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Abstract. Accurately bounding the worst-case execution time (WCET)
is crucial for efficient real-time system design. Precisely analyzing
whether a memory reference results in a cache miss or a cache hit sig-
nificantly impacts the accuracy of the estimated WCET bound, as the
latency of a cache miss is typically two orders of magnitude higher than
that of a cache hit access. SP-relative addressing enables dynamic mem-
ory allocation on the stack, enhances thread safety, an therefore is widely
adopted in embedded real-time systems. However, existing cache behav-
ior analysis requires obtaining the exact address of each memory refer-
ence and pessimistically assumes that SP-relative addressing could access
any memory address, resulting in an overestimated WCET bound. In
this paper, we propose a new WCET analysis framework that first iden-
tifies the program segments in which the SP value remains constant for
a accurate cache behavior analysis, and then comprehensively compute
the WCET of the whole program based on the constraints between the
SP value defined by the program’s control flow. Experimental results
show that, our method can tighten the estimated WCET bound by up
to 36.31% and achieve an average improvement of 11.85%.

Keywords: WCET · Abstract interpretation · Cache analysis ·
SP-relative addressing

1 Introduction

Real-time systems [1,14] are extensively utilized in safety-critical fields such as
autonomous driving, medical devices, and nuclear power plants, where tasks
must operate within strict time constraints to guarantee reliability and safety.
Therefore, bounding the worst-case execution time (WCET) during compile time
is essential for the real-time verification. To ensure secure and precise timing
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verification, the estimated WCET bounds must be both tight (as close as possible
to the actual worst-case execution time) and sound (no lower than any possible
execution time).

Cache behavior analysis is crucial for accurate WCET estimation, given that
the latency of a cache miss is typically two orders of magnitude greater than that
of a cache hit. Current methods [3,10] often rely on abstract interpretation-based
cache behavior analysis to predict the cache behavior of memory references,
specifically assessing whether a memory block is evicted from the cache before
its next access.

The memory address accessed by SP-relative addressing deepens on the SP
register’s value, which undergoes frequent changes during runtime, especially
across function transitions. Moreover, the value of SP is path-dependent, which
makes obtaining the exact value of it at compile time computationally chal-
lenging. Conventional methods struggle to precisely analyze the SP register val-
ues, and have to pessimistically assume that SP-relative addressing instructions
might access any stack address, resulting in a substantial overestimation of cache
interference.

Despite the unpredictability of the SP value at compile time, we observe
that within specific program segments, such as loops without function calls,
the SP value remains constant. In scenarios where the SP value in unchanged,
even if its exact value is unknown, a more accurate cache interference analy-
sis can be conducted based on the relative offsets among different SP-relative
addressing instructions. To facilitate this, we introduce a novel analytical unit,
called Hyper-Block, to identify program segments where the SP value remains
consistent. By leveraging existing WCET analysis techniques, we can precisely
calculate a tight WCET for each Hyper-Block and the corresponding SP value.

However, the change in the SP values between different Hyper-Blocks follows
the control flow of the program, and the individually analyzed WCET bound
for each Hyper-Block may result in an overestimated WCET bound. For exam-
ple, the SP value in a caller Hyper-Block is never lower than that in the callee
Hyper-Block. We formally model such constraints on SP values across distinct
Hyper-Blocks and formulate the program’s WCET as an Integer Linear Pro-
gramming (ILP) problem to accurately compute the overall program’s WCET.
Experimental results conducted with the widely used MRTC benchmark pro-
gram reveal that our method can tighten the estimated WCET bound by up to
36.31% and achieve an average improvement of 11.85%.

The subsequent sections of this paper are organized as follows: Sect. 2 delves
into the related work, Sect. 3 provides an overview of cache analysis, Sect. 4 out-
lines the motivation behind this study, Sect. 5 introduces our proposed approach
in detail, Sect. 6 evaluates the effectiveness of the proposed approach, and finally,
Sect. 7 presents the concluding remarks for this paper.

2 Related Work

Research on cache analysis for WCET computation has been investigated for
several decades. Ferdinand and Wilhelm proposed the abstract interpretation-
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based technique [5] to statically predict the cache behavior of programs. At
present, abstract interpretation method has been successfully applied to instruc-
tion cache analysis [2,23], data cache analysis [11] and multi-level caches analysis
[8] of WCET estimation, and becomes a dominating approach for cache analysis
with LRU replacement policy. Building on this cache analysis technique, Huynh
et al. introduced a scope-aware persistence analysis [10] to capture the dynamic
behavior of memory access, Zhang et al. further applied it to simulate dynamic
cache behavior in preemptive multi-tasking systems [27], several works [17,26,28]
considered the effect of interference from multi-core processors on cache analysis.

