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Reach-avoid Verification Based on Convex Optimization
Bai Xue1,2, Naijun Zhan1,2, Martin Fränzle3, Ji Wang4 and Wanwei Liu4

Abstract— In this paper we propose novel sufficient conditions
for verifying reach-avoid properties of continuous-time systems
modelled by ordinary differential equations (ODEs). Given a sys-
tem, an initial set, a safe set and a target set of states, we say
that the reach-avoid property holds, if for all initial conditions in
the initial set, any trajectory of the system starting at them will
eventually, i.e. in unbounded yet finite time, enter the target set
while remaining inside the safe set until that first target hit (that is,
if the system starting from the initial set can reach the target set
safely). Based on a discount value function, two sets of quantified
constraints are derived for verifying the reach-avoid property via
the computation of exponential/asymptotic guidance-barrier func-
tions (they form a barrier escorting the system to the target set
safely at an exponential or asymptotic rate). It is interesting to find
that one set of constraints whose solution is termed exponential
guidance-barrier functions is just a simplified version of the exist-
ing one derived from the moment based method, while the other
one whose solution is termed asymptotic guidance-barrier func-
tions is completely new. Furthermore, built upon this new set of
constraints, we derive a set of more expressive constraints, which
includes the aforementioned two sets of constraints as special
instances, providing more chances for verifying the reach-avoid
property successfully. Finally, several examples demonstrate the
theoretical developments and performance of proposed sufficient
conditions using semi-definite programming methods.

Index Terms— Ordinary Differential Equations; Reach-avoid Ver-
ification; Quantified Constraints

I. INTRODUCTION

Cyber-physical technology is integrated into an ever-growing range
of physical devices and increasingly pervades our daily life [17].
Examples of such systems range from intelligent highway systems,
to air traffic management systems, to computer and communication
networks, to smart houses and smart supplies, etc. [8], [25]. Many
of the above-mentioned applications are safety-critical and require a
rigorous guarantee of safe operation.

Among the many possible rigorous guarantees, reach-avoid ver-
ification, i.e., verifying whether the system’s dynamics (generally
modelled by ODEs) satisfy reach-avoid properties, is definitely in
demand. One of the popular methods for reach-avoid verification
is computational reachability analysis, which involves the explicit
computation of reachable states [3], [12]. In general, the exact
computation of reach sets is impossible for dynamical and hy-
brid systems [13]. Over-approximate reachability analysis, which
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computes an over-approximation (i.e., super-set) of the reach set
based on set propagation techniques, is therefore studied in existing
literature for verification purposes (e.g., [5]). Overly pessimistic
over-approximations, however, render many properties unverifiable in
practice, especially for large initial sets and/or large time horizons.
This pessimism mainly arises due to the wrapping effect [16],
which is the propagation and accumulation of over-approximation
errors through the iterative computation of reach sets. There are
many techniques developed in existing literature for controlling the
wrapping effect. One way is to use complex sets such as Taylor
models [7], [10] and polynomial zonotopes [2] to over-approximate
the reach set. On the other hand, as the extent of the wrapping effect
correlates strongly with the size of the initial set, another way is
to exploit subsets of the initial set for performing over-approximate
reachability analysis via exploiting the (topological) structure of the
system. For instance, appropriate corner points of reach sets, called
bracketing systems, are used in [11], [23] to bound the complete
reach sets when the systems under consideration are monotonic; [26]
proposed the set-boundary reachability method for for continuous-
time systems featuring a locally Lipschitz-continuous vector field.

Another popular method is the optimization based method, which
transforms the verification problem into a problem of determining the
existence of solutions to a set of quantified constraints. This method
avoids the explicit computation of reach sets and thus can handle
verification with unbounded time horizons. A well-known method
is the barrier certificate method, which was originally proposed in
[20], [21] for safety verification of continuous and hybrid systems.
The barrier certificate method was inspired by Lyapunov functions
in control theory and relies on the computation of barrier certificates,
which are a function of state satisfying a set of quantified inequalities
on both the function itself and its Lie derivative along the flow of the
system. In the state space, the zero level set of a barrier certificate
separates an unsafe region from all system trajectories starting from
a set of legally initial states and thus the existence of such a function
provides an exact certificate/proof of system safety. Afterwards, a
number of different kinds of barrier certificates were developed such
as exponential barrier certificates and vector barrier certificates in the
literature [6], [14], which mainly differ in their expressiveness. This
method was also extended to reachability verification of continuous
and hybrid systems. For instance, it was extended to reach-avoid
verification in [22]. The set of constraints in [21] requires the Lie
derivative of barrier certificates to be strictly decreasing along the
trajectories of the dynamics. It is strong, limiting its applications as
discussed in Subsection II-B. Recently, a set of new constraints based
on moment theory was presented in [15] for inner-approximating
the set of all initial states guaranteeing the satisfaction of the reach-
avoid property. It can be straightforwardly extended to reach-avoid
verification via supplementing a constraint that the designated initial
set is included in the computed inner-approximation. The obtained
set of constraints overcomes the strong requirement of the one in
[21], but it is a special case of the proposed ones in this paper.

In this paper we study the reach-avoid verification problem of
continuous-time systems modelled by ODEs in the framework of the
optimization based method. The reach-avoid verification problem of
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interest is that given an initial set, a safe set and a target set, we verify
whether any trajectory starting from the initial set will eventually
enter the target set while remaining inside the safe set until the first
target hit. The reach-avoid verification problem in our method is
transformed into a problem of searching for so called guidance-barrier
functions. Based on a discount value function, whose certain (sub)
level set equals the set of all initial states enabling the satisfaction
of reach-avoid properties, with the discount factor being larger than
and equal to zero we first respectively derive two sets of quantified
constraints whose solutions are termed exponential and asymptotic
guidance barrier functions. If a solution to any of these two sets of
constraints is found, the reach-avoid property is guaranteed. Based
on the set of constraints associated with asymptotic guidance-barrier
functions, we further construct a set of more expressive constraints,
which admits more solutions and formulates the aforementioned two
sets of constraints as its special instances, and thus offers more
possibilities of verifying the reach-avoid property successfully. When
the datum are polynomials, i.e., the system has polynomial dynamics,
the initial set, target set and safe set are semi-algebraic sets, the
problem of solving these constraints can be reduced to a semi-definite
programming problem. Finally, several examples demonstrate the
performance of the proposed constraints in reach-avoid verification
with semi-definite programming.

