Quantifier Elimination Meets Treewidth

Hao Wu*b2®, Jiyu Zhu*12®, Amir Kafshdar Goharshady>®,
Jie An*2®, Bican Xia®®, and Naijun Zhan%7 (&

1 KLSS, Institute of Software Chinese Academy of Sciences, China
2 University of Chinese Academy of Sciences, China
3 University of Oxford, United Kingdom
4 National Key Laboratory of Space Integrated Information System,
Institute of Software Chinese Academy of Sciences, China
5 School of Mathematical Sciences, Peking University, China
6 School of Computer Science, Peking University, China
" Zhongguancun Laboratory, China
{wuhao, zhujy}@ios.ac.cn amir.goharshady@cs.ox.ac.uk
anjie@iscas.ac.cn xbc@math.pku.edu.cn njzhan@pku.edu.cn

Abstract. In this paper, we address the complexity barrier inherent in
Fourier-Motzkin elimination (FME) and cylindrical algebraic decompo-
sition (CAD) when eliminating a block of (existential) quantifiers. To
mitigate this, we propose exploiting structural sparsity in the variable
dependency graph of quantified formulas. Utilizing tools from parame-
terized algorithms, we investigate the role of treewidth, a parameter that
measures the graph’s tree-likeness, in the process of quantifier elimina-
tion. A novel dynamic programming framework, structured over a tree
decomposition of the dependency graph, is developed for applying FME
and CAD, and is also extensible to general quantifier elimination pro-
cedures. Crucially, we prove that when the treewidth is a constant, the
framework achieves a significant exponential complexity improvement for
both FME and CAD, reducing the worst-case complexity bound from
doubly exponential to single exponential. Preliminary experiments on
sparse linear real arithmetic (LRA) and nonlinear real arithmetic (NRA)
benchmarks confirm that our algorithm outperforms the existing popular
heuristic-based approaches on instances exhibiting low treewidth.

Keywords: Quantifier Elimination - Fourier-Motzkin Elimination - Cylin-
drical Algebraic Decomposition - Parameterized Algorithms - Treewidth

1 Introduction

Quantifier elimination (QE) is a fundamental technique in mathematical logic
that transforms a first-order formula containing existential (3) and universal (V)
quantifiers into an equivalent quantifier-free formula. A theory that admits a

The first two authors marked with x contributed equally to this work and should be
considered co-first authors. A longer version with appendices is available at [73].

https://orcid.org/0000-0001-9368-4744
https://orcid.org/0009-0001-1885-0674
https://orcid.org/0000-0003-1702-6584
https://orcid.org/0000-0001-9260-9697
https://orcid.org/0000-0002-2570-2338
https://orcid.org/0000-0003-3298-3817

2 H. Wu et al.

quantifier elimination procedure is highly desirable, as its decidability immedi-
ately reduces to the decidability of its quantifier-free fragment. This theoretical
significance strongly motivates researchers in mathematics and computer science
to investigate various theories that admit quantifier elimination procedures. This
paper primarily focuses on quantifier elimination within two central theories over
the real numbers: linear real arithmetic (LRA), where atomic formulas are de-
fined by strictly linear constraints, and nonlinear real arithmetic (NRA), which
permits general polynomial constraints.

For LRA, the Fourier-Motzkin elimination (FME) algorithm is the first quan-
tifier elimination procedure, originally proposed by Fourier [33] and rediscovered
by Motzkin [60]. This algorithm can be understood as reducing a system of linear
inequalities by removing variables one by one. Its importance primarily stems
from its geometric interpretation, which corresponds to the projection of a poly-
hedron (described by linear inequalities) onto lower-dimensional subspaces [67,
Sect. 12.2]. However, a significant challenge of applying the FME algorithm is
its high worst-case complexity, which is doubly exponential in the number of
quantified variables. This high complexity results from the rapid, often redun-
dant, proliferation of new constraints during the elimination steps [43,44,47].
For eliminating a block of existential quantifiers, recent works [61,62] provide a
divide-and-conquer approach to improve the complexity to single exponential.

For NRA, the first quantifier elimination procedure was developed around
the 1930s by Tarski in his seminal work [72]. While Tarski’s procedure is not ele-
mentary recursive, the first elementary recursive quantifier elimination procedure
was developed by Collins in 1975 [20], known as cylindrical algebraic decomposi-
tion (CAD). The CAD algorithm marks a milestone in real algebraic geometry
and a comprehensive survey can be found in [16]. Ever since its origin, the CAD
algorithm, as well as its various variants [59,39,21,13,18,40,15,38,68,10,37], has
remained the most authoritative procedure for NRA. It has found broad appli-
cation in critical domains, including formal verification [50,65,54,34,1], control
synthesis [28,49,41], and hybrid system analysis [2,69]. Similar to the FME algo-
rithm, the CAD algorithm also suffers from a worst-case doubly exponential com-
plexity, but in the number of all occurring variables [23]. Besides the complexity
of internal algebraic operations, it is well known that the order of variables to
be eliminated, called wvariable elimination ordering, has a huge impact on the
practical performance when eliminating a block of existential quantifiers. There-
fore, many heuristics based on sophisticated structural analysis [14,26,11,53] and
machine learning techniques have been applied to this task [42,31,19,46].

While existing works mostly focus on improving FME and CAD for general
inputs, a natural but unexplored (up to our knowledge) problem is: Can we
design strategies for certain classes of inputs with better worst-case
complexity upper bounds? Specifically, in this paper, we consider posing
restrictions on the structural complexity of the dependency relationship of vari-
ables. This relationship is typically represented by a graph, precisely the primal
graph, whose nodes correspond to variables of the input formula, and two vari-

Quantifier Elimination Meets Treewidth 3

ables are linked if and only if they both occur in an atomic formula. To study
this problem, we utilize tools coming from parameterized algorithms.