Existing cache behavior analysis methods generally require the exact address
of each memory reference [15] to determine if it will result in a cache hit or miss.
For instruction caches, executing an instruction leads to access to a concrete
memory block. Since program access patterns to instructions are regular and
predictable, current techniques can analyze instruction caches with high accu-
racy. However, data access patterns are significantly more complex [11]. To ana-
lyze data caches, it is crucial to determine all possible memory blocks that each
instruction might access during execution [16]. This task is challenging because
static data references often require extending invariant registers [18], which are
generated by instructions that can be moved out of loops. For loop-affine array
accesses, several methods are proposed [10,19] to analyze array access patterns
for data cache analysis.

Different from the loop-affine array accesses, the cache behavior analysis
for SP-relative addressing is more complicated. R. T. White et al. [24] have
noted that for stack data, the location of local variables for each function call
can be determined accurately using address calculators and compiler analysis.
By analyzing the program’s control and data flow, the compiler and address
calculator can predict stack data behavior even with multiple function calls and
recursion. However, applying this approach to WCET calculations can lead to
high computational loads and path explosion problems. Existing method [4]
assumes that a SP-relative addressing may access any stack address and therefore
leads to pessimistic cache interference analysis result, and WCET bound.

After obtaining cache behavior, integrating program constraints further
enhances the accuracy of WCET predictions and helps address issues such as
path explosion. Li, Malik, and Wolfe [13] proposed a method that combines
cache models with Implicit Path Enumeration Technique (IPET) to simulate
the impact of cache behavior on program execution time. This method considers
dynamic changes in cache states, such as whether the cache contains the required
data when accessing a specific memory address. Wilhelm et al. [25] focused on
the precise modeling of loop constraints. Vivi et al. [21] proposed an infeasi-
ble path detection algorithm that finds pairwise conflicts between branches and
assignments. Schoeberl, Brandner, and Puffitsch [20] discussed the necessity of
considering specific program constraints in WCET analysis, such as function
calls, task scheduling, and stack operations. Therefore, by designing functional
constraints specific to a particular analysis method, combined with detailed infor-
mation on the behaviour of the program, it is possible to exclude infeasible paths
and avoid unreliable WCET estimates.
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3 Background

This sections briefly presents the background knowledge of existing Abstract
Interpretation-based WCET analysis method.

3.1 Control Flow Analysis

1 0000000000400604 <my_fabs>
2 400604: d10043ff sub sp, sp, #0x10
3 400608: bd000fe0 str s0, [sp, #12]
4 ...// Some assembly code omitted here
5 400614: 54000044 b.mi 40061c <my_fabs+0x18>
6 400618: 14000004 b 400628 <my_fabs+0x24>
7 40061c: bd400fe0 ldr s0, [sp, #12]
8 400620: 1e214000 fneg s0, s0
9 400624: 14000002 b 40062c <my_fabs+0x28>

10 400628: bd400fe0 ldr s0, [sp, #12]
11 40062c: 910043ff add sp, sp, #0x10
12 400630: d65f03c0 ret
13
14 0000000000400634 <main>
15 400634: a9bd7bfd stp x29, x30, [sp, #-48]!
16 400638: 910003fd mov x29, sp
17 40063c: 90000000 adrp x0, 400000 <__abi_tag-0x278>
18 ...// Some assembly code omitted here
19 400660: 1400000a b 400688 <main+0x54>
20 400664: b9802fe0 ldrsw x0, [sp, #44]
21 400674: 97ffffe4 bl 400604 <my_fabs>
22 ...// Some assembly code omitted here
23 400688: b9402fe0 ldr w0, [sp, #44]
24 40068c: 7100101f cmp w0, #0x4
25 400690: 54fffead b.le 400664 <main+0x30>
26 400694: 52800000 mov w0, #0x0
27 400698: a8c37bfd ldp x29, x30, [sp], #48
28 40069c: d65f03c0 ret