The main contributions of this work are summarized below.

1) Based on a discount value function with a nonnegative dis-
count factor, a novel unified framework is proposed for the
reach-avoid verification of systems modelled by ODEs. In this
framework, two sets of quantified inequalities are derived when
the discount factor is zero and positive respectively. The one,
which is obtained when the discount factor is positive, is a
simplified version of the existing one from the moment based
method in [15] however, the other one (i.e., the one obtained
when the discount factor is zero) is completely new.

2) The differences and respective benefits of the aforementioned
two sets of constraints are discussed in detail. Based on these
discussions, an enhanced set of constraints, which is more
expressive, is further developed such that the aforementioned
two sets of constraints are its special cases. Performance
comparisons with state-of-art ones are made based on several
examples using semi-definite programming. Numerical results
show that the enhanced set of constraints outperforms all others.

II. PRELIMINARIES

In this section we formally present the concepts of continuous-
time systems and reach-avoid verification problem of interest in this
paper. Before formulating them, let us introduce some basic notions
used throughout this paper: for a function v(x), ▽xv(x) denotes
its gradient with respect to x; R≥0(R>0) stands for the set of
nonnegative (positive) real values in R with R being the set of real
numbers; the closure of a set X is denoted by X , the complement
by X c and the boundary by ∂X ; ∧ denotes conjunction, and ∀ and
∃ denote the universal and existential quantifiers, respectively; the
ring of all multivariate polynomials in a variable x is denoted by
R[x]; vectors are denoted by boldface letters, and the transpose of
a vector x is denoted by x⊤;

∑
[x] is used to represent the set of

sum-of-squares polynomials over variables x, i.e.,

∑
[x] = {p ∈ R[x] | p =

k∑
i=1

q2i , qi ∈ R[x], i = 1, . . . , k}.

A. Preliminaries

The continuous-time system of interest (or, CS) is a system whose
dynamics are described by an ODE of the following form:

ẋ = f(x),x(0) = x0 ∈ Rn, (1)

where ẋ =
dx(t)
dt and f(x) = (f1(x), . . . , fn(x))

⊤ with fi(x) ∈
R[x].

We denote the trajectory of system CS that originates from x0 ∈
Rn and is defined over the maximal time interval [0, Tx0) by
ϕx0(·) : [0, Tx0) → Rn. Consequently,

ϕx0(t) := x(t), ∀t ∈ [0, Tx0), and ϕx0(0) = x0,

where Tx0 is either a positive value (i.e., Tx0 ∈ R>0) or ∞.
Given a bounded safe set X , an initial set X0 and a target set Xr ,

where

X = {x ∈ Rn | h(x) < 0} with ∂X = {x ∈ Rn | h(x) = 0},
X0 = {x ∈ Rn | l(x) < 0}, and Xr = {x ∈ Rn | g(x) < 0}

with l(x), h(x), g(x) ∈ R[x], and X0 ⊆ X and Xr ⊆ X , the reach-
avoid property of interest is defined as follows.

Definition 1 (Reach-Avoid Property): Given system CS with the
safe set X , initial set X0 and target set Xr , we say that the reach-avoid
property holds if for all initial conditions x0 ∈ X0, any trajectory
ϕx0(t) of system CS starting at ϕx0(0) = x0 can eventually enter
the target set Xr eventually while remaining inside the safe set until
the first target hit, i.e.,

∀x0 ∈ X0.∃T ∈ R>0.[ϕx0(T ) ∈ Xr

∧
∀t ∈ [0, T ].ϕx0(t) ∈ X ].

Since the reach-avoid property combines guarantees of safety by
staying within the safe set X with the reachability property of
reaching the target set Xr and thus can formalize many important
engineering problems such as autonomous spacecraft rendezvous [9],
its verification has turned out to be of fundamental importance in
engineering. The problem of interest in this work is on reach-avoid
verification, i.e., verifying that system CS satisfies the reach-avoid
property in Definition 1. We attempt to solve this problem within the
framework of optimization based methods. Generally, such methods
are sound but incomplete.

In the following computations, all of constraints for reach-avoid
verification are addressed via encoding them into semi-definite
programs. The formulated semi-definite programs can be found
in https://arxiv.org/pdf/2208.08105. In addtion, all
of semi-definite programs are formulated using Matlab package
YALMIP [18] and solved by employing the academic version of the
semi-definite programming solver MOSEK [19].

B. Existing Methods

For the convenience of comparisons, in this subsection we recall
the sets of quantified constraints in existing literature for verifying
the reach-avoid property in Definition 1. The first one is from [22],
while the other one is from [15].

Proposition 1: [22] Suppose that there exists a continuously
differentiable function v(x) : X → R satisfying

v(x) ≤ 0,∀x ∈ X0 (2)

v(x) > 0,∀x ∈ ∂X \ ∂Xr, (3)

▽x v(x) · f(x) < 0,∀x ∈ X \ Xr, (4)

Then the reach-avoid property in Definition 1 holds.
One of drawbacks of constraints (2)-(4) in reach-avoid verification

is the strong requirement that the Lie derivative of v(x) should
be strictly decreasing along the trajectories of system CS over the

https://arxiv.org/pdf/2208.08105
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set X \ Xr . A straightforward consequence is that these constraints
cannot deal with the case with an equilibrium being inside X \ Xr ,
since f(x0) = 0 implies ▽xv(x) · f(x) |x=x0= 0.

Besides, if the reach-avoid property in Definition 1 holds, the initial
set X0 must be a subset of the reach-avoid set RA, which is the set
of all initial states guaranteeing the satisfaction of the reach-avoid
property, i.e.

RA =

{
x0 ∈ Rn

∣∣∣∣∣ ∃t ∈ R≥0.ϕx0(t) ∈ Xr∧
∀τ ∈ [0, t].ϕx0(τ) ∈ X

}
.

Therefore, the method for computing under-approximations of the
reach-avoid set RA can be used for reach-avoid verification. By
adding the condition v(x) < 0, ∀x ∈ X0 into constraint [15, (18)],
which is originally developed for under-approximating the reach-
avoid set RA, we can obtain a set of quantified constraints as shown
in Proposition 2 for reach-avoid verification.