The study of parameterized algorithms offers a fine-grained analytical frame-
work for tackling computationally hard problems by introducing a secondary
measurement, k, known as the parameter [29,22]. For example, a problem is
classified as fized-parameter tractable (FPT) if it admits an algorithm with a
time complexity of O(f(k) - n®), where n is the input size, f is a computable
function depending solely on k, and c is a constant independent of n. In general,
the goal of parameterized complexity is to conduct a finer-grained analysis of
complexity by isolating the combinatorial explosion to a specific parameter.

When the input is a graph, treewidth is one of the most important parameters
to measure its inherent complexity. Intuitively, treewidth quantifies how “tree-
like” a graph is: a smaller treewidth value indicates a greater sparsity in the
graph structure. The main advantage of treewidth is that a bounded treewidth
allows a vast collection of classical NP-hard problems to become fixed-parameter
tractable [64,8,22]. This tractability is fundamentally realized by employing dy-
namic programming (DP) techniques executed over a tree structure related to
the graph, called a tree decomposition [6]. For constraint satisfiability problems,
treewidth measures the structural complexity of variable dependencies and has
been extensively studied [70,57,32,27,35,55]. However, the role of treewidth in the
quantifier elimination of first-order logic theories is largely untouched, possibly
due to the inherent high complexity of these procedures.

Contributions. In this paper, we develop a novel framework to exploit the
treewidth sparsity pattern in the process of applying quantifier elimination proce-
dures to eliminate a block of (existential) quantifiers. Here, the treewidth sparsity
pattern means that the primal graph of the input formula has a small treewidth.
The primary contributions include:

e We propose a dynamic programming algorithm for applying FME and CAD
to eliminate a block of quantifiers. It is executed over a tree decomposition of
the formula’s primal graph, where the treewidth of the graph determines the
structure of this decomposition. We prove its correctness and demonstrate
its extensibility to general quantifier elimination procedures.

e We prove that, when the treewidth is a constant, the worst-time complexity
of FME and CAD can be exponentially improved from doubly exponential
to single exponential in the number of eliminated variables and all occur-
ring variables, respectively. The core idea is the utilization of a special tree
decomposition structure, called balanced tree decompositions [17].

e We conduct experiments on randomly generated LRA and NRA bench-
marks exhibiting sparse patterns. Experimental results indicate that our
algorithm outperforms other popular heuristics on problem instances with
low treewidth.

Our starting point is a parameterized algorithmic perspective, a methodology
that is orthogonal to most existing techniques. The most closely related work
is [53], which exploits the chordal structure of the primal graph to guide the

4 H. Wu et al.

variable elimination ordering in CAD. Since chordal graphs and tree decompo-
sitions are two sides of one coin [25, Sec. 12.3], our algorithm in Sect. 3 can be
viewed as a dual version of theirs. Nevertheless, utilizing treewidth offers sig-
nificant algorithmic advantages. Specifically, it enables a dynamic programming
framework that is more comprehensible and, by drawing upon concepts from
parameterized complexity theory, a more fine-grained analysis of the complexity
issues involved.

Outline. The rest of this paper is organized as follows: Sect. 2 introduces neces-
sary concepts. Sect. 3 presents the dynamic programming algorithm for FME and
presents how to extend it to CAD and general quantifier elimination procedures.
Sect. 4 analyzes the complexity of our framework for FME and CAD under the
assumption that the treewidth is a constant. Sect. 5 reports the experimental
results and Sect. 6 finally concludes the paper.

2 Preliminaries

Let R and N denote the set of real numbers and natural numbers, respectively.
A vector of n real variables is denoted by (z1,...,z,) € R", also written as x for
short. We denote by (z5(1),- .- ,xc,(n)> a linear ordering among these variables,
where o is from the permutation group of size n. For example, (x1,...,2,)
denotes the natural order from z; to x,. We assume readers are familiar with
first-order logic and recommend the book [12] for reference. For a set C' of atomic
formulas, we denote by A C the conjunction of all atomic formulas in C.

2.1 LRA, NRA, and Quantifier Elimination

Quantifier Elimination (QE). We say a first-order theory T admits quantifier
elimination if there exists an algorithm, called a quantifier elimination proce-
dure, that transforms a given quantified 7-formula into an equivalent formula
without quantifiers. Formally, w.l.o.g., we consider the input formula @ to be a
conjunction of atomic formulas that is existentially quantified:

& = Az,,,..., 321, /\(pi(xl,...7mn)7 (1)

where m,n € N, m < n, and each ; is an atomic 7T-formula. The output
of the quantifier elimination procedure is a quantifier-free formula in variables
Tm+41, - -, Ty that is equivalent to @. For formulas with quantifier alternations
(e.g., Vaxodxy), we eliminate quantifiers from inside out, eliminating a block of
quantifiers of the same type at each step. In what follows, we primarily focus on
the FME algorithm for LRA and on the CAD algorithm for NRA.

Linear Real Arithmetic (LRA). LRA refers to the first-order theory with
signature {0,1,+,<} and domain R. Given variables (z1,...,2,) € R™ and
real constants (ai,...,a,,b) € R""1 an LRA atomic formula is of the form

Quantifier Elimination Meets Treewidth 5

a1y + -+ + apx, — b1 0, where the relation symbol x € {<, >, =, <, >}. The
semantics of LRA is interpreted in the standard way.

Fourier-Motzkin Elimination (FME). The FME algorithm takes a pair
(C,z,) as input, where C' is a set of LRA atomic formulas and xz, is a vari-
able occurring in these constraints, and proceeds one of the following two steps:

(I) If a, appears in an equality constraint of the form 2?21 a; j-v;—b; = 0 with
air # 0, the procedure removes this constraint from C' and outputs C' by

i ith 2o —Sr—Laiy . §on Gisj g
replacing every occurrence of @, with 2 — 37,7 Tabeay; — 370) Tu ey,

(IT) If z, only appears in inequality constraints of the form 2?21 ajj-xj—b; >0,
where > is not = and a; . # 0, for each of such constraints we derive a term

al% - Zg;} et ewy =300 gt that is called a bound of x,. Moreover,
the bound is called an upper bound if a; , > 0 and a lower bound if a; » < 0.
In either case, it is called strict if < € {<, >}. Let U, and L, denote the set
of upper bounds and lower bounds of x,, respectively. Then, the procedure
outputs the set of constraints {{ <wu |l € L,,u € U, }, where < is < if both

w and [are strict and is < otherwise.

