to issue a valid membership query. Before making a membership query
for a timed word in the table, it is essential to construct one of its valid successors first, which needs
auxiliary time. Further details are presented in Section 2.
Useless prefixes of counterexamples. During counterexample processing, all prefixes of a counterex-
ample are added to the observation table. However, most of these prefixes are useless for refining the
hypothesis, resulting in redundant membership queries during the subsequent learning process.
Time-consuming table operations and hypothesis construction. The processes of checking
whether the observation table is closed or consistent are time-consuming.

To tackle these challenges, we are inspired by tree-based learning algorithms for different kinds of
automata. In [34], Isberner et al. proposed a learning algorithm for DFAs based on discrimination trees.
After that, a method for learning Buchi automata using classification trees is proposed [35]. Vaandrager
et al. also learned Mealy machines based on observation trees [36]. Recently, Dierl et al. proposed a
tree-based learning algorithm for register automata [37]. However, their methods are not applicable to
timed automata. In [38], to learn real-time automata, both the structure and operation of the real-time
classification tree proposed are relatively simple. In [39], to learning DTAs with one clock, the one-clock
classification tree is proposed. However, the one-clock classification tree can only deal with only one clock
and fails to ensure the termination of the learning algorithm for a DTA with multiple clocks. Compared
to these works, we define a novel data structure termed the timed classification tree which can handle
multiple clocks. This structure replaces the traditional observation table and efficiently stores query
results. Leveraging this data structure, we present an improved active learning algorithm for DTAs.

Our main contributions are summarized as follows.
• Timed classification tree and the operations on it. Utilization of a timed classification tree instead

of an observation table can reduce the number of membership queries, thereby reducing overall
additional overheads. Furthermore, the structured nature of the tree, coupled with the method for
hypothesis construction, enables the learner to construct a hypothesis without checking the tree
status. These advancements effectively mitigate the first and third drawbacks mentioned above.

• Methods for counterexample analysis and processing. We propose a method to pinpoint an erroneous
position within a counterexample, leading to the first conflict between the current hypothesis H and
the target DTA A. Utilizing the information of the erroneous position to refine the classification
tree will indeed generate a modification of H. This approach effectively reduces the membership
queries for the useless prefixes of a counterexample that do not contribute to a modification of H,
thereby resolving the second drawback.

• We implemented our algorithm and compared it with the algorithm in [33]. The results show that
our method can significantly reduce the number of membership queries and improve the efficiency.

2 Preliminaries

Let R⩾0 be the set of non-negative real numbers, N be the set of natural numbers, and B = {⊤,⊥} be the
Boolean set, where ⊤ is true and ⊥ is false. Let Σ, named alphabet, be a finite set of events or actions.

2.1 Timed words, timed languages, and timed automata

A timed word is a finite sequence ω = (σ1, t1)(σ2, t2) · · · (σn, tn) ∈ (Σ × R⩾0)
∗, where ti represents the

delay time length before taking action σi for all 1 ⩽ i ⩽ n. A timed language L is a set of timed words.
Timed automata (TAs) [40] extend finite-state automata with a finite set of clock variables. Let C be

the set of clock variables.
A clock constraint ϕ is a conjunctive formula of atomic constraints of the form c ∼ n, for c ∈ C and

n ∈ N, where ∼ ∈ {⩽, <,⩾, >,=}. Let Φ(C) be the set of clock constraints.
A clock valuation ν : C → R⩾0 is a function assigning a non-negative real value to each clock. Given a

clock valuation ν for C and a clock constraint ϕ over C, if ϕ evaluates to true using the values given by
ν, then ν ∈ ϕ, i.e., ν satisfies ϕ. For d ∈ R⩾0, ν + d denotes the clock valuation which maps each clock
c ∈ C to the value ν(c) + d. For a set B ⊆ C, [B → 0]ν is the clock valuation which resets each c ∈ B to
0, and agrees with ν for each c ∈ C\B.

Page 2 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 3

l0start

l1

l2

a,
c1 > 1 ∧ c2 > 1,

{c2}
a, 0 ⩽ c1 < 3 ∧ c2 > 1,

{c1, c2}

b,
c1 ⩾ 0 ∧ 0 ⩽ c2 < 1,

{c2}

a, c1 > 1 ∧ 0 ⩽ c2 ⩽ 1, {c1 , c2}
a, 0 ⩽ c1 ⩽ 1 ∧ c2 ⩾ 0, {c1 , c2}
b, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1 , c2} a, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}
b, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}

b, c1
⩾ 0 ∧ c2 ⩾

1, {c1,
c2}

a, c1
⩾ 3 ∧ c2 ⩾

0, {c1,
c2}

a, 0
⩽ c1 <

3 ∧ c2 ⩽
1, {c1

, c2}

Figure 1 A CTA A.

Definition 1 (Timed automata [40]). A timed automaton (TA) is a tuple A = (Σ, L, l0, F, C,∆), where
Σ is the alphabet, L is a finite set of locations, l0 is the initial location, F ⊆ L is a set of accepting
locations, C is the set of clocks, and ∆ ⊆ L× Σ× Φ(C)× 2C × L is a finite set of transitions.

A transition δ = (l, σ, ϕ,B, l′) ∈ ∆ represents a jump in A from the source location l to the target
location l′ by performing the action σ when the current clock valuation satisfies the constraint ϕ. The
set B ⊆ C gives the clocks to be reset in the transition.

A state s of A is a pair (l, ν), where l ∈ L is a location and ν is a clock valuation. Given a timed
word ω = (σ1, t1)(σ2, t2) · · · (σn, tn), a run ρ of A over ω is a sequence ρ = (l0, ν0)

t1,σ1−−−→ (l1, ν1)
t2,σ2−−−→

· · · tn,σn−−−→ (ln, νn), satisfying the requirements: (1) l0 is the initial location and ν0(c) = 0 for each clock
c ∈ C; (2) for all 1 ⩽ i ⩽ n, there is a transition (li−1, σi, ϕi,Bi, li) such that (νi−1 + ti) ∈ ϕi and
νi = [Bi → 0](νi−1 + ti). For a run ρ over a timed word ω, if ρ ̸= (l0, ν0), the trace of ρ is defined
as the corresponding timed word ω, i.e., ω = trace(ρ). If ρ = (l0, ν0), trace(ρ) = ϵ. By recording the
reset information along the run ρ over the timed word ω, we get a reset-timed word corresponding to ω,
denoted by ωr = tracer(ρ) = (σ1, t1,b1)(σ2, t2, b2) · · · (σn, tn,bn), where bi ∈ B|C| is a |C|-tuple. For all
cj ∈ C and 1 ⩽ j ⩽ |C|, bi,j records when taking (σi, ti), whether the j-th clock cj is reset.

For a run ρ = (l0, ν0)
t1,σ1−−−→ (l1, ν1)

t2,σ2−−−→ · · · tn,σn−−−→ (ln, νn), if ln ∈ F , ρ is an accepting run of A.
For a timed automaton A, its (recognized) timed language L(A) = {trace(ρ) | ρ is an accepting run of A}.
Two timed automata A1 and A2 are equivalent if and only if L(A1) = L(A2). Similarly, the (recognized)
reset-timed language Lr(A) = {tracer(ρ) | ρ is an accepting run of A}.
Clocked word and reset-clocked word. A timed word can be considered as a system behavior
observed from the perspective of the global clock. To represent the system behavior observed from
the perspective of the logical clock variables C within the system, a clocked word is defined based on
a run ρ = (l0, ν0)

t1,σ1−−−→ (l1, ν1)
t2,σ2−−−→ · · · tn,σn−−−→ (ln, νn). In particular, a clocked word is denoted by

γ = (σ1,v1) (σ2,v2) · · · (σn,vn), where vi ∈ R|C|⩾0 records the clock value for each clock when taking

action σi, i.e. vi,j = νi−1(cj) + ti for all cj ∈ C and 1 ⩽ j ⩽ |C|. Let Σ = Σ × R|C|⩾0 be a infinite set
of clocked actions. After extending the reset information along the run ρ on γ, we get the reset-clocked
word γr = (σ1,v1,b1)(σ2,v2,b2) · · · (σn,vn, bn). Let vw(γr) = γ = (σ1,v1) (σ2,v2) · · · (σn, vn) and
resets(γr) = {b1,b2, · · · ,bn} to extract the reset information of γr. Similarly, Σr = Σ × R|C|⩾0 × B|C|
is a infinite set of reset-clocked actions. Moreover, for a given reset-timed word ωr = (σ1, t1,b1)(σ2, t2,
b2) · · · (σn, tn,bn), we can compute the only corresponding clocked word γ = (σ1,v1)(σ2,v2) · · · (σn,vn),
where for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ |C|, if i = 1 or bi−1,j = ⊤, vi,j = ti, otherwise, vi,j = vi−1,j + ti.

Let Γρ map a (reset-)timed word to the (reset-)clocked counterpart and πρ map a clocked word γ to
its reset-clocked counterpart γr according to a run ρ respectively. When ρ is determined, we use Γ and
π directly. For a timed automaton A, the recognized clocked language L (A) = {Γρ(trace(ρ)) | ρ is an
accepting run of A} and the recognized reset-clocked language Lr(A) = {Γρ(tracer(ρ)) | ρ is an accepting
run of A}. In a timed automaton A, a clocked word γ is valid for A if there exists a run ρ satisfying
Γρ(trace(ρ)) = γ. Similarly, a reset-clocked word γr is valid for A if there exists a run ρ satisfying
Γρ(tracer(ρ)) = γr. A reset-clocked word γr is doomed if it is invalid for any timed automaton.
Definition 2 (Deterministic timed automata). A timed automaton A is a deterministic timed automa-
ton (DTA) if and only if there is at most one run ρ for any timed word ω.

In a DTA A = (Σ, L, l0, F, C,∆), for all l ∈ L and σ ∈ Σ, for every pair of transitions of the form
(l, σ, ϕ1,−,−) and (l, σ, ϕ2,−,−) in ∆, the clock constraints ϕ1 and ϕ2 are mutually exclusive.