Proposition 2: Suppose that there exists a continuously differen-
tiable function v(x) : X → R and a continuous function w(x) :
X → R satisfying

v(x) < 0,∀x ∈ X0 (5)

▽x v(x) · f(x) ≤ βv(x), ∀x ∈ X \ Xr, (6)

w(x) ≥ 0,∀x ∈ X \ Xr, (7)

w(x) ≥ v(x) + 1, ∀x ∈ X \ Xr, (8)

v(x) ≥ 0,∀x ∈ ∂X , (9)

where β > 0 is a user-defined value, then the reach-avoid property
in Definition 1 holds.

III. REACH-AVOID VERIFICATION

This section presents our optimization based methods for reach-
avoid verification. Based on a discount value function, which is
defined based on trajectories of a switched system and introduced
in Subsection III-A, two sets of quantified constraints are first
respectively derived when the discount factor is respectively equal
to zero and larger than zero. Once a solution (termed exponential
or asymptotic guidance-barrier function) to any of these two sets
of constraints is found, the reach-avoid property in Definition 1 is
verified successfully. Furthermore, inspired by the set of constraints
obtained when the discount factor is zero, a set of more expressive
constraints is constructed for reach-avoid verification.

A. Induced Switched Systems
This subsection introduces a switched system, which is built upon

system CS. This switched system is constructed by requiring the state
of system CS to stay still when the complement of the safe set X
is reached. For the sake of brevity, only trajectories of the induced
switched system, also called CSPS, are introduced.

Definition 2: Given system CSPS with an initial state x0 ∈ X , if
there is a function x(·) : R≥0 → Rn with x(0) = x0 such that it
satisfies the dynamics defined by ẋ = f̂(x), where

f̂(x) := 1X (x) · f(x), (10)

with 1X (·) : X → {0, 1} representing the indicator function of the
set X , i.e.,

1X (x) :=

{
1, if x ∈ X ,

0, if x /∈ X ,

then the trajectory ϕ̂x0(·) : R≥0 → Rn, induced by x0, of system
CSPS is defined as follows:

ϕ̂x0(t) := x(t), ∀t ∈ R≥0.

It is observed that the set X is an invariant set for system CSPS.
Also, if x0 ∈ X and there exists T ≥ R≥0 such that ϕ̂x0(t) ∈ X for
t ∈ [0, T ], we have ϕ̂x0(t) = ϕx0(t), ∀t ∈ [0, T ]. Also, trajectories
of system CSPS evolving in the viable set X can be classified into
three disjoint groups:

1) trajectories entering the set Xr in finite time. It is worth
remarking here that these trajectories will not leave the safe
set X before reaching the target set Xr . Since ϕ̂x0(t) =
ϕx0(t),∀t ∈ [0, T ], where x0 ∈ X and T ∈ R≥0 is a time
instant such that ϕ̂x0(t) ∈ X for t ∈ [0, T ], we conclude that
the set of initial states deriving these trajectories equals the
reach-avoid set RA;

2) trajectories entering the set ∂X in finite time, but never entering
the target set Xr;

3) trajectories staying in the set X \ Xr for all time.

B. Discount Value Functions
The discount value function aforementioned is introduced in this

subsection. With a non-negative discount factor β, the discount value
function V (x) : X → R with a non-negative discount factor β is
defined in the following form:

V (x) := sup
t∈R≥0

e−βt1Xr (ϕ̂x(t)), (11)

where 1Xr (·) : Rn → {0, 1} is the indicator function of the target
set Xr . Obviously, V (x) is bounded over the set X . Moreover, if
β = 0,

V (x) =

{
1, if x ∈ RA,

0, otherwise.
(12)

If β > 0,

V (x) =

{
0, if x ∈ X \ RA,

e−βτx , if x ∈ RA,
(13)

where τx = inf{t ∈ R≥0 | ϕ̂x(t) ∈ Xr} is the first hitting time of
the target set Xr .

From (12) and (13), we have that following proposition.
Proposition 3: When β = 0, the one level set of V (·) : X → R

in (11) equals the reach-avoid set RA, i.e.,{x ∈ X | V (x) = 1} =
RA. When β > 0, the strict zero super level set of V (·) : X → R
in (11) equals RA, i.e., {x ∈ X | V (x) > 0} = RA.

In the following we respectively obtain two sets of quantified
constraints for reach-avoid verification based on the discount value
function V (x) in (11) with β > 0 and β = 0. Through thorough
analysis on these two sets of constraints, we further obtain a set of
more expressive constraints for reach-avoid verification.

C. Exponential Guidance-barrier Functions
In this subsection we introduce the construction of quantified

constraints based on the discount value function V (x) in (11) with
β > 0, such that the reach-avoid verification problem is transformed
into a problem of determining the existence of an exponential
guidance-barrier function.

The set of constraints is derived from a system of equations
admitting the value function V (x) as solutions, which is formulated
in Theorem 1.

Theorem 1: Given system CSPS, if there exists a continuously
differential function v(x) : X → [0, 1] such that

▽x v(x) · f(x) = βv(x), ∀x ∈ X \ Xr, (14)

v(x) = 0, ∀x ∈ ∂X , (15)

v(x) = 1, ∀x ∈ Xr, (16)
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then v(x) = V (x) for x ∈ X and thus {x ∈ X | v(x) > 0} = RA,
where V (·) : X → R is the value function with β > 0 in (11).

Proof: We first consider that x ∈ RA. If x ∈ Xr , v(x) = 1 =
e0 according to constraint (16). Thus, we just consider x ∈ RA\Xr .

From (14), we have that v(x) = e−βτv(ϕ̂x(τ)), ∀τ ∈ [0, τx],
where τx is the first hitting time of the target set Xr . Due to constraint
(16), we further have that v(x) = e−βτx .

Next, we consider that x ∈ X \ RA, but its resulting trajectory
ϕ̂x(τ) will stay within the set X \Xr for all time. Due to constraint
(14), we have that v(x) = e−βτv(ϕ̂x(τ)) for τ ∈ R≥0. Since
v(·) : X → R is bounded, we have v(x) = 0.

Finally, we consider that x ∈ X \RA, but its resulting trajectory
ϕ̂x(τ) will touch the set ∂X in finite time and never enter the target
set Xr . Let τ ′x = inf{t ∈ R≥0 | ϕ̂x(t) ∈ ∂X} be the first hitting
time of the set ∂X .