We denote the output by FME(C, z,.), which is a set of atomic formulas with-
out x,. If C' is taken to be the set of atomic formulas of an LRA formula & of
the form Eq. (1), then @ is equivalent to the following quantifier-free formula
NFME(C, (z1,...,2m)), where FME(C, (21,...,2)) denotes the output of re-
cursively applying FME procedure on C' w.r.t. the ordering from x; to x,,. For
a more detailed description of the algorithm, please refer to [52, Sec. 5.4].

Nonlinear Real Arithmetic (NRA). NRA refers to the first-order theory
with signature {0,1,+,, <} and domain R. A monomial is a product of powers
of variables with nonnegative integer exponents, denoted by x* = x7* ...z for
some o € N". A polynomial is a finite summation of monomials " cox®, where
Co € R are called coefficients. The set of polynomials in variables x with real
coefficients is denoted by R[x]. An NRA atomic formula is of the form f(x) > 0,
where f(x) € R[x] and > € {<,>,=, <, >}. It is clear that an LRA constraint
is a special case of an NRA constraint where the polynomial f is linear, i.e., of
degree 1. The semantics of NRA are also interpreted in the standard way.

Cylindrical Algebraic Decomposition (CAD). Given an NRA formula @
of the form Eq. (1) and letting P C R[zy,...,z,] denote the set of polynomials
occurring in @, the key idea underlying CAD is to decompose the state space
R™ into a finite number of regions called cells. This decomposition satisfies two
primary properties: (i) in each cell each polynomial in P remains a constant sign,
and (ii) the boundary of each cell can be derived from polynomials in P. Due to
the first property, the sign of a polynomial in P over a cell can be determined by
a single sample point within that cell. Consequently, a finite set of sample points
from the decomposition is sufficient to determine in which cells the conjunction
of atomic formulas in @ evaluates to true. Finally, by utilizing the formulas that
define these cells, we can construct a quantifier-free formula equivalent to ®.

6 H. Wu et al.

The CAD algorithm consists of two phases, projection and lifting, while in
this paper, we solely focus on the projection phase. The projection phase takes
a variable ordering, say (z1,22...,z,), where quantified variables precede free
variables, and constructs a sequence of polynomial sets

{Pl(:P),PQ,,Pn}WlthP1CR[.’E“,$n] (2)

through the iterative application of a projection operator Proj. Each subsequent
set Pit1 = Proj(P;, x;) is defined in a lower-dimensional space by removing
the variable z; and carries enough information about P;. There exist several
different definitions of the projection operator, and in our analysis, we use Mc-
Callum’s projection operator [59]. After the projection phase, the lifting phase
then constructs the sign-invariant cells from 1-dimension to higher dimensions.
We provide a more detailed description of the CAD algorithm [4,48,66] in [73,
Appendix A.1], which may not affect the understanding of this paper.

2.2 Treewidth and Tree Decomposition

In this part, we introduce basic concepts related to the sparsity of graphs.
We recommend referring to [22, Ch. 7] for an in-depth investigation of this topic.

Graph and Primal Graph. We use G = (V, E) to denote an undirected graph,
where V' is a finite set of vertices and F C V' x V is the set of edges. The size of
a graph, denoted |G|, is the cardinality of V. A clique in a graph is a subset of
mutually adjacent vertices. Given a formula @ in the form of Eq. (1), the primal
graph Gg = (Vg, Eg) is a graph associated to @ such that Vo = {x1,...,2n}
is the collection of (existentially) quantified variables and (z;,,xj,) € Eg if and
only if both a; ;, # 0 and a; ;, # 0 for some index ¢ of atomic formulas, i.e.,
Zj,, T4, occur simultaneously in an atomic formula. Throughout this paper, we
will always assume the primal graphs are connected; otherwise, each connected
component can be processed separately.

Ezample 1 (Running Example). Consider an LRA formula @ of the form Eq. (1)
and contains existentially quantified variables (z1,...,2zs). The portion of & re-
lated to 7 is displayed in Fig. 1; the complete formula containing 20 atomic
formulas is in the full version [73, Appendix A.2]. The atomic formulas in ¢ dis-
play a certain “sparsity” pattern—each variable only occurs in a small portion of
atomic formulas. For example, variable £ only occurs in three atomic formulas,
namely z1 + 222 + 3x3 < 20, x1 — 22 + 223 > —5, and 1 — 4z5 < 0. The primal
graph of @ is shown in Fig. 2.

Tree. A tree T = (V, E) is an undirected graph that contains no cycles, i.e.,
there is only one unique path between any two vertices. For clarity, the vertices
of a tree will be called nodes. We always assume that a tree under consideration
is rooted, i.e., a node r € V is designated as the root. The level of a node v € V,
denoted Lv(v), is the length of the simple path from r to v. The height of a
tree is the maximum level among all nodes. The parent of a node v is the node

Quantifier Elimination Meets Treewidth 7

b = 3%1,...,$3.
1 + 222 + 3x3 < 20
N x1— T2+ 223 > —5
ANx1—4xe <0
A ... (constraints without x1)

Fig.1: An LRA formula &

@

Fig. 2: The primal graph of @

2,4,5

[2.3,4] [2.5.8] [456]

12,3 6,7 Fig. 4: The nice tree decomposition of
Fig. 3. Gray nodes correspond to the
Fig.3: A tree decomposition of Fig. 2 nodes in Fig. 3

connected to v on the path to the root, and a child of a node v is a node of which
v is the parent. A leaf is a node with no children. A tree is called binary if each
node has at most two children. For each node v in T', we denote by T, the subtree
rooted at v; the nodes in T, (excluding v itself) are called the descendants of v.