Listing 1. Assembly Code of the Program fabs

The worst-case execution Time (WCET) analysis is conducted utilizing the
Control Flow Graph (CFG) of each program. The CFG is generally constructed
based on the binary code of each program rather than the high-level languages
to mitigate the effects of compiler optimizations. In specific, it is created through
the decomposition of the program into a series of basic blocks, in which instruc-
tions must be executed sequentially without branch. The constructed basic
blocks are subsequently linked based on their sequential execution order, form-
ing the CFG. An illustrative example of a CFG is presented in Fig. 1. We first
construct basic blocks by identifying the branch instructions in the disassembled
code in Listing 1. Function my_fabs has three branch instructions: line4 points
to line6, line5 points to line9, and line8 points to line10. Therefore the function
are divided by these branch instructions into 4 basic blocks, and the CFG of
my_fabs is constructed as the gray parts shown in Fig. 1. Similarly, by identi-
fying all the branch instructions including function call and return instructions,
the CFG of the program is constructed as shown in Fig. 1.
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Fig. 1. CFG of the Program of Listing 1

3.2 Abstract Interpretation Based Cache Behavior Analysis

Based on the CFG, the analysis of cache behavior is conducted. Whether a
memory reference results in a cache hit or miss significantly depends on the
basic blocks (i.e., paths) the program traverses. To avoid exploring all possible
program paths, existing methods typically employ abstract interpretation to
statically analyze cache behavior. In essence, the abstract interpretation method
merges concrete cache states from various paths into a singular abstract cache
state, unveiling the worst-case scenario. The cache analysis rooted in abstract
interpretation generally comprises three components: the Must analysis, which
keeps only the memory blocks that are present in the cache on every path and
maintains the maximum age of the accessed memory block, to predict whether a
memory block is always in the cache; the May analysis, which retains all memory
blocks across distinct paths and maintains the minimum age of the accessed
memory block, to predict whether a memory block is likely to be in the cache;
and the Persistence analysis, which maintains the maximum age of the accessed
memory block and retains memory blocks that appear on at least one path, to
predict whether a memory block is persistent. Then all the memory references
are classified into four categories, as described in Table 1.
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Table 1. Classification of Cache Access Behaviors

Classification Cache Access Behaviors Described Analysis

AH (Always Hit) Every time the memory block is accessed, it is guaranteed to
hit in the cache

Must

AM (Always Miss) Every time the memory block is accessed, it is guaranteed to
miss in the cache

May

PS (Persistent) The first time the memory block is accessed, it misses; then
all subsequent accesses hit in the cache

Persistent

NC (No classified) The memory access cannot be classified into any of the above
three categories

/

In the following we take the Must analysis as an example to illustrate the
abstract interpretation based method. Firstly, three abstract cache states are
defined for each basic block:

– ACSin: It represents the abstract state (ACS) of the base block before exe-
cution begins. It is obtained by merging the post-execution abstract state
(ACSout) of all the predecessor nodes of the basic block. This merge opera-
tion requires the Join function of the Must analysis method. If no predecessor
node exists, the ACSin is set to none.

– Gen: It includes the memory blocks accessed by the basic block.
– ACSout: It represents the abstract state of the base block after performing a

series of memory access operations. First it needs to get access to the memory
block through the Gen function, and update based on ACSin status, which
needs to apply the Update function of the Must analysis method.

Then, To describe the changes in cache state during program execution, two
functions are defined over the abstract cache state to describe the changes in
cache state during the program’s execution.

– Update: The Update function for Must analysis is used to represent changes
of the memory access over the ACS. Similar to actual cache replacement
policies, each time a new memory access occurs, it is placed in the most
“recent” position. The remaining memory blocks in the cache then follow the
LRU (Least Recently Used) strategy.

– Join: The Join function is used to combined the abstract cache states of
multiple basic blocks. It is similar to set intersection, and always has an upper
bound of the position of the memory block. A memory block only stays in
the abstract set state, if it is in both operand abstract set states. It gets
the oldest age, if it has two different ages. For program in Listing 1, in the
block6, the memory block at address "sp+12" and "0x400028" is accessed,
while in the block5, only "0x400028" is accessed. Therefore in the block7, the
memory block at address "sp+12" will not left after the Join function while
"0x400028" does.

Because programs contain loops or recursive structures, this process requires
multiple iterations to explore all possible execution paths. Each iteration updates
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the abstract state based on the program’s control flow and data flow until the
abstract state stabilizes. The final ACS are obtained, the memory blocks that
reside in each basic block ACSin are treated as AH, which means that by the
time execution reaches this basic block, the cache already contains these memory
blocks and they will be hit without having to be reloaded. The analysis process
of the other methods is similar to the Must method, but they differ in the Join
function.