If x ∈ ∂X , v(x) = 0 holds from constraint (15). Otherwise, τ ′x >
0. Further, from (14) we have v(x) = e−βτv(ϕ̂x(τ)), ∀τ ∈ [0, τ ′x).
Regarding constraint (15), which implies v(ϕ̂x(τ

′
x)) = 0, we have

v(x) = 0.
Thus, v(x) = V (x) for x ∈ X according to (13) and RA =

{x ∈ X | v(x) > 0}.
Via relaxing the set of equations (14)-(16), we can obtain a set of

inequalities for computing what we call exponential guidance-barrier
function, whose existence ensures the satisfaction of the reach-avoid
property in Definition 1. This set of inequalities is formulated in
Proposition 4, in which inequalities (18) and (19) are obtained directly
by relaxing equations (14) and (15), respectively.

Proposition 4: If there exists a continuously differentiable function
v(x) : X → R such that

v(x) > 0,∀x ∈ X0, (17)

▽x v(x) · f(x) ≥ βv(x), ∀x ∈ X \ Xr, (18)

v(x) ≤ 0,∀x ∈ ∂X , (19)

where β > 0 is a user-defined value, then the reach-avoid property
in the sense of Definition 1 holds.

Comparing constraints (17)-(19) and (5)-(9), we find that the
former is just a simplified version of the latter, i.e., if a function v(x)
satisfies constraints (5)-(9), −v(x) satisfies (17)-(19). The former can
be obtained by removing constraints (7) and (8) and reversing the
inequality sign in the rest of constraints in the latter. Therefore, we
did not give a proof of Proposition 4 here. Also, due to its more
concise form, constraint (17)-(19) will be used for discussions and
comparisons instead of constraint (5)-(9) in the sequel.

If an exponential guidance-barrier function v(x) satisfying con-
straint (17)-(19) is found, the reach-avoid property in Definition 1
holds, which is justified via Proposition 4. Moreover, it is observed
that the set R = {x ∈ X | v(x) > 0} is an under-approximation of
the reach-avoid set, i.e., R ⊆ RA. Also, due to constraint (18), we
conclude that the set R is an invariant for system CS until it enters
the target set Xr , i.e., the boundary ∂R = {x ∈ X | v(x) = 0} is a
barrier, preventing system CS from leaving the set R and escorting
system CS to the target set Xr safely; furthermore, we observe that
if v(x) satisfies constraint (17)-(19), it must satisfy

▽x v(x) · f(x) ≥ βv(x),∀x ∈ R \ Xr, (20)

which implies v(ϕx0(t)) ≥ eβtv(x0), ∀t ∈ [0, τx0 ], where x0 ∈
R \ Xr and τx0 = inf{t ∈ R≥0 | ϕx0(t) ∈ Xr} is the first hitting
time of the target set Xr . Consequently, this constraint indicates that
trajectories starting from R \ Xr will approach the target set Xr at
an exponential rate of β. This is why we term a solution to the set
of constraints (17)-(19) exponential guidance-barrier function. The

above analysis also uncovers a necessary condition such that v(x) is
a solution to constraint (17)-(19), which is R∩ Xr ̸= ∅.

The condition of entering the target set at an exponential rate is
strict for many cases, limiting the application of constraint (17)-(19)
to reach-avoid verification in practice. On the other hand, since the
initial set X0 should be a subset of the set R, the less conservative
the set R is, the more likely the reach-avoid property is able to be
verified. It is concluded from constraint (20) that the smaller β is,
the less conservative the set R is inclined to be. This is illustrated
in the following example.

Example 1: Consider an academic example,{
ẋ = −0.5x− 0.5y + 0.5xy

ẏ = −0.5y + 0.5
(21)

with X = {(x, y)⊤ | x2 + y2 − 1 < 0}, Xr = {(x, y)⊤ | (x +
0.2)2 + (y − 0.7)2 − 0.02 < 0} and X0 = {(x, y)⊤ | 0.1 − x <
0, x− 0.5 < 0,−0.8− y < 0, y + 0.5 < 0}.

In this example we use β = 0.1 and β = 1 to illustrate the effect
of β on reach-avoid verification via solving constraint (17)-(19). The
degree of all polynomials in the resulting semi-definite program is
taken the same and is taken in order of {2, 4, 6, 8, 10, . . . , 20}. When
the reach-avoid property is verified successfully, the computations
will terminate. The degree is respectively 14 for β = 0.1 and 20 for
β = 1 when termination. Both of the computed sets R are showcased
in Fig. 1, which almost collide with each other.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Fig. 1. Green, orange and black curve- ∂Xr , ∂X0 and ∂X ; blue and
red curve - ∂R, which are computed via respectively solving constraints
(17)-(19) with β = 0.1, and (17)-(19) with β = 1.

It is worth emphasizing here that although the discount factor β can
arbitrarily approach zero from above, it cannot be zero in constraint
(17)-(19), since a function v(x) satisfying this constraint with β = 0
cannot rule out the existence of trajectories, which start from X0 and
stay inside X \ Xr for ever. Consequently, we do not recommend
the use of too small β in practical numerical computations in order
to avoid numerical issue (i.e., preventing the term βV (x) in the
right hand of constraint (18) from becoming zero numerically due
to floating point errors).

Although a set of constraints for reach-avoid verification when
β = 0 cannot be obtained directly from (17)-(19), we will obtain one
from the discount function (11) with β = 0 in the sequel, expecting
to remedy the shortcoming of the strict requirement of exponentially
entering the set Xr when β > 0.

D. Asymptotic Guidance-barrier Functions
In this subsection we elucidate the construction of constraints fo

reach-avoid verification based on the discount value function V (x)
in (11) with β = 0. In this case, the reach-avoid verification problem
is transformed into a problem of determining the existence of an
asymptotic guidance-barrier function.

The set of constraints is constructed via relaxing a system of
equations admitting the value function V (x) in (11) with β = 0
as solutions. These equations are presented in Theorem 2.



REACH-AVOID VERIFICATION BASED ON CONVEX OPTIMIZATION 5

Theorem 2: Given system CSPS, if there exist continuously dif-
ferential functions v(x) : X → R and w(x) : X → R satisfying

▽x v(x) · f(x) = 0, ∀x ∈ X \ Xr, (22)

v(x) = ▽xw(x) · f(x), ∀x ∈ X \ Xr, (23)

v(x) = 0, ∀x ∈ ∂X , (24)

v(x) = 1, ∀x ∈ Xr, (25)

then v(x) = V (x) for x ∈ X and thus {x ∈ X | v(x) = 1} = RA,
where V (·) : X → R is the value function with β = 0 in (11).