A timed automaton A is a complete deterministic timed automaton (CTA) if and only if there is exactly
one run ρ for any given timed word ω. Every DTA can be transformed into a CTA. The transition method

Page 3 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 4

can be divided into three steps: (1) introduce a “sink” location which is not accepted; (2) for each l ∈ L
and σ ∈ Σ, if there is no transition from l performing σ, add a transition resetting all clocks from l to
“sink” with label σ and guards c ⩾ 0 for each c ∈ C; (3) otherwise, let Compll,σ be the subset of R|C|⩾0

that isn’t covered by the guards of transitions from l with label σ. Represent Compll,σ as a union of
guards I1, · · · , Ik in the simplest way, then for each 1 ⩽ j ⩽ k, add a transition resetting all clocks from
l to “sink” with label σ and guard Ij . Figure 1 shows a CTA A with an initial location l0, an accepting
location l1, a “sink” location l2, and two clocks c1, c2. Since the number of clock valuations is infinite, the
number of states of is infinite. To form a finite partition of the state space, region is introduced.
Definition 3 (Region equivalence [40]). Given a timed automaton A, for each c ∈ C, let κ(c) represent
the largest integer appearing in the constraints over c in A. For any real time a, we use frac(a) to denote
the fractional part of a and ⌊a⌋ to denote the integral part of a. Based on these concepts, two clock
valuations ν and ν′ are region-equivalent, denoted by ν ∼ ν′, iff all the following conditions hold:

• for all c ∈ C, either ⌊ν(c)⌋ = ⌊ν′(c)⌋ or both ν(c) > κ(c) and ν′(c) > κ(c).
• for all c ∈ C, if ν(c) ⩽ κ(c) then frac(ν(c)) = 0 iff frac(ν′(c)) = 0 and
• for all ci, cj ∈ C, if ν(ci) ⩽ κ(ci) and ν(cj) ⩽ κ(cj) then frac(ν(ci)) ⩽ frac(ν(cj)) iff frac(ν′(ci)) ⩽

frac(ν′(cj)).
In a timed automaton A, a region is an equivalence class relies on the equivalence relation ∼. Let R

be the set of regions of A. The number of regions |R| is bounded by |C|! · 2|C| ·
∏

c∈C(2κ(c) + 2) [40]. For
a clock valuation ν, JνK is used to represent the region containing it.

A symbolic state [40] of A = (L, l0, F, C,Σ, ∆) is a pair (l, JνK), where l ∈ L and JνK ∈ R.

2.2 Active learning of deterministic timed automata

In this section, we briefly introduce the active learning method for DTA proposed in [33]. Its basic idea
is as follows. First, it can be proved that if reset-clocked languages of two DTAs are equivalent (i.e.,
Lr(A1) = Lr(A2)), their timed languages are equivalent (i.e., L(A1) = L(A2)). Hence, the problem of
learning the timed language L(A) of A is transformed into that of learning Lr(A). Then, an equivalence
relation on reset-clocked languages is established. According to it, Lr(A) can be divided into a finite
number of equivalence classes. Subsequently, the active learning algorithm of Lr(A) is proposed.

To learn Lr(A), the equivalence relation on Lr(A) needs to be defined. To define this equivalence
relation, we recall two notions region word and valid successor utilized in [33].
Definition 4 (Region word). Given a timed automaton A, a region word ξ is a finite sequence of pairs
(σ, JνK), where σ ∈ Σ is an action of A and JνK ∈ R represents a region of A.

Let ΣG = Σ ×R be the finite set of region actions. For each clocked word γ of A, there is a unique
region word ξ corresponding to it, denoted by ξ = JγK.
Lemma 1. Given a CTA A, for all valid clocked words γ and γ′ such that JγK = Jγ′K, they have the
same transition sequence of A and reach the same symbolic state. Thus, the following two conclusions
hold: (1) γ ∈ L (A) iff γ′ ∈ L (A); (2) resets(γr) = resets(γ′r), where γr and γ′r are the reset-clocked
words corresponding to γ and γ′, respectively.
Definition 5 (Valid successor). Given a DTA A, a reset-clocked word γr and a region word ξ, a
reset-clocked word γ′r is a valid successor of γr corresponding to ξ if Jvw(γ′r)K = ξ and γr · γ′r is a valid
reset-clocked word of A.

The set of valid successors of γr corresponding to ξ is denoted by vsA(γr, ξ). The method of finding
valid successors has presented in [33].
Lemma 2. Given a valid reset-clocked word γr of a CTA A and a region word ξ, for all γ′r, γ

′′
r ∈

vsA(γr, ξ), γrγ′r and γrγ
′′
r witness the same transition sequence of A and reach the same symbolic state

in the end.
Lemma 3. Given two valid reset-clocked words γr1 and γr2 of A and a region word ξ, if γr1 and γr2
reach the same symbolic state of A, then for all γ′r1 ∈ vsA(γr1, ξ) and γ′r2 ∈ vsA(γr2, ξ), the following two
conditions hold: (1) resets(γ′r1) = resets(γ′r2); (2) γr1γ

′
r1 and γr2γ

′
r2 reach some same symbolic state.

Definition 6 (Equivalence relation). Suppose Lr(A) is the reset-clocked language of a DTA A. Two
reset-clocked words γr1, γr2 are indistinguishable by Lr(A), denoted by γr1 ∼Lr(A) γr2, if for all γ′r1 ∈
vsA(γr1, ξ) and γ′r2 ∈ vsA(γr2, ξ), the following conditions hold for all ξ ∈ Σ∗G: (1) γr1γ

′
r1 ∈ Lr(A) iff

γr2γ
′
r2 ∈ Lr(A); (2) resets(γ′r1) = resets(γ′r2).

According to Lemma 3 and the definition of the equivalence relation, we can get the following lemma:

Page 4 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 5

Lemma 4. If two valid reset-clocked words γr1, γr2 of A reach the same symbolic state of A, then
γr1 ∼Lr(A) γr2.

According to Lemma 4, it can be proved that for a DTA A, ∼Lr(A) has a finite number of equivalence
classes, which is the key to ensure the termination of the learning algorithm for Lr(A).

In the algorithm of learning a DTA from a powerful teacher, the learner can make three kinds of queries
to the teacher: reset information query (RQA), membership query (MQA), and equivalence query (EQ).
In a reset information query, the learner asks the reset information along the run of a valid clocked word
γ. In a membership query, the teacher receives a reset-clocked word γr from the learner and answers
whether γr ∈ Lr(A). In an equivalence query, the learner submits a hypothesis DTA H and the teacher
answers whether L(A) = L(H).

The basic learning process follows the L∗ framework. The learner utilizes an observation table T to
store query results. At the beginning, the learner makes membership queries for reset-clocked words
and performs operations on the table until it is closed, consistent, and evidence-closed. After that, a
hypothesis DTA H can be constructed according to the table and whether L(A) = L(H) is determined by
an equivalence query. If the answer is ‘no’, the learner obtains a reset-timed word ωr as a counterexample
and adds all prefixes of Γ(ωr) to T. The whole procedure repeats until the teacher gives a positive answer
to an equivalence query. The reset information queries will be performed when needs to compute valid
successors for membership queries. In the normal teacher situation, they will be replaced by guessing.

The observation table T = (Σ,ΣG,Σr,S,R,E, f, g), where S,R ⊂ Σ∗r is a finite set of reset-clocked
words, E ⊂ Σ∗G is a finite set of region words, f is a classification function mapping S ∪R ×E to the
set {+,−} and g is a labelling function mapping S ∪R×E to {⊥,⊤}|ξ∈E|×|C|.

For each reset-clocked word γr ∈ S ∪ R and each region word ξ ∈ E, the learner needs to find a
valid successor er ∈ vsA(γr, ξ) before making a membership query. We call it the additional overhead to
issue a valid membership query. If vsA(γr, ξ) ̸= ∅ and MQA(γr · er) = +, then f(γr, ξ) = +, otherwise,
f(γr, ξ) = −. g is utilized to record resets(er). A function row maps each γr ∈ S ∪R to a vector indexed
by every ξ ∈ E. Each element of the vector is defined as {f(γr, ξ), g(γr, ξ)}.

Before constructing a hypothesis based on the table T, the learner needs to check whether T is closed,
consistent and evidence-closed. These conditions are introduced in details as follows:

• Closed: ∀r ∈ R,∃s ∈ S : row(s) = row(r).
• Consistent: ∀γr, γ′r ∈ S ∪ R, row(γr) = row(γ′r) implies that: for all σr,σ

′
r ∈ Σr such that

Jvw(σr)K = Jvw(σ′r)K, if γrσr, γ
′
rσ
′
r ∈ S∪R, the following conditions are satisfied: (1) row(γrσr) =

row(γ′rσ
′
r); (2) resets(σr) = resets(σ′r).

• Evidence-closed: ∀s ∈ S and ∀e ∈ E, if vsA(s, e) is not empty, ∃er ∈ vsA(s, e) such that ser ∈ S∪R.
To make the table satisfy the above properties, the learner can perform the following operations: (1) If

the table is not consistent, there exist γr, γ′r ∈ S ∪R satisfying row(γr) = row(γ′r), for σr,σ
′
r ∈ Σr such

that Jvw(σr)K = Jvw(σ′r)K, γrσr and γ′rσ
′
r ∈ S ∪R. However, row(γrσr) ̸= row(γ′rσ

′
r) or resets(σr) ̸=

resets(σ′r). If row(γrσr) ̸= row(γ′rσ
′
r), the learner finds e ∈ E such that f(γrσr, e) ̸= f(γ′rσ

′
r, e) or

g(γrσr, e) ̸= g(γ′rσ
′
r, e) and adds ξ = Jvw(σr)K · e to E. If resets(σr) ̸= resets(σ′r), the learner adds

ξ = Jvw(σr)K to E. In any two of the above cases, for each γr ∈ S ∪R, the learner finds er ∈ vsA(γr, ξ)
and then makes membership queries to fill the table. (2) If T is not closed, there is r ∈ R such that for all
s ∈ S, row(r) ̸= row(s). The learner will move r from R to S. Moreover, for each σ ∈ Σ, a reset-clocked
word π(vw(r) · σ) needs to be added to R, where σ = (σ, {0}|C|). Hence, the learner needs to add |Σ|
reset-clocked words to R. After that, for each added reset-clocked word γr and each ξ ∈ E, the leaner
also needs to find a valid successor er ∈ vsA(γr, ξ) and then fill the table by membership queries. (3) If
T is not evidence-closed, ∃s ∈ S and ∃e ∈ E, vsA(s, e) is not empty, and there is no er ∈ vsA(s, e) such
that ser ∈ S ∪R. The learner finds er ∈ vsA(s, e) and then adds all prefixes of ser to R. Next, for each
added reset-clocked word γr and each ξ ∈ E, the leaner also finds er ∈ vsA(γr, ξ) and then fills the table
by membership queries. Therefore, all operations lead to membership queries and additional overheads.

3 Timed classification tree

Before presenting the definition of timed classification trees, we introduce two functions as follows. They
are helpful for labelling membership query results and reset information on the edges of a tree.

• ftr is a function mapping Σ∗r × Σ∗G to the set {+,−}. For a reset-clocked word γr ∈ Σ∗r and a
region word ξ ∈ Σ∗G, in the case of ξ ̸= ϵ, find a valid successor er ∈ vsA(γr, ξ). If vsA(γr, ξ) ̸= ∅
and MQA(γr · er) = +, ftr(γr, ξ) = +, otherwise, ftr(γr, ξ) = −. If ξ = ϵ, ftr(γr, ξ) = MQA(γr).

Page 5 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 6

ϵ

(a, c1 = 2∧
c2 = 2)

(a, {1.05, 1.05},
{⊥,⊤})

ϵ (a, {0, 0},
{⊤,⊤})

{−} {+}

{{+}, {⊥,⊤}} {{−}, {⊤,⊤}}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))
(ϵ, (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))
(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))
((a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))
((a, {0, 0}, {⊤,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

Figure 2 A T R generated in the process of learning DTA A in Figure 1.