Tree Decomposition and Treewidth [36,63,64]. Given an undirected graph
G = (V,E), a tree decomposition of G is a tree T = (B, Er) satisfying the
following conditions: (1) Each node b € B of T', also called a bag, is associated
to a subset of the vertex set V;, C V; (2) The bags cover the entire vertex set V'
of G, ie., Uyep Vo = V; (3) For every edge e = (u,v) € E, there exists a bag b
such that both u € V}, and v € Vj; and (4) For every three bags by, by, b3 € B,
if bs is on the path from by to be in T, then Vi, NV, C Vj, (equivalently, every
vertex v € V appears in a connected subtree of T).

The width of a tree decomposition T, denoted by w(T'), is defined to be the
size of the largest bag minus one, i.e., w(T) = maxpep |Vs| — 1. The treewidth
of the graph G, denoted by tw(G), is defined to be the minimum width among
all possible tree decompositions of G. A tree decomposition with width tw(G)
is called optimal. For example, Fig. 3 presents an optimal tree decomposition

8 H. Wu et al.

of the primal graph in Exmp. 1 of width 2. The numbers in the labels refer to
the variable indexes, for instance, the node labeled {1,2,3} in Fig. 3 represents
the bag {x1,x2,x3}. For a primal graph Gg, since every clique is contained in
at least one bag in its tree decomposition [22], the largest number of quantified
variables in an atomic formula gives a lower bound for tw(Gg).

A smaller treewidth indicates a greater sparsity. In general, it is NP-complete
to determine whether a given graph G has treewidth at most a given vari-
able k [3]. However, Bodlaender showed that when k& is fixed, there exists a
linear-time algorithm to test whether G has treewidth at most k, and if so, to
construct an optimal tree-decomposition with O(n) nodes [7]. In this paper, we
rely on an external algorithm [71] to compute tree decompositions. There are
also many other well-optimized tools, see [24] for a survey.

Nice Tree Decomposition [51]. A tree decomposition T' = (B, Er) of a graph
G is nice if T is rooted at a bag r € B with V,. =) and each bag of T is of
one of the following four types: (1) leaf bag is a bag b having no children and
[Vs| = 1; (2) A join bag is a bag b having exactly two children b; and by such
that Vi, = Vi, = Vi,; (3) An introduce bag is a bag b having exactly one child o’
such that |V| = |Viy|+1 and Viy C Vj; (4) A forget bag is a bag b having exactly
one child ¥’ such that |V,| = |Vi| — 1 and V,, C Vjy. As an example, Fig. 4 gives
a nice tree decomposition based on the tree decomposition in Fig. 3.

The concept of nice tree decomposition is introduced as a canonical form
for representing tree decompositions. When the treewidth is a constant, a tree
decomposition can be transformed into a nice tree decomposition in linear time,
with the same width but a linear increase in size [22, Lem. 7.4], which helps
design dynamic programming algorithms and conduct computational analysis.

3 Exploiting Treewidth Sparsity in Quantifier Elimination

Now we show how to exploit the treewidth sparsity of the primal graph in
quantifier elimination. In Sect. 3.1, we explain our main idea using Exmp. 1
and present our dynamic programming framework for FME based on tree de-
composition. Then we extend the framework to CAD and the general quantifier
elimination procedures in Sect. 3.2. The formal analysis of the complexity im-
provement brought by the treewidth sparsity will be presented in Sect. 4.

3.1 A Dynamic Programming Framework for FME

To exploit the sparsity pattern within the primal graph, we begin by showing
that the FME algorithm can be understood as a vertex elimination operation.
Let us consider applying the FME algorithm to our running example Exmp. 1 to
eliminate the variable x;. We first rewrite the three atomic formulas containing
x1 into the following forms, separating x; from other terms: z; < 20 — 2z9 —
3x3 N =5 4+ 292 — 2x3 < 21 A x1 < 4x9, which give upper bounds and lower
bounds for z;. Then, the FME algorithm removes z; by requiring that each
lower bound is less than each upper bound. This results in two atomic formulas

Quantifier Elimination Meets Treewidth 9

=541z —2x3 < 20 —2x9 —3x3 A =5+ x5 — 223 < 429, which only involve x4 and
x3. Here, a straightforward yet important observation is that the FME algorithm
is performed locally—when a variable is eliminated (e.g., x1), the variables in
the newly introduced atomic formulas will be exactly its neighbors in the primal
graph (e.g., x2 and z3). In other words, eliminating variables from a formula
corresponds to removing vertices from the primal graph, accompanied by the
introduction of new atomic formulas about the neighbor.

Using tree decompositions, we can re-explain the process of eliminating x;
in a tree-like manner. Consider the nice tree decomposition presented in Fig. 4,
the process of eliminating x; consists of two steps. In the first step, we assign
each atomic formula of & to a bag in the nice tree decomposition depending
on the involved variables. This is described by the initialization of a function
7 that maps each bag to a set of atomic formulas. For example, for the three
bags located at the left-most branch of the nice tree decomposition in Fig. 4,
we set Z({z1}) < {} (meaning there is no atomic formulas containing only
z1), Z({z1,22}) < {21 — 4we < 0}, and Z({x1, z2,23}) < {21 — 22 + 223 >
—5,x1 + 222 + 3z3 < 20}. Note that the atomic formula 21 — 4z2 < 0 can also
be assigned to Z({x1,z2, z3}) without affecting the result.

In the second step, we propagate the atomic formulas stored in Z from bot-
tom up, by recursively computing another function V. For example, for the leaf
bag {z1}, we set V({z1}) = Z({z1}) = {}. For the introduce bag {x1,z2}, we
set V({x1,22}) < Z({z1,22}) UV({z1}) = {1 — 422 < 0}. The computation
of V({x1,x2,23}) is similar. When the forget bag {z2,z3} is reached, we set
V({za,23}) < Z({x2,25}) UFME(A V({21,22,23}),21), which corresponds an
application of the FME algorithm w.r.t. the variable removed at this bag.