Proof: From (22), we have that

v(x) = v(ϕ̂x(τ)), ∀τ ∈ [0, τx], (26)

where τx ∈ R≥0 is the time instant such that ϕ̂x(τ) ∈ X \ Xr, ∀τ ∈
[0, τx].

For x ∈ RA, we obtain v(x) = 1 due to (25) and (26).
In the following we consider x ∈ X \ RA.
We first consider x ∈ X \ RA, but its trajectory ϕ̂x(·) : R≥0 →

Rn stays within the set X \ Xr . From (23), we have that

v(ϕ̂x(τ)) = ▽yw(y) · f(y) |
y=ϕ̂x(τ)

for τ ∈ R≥0. Thus, we have that∫ t

0
v(ϕ̂x(τ))dτ =

∫ t

0
▽yw(y) · f(y) |

y=ϕ̂x(τ)
dτ

for t ∈ R≥0 and further v(x) = w(ϕ̂x(t))−w(x)
t for t ∈ R≥0. Since

w(x) is continuously differentiable function over X , it is bounded
over x ∈ X . Consequently, v(x) = 0.

Next, we consider x ∈ X \ RA, but its trajectory ϕ̂x(τ) will
touch ∂X in finite time and never enters the target set Xr . For such
x, we can obtain that v(x) = 0 due to constraints (26) and (24).

Thus, according to (12), v(x) = V (x) for x ∈ X . Further, from
Lemma 3, {x ∈ X | v(x) = 1} = RA holds.

Based on the system of equations (22)-(25), we have a set of
inequalities as shown in Proposition 5 for computing an asymptotic
guidance-barrier function v(x) to ensure the satisfaction of reach-
avoid properties in the sense of Definition 1. In Proposition 5,
inequalities (28), (29) and (30) are obtained directly by relaxing
equations (22), (23) and (24), respectively.

Proposition 5: If there exist a continuously differentiable function
v(x) : X → R and a continuously differentiable function w(x) :
X → R satisfying

v(x) > 0,∀x ∈ X0, (27)

▽x v(x) · f(x) ≥ 0, ∀x ∈ X \ Xr, (28)

v(x)−▽xw(x) · f(x) ≤ 0, ∀x ∈ X \ Xr, (29)

v(x) ≤ 0,∀x ∈ ∂X , (30)

then the reach-avoid property in the sense of Definition 1 holds.
Proof: Let R = {x ∈ X | v(x) > 0}. We will show that

R ⊆ RA. If it holds, we can obtain the conclusion since X0 ⊆ RA,
which is obtained from constraint (27).

Let x0 ∈ R. Obviously, x0 ∈ X due to constraint (30). If
x0 ∈ Xr , x0 ∈ RA holds obviously. Therefore, in the following
we assume x0 ∈ R \ Xr . We will prove that there exists t ∈ R≥0

satisfying ϕx0(t) ∈ Xr
∧

∀τ ∈ [0, t].ϕx0(τ) ∈ R.
Assume that there exists t ∈ R≥0 such that

ϕx0(t) ∈ ∂R
∧

∀τ ∈ [0, t).ϕx0(τ) ∈ R \ Xr.

From (28), we have that v(ϕx0(τ)) ≥ v(x0) > 0 for τ ∈ [0, t],
contradicting that v(x) = 0 for x ∈ ∂R.

Therefore, either

ϕx0(τ) ∈ R \ Xr, ∀τ ∈ R≥0 (31)

or
∃t ∈ R≥0.ϕx0(t) ∈ Xr

∧
∀τ ∈ [0, t].ϕx0(τ) ∈ R (32)

holds.
Assume that (31) holds. From (28), we have that v(ϕx0(τ)) ≥

v(x0) > 0, ∀τ ∈ R≥0.
From (29), we have that for τ ∈ R≥0, v(ϕx0(τ)) ≤ ▽xw(x) ·

f(x) |x=ϕx0 (τ)
. Thus, w(ϕx0(t)) − w(x0) ≥ tv(x0), ∀t ∈ R≥0,

implying that limt→+∞ w(ϕx0(t)) = +∞. Since w(·) : X → R
is continuously differentiable and X is compact, w(·) : X → R
is bounded. This is a contradiction. Thus, (32) holds, implying that
x ∈ RA and thus R ⊆ RA.

According to Proposition 5, the reach-avoid property in the sense
of Definition 1 can be verified via searching for a feasible solution
v(x) to the set of constraints (27)-(30). Also, from the proof of
Proposition 5, we find that the set R = {x ∈ X | v(x) > 0} will
also be an invariant for system CS until it enters the target set Xr ,
and R ∩ Xr ̸= ∅. Inspired by the notion of asymptotic stability in
stability analysis, if system CS starting from the set R = {x ∈ X |
v(x) > 0} with v(x) satisfying constraint (17)-(19), enters the target
set Xr at an exponential rate, then system CS starting from the set
R = {x ∈ X | v(x) > 0} with v(x) satisfying constraint (27)-(30),
would enter the target set Xr in an asymptotic sense. This is the
reason that we term a function v(x) satisfying constraint (27)-(30)
asymptotic guidance-barrier function.

Comparing constraints (17)-(19) and (27)-(30), it is easy to find that
an auxillary function w(x) is introduced when β = 0 in constraint
(18). This constraint having w(x), i.e., (29), excludes trajectories
starting from X0 and staying inside X \ Xr for ever. On the other
hand, constraint (28) keeps trajectories, starting from R, inside it
before entering the target set Xr . Also, we observe that constraint
(17)-(19) can be derived from the set of constraints (27)-(30) via
taking w(x) = 1

β v(x). In such circumstances, constraint (28) is
redundant and should be removed. Further, if there exists a function
v(x) satisfying constraint (20), there must exist a function w(x),
which can take 1

β v(x) for instance, such that

▽x v(x) · f(x) ≥ 0, ∀x ∈ R \ Xr,

v(x)−▽xw(x) · f(x) ≤ 0, ∀x ∈ R \ Xr

(33)

holds. Thus, constraint (33) is more expressive than (20) and conse-
quently is more likely to produce less conservative set R. We in the
following continue to use the scenario in Example 1 to illustrate this.