• gtr is function mapping Σ∗r × Σ∗G to {⊥,⊤}|ξ∈Σ∗
G|×|C|. For a reset-clocked word γr ∈ Σ∗r and a

region word ξ ∈ Σ∗G, in the case of ξ ̸= ϵ, find a valid successor er ∈ vsA(γr, ξ). If vsA(γr, ξ) ̸= ∅,
gtr(γr, ξ) = resets(er). Otherwise, let ξ[: i] be the prefix before the i-th position (including the
i-th position) of ξ, where 1 ⩽ i < |ξ|. If there exists i such that vsA(γr, ξ[: i]) ̸= ∅ and vsA(γr, ξ[:
i + 1]) = ∅, find an e′r ∈ vsA(γr, ξ[: i]) and gtr(γr, ξ) = {resets(e′r), {⊤}(|ξ|−i)×|C|}. Otherwise,
gtr(γr, ξ) = {⊤}|ξ|×|C|. In the case of ξ = ϵ, gtr(γr, ξ) = ∅.

A timed classification tree contains leaf nodes and internal nodes. A leaf node stores a reset-clocked
word and an internal node stores a region word. In the following, without ambiguity, we reuse ξ to denote
an internal node storing a region word ξ and reuse γr to be a leaf node storing a reset-clocked word γr.
Definition 7 (Timed classification tree). A timed classification tree T R = (Σ, V,Q,E, fE

tr , g
E
tr, TQ) is a

multi-way tree, where Σ is the alphabet; V is a finite set of internal nodes; Q is a finite set of leaf nodes;
E ⊆ V × {V ∪Q} is a finite set of edges;

• fE
tr is a classification function mapping E to the set {+,−}. For each edge e = (u1, u2) ∈ E, if
u2 ∈ V , find an arbitrary leaf node q under the sub-tree of u2, and if u2 ∈ Q, let q = u2. Let γr be
the reset-clocked word stored in q and ξ be the region word stored in u1, we have fE

tr(e) = ftr(γr, ξ).
• gEtr is a labelling function mapping E to {⊥,⊤}|ξ∈V |×|C|. For each edge e = (u1, u2) ∈ E, same to
fE
tr , find a leaf node q for u2. For the reset-clocked word γr stored in q and the region word ξ stored

in u1, gEtr(e) = gtr(γr, ξ).

TQ ⊆ Q × Σr × Q is a finite set describing the relations between leaf nodes. A leaf node jump
(q, (σ,v,b), q′) in TQ represents a jump from the leaf node q to the leaf node q′ by performing the
reset-clocked action (σ,v,b).

Intuitively, a leaf node indicates a location in the hypothesis, the internal nodes are used to distinguish
the leaf nodes, and the edges record the membership query results and reset information. Using the tree
operations described subsequently, we always keep that for each two leaf nodes γr1, γr2, there exists a
shared internal node ξ on the paths from the root to each of the two nodes, which serves to distinguish
them, i.e., ftr(γr1, ξ) ̸= ftr(γr2, ξ) or gtr(γ1r, ξ) ̸= gtr(γr2, ξ). For each leaf node, there exists at least one
jump from it in the set TQ. The leaf node jumps explicitly hold the information which will be used to
construct a hypothesis. Specifically, when constructing a hypothesis from a tree (described later), each
leaf node corresponds to one location in the hypothesis, and the leaf node jumps form the transitions.
Example 1. Suppose DTA A in Figure 1 is the target DTA. Figure 2 is a tree T R generated in the
learning process. It contains two internal nodes and three leaf nodes. Taking the edge from the internal
node ξ = (a, c1 = 2 ∧ c2 = 2) to the leaf node γr = (a, {0, 0}, {⊤,⊤}) as an example, fE

tr((ξ, γr)) and
gEtr((ξ, γr)) are computed as follows. Since γr is a leaf node, according to the definitions of fE

tr((ξ, γr)) and
gEtr((ξ, γr)), fE

tr((ξ, γr)) = ftr(γr, ξ) and gEtr((ξ, γr)) = gtr(γr, ξ). To calculate ftr(γr, ξ) and gtr(γr, ξ), the
learner first finds er = (a, {2, 2}, {⊤,⊤}) ∈ vsA(γr, ξ) and then gets gtr(γr, ξ) = resets(er) = {⊤,⊤} =
gEtr((ξ, γr)). Since MQA(γr · er) = MQA((a, {0, 0}, {⊤,⊤}) · (a, {2, 2}, {⊤,⊤})) = −, ftr(γr, ξ) = − =
fE
tr((ξ, γr)). For the leaf node ϵ, there are three leaf node jumps from it.
We introduce three operations on a tree, namely sift, leaf node jump construction, and split.

Sift. Given a reset-clocked word γr, the sift operation sift(γr) returns a leaf node in T R corresponding
to γr, which is performed as follows:

1. Let the root node be the current node x. Note that x contains a region word.
2. Compute ftr(γr, x) and gtr(γr, x). Next, find an edge (x, y) from x such that fE

tr((x, y)) = ftr(γr, x)
and gEtr((x, y)) = gtr(γr, x), and then set y to be the current node x.

3. Repeat Step 2 until x is a leaf node or there is no edge (x, y) from x such that fE
tr((x, y)) = ftr(γr, x)

and gEtr((x, y)) = gtr(γr, x). If x is a leaf node, the sift operation ends and returns x as the leaf

Page 6 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 7

node corresponding to γr in T R. Otherwise, construct a new leaf node containing γr as a child of
x, add a new edge (x, γr) labelled by fE

tr((x, γr)) = ftr(γr, x) and gEtr((x, γr)) = gtr(γr, x) to E, and
then return the new leaf node γr.

Due to the nature of tree structure and the information stored on edges of timed classification tree
T R, to find a corresponding leaf node to a reset-clock word γr, the learner only needs to go through
one path from the root, skipping the checks of other branches via ftr and gtr. Therefore, it reduces the
membership queries and thus also the additional overheads.
Theorem 1. For two reset-clocked words γr1 and γr2 reaching the same symbolic state of A, sift(γr1)
and sift(γr2) return the same leaf node.
Proof. Depending on the definition of the symbolic states, the clock valuations after running γr1 and
γr2 on A must belong to the same region. Because by letting time pass from any two points in the same
region, the next visited region is the same [41], there are only two cases about the valid successors of γr1
and γr2 according to any internal node ξ. The first case is vsA(γr1, ξ) ̸= ∅ and vsA(γr2, ξ) ̸= ∅ and the
second case is vsA(γr1, ξ) = vsA(γr2, ξ) = ∅.

Consider the first case. Suppose that γ′r1 ∈ vsA(γr1, ξ) and γ′r2 ∈ vsA(γr2, ξ). Since vsA(γr1, ξ) ̸= ∅
and vsA(γr2, ξ) ̸= ∅, both γr1 and γr2 are valid. Therefore, according to Lemma 3.6 in [33], resets(γ′r1) =
resets(γ′r2) and γr1γ

′
r1, γr2γ′r2 also reach another same symbolic state in A. Hence, gtr(γr1, ξ) = gtr(γr2, ξ)

and ftr(γr1, ξ) = ftr(γr2, ξ).
Consider the second case. In this case, ftr(γr1, ξ) = ftr(γr2, ξ) = −. To compute gtr(γr1, ξ) and

gtr(γr2, ξ), the learner finds i such that vsA(γr1, ξ[: i]) ̸= ∅ and vsA(γr1, ξ[: i+ 1]) = ∅, where 1 ⩽ i < |ξ|.
Since by letting time pass from any two points in the same region, the next visited region is the same [41],
if there is i such that vsA(γr1, ξ[: i]) ̸= ∅ and vsA(γr1, ξ[: i + 1]) = ∅, then vsA(γr2, ξ[: i]) ̸= ∅ and
vsA(γr2, ξ[: i+1]) = ∅. Suppose that γ′′r1 ∈ vsA(γr1, ξ[: i]) and γ′′r2 ∈ vsA(γr2, ξ[: i]). According to Lemma
3.6 in [33], resets(γ′′r1) = resets(γ′′r2). Hence, gtr(γr1, ξ) = gtr(γr2, ξ) = {resets(γ′′r1), {⊤}(|ξ|−i)×|C|}. If
there is no i such that vsA(γr1, ξ[: i]) ̸= ∅ and vsA(γr1, ξ[: i+1]) = ∅, gtr(γr1, ξ) = gtr(γr2, ξ) = {⊤}|ξ|×|C|.

Therefore, for any internal node ξ, ftr(γr1, ξ) = ftr(γr2, ξ) and gtr(γr1, ξ) = gtr(γr2, ξ). So sift(γr1)
and sift(γr2) return the same leaf node. □

Leaf node jump construction. To construct a leaf node jump from a leaf node γr by performing a
clocked action σ = (σ,v) ∈ Σ, the learner executes the following two steps:

1. If the clocked word vw(γr) · (σ,v) is valid for A, obtain a reset-clocked word γr · (σ,v,b) by making
RQA(vw(γr) · (σ,v)). Otherwise, construct a reset-clocked word γr · (σ,v,b), where b = {⊤}|C|.

2. Compute sift(γr · (σ,v,b)) and add a jump (γr, (σ,v,b), sift(γr · (σ,v,b))) to TQ.
Note that, after each new leaf node q is added to T R, for each action σ ∈ Σ, a leaf node jump from q

by performing (σ, 0|C|) will be constructed.
Theorem 2. In TQ, for any two jumps (q,σr, sift(q · σr)) and (q,σ′r, sift(q · σ′r)) from a leaf node q, if
Jvw(σr)K = Jvw(σ′r)K, we have resets(σr) = resets(σ′r) and sift(q · σr) = sift(q · σ′r).
Proof. If vsA(q, Jvw(σr)K) ̸= ∅, according to the construction method for a leaf node jump in the
whole paper, both σr and σ′r ∈ vsA(q, Jvw(σr)K). Since vsA(q, Jvw(σr)K) ̸= ∅, q is valid. According
to Lemma 3.5 in [33], q · σr and q · σ′r must witness the same transition sequence of A and reach
to the same symbolic state. Hence, resets(σr) = resets(σ′r) and sift(q · σr) = sift(q · σ′r) according
to Theorem 1. If vsA(q, Jvw(σr)K) = ∅, according to the construction method for a leaf node jump,
resets(σr) = resets(σ′r) = {⊤}|C| and q ·σr, q ·σ′r are invalid. Therefore, for each ξ ∈ V , ftr(q ·σr, ξ) =
ftr(q · σ′

r, ξ) = − and gtr(q · σr, ξ) = gtr(q · σ′
r, ξ) = {⊤}|ξ|×|C|. Hence, sift(q · σr) = sift(q · σ′r). □

Split. For a reset-clocked words γr that is sifted to the leaf node q in T R, if there exists a region word
ξ such that ftr(γr, ξ) ̸= ftr(q, ξ) or gtr(γr, ξ) ̸= gtr(q, ξ), it means that γr and q can be distinguished by
ξ. In this case, the learner uses ξ to split q as follows:

1. Record the parent of q as d0, introduce a new internal node containing ξ instead of q as the child of
d0, modify the edge (d0, q) to (d0, ξ), and let fE

tr((d0, ξ)) = fE
tr((d0, q)) and gEtr((d0, ξ)) = gEtr((d0, q)).