By repeating the above operations, the execution of the FME algorithm can
be described through a dynamic programming framework, as shown in Alg. 1,
which consists of three steps.

Step 1: Constructing a nice tree decomposition (Line 1-3). To exploit the
sparsity of the input formula, the algorithm first computes a tree decomposition
of the formula’s primal graph, by invoking some external tree decomposition
algorithms. Different choices of the algorithms lead to different tree decompo-
sitions and hence impact the overall computational complexity, which will be
detailed later in Sect. 4 and Sect. 5. Nevertheless, our framework works as long
as T = (B, Er) in Line 2 is a nice tree decomposition.

Step 2: Initialization (Line 4-17). Based on the nice tree decomposition T,
we can perform the FME algorithm in a dynamic programming style. To achieve
this, we define two value functions, Z and V, that map bags in T into sets
of atomic formulas. In this step, the value function Z is initialized from top
down: when a bag b € T is visited, all atomic formulas ¢ with var(p) C b
are collected in Z(b) and removed from C. According to the definition of tree
decompositions, it is straightforward to see that the following properties hold:
Each atomic formula ¢ € C is assigned to a bag b such that var(y) C b and Lv(b)
is minimized. We note that, when adding the children of a bag b into the queue
in Line 10, we can break ties with any user-specified heuristics. The selection

10 H. Wu et al.

Algorithm 1: A Dynamic Programming Framework for FME

Input :a LRA formula @ of the form Eq. (1);
Output: a quantifier-free formula equivalent to @

> Invoke external algorithms to compute nice tree decompositions.
Construct the primal graph Go = (Vg, Es) of &;
Compute a nice tree decomposition T' = (B, Er) of Gg;
> Initialize Z from top down.
C + atomic formulas in &;
Initialize an empty queue of bags ¢ = ();
g.enqueue(rr) ; // add to the end of the queue
while g is not empty do
b < g.dequeue() ; // remove from the front of the queue
g.enqueue(b.children); // break ties with any heuristics
if b.type = leaf then
| Z(b) <+ {}; // if b is a leaf bag
else
Z(b) + {p € C | var(p) C b} ; // if b is of other types
C+ C\Z(b);
end

© ® N O Uk W N

N e T el
N W NN = O

[
=)

end
> Recursively compute)V from bottom up.
g.enqueue(B.leaves) ;
while ¢ is not empty do
b < g.dequeue();
g.enqueue(b.parent);
Compute V(b) according to Eq. (3);
end
return A V(rr)

NN NNDNNDN R
U R W N O © N

of the heuristics impacts the overall efficiency in the practical implementation,
which will be detailed in Sect. 5.

Step 3: Recursion (Line 18-25). The value function V is then updated from
bottom up, i.e., V(b) is updated after the values for all b’s children have been
updated. Let us denote by b.(left/right)child the (left/right) child of a (join)
bag b, by b.children the collection of all children of a bag b, and by b.forget
the removed variable at a forget bag b. At each step, V(b) is updated according
to the type of the bag b € T

Z(b)UV(b.leftchild) U V(b.rightchild) if bis a join bag

V(b) Z(b) UV(b.children) if b is an introduce bag
Z(b) U FME(A V(b.children), b.forget) if b is a forget bag
Z(b) if b is a leaf bag

®3)
Finally, the algorithm outputs the conjunction of all atomic formulas stored

in V(TT).

Quantifier Elimination Meets Treewidth 11

Theorem 1 (Correctness). The formula A\ V(rr) is equivalent to P.

Proof. Let Ty, = (By, Ep,) denote the sub-tree rooted at a bag b. We denote by
ElimVar(Ty) = (Uyer, b') \ b the set of removed variables at forget bags in 7.
In this proof, we prove a stronger result by showing that, for each bag b € B,
AV(b) = JElimVar(T},). Ay, Z(V'). Therefore, the original statement is a spe-
cial case when b is the root r of T', by noting that ® = 3x,,...,3z1. A\ycgZ(h).

The proof is done by induction on the structure of the nice tree decomposi-
tion 7. Suppose the above property holds for every descendant of a bag b, we
shall prove that the property still holds for b, depending on the type of b. When
b is a join, introduce, or leaf bag, the proof is straightforward by the definition
of V. When b is a forget bag, we have

/\V(b) = /\ (Z(b) U FME(/\ V(b.children), b.forget))
= \Z(®) A \FMEGEImVar(T} cstaren). /\ Z(V'), b.forget)

b’ €Byp. chitrdren

= /\I(b) A <3E|imVar(Tblchildren)Hb.forget. /\ I(b’))
b/eBb.childten
= JElimVar(Ty). AZ®) A/ I()=FElimVar(Ty). N Z(),
b’ €Bp.chirdren b eBy

where the second line is obtained by applying the induction hypothesis, and the
last line is correct because variables in ElimVar(T}) do not occur in Z(b). O

3.2 Extending to CAD and general QE

Extending to CAD’s projection phase. The framework Alg. 1 can be uti-
lized in CAD’s projection phase with only minor modifications. We present
the whole algorithm in the full version [73, Appendix A.3] and here only ex-
plain the differences: (i) The two value functions Z and V are defined as map-
pings from bags in T to set of polynomials in R[zq,...,x,], instead of atomic
formulas; (ii) In the recursion step, for a forget bag b, we compute V(b) via
V(b) < Z(b) U Proj(V(b.children), b.forget), while for other types of bags, the
computation of V(b) remains the same as in Alg. 1; and (iii) Finally, after ap-
plying the projection operation for all quantified variables, the CAD algorithm
continues the projection phases for free variables, after which the lifting phase
can start. The correctness of the framework follows from the fact that the al-
gebraic operations in the projection operator (presented in [73, Appendix A.1])
preserve locality, i.e., will not introduce new variables.

We shall note here that we cannot simply replace the invocation of the FME
algorithm in Alg. 1 by the CAD algorithm, i.e., the projection phase and lifting
phase of CAD must be separated. This is because the lifting phase produces
a formula in disjunction normal form, on which we can not directly apply the
dynamic programming framework.