Example 2: Consider the scenario in Example 1 again. We solve
constraint (27)-(30) to verify the reach-avoid property. The reach-
avoid property is verified when polynomials of degree 12 in the
resulting semi-definite program are taken.

Remark 1: As done in verifying invariance of a set using barrier
certificate methods [4], one simple application scenario, reflecting the
advantage of constraint (33) over (20) further, is on verifying whether
trajectories starting from a given open set R̂, which may be designed
a priori via the Monte-Carlo simulation method, will enter the target
set Xr eventually while staying inside it before the first target hit,
where R̂ = {x ∈ Rn | v̂(x) > 0} with v̂(x) being continuously
differentiable and Xr ∩R̂ ̸= ∅. We are inclined to verifying whether
there exists a continuously differentiable function w(x) satisfying

▽x v̂(x) · f(x) ≥ 0, ∀x ∈ R̂ \ Xr,

v̂(x)−▽xw(x) · f(x) ≤ 0, ∀x ∈ R̂ \ Xr,
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instead of verifying whether there exists β > 0 such that

▽xv̂(x) · f(x) ≥ βv̂(x),∀x ∈ R̂ \ Xr,

because the former is more expressive than the latter.
Although there are some benefits on the use of constraints (27)-

(30) over (17)-(19) for reach-avoid verification, there is still a
defect caused by constraint (28), possibly limiting the application of
constraint (27)-(30) to some extent. Unlike constraint (18) in (17)-
(19), constraint (28) not only requires the Lie derivative of function
v(x) along the flow of system CS to be non-negative over the set
R \ Xr , but also over X \ (Xr ∪R). One simple solution to remedy
this defect is to combine constraints (27)-(30) and (17)-(19) together,
and obtain a set of constraints which is more expressive. These
constraints are presented in Proposition 6.

Proposition 6: If there exist continuously differentiable functions
v1(x), v2(x) : X → R and w(x) : X → R satisfying

v1(x) + v2(x) > 0, ∀x ∈ X0, (34)

▽x v1(x) · f(x) ≥ 0, ∀x ∈ X \ Xr, (35)

v1(x)−▽xw(x) · f(x) ≤ 0, ∀x ∈ X \ Xr, (36)

v1(x) ≤ 0, ∀x ∈ ∂X , (37)

▽x v2(x) · f(x) ≥ βv2(x), ∀x ∈ X \ Xr, (38)

v2(x) ≤ 0, ∀x ∈ ∂X , (39)

where β ∈ (0,+∞), then the reach-avoid property in the sense of
Definition 1 holds.

Proof: Let x0 ∈ R = {x ∈ X | v1(x)+v2(x) > 0}, we have
that x0 ∈ {x ∈ X | v1(x) > 0} or x0 ∈ {x ∈ X | v2(x) > 0}.
Following Proposition 4 and 5, we have the conclusion.

Due to constraint (34), v1(x) may not be an asymptotic guidance-
barrier function satisfying constraint (27)-(30). Similarly, v2(x) may
not be an exponential guidance-barrier function satisfying constraint
(17)-(19). Thus, constraint (34)-(39) is weaker than both of con-
straints (27)-(30) and (17)-(19). The set R = {x ∈ X | v1(x) +
v2(x) > 0} is a mix of states entering the target set Xr at an expo-
nential rate and ones entering the target set Xr at an asymptotic rate,
thus we term v1(x) + v2(x) asymptotic guidance-barrier function.
However, we cannot guarantee that the set R still satisfies R∩Xr ̸= ∅
and it is an invariant for system CS until it enters the target set Xr .
If an initial state x0 ∈ X0 is a state such that v2(x) > 0, then the
trajectory starting from it will stay inside the set R until it enters the
target set Xr , since

d(v1 + v2)

dt
= ▽xv1(x) · f(x) +▽xv2(x) · f(x)

≥ βv2(x),∀x ∈ X \ Xr

holds; otherwise, we cannot have such a conclusion. Instead, we have
that Ri = {x ∈ X | vi(x) > 0} satisfies Ri ∩ Xr ̸= ∅ and is an
invariant for system CS until it enters the target set Xr , if Ri ̸= ∅,
where i ∈ {1, 2}. Let’s illustrate this via an example.

Example 3: Consider the scenario in Example 1 again, but solve
constraint (34)-(39) with β = 2 for reach-avoid verification. The
reach-avoid property is verified when polynomials of degree 12 are
taken. The computed R is shown in Fig. 2. For this case, the set
R2 = {x ∈ X | v2(x) > 0} is empty. It is observed from Fig. 2
that the set R does not intersect Xr , and system CS leaves it before
entering the target set Xr . However, the set R1 is an invariant for
system CS until it enters the target set Xr and R1 ∩ Xr ̸= ∅.

The other more sophisticated solution of enhancing constraint (27)-
(30) is to replace constraint (28) with

▽xv(x) · f(x) ≥ α(x), ∀x ∈ X \ Xr,
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Fig. 2. Green, orange and black curve- ∂Xr , ∂X0 and ∂X ; blue and
red curve - ∂R1 and ∂R computed via solving constraint (34)-(39).

where α(·) : X → R is a continuous function satisfying α(x) ≥ 0
over {x ∈ X \ Xr | v(x) ≥ 0}. One instance for α(x) is β(x)v(x),
where β(·) : X → [0,+∞). The new constraints are formulated in
Proposition 7.

Proposition 7: If there exists a continuously differentiable function
v(x) : X → R, a continuous function α(·) : Rn → R satisfying
α(x) ≥ 0 over {x ∈ X \ Xr | v(x) ≥ 0}, and a continuously
differentiable function w(x) : X → R satisfying

v(x) > 0, ∀x ∈ X0, (40)

▽x v(x) · f(x) ≥ α(x), ∀x ∈ X \ Xr, (41)

v(x)−▽xw(x) · f(x) ≤ 0, ∀x ∈ X \ Xr, (42)

v(x) ≤ 0, ∀x ∈ ∂X , (43)

then the reach-avoid property in the sense of Definition 1 holds.
Proof: Let R = {x ∈ X | v(x) > 0}. From constraint (41),

we have that if ϕx0(t) ∈ R \ Xr , ▽xv(x) · f(x) |x=ϕx0 (t)
≥ 0.

Then, following the arguments in the proof of Proposition 5, we have
the conclusion.