2. Construct a new leaf node γr and let q and γr be two children of ξ. Then add an edge (ξ, γr) in E,
compute ftr(γr, ξ) and gtr(γr, ξ) to label the edge by fE

tr((ξ, γr)) and gEtr((ξ, γr)). Similarly, add an
edge (ξ, q) in E and calculate ftr(q, ξ) and gtr(q, ξ) to label the edge with fE

tr((ξ, q)) and gEtr((ξ, q)).
3. For each leaf node jump (u,σr, q) in TQ pointing to q, change it to (u,σr, sift(u · σr)).
Note that since sift(u·σr) has already been computed during constructing the leaf node jump (u,σr, q),

here sift(u ·σr) can skip the re-computation w.r.t the existed internal nodes in the second step of the sift
operation and compute ftr(u · σr, ξ) and gtr(u · σr, ξ) according to the new internal node ξ directly.

Page 7 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 8

Algorithm 1: Learning DTA via timed classification tree
input : timed classification tree T R = (Σ, V,Q,E, fE

tr, g
E
tr, TQ);

the number of clocks |C|.
output: a DTA H recognizing the target language L.
T R ← initialize(); // initialization
M← build_DFA(T R); // transforming T R to a DFA M
H ← build_hypothesis(M); // constructing a hypothesis H from M [33]
equivalent, ωr ← equivalence_query(H);
while equivalent = ⊥ do
T R ← process_counterexample(ωr) ;
M← build_DFA(T R);
H ← build_hypothesis(M);
equivalent, ωr ← equivalence_query(H);

return H;

The split operation adds a new internal node ξ to distinguish two leaf nodes. With respect to ξ, we
make membership queries only for each leaf node u pointing to q in the third step, instead of all leaf
nodes. This is analogous to adding a new suffix to the set E of an observation table, while membership
queries should be performed for every prefix in the table.
DFA construction. Given T R = (Σ, V,Q,E, fE

tr , g
E
tr, TQ), we can construct a deterministic finite state

automaton (DFA) M = (LM , l0M , FM , ΣM ,∆M) where
• the finite abstract alphabet ΣM = {σr | (q,σr, q

′) ∈ TQ};
• the finite set of locations LM = {lq | q ∈ Q};
• the initial location l0M = lϵ for ϵ ∈ Q;
• the finite set of accepting locations FM = {lq | MQA(q) = +, q ∈ Q};
• the finite set of transitions ∆M = {(lq,σr, lq′) | (q,σr, q

′) ∈ TQ}.
According to Theorem 2 and the method for constructing M from T R, for each l ∈ LM , σ ∈ Σ in M,

if there are two transitions (l, (σ,v,b), l′) and (l, (σ,v′,b′)), l′′) such that JvK = Jv′K, l′ = l′′, and b = b′.

4 Learning DTA via timed classification tree

Based on timed classification tree, we design a novel learning algorithm, as shown in Algorithm 1. First,
the learner initializes the classification tree T R = (Σ, V,Q,E, fE

tr , g
E
tr, TQ), where V = {ϵ}. Performing

the operation sift(ϵ), a leaf node ϵ is added to Q. Next, for each σ ∈ Σ, the learner constructs a leaf node
jump from the leaf node ϵ by performing (σ, 0|C|) and then adds this jump to TQ. An abstract DFA M is
constructed based on T R. Based on the partition function proposed in [33], M can be transformed into
a CTA H as a hypothesis. An equivalence query is issued to determine whether L(A) = L(H). If the
answer is ‘no’, a reset-timed word ωr is returned as a counterexample. Subsequently, the counterexample
analysis and processing are performed to modify T R according to ωr. The whole procedure repeats
until the teacher gives a positive answer to an equivalence query. Before proving the termination and
correctness of Algorithm 1, we present the counterexample analysis and processing in details.

4.1 Counterexample analysis and processing

Given a counterexample ωr, we transform it into the corresponding reset-clocked word ctx = Γ(ωr). Let
ctx[: i] and ctx[i :] be the prefix before and the suffix after the i-th position (including the i-th position) of
ctx, respectively. Let ctx[i] be the reset-clocked action at the i-th position of ctx. To identify an erroneous
position EI in ctx, the learner sequentially examines each position i of ctx from the front to the end,
through the prefix analysis and the suffix analysis in turn. Upon identifying an EI, the learner modifies
T R based on the conflict between H and A induced by EI.
Prefix analysis. Given a position i, the learner finds the corresponding reset-clocked word γr of the
clocked word vw(ctx[: i]) according to H. If γr ̸= ctx[: i], it means that vw(ctx[: i]) corresponds to
different reset-clocked words in H and A, respectively. Therefore, i is an erroneous position, e.g., EI = i.
Counterexample processing I. If EI is found during the prefix analysis, ctx is processed as follows.
Let lu be the location reached by executing ctx[: EI − 1] in the hypothesis H and u be the corre-
sponding leaf node in T R. Then construct a region action Jvw(ctx[EI])K and find a valid successor
er ∈ vsA(u, Jvw(ctx[EI])K). If there is such er, then er is a reset-clocked action and let σr = er. Oth-
erwise, construct a reset-clocked action σr = (vw(ctx[EI]), {⊤}|C|). After that, add a new leaf node
jump (u,σr, sift(u · σr)) to TQ. If sift(u · σr) returns a new leaf node, the leaf node jump construction
is conducted. For each σ ∈ Σ, a jump from the new leaf node by performing (σ, 0|C|) is added to TQ.

Page 8 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 9

ϵ

ϵ

{−}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)

T R1

l0start

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

M1

l0start

b, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

H1

ωr=(a,1.1,{⊥,⊤}),+−−−−−−−−−−−−−−−→
ctx=(a,{1.1,1.1},{⊥,⊤})

ϵ

ϵ (a, {1.05, 1.05},
{⊥,⊤})

{−} {+}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), ϵ)

T R2

l0start l1

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(b, {0, 0}, {⊤,⊤})

(a, {1.05, 1.05}, {⊥,⊤})

M2

l0start l1
b, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}

a, c1 > 1 ∧ c2 ⩽ 1,
{c1, c2}

a, c1 ⩽ 1 ∧ c2 ⩾ 0, {c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

b, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

a, c1 > 1 ∧ c2 > 1, {c2}

H2

Figure 3 An example for the prefix analysis and the counterexample processing I.

Example 2. Figure 3 gives an example for the prefix analysis and the counterexample processing
I. Suppose the DTA A in Figure 1 is the target DTA. In Figure 3, the classification tree T R1 is
obtained by initialization, and M1 and H1 are the DFA and hypothesis corresponding to T R1, re-
spectively. By initiating an equivalence query on H1, a counterexample ωr = (a, 1.1, {⊥,⊤}) is re-
turned. We have ctx = Γ(ωr) = (a, {1.1, 1.1}, {⊥,⊤}). To analyse the first position in ctx, vw(ctx[:
1]) = (a, {1.1, 1.1}), the learner finds the corresponding reset-clocked word γr = (a, {1.1, 1.1}, {⊤,⊤})
of vw(ctx[: 1]) in H1, which is not equal to ctx[: 1]. Hence, let EI = 1. To process ctx, since
ctx[: EI − 1] = ϵ, l0 is found and the leaf node ϵ in T R1 corresponds to l0. After that, the learner
finds er = (a, {1.05, 1.05}, {⊥,⊤}) ∈ vsA(ϵ, J(a, {1.1, 1.1})K) and thus lets σr = er. After that, a new
leaf node jump (ϵ, (a, {1.05, 1.05}, {⊥,⊤}), sift((a, {1.05, 1.05}, {⊥,⊤}))) is added in TQ. In this process,
a new leaf node (a, {1.05, 1.05}, {⊥,⊤}) is created through the operation sift((a, {1.05, 1.05}, {⊥,⊤})).
Hence, two leaf node jumps from (a, {1.05, 1.05}, {⊥,⊤}) by performing (a, {0, 0}, {⊤,⊤}) and (b, {0, 0},
{⊤,⊤}) are added to TQ, respectively.

Suffix analysis. If i is not an erroneous position in the prefix analysis, a suffix analysis staring from
i is conducted as follows. Let lq denote the location reached by executing ctx[: i] in the hypothesis H
and q be the leaf node corresponding to lq. Next, the learner converts ctx[i + 1 :] to a region word
Jvw(ctx[i+ 1 :])K. After that, the learner computes ftr(q, Jvw(ctx[i+ 1 :])K) and gtr(q, Jvw(ctx[i+ 1 :])K).
If ftr(q, Jvw(ctx[i+ 1 :])K) ̸= MQA(ctx) or gtr(q, Jvw(ctx[i+ 1 :])K) ̸= resets(ctx[: i+ 1]), then let EI = i.
Counterexample processing II. If EI is found during the suffix analysis, the learner processes ctx as
follows. Let lu be the location reached by executing ctx[: EI−1] in the hypothesis, and u denotes the leaf
node corresponding to lu. Convert ctx[EI] to a region word Jvw(ctx[EI])K and then find a valid successor
er ∈ vsA(u, Jvw(ctx[EI])K). If there exists such er, let σr = er. Otherwise, construct a reset-clocked
action σr = (vw(ctx[EI]), {⊤}|C|). Then perform a sift operation to obtain a leaf node u′ = sift(u · σr).

• If u′ = q, it means that u·σr is sifted to q. Since the (EI−1)-th position is not an erroneous position,
we have MQA(ctx) = ftr(u, Jvw(ctx[EI :])K) = ftr(u ·σr, Jvw(ctx[EI+1 :])K) and resets(ctx[EI :]) =
gtr(u, Jvw(ctx[EI :])K). It follows that resets(ctx[EI+1 :]) = gtr(u·σr, Jvw(ctx[EI+1 :])K). In addi-
tion, the suffix analysis shows that ftr(q, Jvw(ctx[EI+1 :])K) ̸= MQA(ctx) = ftr(u·σr, Jvw(ctx[EI+
1 :])K) or gtr(q, Jvw(ctx[EI+1 :])K) ̸= resets(ctx[: EI+1]) = gtr(u ·σr, Jvw(ctx[EI+1 :])K). There-
fore, Jvw(ctx[EI + 1 :])K can be used to distinguish u · σr and q. The learner performs the split
operation to split q into u · σr and q, adds an internal node Jvw(ctx[EI + 1 :])K as the parent of
u · σr and q and re-assigns the target leaf node of the leaf node jump that originally pointed to q.

• If u′ ̸= q, it means that in the hypothesis H, the transition from the location lu by executing σr

arrives at the incorrect location lq. This is because that there is an error clock constraint on this
transition. In this case, a leaf node jump (u,σr, u

′) is added to the set of leaf nodes relationship
TQ. The clock valuation in σr can be used to further refine the clock constraint.