12 H. Wu et al.

Extending to general quantifier elimination algorithms. We now extend
our framework to an arbitrary logic theory T that admits quantifier elimina-
tion. This is achieved by extracting a variable elimination order from the tree
decomposition, which involves the following steps: (1) Construct a nice tree de-
composition T of the input T-formula’s primal graph; (2) Traverse T from top
to bottom to obtain an ordering of the eliminated variables corresponding to
the forget bags; and (3) Finally, reverse the ordering and use it as the vari-
able elimination order in any quantifier elimination procedure for theory 7. The
pseudo-code description of the algorithm is presented in [73, Appendix A.3]. The
correctness of the algorithm is straightforward, as the change of variable order
will not affect the correctness of a quantifier elimination algorithm.

In fact, the variable ordering extracted via the above algorithm can be shown
to be a perfect elimination ordering", say (1,3,8,7,6,5,4,2) for our running ex-
ample. Hence, it is possible that our variable ordering coincides with the one
extracted from a chordal extension graph [53]. However, since we have exploited
the sparsity information in building the tree decompositions, our variable order-
ings are usually superior for performing quantifier elimination on sparse problem
instances. This will be further evidenced by our experimental results in Sect. 5.
Moreover, our framework is stated for general quantifier elimination procedures
and enables a fine-grained complexity analysis, explained in the following Sect. 4.

4 Complexity Analysis

In this section, we analyze the worst-case complexity of our framework in
Sect. 3. The core idea is to combine the standard analysis with a special kind of
tree decomposition, called balanced tree-decomposition. We prove that when the
treewidth is constant, a nice and balanced tree-decomposition with logarithmic
height in the number of variables can be found in sub-polynomial time. By
working on this tree decomposition, our dynamic programming framework can
achieve exponential improvement in the worst-case complexity for both FME
and CAD. To our knowledge, this gives the first complexity result of FME and
CAD directly related to treewidth sparsity.

Balanced tree-decomposition. The concept of (53,~)-balanced tree decompo-
sitions [17] generalizes the notion of balanced tree decompositions that arise in
the analysis of the space complexity of tree decomposition algorithms [9,30]. In-
formally, a (8, v)-balanced tree-decomposition requires, for each bag b, the size
of subtree T}, decreases proportionally as Lv(b) increases.

Definition 1 ((3,7)-Balanced Tree Decomposition). For constants 0 <
B <1 and v € Nsg, a binary tree-decomposition T is called (3,7)-balanced if,
for every bag b, every descendant b’ of b with Lv(b') — Lv(b) = v satisfies that
Ty | < B |Ty|-

! In graph theory, a perfect elimination ordering of a graph G is an ordering of its
vertices such that for every vertex v, the set consisting of v and its neighbors that
come after v in the ordering forms a clique in G.

Quantifier Elimination Meets Treewidth 13

The construction of a (8, v)-balanced tree decomposition is elucidated in [17,
Sec. 3], which gives the following theorem.

Theorem 2 ([17, Thm. 3.1]). Given a graph G with n vertices and of con-
stant treewidth k. For any fized § > 0 and A € N with X > 2, a binary (8,7)-
balanced tree-decomposition T with 8 = (1%5)/\’1 and v = X\ can be constructed
in O(n - logn) time and O(n) space. Moreover, the tree decomposition T has
O(n) bags and width % - (k+1) — 1 at most.

Relying on the above theorem, we can construct a nice tree decomposition
with logarithmic height, as stated below.

Proposition 1. Given a graph G with n vertices and of constant treewidth k,
a nice tree decomposition T of height O(logn) and constant width can be con-
structed in O(nlogn) time.

Proof. Take 6 = 1/2 and A = 2 in Thm. 2, then a (3/4,2)-balanced tree de-
composition T' = (B, Er) of width at most 24(k + 1) — 1 can be constructed in
O(n -logn) time. Because of the (3/4, 2)-balancing, we have in every 2-levels of
T a decrease of at least 3/4 in the size of the bags. Therefore, the height of T is
210g% n, which is O(logn). Then, we extend T into a nice tree decomposition,
which involves the following steps:

Step 1: reroot. Choose an arbitrary bag » € B of T to be its current root.
We first construct a new bag r’ such that V;» = () as the new root of the nice
tree decomposition. Then, a sequence of forget bags is introduced to remove
the variables in V;. one by one until reaching r’. This step takes O(k) time and
increases the height of T by k at most.

Step 2: ensure join bags have identical children. For each bag b that has two
children, we construct two more bags that are identical to b and insert them
between b and its two children, respectively. This step takes O(n) time and will
double the height at most.

Step 3: create introduce and forget chains. After the previous steps, for each
edge (b1, b2) in T, the bags V;, and V;, may still differ by more than one variables.
So we insert between b; and be a chain of introduce and forget bags to make
sure that every consecutive pair of bags differ in at most one variable. This step
takes O(kn) time and increases the height by up to k times at most.

To conclude, when k is a constant, we can obtain a nice tree decomposition
of height O(logn) in O(n) time. Hence, the total time cost remains O(nlogn)
as in Thm. 2. O

In the following, we analyze the complexity of our frameworks for FME and
CAD in Sect. 3 under the assumption that k is a constant. For consistency?, we
assume that m = n in the input formula Eq. (1), i.e., there are no free variables.

Complexity analysis for FME. The complexity of the FME algorithm can be
measured by the number of atomic formulas produced in the elimination process.

2 Recall that the CAD’s projection phrase requires performing the projection opera-
tion for all variables, including the quantifier-free ones.

14 H. Wu et al.

Assume that there are s atomic formulas in the input formula Eq. (1). Then,
after eliminating the variable x,., the number of atomic formulas in the output
depends on the number of lower /upper bounds, which is at most |L,|-|U,| < %.
Therefore, the complexity of eliminating n variables is at most O(s?").

By combining the standard analysis with the nice tree decomposition ob-
tained in Prop. 1, we show that a single exponential complexity upper bound
w.r.t. n can be achieved when the treewidth is a constant.