3.3 Implicit Path Enumeration

With the predicted cache behaviors of each memory reference and the pipeline
architecture of the CPU, the WCET of each basic block can be computed. Then
Implicit Path Enumeration Technique (IPET) is used for calculating the WCET
of the program. Computing the WCET of the program is essentially equals to
find the longest path within its CFG. IPET models the problem of finding the
longest path as an Integer Linear Programming (ILP) problem.

We take the example in Fig. 1 to illustrate IPET. The objective function can
be expressed as:

WCET = MAX
N∑

i=1

Ti · Xi (1)

where N is the count of basic blocks of the program, Ti is the WCET of the
basic block i, and Xi is the execution count of the basic block i. The constraints
is derived from the CFG of the program. For any basic block, its execution count
is equal to the sum of the execution counts of all predecessor blocks, and also
equal to the sum of the execution counts of all successor blocks:

Xi =
∑

j ∈ all predecessors

Xj =
∑

k ∈ all successors

Xk (2)

For example, the execution count of block7 (denoted as X7) is the sum of X5

and X6, and it is also equal to X2. The execution count of block1 (represented as
X1) is the sum of X0 and the loop bound of L0, and equal to X4, we denote the
Loop bound of the loop i by Li. Some of the constraints of the example program
are expressed as followed:

X7 − X5 − X6 = 0
X7 − X2 = 0

X1 − X0 − L0 = 0
X1 − X4 = 0

4 Motivation

For data cache analysis, executing a single instruction can involve accessing
multiple memory blocks. Therefore, before performing data cache analysis, it
is essential to pre-process and determine the set of memory blocks that each
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instruction might access. A significant portion of these memory accesses are
related to stack operations.

At runtime, global variables, static variables, and constants are stored in
the global static area, allocated and freed by the system. The addresses of global
variables are typically obtainable through static analysis, as they are determined
at compile time and can be retrieved from the symbol table. In contrast, local
variables and function parameters are stored in the stack area, with addresses
dynamically allocated and released by the compiler based on the stack layout.
This dynamic nature makes it challenging to precisely determine the addresses
of local variables through static analysis.

Stack frame management is closely tied to the stack pointer, a register used
to point to the current top of the stack, e.g., SP register in AArch64, %rsp and
%rbp register in x86-64, and the B15 register in C66x DSPs. In this paper, we
uniformly refer to it as the SP. SP-relative addressing is a method for accessing
memory based on an offset from the SP register. This technique is commonly
used to access local variables, function parameters, or return addresses on the
stack. Since SP points to the top of the stack, SP-relative addressing allows
for convenient reading or writing of data within the stack. For example, local
variables can be accessed by adding an offset to SP, such as "mov r0, [sp,
#-4]". Additionally, the value of SP can be manipulated to manage stack space.
For instance, the instruction "sub sp, sp, #8" decrements SP by 8, allocating
extra stack space for local variables. Conversely, "add sp, sp, #8" increments
SP by 8, releasing the previously allocated stack space. These operations ensure
proper positioning and management of local variables during function calls. SP-
relative addressing simplifies and enhances the efficiency of managing function
calls and returns, as adjusting SP is sufficient to handle new local variables and
parameters.

Although providing advantages in memory management, SP-relative address-
ing poses challenges in WCET estimation, as the value of the stack pointer
(SP) register is typically not available at compile time. The SP register
dynamically changes as the program executes, its exact value is often dependent
on the current state of the program stack during runtime, making it challeng-
ing to predict or determine beforehand at compile time. Especially in case of
recursive or nested function calls, the stack pointer varies with each call, creat-
ing multiple layers of stack frames. Static analysis tools struggle to accurately
predict SP positions across different function call frames without runtime infor-
mation, making it difficult to determine the potential data blocks accessed by
these instructions.

We show an example in Listing 1 to show the pessimism of the existing
method. This example includes the main function and the my_fabs function,
where the main function is responsible for initializing variables and call my_fabs
to calculate the absolute value of a float.

Upon entering main, the stack pointer (SP) references the current stack top.
The initial instruction in main, "stp x29, x30, [sp, #-48]!", stores x29 (the
frame pointer) and x30 (the return address) onto the stack, moving the SP down-
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wards by 48 bytes to reserve space for the new stack frame. Subsequently, the
program transitions to my_fabs, causing the SP to descend once more to estab-
lish the stack frame for my_fabs (i.e., "sub sp, sp, #0x10"). In this example,
the instructions "ldr s0, [sp, #12]" (line 7) and "ldr w0, [sp, #44]" (line
23) both reference memory addresses relative to the SP value. However, the SP
values at the time of executing these instructions differ.