Example 3. Figure 4 gives an example for the suffix analysis and the counterexample processing II.
Suppose DTA A in Figure 1 is the target DTA. In Figure 4, T R1 is a classification tree generated in the
learning process, and M1 and H1 are the corresponding DFA and hypothesis, respectively. An equivalence
query for H1 yields a counterexample ωr = (a, 0, {⊤,⊤})(a, 2, {⊤,⊤}). Then the learner gets the corre-
sponding reset-clocked word ctx = (a, {0, 0}, {⊤,⊤})(a, {2, 2}, {⊤,⊤}). Given a position i = 1, according
to the suffix analysis, the location reached by executing (a, {0, 0}, {⊤,⊤}) on H1 is l0 and the leaf node

Page 9 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 10

ϵ

ϵ (a, {1.05, 1.05},
{⊥,⊤})

{−} {+}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), ϵ)

T R1

l0start l1

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤}

(b, {0, 0}, {⊤,⊤})

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})(b, {2.05, 1}, {⊤,⊤})

M1

l0start l1
b, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}

a, c1 > 1 ∧ c2 ⩽ 1,
{c1, c2}

a, c1 ⩽ 1 ∧ c2 ⩾ 0,
{c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

b, 0 ⩽ c1 ⩽ 1 ∧ c2 ⩾ 0, {c1, c2}

a, c1 > 1 ∧ c2 > 1, {c2}

b, 1 < c1 ⩽ 2 ∧ c2 ⩾ 0,
{c2}

b, c1 > 2 ∧ c2 ⩾ 1,
{c1, c2}

b, c1 > 2 ∧ c2 < 1,
{c2}

H1

ωr=(a,0,{⊤,⊤})(a,2,{⊤,⊤}),−−−−−−−−−−−−−−−−−−−−−−−−→
ctx=(a,{0,0},{⊤,⊤})(a,{2,2},{⊤,⊤})

ϵ

(a, c1 = 2∧
c2 = 2)

(a, {1.05, 1.05},
{⊥,⊤})

ϵ (a, {0, 0},
{⊤,⊤})

{−} {+}

{{+}, {⊥,⊤}} {{−}, {⊤,⊤}}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

T R2

l0start l1

l2

(b, {0, 0}, {⊤
,⊤})

(a, {0, 0}, {⊤
,⊤})

(a
, {
0,
0}
, {
⊤
,⊤

})
(b
, {
0,
0}
, {
⊤,

⊤}
)

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})

(b
, {
2.
05
, 1
},
{⊤

,⊤
})

(a, {0, 0}, {⊤,⊤})
(b, {0, 0}, {⊤,⊤})

M2

l0start l1

l2

b, c
1 ⩾

0 ∧
c
2 ⩾

0,

{c
1 , c

2 }

a, c
1
>
1 ∧

c
2 ⩽

1,

{c
1 , c

2 }

a, c
1 ⩽

1 ∧
c
2 ⩾

0,

{c
1 , c

2 } a,
c 1
⩾
0
∧
c 2
⩾
0,

{c
1
, c
2
}

b,
0
⩽
c 1
⩽
1
∧
c 2
⩾
0,

{c
1
, c
2
}

a, c1 > 1 ∧ c2 > 1, {c2}

b, 1 < c1 ⩽ 2 ∧ c2 ⩾ 0,
{c2}

b,
c 1
>
2
∧
c 2
⩾
1,

{c
1
, c
2
}

b, c1 > 2 ∧ c2 < 1,
{c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

b, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

H2

Figure 4 An example for the suffix analysis and the counterexample processing II.

corresponding to l0 is ϵ. Since there is a valid successor er = (a, {2, 2}, {⊥,⊤}) ∈ vsA(ϵ, J(a, {2, 2})K) and
MQA(ϵ·(a, {2, 2}, {⊥,⊤})) = +, the learner gets gtr(ϵ, J(a, {2, 2})K) = {⊥,⊤} and ftr(ϵ, J(a, {2, 2})K) = +.
Since ftr(ϵ, J(a, {2, 2})K) ̸= MQA(ctx) and gtr(ϵ, J(a, {2, 2})K) ̸= resets((a, {2, 2}, {⊤,⊤})), we have EI =
i = 1. Then the learner finds that the location reached by executing ctx[EI−1] in H1 is l0 and the leaf node
corresponding to l0 is ϵ. Accordingly, the learner finds er = ((a, {0, 0}, {⊤,⊤})) ∈ vsA(ϵ, J(a, {0, 0})K)
and then sets σr = er. Since sift(ϵ · (a, {0, 0}, {⊤,⊤})) = ϵ, the learner splits the leaf node ϵ into the leaf
nodes (a, {0, 0}, {⊤,⊤}) and ϵ, adds an internal node J(a, {2, 2})K as the parent of (a, {0, 0}, {⊤,⊤}) and
ϵ, and then re-assigns the target leaf node of the leaf node jump that originally pointed to ϵ. Since a new
leaf node (a, {0, 0}, {⊤,⊤}) is generated in the above process, the learner adds two leaf node jumps from
this new leaf node. In this way, the learner obtains a classification tree T R2.

4.2 Termination, correctness, and complexity

Suppose that L is a target timed language accepted by a DTA A = (Σ, L, l0, F, C,∆), let n = |L| be
the number of locations of A, m = |Σ| be the size of the alphabet, h be the maximum length of all
counterexamples obtained by the learner, κ be a function mapping each clock c ∈ C to the largest integer
appearing in the constraints over c, Λ = |C|! ·2|C| ·

∏
c∈C(2κ(c)+2) be the bound of the number of regions.

Theorem 3 (Termination and correctness). Algorithm 1 can terminate and return a CTA H which
recognizes the target timed language L.
Proof. First, the correctness of the algorithm is guaranteed by the equivalence query. Now we prove
termination. According to Theorem 1, we know that different reset-clocked words in different leaf nodes
reach different symbolic states of A. Hence, the number of leaf nodes in T R is bounded by the number
of symbolic states of A, which is n · Λ. Since the locations in the hypothesis are mapped from the leaf
nodes in the tree, the number of locations in the hypothesis is bounded by n · Λ.

Now let us compute the number of transitions. Consider two leaf node jumps (q,σr, sift(q · σr)) and
(q,σ′r, sift(q · σ′r)) from a leaf node q. According to Theorem 2, if Jvw(σr)K = Jvw(σ′r)K, resets(σr) =
resets(σ′r) and these two jumps reach the same target leaf node. So, according to the method for
constructing a DFA M from the tree, for each l ∈ LM and σ ∈ Σ in DFA M, if there are two transitions
(l, (σ,v,b), l′) and (l, (σ,v′,b′)), l′′) such that JvK = Jv′K, we have l′ = l′′ and b = b′. Hence, according
to the method for converting M to H, we known that the number of transitions from a location by
performing an action in H is bounded by Λ. Since the number of locations in H and the number of
actions in H are finite, the total number of transitions in H is finite. Since each iteration of the algorithm
either adds at least one leaf node to T R or refines at least one of the partitions along with transitions of
H, or both, the algorithm is guaranteed to terminate. □

Theorem 4 (Complexity). The number of equivalence queries is bounded by mnΛ2, the number of
membership queries is bounded by mnΛ2(h+ nΛ +mnΛ2) and the number of reset information queries
is bounded by hmnΛ2(h+ nΛ +mnΛ2) +mnΛ.
Proof. According to the proof of Theorem 3, the number of transitions in H is bounded by mnΛ2. Since
every counterexample adds at least one fresh transition to H if considering each final timing constraint

Page 10 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 11

of the partition corresponds to a transition (when a location is added to H, at least m transitions are
added to H), the number of both counterexamples and equivalence queries are bounded by mnΛ2.

For each counterexample ωr, the learner converts ωr to the corresponding reset-clocked word ctx =
Γ(ωr) and performs prefix analysis and suffix analysis for ctx. Let h denote the maximum length of all
counterexamples. To find the erroneous position in ctx, the leaner needs to perform at most h prefix
analyses and h suffix analyses. In a prefix analysis, the learner does not need to issue a membership
query. In a suffix analysis, a membership query needs to be initiated. Hence, the number of membership
queries generated to analyse ctx is at most h. After obtaining the erroneous position, to process ctx,
the sift operation needs to be done. According to the proof of Theorem 3, there exists at most n · Λ
leaf nodes in the classification tree. Hence, there are at most n · Λ internal nodes in the classification
tree. Therefore, to perform a sift operation, at most n · Λ membership queries need to be issued. If the
erroneous position of ctx is found during a prefix analysis, one sift operation is first required to process
ctx. In this process, if a new leaf node is generated, m sift operations are needed to construct leaf node
jumps from the generated leaf node. Consider the case where the erroneous position of ctx is found during
a suffix analysis. In this case, to process ctx, a sift operation is first required and nΛ membership queries
need to be issued. Next, in the worst case, the learner needs to split a leaf node. If so, learner needs
to reassign the target nodes in at most mnΛ2 leaf node jumps and this process requires at most mnΛ2

membership queries. Therefore, to analyse and process a counterexample, h + nΛ +mnΛ2 membership
queries are needed. Hence, the total number of membership queries is bounded by mnΛ2(h+nΛ+mnΛ2).

According to [33], for a reset-clocked word γr and a region word ξ, to find er ∈ vsA(γr, ξ), at most |ξ|
reset information queries are needed. Hence, in each membership query, the number of reset information
queries depends on the length of the region word stored in the internal node. Since internal nodes are
always generated when processing a counterexample and are constructed from a part of the counterex-
ample, the maximum length of the region word in an internal node is h. Therefore, the number of reset
information queries for membership queries is bounded by hmnΛ2(h+nΛ+mnΛ2). Moreover, when a new
leaf node γr is generated, to construct leaf node jumps from γr, m reset information queries are needed.
Hence, the total number of reset information queries is bounded by hmnΛ2(h+ nΛ+mnΛ2) +mnΛ. □

The bound for the equivalence queries of our algorithm is identical to that of the algorithm proposed
in [33]. The number of membership queries and reset information queries required by in [33] are bounded
by nΛ · (nΛ + hmnΛ2 + mnΛ + (nΛ)2) and by n2Λ2 · (nΛ + hmnΛ2 + mnΛ + (nΛ)2) + mnΛ, respec-
tively. Considering such loose upper bounds, both our method and the learning algorithm in [33] exhibit
exponential complexity. However, based on the tree operations and counterexample processing outlined
in the paper, our method effectively reduces numerous unnecessary membership queries and also reduces
equivalence queries during the learning process, a phenomenon also substantiated by our experiments.