Theorem 3. If the primal graph of an LRA formula @ in Eq. (1) has constant
treewidth and includes s atomic formulas, the number of atomic formulas in the
output of Alg. 1 is s°") at most.

Proof. Let T be the nice tree decomposition given by Prop. 1 with height A. In
the following, we count the atomic formulas stored in V(b) for each bag b in T.
For a bag b with Lv(b) = h, which must be a leaf bag, we have V(b) = Z(b) < s.
Consider going one step up, for a bag b with Lv(b) = h—1:if b is a join, introduce,
or leaf bag, we have V(b) < 3s according to the definition of V; if b is a forget
bag, we apply the one-step analysis for FME and have V(b) < s + %. Since the
height h is bounded by O(logn) according to Prop. 1, for the root r, we have

V(r) = 0(520(10g n)) = 0, O

Complexity analysis for CAD. The CAD complexity is usually measured by
the number of sign-invariant cells. Our analysis uses a similar approach as [53]
but provides an improved bound based on the assumption of constant treewidth
and the structure of balanced tree decompositions.

Before presenting the results, we introduce some tools to estimate the growth
of the size of the polynomials in the projection phase. For a set of polynomials
P C R[x|, we define the combined degree [58] of P to be maxi<;<, deg,, ([[,cp P),
where deg, (-) denotes the degree of a polynomial in a single variable x;. A set
of polynomials has the (m, d)-property if it can be partitioned into m sets, such
that each set has maximum combined degree d [10, Def. 7]. It has been shown in
[10, Lem. 11] that for a set P C R[x] with the (m, d)-property, the set Proj(P, x;)

after projection has the (M, 2d?)-property with M = LWJ for any z; € x.

Proposition 2. If the primal graph of an NRA formula ® in Fq. (1) has con-
stant treewidth and the corresponding polynomial set has the (m, d)-property, the
number of cells in the CAD algorithm can be made m®™ (2Md)°(1°8™) at most.

Proof. The proof is inspired by the proof of [53, Thm. 11, Thm. 12]. Here we
explain the main idea.

We first analyze the increase in the number of polynomials in the projection
phase. Let T be the nice tree decomposition given by Prop. 1 with height h. By
assumption, for each leaf bag b with Lv(b) = h, the polynomial set V(b) has the
(m, d)-property. Following a similar argument in the proof of Thm. 3, we can
show that for each bag b with Lv(b) < h — 1, the polynomial set V(b) has the

(32lb_1M21b—1,Zzlb_ldzlb)_property with lb =h—-—1-— Lv(b).

Quantifier Elimination Meets Treewidth 15

Then we analyze the lifting phase. Note that, for a polynomial set P, the real
roots of the product [| pepP include all real roots of each individual polynomial in
P. Hence, if a univariate polynomial set P has the (m, d)-property, the number
of real roots in P is at most md, and the number of the corresponding sets
in R' is at most 2md + 1. The total number of cells produced in the lifting
phase is bounded by the product of all R'-cells corresponding to each bag b, i.e.
[1,e5(2Ky + 1), where

_Jmd, if Lv(b) = h, i.e., I undefined;
DT g a2 2 2 iy 1> Lu(b) > 0, te., 0 < Iy < b — 1.

Since T is a binary tree, the number of bags on each level is bounded by 2-V(®).
Therefore, we have

- h—1-—1
H(2Kb +1)< (md)Qh H (32“)—1le1, 122lb,1d2u,)2 b

beB 0<ly<h—1

< m2h6(h—2)2h_1+1Mh2h_2d(h+2)2h’_1 _ O(m2h6h2h—1Mhzh'*dhzh—l)
_ mO(n) (2Md)0(nlog n)

where the final step is obtained by using h = O(logn). O

5 Implementation and Experiments

In this section, we explain our implementation details and present the ex-
perimental results. We aim to answer the following research question: Compared
with the existing heuristics for deciding the variable elimination ordering, how
does our tree-decomposition-based algorithm perform on the QF problems of LRA
and NRA instances with relatively small treewidth?

Computation Environment. We use the tool from [71] to compute tree de-
compositions, which are then processed by Python scripts. For LRA, we compare
different heuristics based on a naive FME implementation in Python, while for
NRA, we work on CAD implemented in MATHEMATICA [45]. All experiments
were conducted on a Windows PC with i7-13700 CPU and 32GB RAM.

Existing Heuristics. For comparison, we briefly explain the most frequently
used heuristic strategies for selecting the variable elimination ordering in FME
and CAD. For FME;, the baseline Random strategy makes N = 5 trials according
to different orderings that are sampled randomly and records the best result;
the Greedy strategy chooses the next variable to be eliminated by minimizing
the number of generated constraints. For CAD, the Brown’s heuristic, denoted
Brown [14], chooses the next eliminated variable that has the lowest maximum
degree across all polynomials in which it appears (and breaks ties with addition
rules); the PEO strategy [53] extracts a perfect elimination ordering from the
chordal extension of the primal graph; and we also compare with the default
strategy in MAPLE [56] to suggest variable ordering, denoted SVO.

16 H. Wu et al.
Table 1: FME performance on randomly generated LRA instances
ID| Instance Set (10 instances per set) Random Greedy Ours
1 #var=15 #ineq=75 Ave. ineq. count| 51,608.4 4,404.7 4,841.3
#elim=5 #tw=2 Ave. run Time(s) 0.21 0.018 0.018
9 #var=15 #ineq=75 Ave. ineq. count|>10,000,000| 28,362.3 | 28,244.8
#elim=5 #tw=4 Ave. run Time(s) NA 0.17 0.17
3 #var=20 #ineq=100 Ave. ineq. count|>10,000,000| 290,597.8 {194,645.3
#elim=10 #tw=2 Ave. run Time(s) NA 2.0 1.1
4 #var=20 #ineq=100 Ave. ineq. count|>10,000,000(313,584.0| 313,585.9
#elim=6 #tw=4 Ave. run Time(s) NA 2.6 2.4
5 #var=30 #ineq=150 Ave. ineq. count|>10,000,000| 343,705.4 {110,304.9
#elim=12 #tw=3 Ave. run Time(s) NA 3.7 1.2
6 #var=30 #ineq=150 Ave. ineq. count|>10,000,000(974,233.4|974,233.4
#elim=5 #tw=8 Ave. run Time(s) NA 14.9 14.4

Our Implementation. In our practical implementation, we elected not to con-
struct a balanced tree decomposition as described in Sect. 4. While the main
advantage of the balanced tree decomposition lies in estimating the asymptotic
complexity, it often performs suboptimally on problems of relatively small scale.
Instead, we work with the tree decomposition computed by [71] and follow the
approach detailed in Sect. 3.2 to extract the elimination order®. When traversing
from top to bottom, we break ties using the aforementioned Greedy and Brown
heuristics for FME and CAD, respectively.