The stack pointer’s value is path-dependent, making precise SP value deter-
mination typically needs to enumerate all possible execution paths, which is com-
putational intractable. Existing methods [10,11] adopt a pessimistic approach
by assuming that SP-relative addressing operations could potentially access any
stack addresses, and therefore may consider that SP-relative addressing might
contend with each other in the cache, resulting in a pessimistic analysis result.

5 Methodology

This section introduces a novel analysis framework that leverages a novel struc-
ture termed Hyper-Block to estimate the worst-case execution time. Conven-
tional methods [10,11,28] struggle to accurately forecast SP-relative addressing,
leading to a pessimistic estimation of the WCET bound. The proposed app-
roach initially identifies the program segment where the SP address remains
constant, termed Hyper-Block, aiming for a more precise WCET bound within
each Hyper-Block, as detailed in Sect. 5.1. Subsequently, a novel technique is
introduced to conduct a precise WCET analysis for the whole program by accu-
rately determining the offset on SP values of different Hyper-Blocks, based on
the call hierarchy among various procedures, as shown in Sect. 5.2.

5.1 Hyper-Block

Existing WCET analysis frameworks encounter challenges in accurately evaluat-
ing the stack pointer (SP) value, and have to assume a worst-case scenario where
each SP-relative addressing operation could potentially access any stack address,
leading to an estimated WCET bound, as discussed in Sect. 4. However, the SP
value does not change randomly. Changes in the SP value generally occur during
function calls or returns, remaining constant over prolonged duration. In cases
where the SP value remains unchanged, despite its specific value being unknown,
the offset concerning memory addresses accessed by SP-relative instructions can
be statically determined. This capability facilitates a more precise cache behavior
analysis.

Our analysis relies on the Global-Control Flow Graph (G-CFG) of the pro-
gram, constructed from the Control Flow Graph (CFG) of each function and
their inter-function call relationships as shown in Fig. 2. More specifically, we
establish an G-CFG by analyzing the caller-callee relationships between func-
tions using assembly code, which avoiding the impact of compiler optimizations.
We establish connections between the basic block containing the function’s call
instruction and the entry basic block of the called function. Similarly, the exit
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basic block of the called function is linked to the return block in the calling func-
tion. This caller-callee relationship can typically be directly obtained through the
jump instructions in the assembly code. However, for function pointers and indi-
rect function calls where the target function cannot be determined explicitly,
we adopt symbolic execution to identify all the potential functions they point
to. In addition, we accept the user input to identify the caller-callee relation-
ship for building a more accurate G-CFG. In order to perform a precise cache
behavior analysis for SP-relative addressing memory references, we first identify
program fragments where the SP value in constant, dented by Hyper-Block. A
Hyper-Block is a sub-graph of the G-CFG, which contains multiple basic blocks
that share the same function stack. In order to obtain a control flow between
different Hyper-Blocks without violating the program structure, we construct
Hyper-Block based on the G-CFG by the following steps:

1. from the inner-most loop to the outer loop of the G-CFG, group neighbouring
basic blocks that reside in the same loop and same function as a Hyper-Block.

2. if all the basic blocks in a loop are grouped as a Hyper-Block, the Hyper-Block
is considered as a basic block for the following Hyper-Block construction;
otherwise, if the loop is divide into several Hyper-Blocks, the Hyper-Blocks
are finally obtained.

3. iteratively perform the above steps until a fixed-point.

The algorithm for building Hyper-Blocks is detailed in Algorithm 1.

Algorithm 1: Hyper-Block construct
1: for each basic block i does not belong to any HyperBlock do
2: Initialize HyperBlocki for i and Add HyperBlocki to HyperBlocks
3: for each successor j of i do
4: if j in same procudure AND no other path between i AND in same loop

level then
5: Add j to HyperBlocki.blocks
6: end if
7: end for
8: end for
9: for each HyperBlock hb do

10: for each head block bh and tail block in bt in hb do
11: Initialize dummyin AND dummyout
12: dummyin.out = b.in AND dummyin.in = b.out
13: end for
14: end for

Figure 2 shows a typical example of how to construct the Hyper-Block. In
the example, basic blocks with the same color belongs to the same function.
Following the instructions, we firstly construct 6 Hyper-Blocks, {block1, block2,
block3}, {block6, block7, block8, block9}, {block12, block13, block14}, {block10},
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Fig. 2. G-CFG of the Program Fig. 3. Control flow constructed by
Hyper-Block

{block11}, and {block15, block16}. Since all the basic blocks in loop0 and loop2
are all constructed as a Hyper-Block, respectively, {block1, block2, block3} and
{block6, block7, block8, block9} are considered a basic block and further to
construct a new Hyper-Block, i.e., HB1.