Below we analyze how the depth of the timed classification tree impacts learning efficiency. Suppose
we know that the depth of the final tree corresponding to the correct hypothesis is D. We first consider
the effect of D on the sift operation. During one sift operation, let the root node be the current node
x. Next, the learner needs to issue a membership query to find a child y of x and sets y to be x. In the
worst case, this process is repeated until x is a leaf node. Hence, the number of required membership
queries in one sift operation is bounded by D. Then, consider the processes of counterexample analysis
and processing. As mentioned above, for a counterexample ωr, to find the erroneous position in the
corresponding reset-clocked word ctx, the number of membership queries generated to analyse ctx is at
most h, not D. Consider the more complex case where the erroneous position of ctx is found during a
suffix analysis. To process ctx, a sift operation is first required and the number of required membership
queries is bounded by D. Next, in the worst case, the learner splits a leaf node. In this case, learner
needs to reassign the target nodes in at most mnΛ2 leaf node jumps. The process of reassigning target
nodes requires at most mnΛ2 membership queries. There is at most mnΛ2 counterexamples. Hence, the
number of membership queries required for the above process is bounded by mnΛ2(h+D+mnΛ2). Note
that during the whole learning process, when a sift operation or a split operation occurs, a new leaf node
may be generated. Since the number of new leaf nodes is bounded by nΛ and each new node needs m
sift operations to construct leaf node jumps, the number of required membership queries in this process
is bounded by nΛ ·mD, which is not enough to influence the complexity.

5 Illustrative case
In this section, we use the DTA A in Figure 1 as a target automaton and show the learning process
for it by using our algorithm. In the DTA A, the initial location is l0, the accepting location is l1 and

Page 11 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 12

ϵ

ϵ

{−}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)

T R1

ωr1=(a,1.1,{⊥,⊤}),+−−−−−−−−−−−−−−−−→
ctx1=(a,{1.1,1.1},{⊥,⊤})

ϵ

ϵ (a, {1.05, 1.05},
{⊥,⊤})

{−} {+}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), ϵ)

T R2

ωr2=(a,1.1,{⊥,⊤})(b,0,{⊥,⊤}),+−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ctx2=(a,{1.1,1.1},{⊥,⊤})(b,{1.1,0},{⊥,⊤})

ϵ

ϵ (a, {1.05, 1.05},
{⊥,⊤})

{−} {+}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

T R3

ωr3=(a,1.1,{⊥,⊤})(b,1,{⊤,⊤}),−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ctx3=(a,{1.1,1.1},{⊥,⊤})(b,{2.1,1},{⊤,⊤})

ϵ

ϵ (a, {1.05, 1.05},
{⊥,⊤})

{−} {+}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (b, {0, 0}, {⊤,⊤}), ϵ)
(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), ϵ)
((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))
((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), ϵ)

T R4

ωr4=(a,0,{⊤,⊤})(a,2,{⊤,⊤}),−−−−−−−−−−−−−−−−−−−−−−−−−→
ctx4=(a,{0,0},{⊤,⊤})(a,{2,2},{⊤,⊤})

ϵ

(a, c1 = 2∧
c2 = 2)

(a, {1.05, 1.05},
{⊥,⊤})

ϵ (a, {0, 0},
{⊤,⊤})

{−} {+}

{{+}, {⊥,⊤}} {{−}, {⊤,⊤}}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

T R5

ωr5=(a,1.1,{⊥,⊤})(a,1.45,{⊤,⊤})(a,2,{⊥,⊤}),+−−−→
ctx5=(a,{1.1,1.1},{⊥,⊤})(a,{2.55,1.45},{⊤,⊤})(a,{2,2},{⊥,⊤})

ϵ

(a, c1 = 2∧
c2 = 2)

(a, {1.05, 1.05},
{⊥,⊤})

ϵ (a, {0, 0},
{⊤,⊤})

{−} {+}

{{+}, {⊥,⊤}} {{−}, {⊤,⊤}}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (a, {2.1, 1.05}, {⊤,⊤}), ϵ)

T R6

ωr6=(a,1.1,{⊥,⊤})(a,1.9,{⊤,⊤})(a,1.1,{⊤,⊤}),−−→
ctx6=(a,{1.1,1.1},{⊥,⊤})(a,{3,1.9},{⊤,⊤})(a,{1.1,1.1},{⊤,⊤})

ϵ

(a, c1 = 2∧
c2 = 2)

(a, {1.05, 1.05},
{⊥,⊤})

ϵ (a, {0, 0},
{⊤,⊤})

{−} {+}

{{+}, {⊥,⊤}} {{−}, {⊤,⊤}}

The set of leaf node jumps TQ:

(ϵ, (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

(ϵ, (a, {1.05, 1.05}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {1.05, 0}, {⊥,⊤}), (a, {1.05, 1.05}, {⊥,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (b, {2.05, 1}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {0, 0}, {⊤,⊤}), (b, {0, 0}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

((a, {1.05, 1.05}, {⊥,⊤}), (a, {2.1, 1.05}, {⊤,⊤}), ϵ)

((a, {1.05, 1.05}, {⊥,⊤}), (a, {3, 1.95}, {⊤,⊤}), (a, {0, 0}, {⊤,⊤}))

T R7

Figure 5 Iterations of the timed classification tree during the learning process of DTA A in Figure 1.

Page 12 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 13

l0start

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

M1

l0start

b, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

H1

l0start l1

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(b, {0, 0}, {⊤,⊤})

(a, {1.05, 1.05}, {⊥,⊤})

M2

l0start l1
b, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}

a, c1 > 1 ∧ c2 ⩽ 1,
{c1, c2}

a, c1 ⩽ 1 ∧ c2 ⩾ 0, {c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

b, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

a, c1 > 1 ∧ c2 > 1, {c2}

H2

l0start l1

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(b, {0, 0}, {⊤,⊤})

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})

M3

l0start l1
b, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}

a, c1 > 1 ∧ c2 ⩽ 1,
{c1, c2}

a, c1 ⩽ 1 ∧ c2 ⩾ 0, {c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

b, 0 ⩽ c1 ⩽ 1 ∧ c2 ⩾ 0, {c1, c2}

a, c1 > 1 ∧ c2 > 1, {c2}

b, c1 > 1 ∧ c2 ⩾ 0, {c2}

H3

l0start l1

(b, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(a, {0, 0}, {⊤,⊤})

(b, {0, 0}, {⊤,⊤})

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})(b, {2.05, 1}, {⊤,⊤})

M4

l0start l1
b, c1 ⩾ 0 ∧ c2 ⩾ 0,

{c1, c2}

a, c1 > 1 ∧ c2 ⩽ 1,
{c1, c2}

a, c1 ⩽ 1 ∧ c2 ⩾ 0,
{c1, c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0, {c1, c2}

b, 0 ⩽ c1 ⩽ 1 ∧ c2 ⩾ 0, {c1, c2}

a, c1 > 1 ∧ c2 > 1, {c2}

b, 1 < c1 ⩽ 2 ∧ c2 ⩾ 0,
{c2}

b, c1 > 2 ∧ c2 ⩾ 1,
{c1, c2}

b, c1 > 2 ∧ c2 < 1,
{c2}

H4

l0start l1

l2

(b, {0, 0}, {⊤
,⊤})

(a, {0, 0}, {⊤
,⊤})

(a
, {
0,
0}
, {
⊤
,⊤

})
(b
, {
0,
0}
, {
⊤,

⊤}
)

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})

(b
, {
2.
05
, 1
},
{⊤

,⊤
})

(a, {0, 0}, {⊤,⊤})
(b, {0, 0}, {⊤,⊤})

M5

l0start l1

l2

b, c
1 ⩾

0 ∧
c
2 ⩾

0,

{c
1 , c

2 }

a, c
1
>
1 ∧

c
2 ⩽

1,

{c
1 , c

2 }

a, c
1 ⩽

1 ∧
c
2 ⩾

0,

{c
1 , c

2 } a,
c 1
⩾
0
∧
c 2
⩾
0,

{c
1
, c
2
}

b,
0
⩽
c 1
⩽
1
∧
c 2
⩾
0,

{c
1
, c
2
}

a, c1 > 1 ∧ c2 > 1, {c2}

b, 1 < c1 ⩽ 2 ∧ c2 ⩾ 0,
{c2}

b,
c 1
>
2
∧
c 2
⩾
1,

{c
1
, c
2
}

b, c1 > 2 ∧ c2 < 1,
{c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

b, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

H5

l0start l1

l2

(b, {0, 0}, {⊤
,⊤})

(a, {0, 0}, {⊤
,⊤})

(a
, {
0,
0}
, {
⊤
,⊤

})
(b
, {
0,
0}
, {
⊤,

⊤}
)

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})

(b
, {
2.
05
, 1
},
{⊤

,⊤
})

(a, {0, 0}, {⊤,⊤})
(b, {0, 0}, {⊤,⊤})

(a, {2.1, 1.05}, {⊤,⊤})

M6

l0start l1

l2

b, c
1 ⩾

0 ∧
c
2 ⩾

0,

{c
1 , c

2 }

a, c
1
>
1 ∧

c
2 ⩽

1,

{c
1 , c

2 }

a, c
1 ⩽

1 ∧
c
2 ⩾

0,

{c
1 , c

2 } a,
c 1
⩽
2
∧
c 2
>
1,

{c
1
, c
2
}

b,
0
⩽
c 1
⩽
1
∧
c 2
⩾
0,

{c
1
, c
2
}

a, c1 > 1 ∧ c2 > 1, {c2}

b, 1 < c1 ⩽ 2 ∧ c2 ⩾ 0,
{c2}

b,
c 1
>
2
∧
c 2
⩾
1,

{c
1
, c
2
}

b, c1 > 2 ∧ c2 < 1,
{c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

b, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

a, c1 > 2 ∧ c2 > 1, {c1, c2}

a,
c 1
⩾
0
∧
c 2
⩽
1,

{c
1
, c
2
}

H6

l0start l1

l2

(b, {0, 0}, {⊤
,⊤})

(a, {0, 0}, {⊤
,⊤}) (a

, {
0,
0}
, {
⊤,

⊤}
)

(b
, {
0,
0}
, {
⊤,

⊤}
)

(a, {1.05, 1.05}, {⊥,⊤})

(b, {1.05, 0}, {⊥,⊤})

(b
, {
2.
05
, 1
},
{⊤

,⊤
})

(a, {0, 0}, {⊤,⊤})
(b, {0, 0}, {⊤,⊤})

(a, {2.1, 1.05}, {⊤,⊤})

(a
, {
3,
1.
95
},
{⊤

,⊤
})

M7

l0start l1

l2

b, c
1 ⩾

0 ∧
c
2 ⩾

0,

{c
1 , c

2 }

a, c
1
>
1 ∧

c
2 ⩽

1,

{c
1 , c

2 }

a, c
1 ⩽

1 ∧
c
2 ⩾

0,

{c
1 , c

2 }

a,
c 1
⩽
2
∧
c 2
⩾
0,

{c
1
, c
2
}

b,
c 1
⩽
1
∧
c 2
⩾
0,
{c
1
, c
2
}

a, c1 > 1 ∧ c2 > 1, {c2}

b, 1 < c1 ⩽ 2 ∧ c2 ⩾ 0,
{c2}

b,
c 1
>
2
∧
c 2
⩾
1,
{c

1
, c
2
}

b, c1 > 2 ∧ c2 < 1,
{c2}

a, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

b, c1 ⩾ 0 ∧ c2 ⩾ 0,
{c1, c2}

a, 2 < c1 < 3 ∧ c2 > 1, {c1, c2}

a,
c 1
>
2
∧
c 2
⩽
1,
{c

1
, c
2
}

a,
c 1

⩾
3
∧
c 2

>
1,

{c
1
, c

2
}

H7

Figure 6 Iterations of intermediate DFA M and hypothesis H during the learning process of DTA A in Figure 1.

the alphabet Σ = {a, b}. Figure 5 shows the changes in the classification tree T R during the learning
process, and Figure 6 shows the changes in the intermediate DFA M and hypothesis H.