Constraint (40)-(43) is less strict than constraint (27)-(30) in that
the former only requires the Lie derivative of v(x) along the flow
of system CS to be non-negative over the set R \ Xr rather than
X \ Xr , due to constraint (41). Constraint (40)-(43) does not impose
any restrictions on the Lie derivative of v(x) along the flow of system
CS over the set X \ R. Moreover, it is more expressive since it
degenerates to constraint (27)-(30) when α(·) ≡ 0, and it is more
expressive than constraint (17)-(19), since the former degenerates to
the latter when α(x) = βv(x) and w(x) = 1

β v(x). Besides, the set
R obtained via solving constraint (40)-(43) will be an invariant for
system CS until it enters the target set Xr , and R∩ Xr ̸= ∅.

Example 4: Consider the system in Example 1 with X =
{(x, y)⊤ | x2 + y2 − 1 < 0}, Xr = {(x, y)⊤ | (x + 0.2)2 +
(y−0.7)2−0.02 < 0} and X0 = {(x, y)⊤ | 0.1−x < 0, x−0.5 <
0,−0.8− y < 0, y + 0.4 < 0}.

In this example we use α(v(x)) = x2v(x) to illustrate the benefits
of constraints (40)-(43) on reach-avoid verification. The degree of
all polynomials in the resulting semi-definite program is taken the
same and in order of {2, 4, 6, 8, 10, . . . , 20}. When the reach-avoid
property is verified successfully, the computations terminate. The
degree is 12 for termination. In contrast, the degree is 14 when using
constraints (17)-(19) with β = 0.1 and (27)-(30) to verify the reach-
avoid property. Consequently, these experiments further support our
analysis that constraint (40)-(43) is more expressive and can provide
more chances for verifying the reach-avoid property successfully.

IV. EXAMPLES

We further demonstrate the theoretical development and perfor-
mance of the proposed conditions on several examples, i.e., Examples
5-9. In the computations, the degree of unknown polynomials in
the resulting semi-definite programs is taken the same and in order
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of {2, 4, 6, 8, 10, . . . , 20}. When the reach-avoid property is verified
successfully, the computations terminate. A return of ‘Successfully
solved (MOSEK)’ from YALMIP will denote that a feasible solution
is found, and the reach-avoid property is successfully verified.

Example 5: Consider the scenario in Example 4. As analyzed in
Subsection III-C, the smaller the discount factor β is in constraint
(17)-(19), the more likely the reach-avoid property is able to be
verified. Thus, in this example, we supplement some experiments
involving constraint (17)-(19) with β < 0.1 for more comprehensive
and fair comparisons with the proposed methods in the present work.
In these experiments, β = 10−2, 10−3, 10−4, 10−5, 10−6 are used.
For all of these experiments, the computations terminate when the
degree takes 14. All the results, including the ones in Example 4,
further validate the benefits of constraint (40)-(43) over constraints
(27)-(30) and (17)-(19) in terms of stronger expressiveness.

We also experimented using constraint (2)-(4), and the reach-avoid
property is verified when the degree is 14.

Example 6 (Van der Pol Oscillator): Consider the reversed-time
Van der Pol oscillator given by{

ẋ = −2y

ẏ = 0.8x+ 10(x2 − 0.21)y

with X = {(x, y)⊤ | x2 + y2 − 1 < 0}, X0 = {(x, y)⊤ | −x <
−0.6, x < 0.8,−y < 0, y < 0.2} and Xr = {(x, y)⊤ | x2 + y2 −
0.01 < 0}.

The reach-avoid property is verified when the degree is 8, 8 and
12 for constraints (2)-(4), (27)-(30) and (17)-(19) with β = 0.1,
respectively. We did not obtain any positive verification result from
constraint (17)-(19) with β = 1. However, it can be improved by
solving constraint (34)-(39) with β = 1 and the reach-avoid property
is verified when the degree is 8. Further, if constraint (40)-(43) is
used with α(x) = x2v(x), the degree is 6. Some of the computed
sets R are illustrated in Fig. 3.

Besides, we also experimented using constraints (17)-(19) and
(34)-(39) with β = 10−2, 10−3, 10−4, 10−5, 10−6 for more com-
prehensive and fair comparisons. The computations terminate when
the degree takes 8 for all of these experiments.
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Fig. 3. Green, black and orange curve- ∂Xr , ∂X and ∂X0; blue, red,
cyan and purple curve - ∂R, which is computed via solving constraints
(27)-(30) when the degree is 8, (17)-(19) when the degree is 12 and β =
0.1, (34)-(39) when the degree is 8 and β = 1, and (40)-(43) when the
degree is 6 and α(x) = x2v(x).

Example 7: Consider the following system from [24],{
ẋ = −0.42x− 1.05y − 2.3x2 − 0.56xy − x3

ẏ = 1.98x+ xy

with X = {x ∈ R2 | (x)2 + (y)2 − 4 < 0}, X0 = {x ∈ R2 |
(x − 1.2)2 + (y − 0.8)2 − 0.1 < 0} and Xr = {x ∈ R2 | (x +
1.2)2 + (y + 0.5)2 − 0.3 < 0}.

The reach-avoid property in the sense of Definition 1 is not verified
using constraint (2)-(4). Actually, it cannot be verified via solving
constraint (2)-(4), since there exists an equilibrium in the set X \ Xr .

The reach-avoid property is verified when the degree is 10 for
constraints (27)-(30), and (17)-(19) with β = 1 and β = 0.1. If
constraint(40)-(43) is used with α(x) = (2 − y)v(x), the degree is
8. Some of the computed sets R are illustrated in Fig. 4.

Like Example 6, we also experimented using constraints (17)-(19)
and (34)-(39) with β = 10−2, 10−3, 10−4, 10−5, 10−6 for more
comprehensive and fair comparisons. The computations terminate
when the degree takes 10 for all of these experiments.
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Fig. 4. Green, black and orange curve- ∂Xr , ∂X and ∂X0; blue, red,
cyan and purple curve - ∂R, which is computed via solving constraints
(27)-(30) when the degree is 10, (17)-(19) when the degree is 10 and
β = 1, (17)-(19) when the degree is 10 and β = 0.1, and(40)-(43)
when the degree is 8 and α(x) = (2 − y)v(x).