After dividing the G-CFG into several Hyper-Blocks, each Hyper-Block can
be constructed as a smaller CFG to facilitate further analysis. If irregular branch
structure occurs between Hyper-Blocks, special block called dummy node is
required to add in the Hyper-Block. In the example of Fig. 3, block3 and block4 in
the Hyper-Block1 both connect to block7 in Hyper-Block5. To build a CFG with
Hyper-Blocks, we introduce dummy node to create a dedicated entry and exit
nodes of each Hyper-Block. If there are multiple exit blocks, a dummy node is cre-
ated, and all outgoing edges from the exit nodes are connected to this node. This
dummy node is then connected to the entry nodes of other Hyper-Block, with
the edge types consistent with those of the original outgoing edges. Similarly,
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if there are multiple entry blocks, a dummy node will be created. This makes
the dummy node the only entry node, and it connects to the exit nodes of other
Hyper-Block, maintaining consistent edge types. Therefore, redundant edges of
the same type between two Hyper-Block should be removed. For example, if
there are two nottaken type edges between Hyper-Block 1 and Hyper-Block 3,
only one should be retained.

5.2 WCET Computation

Once all the Hyper-Block are constructed, all the SP-relative addressing instruc-
tions inside a Hyper-Block share the same SP value. Then, we can simply and
safely compute the WCET of each Hyper-Block with the existing WCET anal-
ysis method by enumerating the SP value from 0 to set −1, where set denote
the counts of cache set. Note that, whether two memory references cause cache
contentions depends on the cache set they mapped rather than the exact mem-
ory address they accessed. Therefore, it is unnecessary to perform enumeration
across the entire memory address space, while simply enumerating the SP value
from 0 to set −1 can significantly reduce analysis overhead. Moreover, to accu-
rately determine whether two SP-relative addressing are mapped to the same
cache set, we further enumerate such addresses by calculating the specific cache
set of it in different SP value. Since step is carried out at the cache set granularity,
its overhead is acceptable. Such enumeration yields a sound WCET estimation
for each Hyper-Block. The proof is straightforward and is thus omitted.

Moreover, our method only leads to a linearly increased computational com-
plexity, which is acceptable. Finally, we can generate a table that correlates
various SP values with their respective estimated WCET bounds. We define
function WCET(HBi,SPj) to return the WCET of Hyper-Block HBi, when the
SP equals SPj. Compared to Transformed-Control Flow Graph (T-CFG), which
unfolds all the function calls and struggles to represent recursions, the G-CFG
we use is essentially a function call graph, making it well-suited to represent
recursive functions. We compute the WCET of each instance of a recursion by
enumerating as mentioned above. Although different instances have different SP
value, since we always seek the worst-case SP value across all instances, this
approach remains safe in WCET estimation.

Although the WCET of each Hyper-Block can be computed by enumerating
all the possible SP values, simply adding them together would yield a conserva-
tive estimation of the WCET, as the SP values that result the WCET of different
Hyper-Block may not be simultaneously satisfied. For instance, for Hyper-Blocks
that belongs to the same function, their SP value are same. So if the estimated
WCET of these Hyper-Blocks corresponding to different SP values, the combi-
nation of the SP value are invalided, resulting in a overestimated WCET bound.

For the example shown in Fig. 3, we divide the G-CFG of the example into 5
Hyper-Blocks: HB1, HB2, HB3, HB4 and HB5. We assume that the longest path
of the program is:

HB1 �→ HB2 �→ HB3 �→ HB4 �→ HB5
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and the WCET of each Hyper-Block and the effected SP values are:

WCET(HB1, 0),WCET(HB2, 0),WCET(HB3, 2)

WCET(HB4, 1),WCET(HB5, 0)

Since HB1, HB2, HB4, HB5 belong to the same function, their SP values should
be same. However, the computed WCET of these corresponds to different SP
values, i.e., 0, 0, 2, 0, respectively. So the combination of the SP values and the
WCET are infeasible.