First, the learner obtains T R1 by the initialization operation. Then according to T R1, the learner
builds M1 and H1 and then issues an equivalence query to get ctx1 = (a, {1.1, 1.1}, {⊥,⊤}). After prefix
analyzing and processing ctx1 through the operations in Example 2, T R2 is obtained. According to T R2,
the learner builds M2 and H2. Similarly, the learner gets ctx2 and ctx3 by the equivalence queries and
constructs T R3 and T R4, respectively. According to T R4, the learner builds M4 and H4 and then issues
an equivalence query to acquire ctx4 = (a, {0, 0}, {⊤,⊤}) (a, {2, 2}, {⊤,⊤}). After suffix analyzing and
processing ctx4 through the operations in Example 3, T R5 is obtained and M5 and H5 are constructed.

After an equivalence query, a new counterexample ctx5 = (a, {1.1, 1.1}, {⊥,⊤})(a, {2.55, 1.45}, {⊤,⊤})
(a, {2, 2}, {⊥,⊤}) is obtained. According to the suffix analysis for ctx5 , the learner finds EI = 2. The com-
putation details are as follows. The location reached by executing (a, {1.1, 1.1}, {⊥,⊤})(a, {2.55, 1.45}, {⊤,
⊤}) in H5 is l2 and it corresponds to the leaf node (a, {0, 0}, {⊤,⊤}). However, ftr((a, {0, 0}, {⊤,⊤}), J(a,
{2, 2})K) ̸= MQA(ctx5) and gtr((a, {0, 0}, {⊤,⊤}), J(a, {2, 2})K) ̸= resets((a, {2, 2}, {⊥,⊤})). Hence,
EI = 2. To process ctx5 , the learner finds that the location reached by executing ctx5[EI − 1] in
H5 is l1 and the leaf node corresponding to l1 is (a, {1.05, 1.05}, {⊥,⊤}). Then the learner finds a
valid successor er = ((a, {2.1, 1.05}, {⊤,⊤})) ∈ vsA((a, {1.05, 1.05}, {⊥,⊤}), J(a, {2, 55, 1.45})K). Since
sift((a, {1.05, 1.05}, {⊥,⊤})((a, {2.1, 1.05}, {⊤,⊤}))) = ϵ ̸= (a, {0, 0}, {⊤,⊤}), a new leaf node jump
((a, {1.05, 1.05}, {⊥,⊤}), (a, {2.1, 1.05}, {⊤,⊤}), ϵ) is added to TQ. Similarly, whenever the learner gets
a counterexample through the equivalence query, the counterexample needs to be analyzed and processed
to get a new classification tree. According to the new tree, a new DFA and a new hypothesis need to
be constructed to issue an equivalence query again. The learning algorithm terminates until the teacher
gives a positive answer to the equivalence query.

6 Experiments
We implemented the a prototype named DTAL-Tree in JAVA for our learning algorithm. We compared it
with an active learning algorithm DTAL-Table proposed in [33] for learning DTAs from a powerful teacher,
an active learning algorithm DOTAL proposed in [28] for learning deterministic one-clock timed automata
(DOTAs) from a powerful teacher, a passive learning algorithm GenProg based on genetic programming

Page 13 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 14

Table 1 Experimental results on learning DTAs. Each row represents one DTA group where |L| is the number of locations, |Σ|
is the alphabet size, and κ(C) is the maximum constant in the clock constraints.

|L| |Σ| κ(C) |C| Algorithm #Membership #M_opt #M_ctx #Equivalence #Reset n Time(s) #Learnt

6 1 8 2
DTAL-Tree 45.5 16.3 22.3 6.4 62.0 5.4 0.7 10/10

DTAL-Table 52.4 24.3 26.1 8.9 49.0 5.5 1.0 10/10

8 1 8 2
DTAL-Tree 81.2 32.0 40.2 9.2 138.1 8.3 1.3 10/10

DTAL-Table 130.9 53.6 75.3 15.5 134.1 7.4 2.9 10/10

8 2 8 2
DTAL-Tree 109.0 50.0 48.7 11.4 180.1 7.8 2.1 10/10

DTAL-Table 195.2 85.9 106.3 17.3 242.2 7.1 7.2 10/10

8 2 16 2
DTAL-Tree 130.9 52.5 60.2 14.4 218.1 9.8 2.9 10/10

DTAL-Table 180.3 79.6 97.7 19.3 180.3 7.3 4.9 10/10

8 3 8 2
DTAL-Tree 241.2 111.7 93.2 24.1 366.2 11.1 3.9 10/10

DTAL-Table 379.3 171.0 204.3 30.0 495.2 8.4 18.8 10/10

10 2 8 2
DTAL-Tree 174.0 71.8 81.6 15.1 455.1 10.7 4.9 10/10

DTAL-Table 430.7 160.8 266.9 24.7 558.2 9.4 38.5 10/10

10 2 16 2
DTAL-Tree 181.0 67.4 95.4 19.8 408.6 10.8 6.5 10/10

DTAL-Table 312.8 106.7 203.1 29.8 347.7 8.4 73.2 9/10

10 3 8 2
DTAL-Tree 256.2 115.7 113.9 27.7 414.2 13.6 5.9 10/10

DTAL-Table 407.1 173.0 230.1 36.3 392.4 9.6 42.7 10/10

12 2 8 2
DTAL-Tree 276.9 104.5 148.5 25.2 720.1 14.1 7.5 10/10

DTAL-Table 418.7 136.7 279.0 30.7 542.0 10.7 36.0 9/10

14 2 8 2
DTAL-Tree 225.7 108.5 100.8 22.4 519.0 13.4 9.3 10/10

DTAL-Table 450.2 173.8 273.4 28.5 509.1 10.8 122.2 10/10

Table 2 Experimental results on learning DTAs.

|L| |Σ| κ(C) |C| Algorithm #Membership #M_opt #M_ctx #Equivalence #Reset n Time(s) #Learnt

6 1 8 3
DTAL-Tree 45.7 18.1 19.5 6.2 62.9 6.6 10.5 10/10

DTAL-Table 35.0 24.0 9.0 7 27 5 1.8 1/10

6 2 8 3 DTAL-Tree 76.8 36.1 31.1 9.0 98.3 8.9 4.8 7/10

6 1 16 3 DTAL-Tree 58.3 24.5 26.8 7.9 69.8 8.8 6.2 8/10

8 1 8 3 DTAL-Tree 90.0 31.0 48.4 13.0 128.3 9.7 33.1 10/10

Table 3 Experimental results on learning practical models in [31,32]. TO represents a timeout (300 seconds).

|L| |Σ| κ(C) |C| Algorithm #Membership #M_opt #M_ctx #Equivalence #Reset n Time(s) #Learnt

AKM 17 12 5 1
DTAL-Tree 515 337 138 33 695 13 2.1 1/1

DTAL-Table 2256 1934 309 36 2976 13 96.9 1/1

TCP 22 13 2 1
DTAL-Tree 589 389 155 29 912 21 2.3 1/1

DTAL-Table 4592 4298 280 26 6013 21 235.2 1/1

CAS 14 10 27 1
DTAL-Tree 339 232 82 14 541 15 0.6 1/1

DTAL-Table 1650 1536 103 14 1800 15 23.0 1/1

PC 26 17 10 1
DTAL-Tree 745 600 104 26 1004 16 3.7 1/1

DTAL-Table TO TO TO TO TO TO TO 0/1

in [12] and an algorithm AcGenProg in [42] improving on GenProg, respectively. All evaluations were
carried out on an Intel Core-i7 processor with 32GB RAM.
6.1 Compared with DTAL-Table.
We first generated 100 DTAs with 2 clocks randomly as the targets, evenly distributed across 10 groups
based on varying numbers of locations, alphabet sizes, and maximum constants in constraints. 1) These
three parameters constitute the case ID. Table 1 provides a summary of the experimental results. #Mem-
bership, #Equivalence, and #Reset denote the average number of membership queries, equivalence
queries, and reset information queries, respectively. #M_opt represents the average number of mem-
bership queries conducted in tree operations or table operations, while #M_ctx represents the average
number of membership queries conducted during counterexample analysis. n denotes the average number
of locations in the learned automata. Time(s) denotes the average runtime for learning a DTA, with a
time limit of 300 seconds per automaton. #Learnt represents the total number of learned automata.

In comparison with DTAL-Table, our method DTAL-Tree necessitates notably fewer membership queries
and equivalence queries. We provide a detailed breakdown of the membership queries employed in both
operations and counterexample processing. Remarkably, our approach reduces the requisite membership
queries in both procedures, and avoids time-consuming checking of “closed” and “consistent”, resulting in
substantial enhancements in terms of runtime. Regarding the number of reset information queries, our
method aligns closely with DTAL-Table. Despite the searching strategy employed in DTAL-Table, which
typically yields a smaller-sized learned automaton, the disparity is not exceedingly significant.

We then present the experimental results on randomly generated DTAs with more clocks. DTA-Table is
struggling to learning DTA with more clocks. It fails to learn out a DTA in most of the cases, thus we omit
its experimental results in Table 2. We also compared two methods on learning practical models which
have been utilized in [31,32]. Table 3 shows that our method DTA-Tree improves DTA-Table significantly.
6.2 Compared with DOTAL.
We also compared our method with the active learning algorithm DOTAL by learning DOTAs. We used
the 60 randomly generated DOTAs from [28], which are divided into 6 groups according to different num-

1) This experiment is available at https://github.com/Tongji-lab/DTA-Learn.