Example 8: Consider the following system from [24],{
ẋ = y

ẏ = −(1− x2)x− y

with X = {x ∈ R2 | x2

4 + y2

9 −1 < 0}, X0 = {x ∈ R2 | (x+1)2+

(y− 1.5)2 − 0.25 < 0} and Xr = {x ∈ R2 | x2 + y2 − 0.01 < 0}.
The reach-avoid property is not verified using constraint (2)-(4),

and is verified when the degree is 10 for constraint (27)-(30). We did
not obtain any positive verification result from solving constraint (17)-
(19) with β = 1 and β = 0.1. However, this negative situation can be
improved by solving constraint (34)-(39) with β = 1 and β = 0.1,
and the reach-avoid property is verified when the degree is 10. If
constraint(40)-(43) is used with α(x) = (x+ y)2v(x), the degree is
6. Furthermore, if constraint (40)-(43) is used with α(x) = x4v(x),
the degree is 4.

Analogously, we also experimented using constraint (17)-(19)
and (34)-(39) with β = 10−2, 10−3, 10−4, 10−5, 10−6 for more
comprehensive and fair comparisons. The computations terminate
when the degree is 10 for all of these experiments.
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Fig. 5. Green, black and orange curve- ∂Xr , ∂X and ∂X0; blue, red,
cyan and purple curve - ∂R, which is computed via solving constraints
(27)-(30) when the degree is 10, (34)-(39) when the degree is 10 and
β = 1, (40)-(43) when the degree is 6 and α(x) = (x + y)2v(x),
and(40)-(43) when the degree is 4 and α(x) = x4v(x).

Example 9 (Dubin’s Car): Consider the Dubin’s car: ȧ =
v cos(θ), ḃ = v sin(θ), θ̇ = ω, where v = 1 and w = 2.
By the change of variables, x = θ, y = a cos(θ) + b sin(θ),
z = −2(a sin(θ) − b cos(θ)) + θy with u1 = ω and u2 = v −
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ω(a sin(θ)− b cos(θ)), it is transformed into polynomial dynamics:
ẋ = u1,

ẏ = u2,

ż = yu1 − xu2.

(44)

with u1 = 2, u2 = 1+z−xy, X = {x ∈ R3 | x2+y2+z2−4 < 0},
X0 = {x ∈ R3 | (x + 0.6)2 + y2 + (z + 0.6)2 − 0.02 < 0} and
Xr = {x ∈ R3 | x2 + y2 + z2 − 4 < 0, (x− 1.0)2 − (y + 0.5)2 +
(z + 0.1)2 − 0.1 < 0}.

The reach-avoid property is verified when degree is 8 for all of
constraints (2)-(4), (27)-(30), (17)-(19) with β ∈ {1, 0.1, . . . , 10−6},
(34)-(39) with β ∈ {1, 0.1, . . . , 10−6}. However, if constraint(40)-
(43) is used with α(x) = (1− x)2v(x), the degree is 6.

Examples above, i.e., Example 5-9, indicate that when the discount
factor is small, constraint (17)-(19) has the same performance with
constraint (27)-(30), although it performs worse when the discount
factor is large. On the other hand, constraint (34)-(39) indeed is able
to improve the performance of constraint (17)-(19) when the discount
factor is large, but it does not improve constraint (27)-(30) and its
performance will be the same with constraint (17)-(19) when the
discount factor is small. However, constraint (40)-(43) outperforms
the former three, i.e., constraints (17)-(19), (27)-(30) and (34)-(39),
and constraint (2)-(4). It is indeed more expressive and has more
feasible solutions, providing more chances for verifying the reach-
avoid property in the sense of Definition 1 successfully. Besides, from
Example 8 we observe that the performance of constraint(40)-(43) is
affected by the choice of the function α(x), and an appropriate choice
will be more conducive to the reach-avoid verification. However, how
to determine such a function in an optimal sense is still an open
problem, which will be investigated in the future work. In practice,
engineering experiences and insights may facilitate the choice.

In the present work we only demonstrate the performance of all of
quantified constraints by relaxing them into semi-definite constraints
and addressing them within the semi-definite programming frame-
work, which could be solved efficiently via interior point methods in
polynomial time. It is worth remarking here that besides semi-definite
programs for implementing these constraints, other methods such
as counterexample-guided inductive synthesis methods combining
machine learning and SMT solving techniques (e.g., [1]) can also be
used to solve these constraints. We did not show their performance in
this present work and leave these investigations for ones of interest.

V. CONCLUSION AND FUTURE WORK

In this paper we studied the reach-avoid verification problem of
continuous-time systems within the framework of optimization based
methods. At the beginning of our method, two sets of quantified
inequalities were derived respectively based on a discount value func-
tion with the discount factor being larger than zero and equal to zero,
such that the reach-avoid verification problem is transformed into
a problem of searching for exponential/asymptotic guidance-barrier
functions. The set of constraints associated with asymptotic guidance-
barrier functions is completely novel and has certain benefits over
the other one, which is a simplified version of the one in existing
literature. Furthermore, we enhanced the new set of constraints
such that it is more expressive than the aforementioned two sets
of constraints, providing more chances to verify the satisfaction of
reach-avoid properties successfully. When the datum involved are
polynomials, i.e., the initial set, safe set and target set are semi-
algebraic, and the system has polynomial dynamics, the problem
of solving these sets of constraints can be efficiently addressed
using convex optimization. Finally, several examples demonstrated
the theoretical developments and benefits of the proposed constraints.

REFERENCES

[1] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo. Fossil:
a software tool for the formal synthesis of lyapunov functions and barrier
certificates using neural networks. In HSCC’21, pages 1–11, 2021.

[2] M. Althoff. Reachability analysis of nonlinear systems using conserva-
tive polynomialization and non-convex sets. In Proceedings of the 16th
international conference on Hybrid systems: computation and control,
pages 173–182, 2013.

[3] M. Althoff, G. Frehse, and A. Girard. Set propagation techniques
for reachability analysis. Annual Review of Control, Robotics, and
Autonomous Systems, 4(1), 2021.

[4] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada. Control barrier functions: Theory and applications. In 2019
18th European control conference (ECC), pages 3420–3431. IEEE, 2019.

[5] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability
analysis of piecewise-linear dynamical systems. In HSCC’00, pages 20–
31. Springer, 2000.

[6] S. Bak. t-barrier certificates: a continuous analogy to k-induction. IFAC-
PapersOnLine, 51(16):145–150, 2018.

[7] M. Berz and K. Makino. Verified integration of odes and flows using
differential algebraic methods on high-order taylor models. Reliable
computing, 4(4):361–369, 1998.
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