In order to safely compute the WCET of the program and avoid involving
invalid combinations of SP values from different Hyper-Blocks, we formulate the
constraints between SP values based on the control flow among Hyper-Blocks.
Firstly, if Hyper-Block belong to the same function, they share the same stack
and their stack pointers should be identical. Therefore, if HBi and HBj belong
to the same function, we obtain the relationship:

SPHBi = SPHBj (3)

Additionally, during task transitions, the SP value changes. In specific, the
SP values increased when entering a new function for saving the state of the cur-
rently executing task (including the stack pointer), and decreases when returning
to the caller function for restoring the state of the next task. Therefore, equations
are established to relate the SP value between the caller Hyper-Block HBi and
the called Hyper-Block HBj , as well as between the called Hyper-Block HBm

and the Hyper-BlockHBn it returns to:

address(SPHBi) + SizeHBi
j
= address(SPHBj) (4)

address(SPHBm) − SizeHBm
n
= address(SPHBn) (5)

where SizeHBi
j

denotes the change on SP value during Hyper-Block transition
from HBi to HBj, address(SPHBi) denotes the exact value of the SP in HBi.

Since we only care the cache set that a SP-relative addressing mapped to,
rather than the exact memory address. The above relationships can be trans-
ferred into the following SP constraint:

abs(SPHBi − SPHBj)%set =
SizeHBi

j

Sizeline
%set (6)

abs(SPHBm − SPHBn)%set =
SizeHBm

n

Sizeline
%set (7)

where Sizeline returns the cache line size.
With the above analysis on the SP values, we can derive the SP con-

straints and combine them with the program IPET constraints (i.e., as shown
in Sect. 3.3). For the example in Fig. 3 the WCET can be formulated as:

Maximize = X(HBi) ∗ WCET(HBi,SPi) (8)
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Subject to:
ipet constraints :

X(HB1) − X(HB2) − X(HB5) = 0
X(HB2) − X(HB1) − X(Loop3) = 0
X(HB5) − X(HB4) − X(HB1) = 0
X(HB2) − X(HB3) = 0
X(HB3) − X(HB4) = 0

SP constraints :
SPHB1 = SPHB2 = SPHB4 = SPHB5

abs(SPHB2 − SPHB5)%set =
SizeHB2

5

Sizeline
%set

abs(SPHB5 − SPHB4)%set =
SizeHB5

4

Sizeline
%set

where X(HBi) returns the execution counts of HBi.

6 Evaluation

In this section, we evaluate the proposed method and compare it with the existing
method [10]. In this method, which precisely model the access behavior of global
variable. However, this method does not analyze SP-relative addressing accesses,
pessimistically assuming that such accesses could target any memory address in
the stack.

6.1 Evaluation Setup

We implement the proposed method based on the existing WCET analysis tool,
Chronos [12]. For simplicity, we only focus on the single-core scenario without
consider the shared cache contention. Note that, the proposed method focuses on
a precise cache behavior analysis for SP-relative addressing and can be straight-
forwardly extended to deal with multi-core scenario by integrating it with the
existing method [28]. In the experiment, we adopt the processor architecture of
the TMS320C66x DSP CPU [22], a high-performance digital signal processor
from Texas Instruments. The detailed cache configuration are summarized as
follows (Table 2):

Table 2. Cache configurations in the experiment

Cache Level Capacity Block Size Associativity Hit Latency Miss Latency

L1 Instruction 32 KB 32B 1 1 cycle 12.5 cycles
L1 Data 32 KB 64B 2 1 cycle 6 cycles
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Similar to most relative works [7,9–11], we selected benchmark programs
from the Mälardalen WCET Benchmark Suite [6]. All programs were compiled
using the TI C6000-CGT compiler v7.4.4. The program uses the default stack
start address (compilers usually assign a fixed base address to the stack), and
resizes the stack size to 4 KB, which is the default stack size commonly used
in embedded systems, which is also same as the GNU Compiler Collection for
ARM.

6.2 Experimental Results

Table 3 shows the experimental results. we refer to the estimated WCET bounds
derived from our proposed method and the traditional approach as WCET-Our
and WCET-Con, respectively. We compare the WCET-Our and WCET-Con
and use WCET-Con

WCET-Our −1 as a metric to demonstrate the tightness of WCET bound
produced by the proposed method. Experimental results in Table 3 reveals that,
in comparison to the conventional method, our approach produces a tighter esti-
mated WCET bound for all the benchmark programs. On average, our method
achieves a 11.85% improvement in tightness.