Page 14 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/Tongji-lab/DTA-Learn

For Review Only

Yu Teng, et al. Sci China Inf Sci 15

Table 4 Experimental results on learning DOTAs.

|L| |Σ| κ(C) Algorithm #Membership #M_opt #M_ctx #Equivalence #Reset n Time(s) #Learnt

4 4 20
DTAL-Tree 220.6 142.9 72.3 28.2 219.5 5.0 0.3 10/10

DOTAL 245.0 120.1 120.4 30.1 − 5.5 25.8 10/10

7 4 10
DTAL-Tree 401.4 275.7 119.9 41.6 465.7 8.0 0.7 10/10

DOTAL 921.7 530.9 386.8 50.9 − 10.3 37.8 10/10

7 4 20
DTAL-Tree 437.0 295.0 135.0 43.3 472.6 8.0 0.4 10/10

DOTAL 634.5 386.8 243.0 44.7 − 8.8 43.3 10/10

7 6 10
DTAL-Tree 587.8 416.0 160.0 55.9 671.6 8.0 0.8 10/10

DOTAL 1183.4 708.0 469.2 70.5 − 10.5 90.2 10/10

10 4 20
DTAL-Tree 766.1 550.6 209.7 66.6 824.1 11.0 1.5 10/10

DOTAL 1580.9 983.7 592.7 73.1 − 12.7 166.5 10/10

14 4 20
DTAL-Tree 1134.7 798.0 329.3 99.6 1230.4 15.0 5.6 10/10

DOTAL 1572.0 938.0 629.0 79.0 − 16.0 255.0 1/10

Table 5 Experimental results produced by comparing DTAL-Tree with GenProg.

|L| |Σ| κ(C) |C| Algorithm n Time(s) #Learnt

Light 5 5 10 1
DTAL-Tree 6 0.1 1/1

GenProg TO TO 0/1

Train 6 6 10 1
DTAL-Tree 7 0.1 1/1

GenProg 6 115.3 1/1

CAS 14 10 27 1
DTAL-Tree 15 0.6 1/1

GenProg TO TO 0/1

PC 26 17 10 1
DTAL-Tree 16 3.7 1/1

GenProg TO TO 0/1

− 6 7 13 2
DTAL-Tree 9 1.5 1/1

GenProg TO TO 0/1

− 6 5 15 2
DTAL-Tree 7 0.6 1/1

GenProg TO TO 0/1

− 6 6 14 2
DTAL-Tree 14 3.9 1/1

GenProg TO TO 0/1

− 6 4 15 2
DTAL-Tree 7 3.4 1/1

GenProg TO TO 0/1

Table 6 Experimental results produced by comparing DTAL-Tree with AcGenProg.

|L| |Σ| κ(C) |C| Algorithm n Time(s) #Learnt

Light 5 5 10 1
DTAL-Tree 6 0.1 1/1

AcGenProg 5 29.6 1/1

CAS 14 10 27 1
DTAL-Tree 15 0.6 1/1

AcGenProg TO TO 0/1

PC 26 17 10 1
DTAL-Tree 16 3.7 1/1

AcGenProg TO TO 0/1

bers of locations |L|, size of alphabet |Σ|, and the maximum constant appearing in the clock constraints
κ(C). #Membership, #Equivalence, #Reset, #M_opt, #M_ctx, n, Time(s) and #Learnt have the same
meaning as mentioned above. The results are shown in Table 4. It shows that our method needs fewer
membership queries. Furthermore, the runtime needed by using our method is much shorter. There are
two reasons for this phenomenon. On the one hand, it is because our method avoids time-consuming
checking of “closed” and “consistent” and reduces the membership queries. On the other hand, it is since
our algorithm is implemented in Java, while DOTAL is implemented in Python.
6.3 Compared with learning algorithms based on genetic programming.
Below we compare our algorithm with two learning algorithms based on genetic programming, rather
than the L∗ framework. The first algorithm GenProg is a passive learning algorithm. The second learning
algorithm AcGenProg improves on GenProg. We compared our method and GenProg by learning 4 practical
models and 4 randomly generated DTAs containing 2 clocks. The results are shown in Table 5. Since
GenProg does not involve queries, we only compared the runtime Time(s) and the number of locations
n in the learned automata. The experimental result shows that the size of the automata learned by two
algorithms is similar, and our algorithm greatly reduces the runtime required for learning. In addition, we
compared our method and AcGenProg by learning 3 practical models. The results are shown in Table 6
and we obtained the same conclusions as those of the previous set of comparative experiments.
7 Conclusion
We introduce the timed classification tree and devise an active learning algorithm for DTA based on
it. Compared with the method in [33], our algorithm significantly decreases the number of queries and
reduces the runtime. We plan to refine the algorithm further for learning from a normal teacher.

Acknowledgements This work was supported by Shanghai 2023 “Science and Technology Innovation Action Plan": Spe-
cial Project for Key Technical Breakthrough of Blockchain (No. 23511100800) and the National Natural Science Foundation
of China (No. 62472316).

References
1 Vaandrager F. Model learning. Commun. ACM, 2017, 60(2): 86-95.
2 Gold E M. Complexity of automaton identification from given data. Inf. Control., 1978, 37(3): 302-320.
3 Oliveira A L, Silva J P M. Efficient algorithms for the inference of minimum size DFAs. Mach. Learn., 2001, 44(1/2): 93-119.
4 Avellaneda F, Petrenko A. Learning minimal DFA: taking inspiration from RPNI to improve SAT approach. In: Proceedings

of International Conference on Software Engineering and Formal Methods, 2019. 243–256.

Page 15 of 16 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Yu Teng, et al. Sci China Inf Sci 16

5 Bohn L, Löding C. Passive learning of deterministic Büchi automata by combinations of DFAs. In: Proceedings of International
Colloquium on Automata, Languages, and Programming, 2022. 114:1–114:20.

6 Schmidt J, Ghorbani A, Hapfelmeier A, et al. Learning probabilistic real-time automata from multi-attribute event logs.
Intell. Data Anal., 2013, 17(1): 93–123.

7 Cornanguer L, Largouët C, Rozé L, et al. TAG: learning timed automata from logs. In: Proceedings of the AAAI Conference
on Artificial Intelligence, 2022. 3949-3958.

8 Verwer S, de Weerdt M, Witteveen C. One-clock deterministic timed automata are efficiently identifiable in the limit. In:
Proceedings of International Conference on Language and Automata Theory and Applications, 2009. 740-751.

9 Verwer S, de Weerdt M, Witteveen C. The efficiency of identifying timed automata and the power of clocks. Inf. Comput.,
2011, 209(3): 606–625.

10 Verwer S, de Weerdt M, Witteveen C. Efficiently identifying deterministic real-time automata from labeled data. Mach.
Learn., 2012, 86(3): 295–333.

11 Dierl S, Howar F M, Kauffman S, et al. Learning symbolic timed models from concrete timed data. In: Proceedings of NASA
Formal Methods Symposium, 2023. 104–121.

12 Tappler M, Aichernig B K, Larsen K G, et al. Time to learn - learning timed automata from tests. In: Proceedings of
International Conference on Formal Modeling and Analysis of Timed Systems, 2019. 216–235.

13 Tappler M, Aichernig B K, Lorber F. Timed automata learning via SMT solving. In: Proceedings of NASA Formal Methods
Symposium, 2022. 489–507.

14 Xiangyu Jin, Jie An, Bohua Zhan, et al. Inferring switched nonlinear dynamical systems. Formal Aspects of Comput., 2021,
33(3): 385-406.

15 Angluin D. Learning regular sets from queries and counterexamples. Inf. Comput., 1987, 75(2): 87–106.
16 Aarts F, Kuppens H, Tretmans J, et al. Improving active Mealy machine learning for protocol conformance testing. Mach.

Learn., 2014, 96(1-2): 189–224.
17 Shahbaz M, Groz R. Inferring Mealy machines. In: FM 2009. 207–222.
18 Bollig B, Habermehl P, Kern C, et al. Angluin-style learning of NFA. In: Proceedings of International Joint Conference on

Artificial Intelligence, 2009. 1004–1009.
19 Howar F, Steffen B, Jonsson B, et al. Inferring canonical register automata. In: Proceedings of International Workshop on

Verification, Model Checking, and Abstract Interpretation, 2012. 251–266.
20 Cassel S, Howar F, Jonsson B, et al. Active learning for extended finite state machines. Formal Aspects of Comput., 2016,

28(2): 233-263.
21 Aarts F, Fiterau-Brostean P, Kuppens H, et al. Learning register automata with fresh value generation. In: Proceedings of

International Colloquium on Theoretical Aspects of Computing, 2015. 165-183.
22 Aarts F, Vaandrager F. Learning I/O automata. In: Proceedings of International Conference on Concurrency Theory, 2010.

71–85.
23 Maler O, Mens I E. Learning regular languages over large alphabets. In: Proceedings of International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, 2014. 485-499.
24 Argyros G, D’Antoni L. The learnability of symbolic automata. In: Proceedings of International Conference on Computer

Aided Verification, 2018. 427–445.
25 Vaandrager F, Bloem R, Ebrahimi M. Learning Mealy machines with one timer. In: Proceedings of International Conference

on Language and Automata Theory and Applications, 2021. 157-170.
26 An J, Wang L, Zhan B, et al. Learning real-time automata. Sci. China Inf. Sci., 2021, 64: 192103.
27 An J, Zhan B, Zhan N, et al. Learning nondeterministic real-time automata. ACM Trans. Embed. Comput. Syst., 2021,

20(5s): 99:1-99:26.
28 An J, Chen M, Zhan B, et al. Learning one-clock timed automata. In: Proceedings of International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, 2020. 444–462.
29 Shen W, An J, Zhan B, et al. PAC learning of deterministic one-clock timed automata. In: Proceedings of International

Conference on Formal Engineering Methods, 2020. 129–146.
30 Tang X, Shen W, Zhang M, et al. Learning deterministic one-clock timed automata via mutation testing. In: Proceedings of

International Symposium on Automated Technology for Verification and Analysis, 2022. 233–248.
31 Xu R, An J, Zhan B. Active learning of one-clock timed automata using constraint solving. In: Proceedings of International

Symposium on Automated Technology for Verification and Analysis, 2022. 249–265.
32 Waga M. Active learning of deterministic timed automata with myhill-nerode style characterization. In: Proceedings of

International Conference on Computer Aided Verification, 2023. 3–26.
33 Teng Y, Zhang M, An J. Learning deterministic multi-clock timed automata. In: Proceedings of International Conference on

Hybrid Systems: Computation and Control, 2024. 6:1-6:11.
34 Isberner M, Howar F, Steffen B. The TTT algorithm: a redundancy-free approach to active automata learning. In: Proceedings

of International Conference on Runtime Verification, 2014. 307–322.
35 Li Y, Chen Y, Zhang L, et al. A novel learning algorithm for Büchi automata based on family of DFAs and classification

trees. Inf. Comput., 2021, 281: 104678.
36 Vaandrager F W, Garhewal B, Rot J, et al. A new approach for active automata learning based on apartness. In: Proceedings

of International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2022. 223–243.
37 Dierl S, Fiterau-Brostean P, Howar F, et al. Scalable tree-based register automata learning. In: Proceedings of International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2024. 87–108.
38 Mi J, Xu J. The learning algorithm of real-time automata. In: Proceedings of International Conference on Computer and

Communications, 2020. 2146-2150.
39 Mi J, Zhang M, An J, et al. Learning deterministic one-clock timed automata based on timed classification tree. Journal of

Software, 2022, 33(8): 2797-2814.
40 Alur R, Dill D L. A theory of timed automata. Theoretical Computer Science, 1994, 126(2): 183-235.
41 Maler O, Pnueli A. On recognizable timed languages. In: Proceedings of International Conference on Foundations of Software

Science and Computation Structures, 2004. 348–362.
42 Aichernig B K, Pferscher A, Tappler M. From passive to active: learning timed automata efficiently. In: Proceedings of NASA

Formal Methods Symposium, 2020. 1-19.

Page 16 of 16SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