Table 3. Estimated WCET bound in cycles from our method and the existing method

Benchmark WCET-Con Con-Timr WCET-Our Our-Time WCET-Con
WCET-Our − 1

bsort100 658159 9.37 s 482852 401.50 s 36.31%
fdct 14624 84.76 s 11420 3511.47 s 28.06%
edn 3669718 48.38 s 2883263 2499.95 s 27.28%
insertsort 5676 7.74 s 4728 389.17 s 20.05%
matmult 550293 25.10 s 459668 794.64 s 19.72%
fir 161006 18.85 s 137000.5 317.20 s 17.52%
bs 642 6.78 s 546.5 76.16 s 17.47%
lms 3735553 52.86 s 3299397 3618.88 s 13.22%
cnt 1649631 11.71 s 1496112 5208.48 s 10.26%
djikstra 12186 276.96 s 11516 6513.51 s 5.82%
jfdctint 53509 75.21 s 50929.5 3158.24 s 5.06%
fibcall 1411 4.76 s 1363.5 72.34 s 3.48%
ud 23866 138.77 s 23080.5 16234.53 s 3.40%
crc 227066 69.84 s 220334.5 781.84 s 3.06%
floyd 10374 25.93 s 10158.5 1013.38 s 2.12%
ns 38355 25.60 s 38235 798.53 s 0.31%
expint 296891 40.81 s 296677 233.99 s 0.07%
prime 245877 8.16 s 245824 178.04 s 0.02%
Average 11.85%
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Our method achieves a significant improvement for bsort100 (36.3%), fdct
(28.05%), edn (27.3%), insertsort (20.05%), and matmult (19.7%). This is due
to the fact that these benchmarks contain a certain number of SP-relative
addressing operations, which introduce significant cache interference between
SP-relative addressing and global variables. For instance, in insertsort, which
involves iterative array traversals and element insertions, out of its total of 32
data memory references, 12 are SP-relative addressing. Existing method can not
determine the exact memory address of SP-relative addressing, and pessimisti-
cally classify all the data memory references as either AM or NC. Our approach
identifies Hyper-Block and is capable to justify which SP-relative addressing
instructions share the same SP value, enabling more accurate cache interference
analysis.

The following List 2 is the source code for insertsort. All local variables
(i.e., variable i, j, temp) and temporary data are stored in B15[1], B15[2] and
B15[3]. With the execution of "i = 2" (line 8), the memory block associated
with B15[1] to be loaded into the corresponding cache set, since B15[1], B15[2]
and B15[3] belong to the same memory block, all the subsequent instructions
related SP address are AH.

1 unsigned int a[11];
2 int main()
3 {
4 int i,j, temp;
5 a[0] = 0; /* assume all data is positive */
6 a[1] = 11; a[2]=10;a[3]=9; a[4]=8; a[5]=7; a[6]=6; a[7]=5;
7 a[8] =4; a[9]=3; a[10]=2;
8 i = 2;
9 while(i <= 10){

10 j = i;
11 while (a[j] < a[j-1])
12 {
13 temp = a[j];
14 a[j] = a[j-1];
15 a[j-1] = temp;
16 j--;
17 }
18 i++;
19 }
20 return 1;
21 }
22

Listing 2. Source Code of insertsort

Consequently, in insertsort, 11 data memory references are classified as AH.
Similarly, in bsort100, with a total of 34 data memory references, 27 being SP-
relative addressing, our method categorizes 21 data memory references as AH,
a significant improvement over the existing method, which yields none.

However, for benchmarks like ns, expint, and prime, which have less inher-
ently cache conflict for local variables, our method still performs better but the
precision improvement is reduced. Our improvement in accuracy is 11.85%, while
the analysis time increased by an average of 48.16 times. Considering that this
analysis is conducted statically and performed only a limited number of times,
the additional time overhead incurred for improved accuracy is worthwhile.
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7 Conclusion

This paper introduces a novel cache behavior analysis approach for SP-relative
addressing, leveraging the well-established abstract-interpretation method. By
introducing a novel analysis unit called Hyper-Block, this method accurately
identify the program segments where the SP value remains constant, enabling
a more refined cache interference analysis for each Hyper-Block. Across various
Hyper-Blocks, we systematically investigate the SP value transitions and encap-
sulate the program’s Worst-Case Execution Time (WCET) calculation as an
Integer Linear Programming (ILP) problem. Empirical results underscore the
efficacy of the proposed technique in significantly refining the estimated WCET
bounds.
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