Benchmarks. As our algorithm targets dealing with LRA and NRA problems
that are small enough to do quantifier elimination but also have low treewidth.
This requirement rules out most existing standard benchmarks (an analysis on
SMT-LIB benchmarks [5] can be found in the full version [73, Appendix A.4]).
Hence, for comparison, we generated a set of benchmarks with treewidth sparsity
as follows: We construct benchmark inequality systems from graphs of prescribed
treewidth k by a two-stage procedure. We first generate a graph of treewidth
k by iteratively attaching nodes to a (k + 1)-clique. Then, for each bag, we
enumerate all monomials of total degree not exceeding the maximum degree
(1 for LRA), select at least one highest-degree monomial, and randomly include
other monomials with a probability ranging from 0.05 to 0.15, while ensuring that
every scoped variable appears. For each set of hyperparameters, we randomly
generated 10 examples for LRA and 1 example for NRA, because the randomly
selected monomials significantly impact the CAD efficiency, and the average
runtime is usually dominated by the worst instance.

Results. Table 1 and Table 2 present the results of FME and CAD, respectively.
On LRA benchmarks, our strategy consistently yielded the lowest average in-
equality count and average runtime, achieving the best result in 4 out of 6 sets.

3 In our non-parallel setting, using the elimination order is functionally equivalent to
running the dynamic programming framework, without the explicit computation of
the value functions.

Quantifier Elimination Meets Treewidth 17

Table 2: CAD performance on randomly generated NRA instances

ID Instance SVO Brown PEO Ours
- | #var=6 #ineq=6 Cells|1,133,532] 271,120 | 274,724 | 110,828
#max_deg=2 #tw=2 Time(s)| 640.3 307.0 114.7 40.5
g | #var=T fineq=1 Cells| 126,328 | 89,804 | 89,804 | 49,108
#max_deg=3 #tw=3 Time(s)| 42.1 34.5 29.0 11.6
o | #var=T7 Fineq=5 Cells|2,020,378|1,026,208| 740,380 | 181,090
#max_deg=2 #tw=2 Time(s)| 702.0 416.2 96.1 84.1
Lo #var=8 #ineq=5 Cells|3,721,372(3,721,372|984,0082,155,132

#max_deg=4 #tw=2 Time(s)| 1843.8 | 1718.2 | 567.7 | 1090.3
1| #var=8 #inea=6 Cells| 38,212 | 69,748 | 69,748 | 38,212

#max_deg=2 #tw=3 Time(s)| 42.0 633.3 427.9 42.0
1| #var=9 #ineq=10 Cells|1,804,224|1,804,224 954,432 | 52,992

#max_deg=2 #tw=3 Time(s)| 742.3 746.7 156.7 83.3

The Greedy strategy showed a very similar performance with the runtime differ-
ence being negligible, but was significantly slower on ID 3 and 5. The Random
strategy performed poorly, generating an extremely high number of inequalities,
often exceeding 107 for most instances. On NRA benchmarks, our strategy also
demonstrates superior performance in all but one benchmark, in terms of both
the number of cells generated and the runtime. For benchmark ID 9 and ID
12, it significantly outperforms all other methods. The only instance where our
strategy did not have the lowest cell count was ID 10, where PEO was superior.
The results answer our research question affirmatively, indicating that our pro-
posed strategy is effective and more efficient in dealing with problems with low
treewidth, compared to the existing heuristics. More experiments on benchmarks
from [53] are available at [73, Appendix A.5].

6 Conclusion

This paper introduces a high-level, treewidth-aware approach to reduce the
computational burden of quantifier elimination procedures, especially FME and
CAD, for problems with treewidth sparsity. By leveraging parameterized algo-
rithm tools, our method establishes an improved complexity upper bound, thus
offering novel insights into mitigating the inherent complexity of quantifier elim-
ination. Future work will focus on combining this treewidth-aware method with
existing heuristics and exploring its application in various practical scenarios.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and helpful suggestions. This work has been partially funded by the National Key
R&D Program of China under grant No. 2022YFA 1005101 and 2022YFA1005102, the
National NSF of China under grant No.62192732 and W2511064, the ERC Starting
Grant 101222524 (SPES), and the Ethereum Foundation Research Grant FY24-1793.

Data Availability Statement. The code for our experiments is available at https:
//doi.org/10.5281/zenodo. 18150640.

https://doi.org/10.5281/zenodo.18150640
https://doi.org/10.5281/zenodo.18150640

18

H. Wu et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

An, J., Zhan, N., Li, X., Zhang, M., Yi, W.: Model checking bounded continuous-
time extended linear duration invariants. In: HSCC. pp. 81-90 (2018)

Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimina-
tion. In: HSCC. pp. 63-76 (2001)

Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277-284 (1987)

Arnon, D.S.; Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I:
the basic algorithm. STAM J. Comput. 13(4), 865-877 (1984)

Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
ICALP. pp. 105-118 (1988)

Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 13051317 (1996)

Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: MFCS. pp.
19-36 (1997)

Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725-1746 (1998)

Bradford, R.J., Davenport, J.H., England, M., McCallum, S., Wilson, D.J.: Truth
table invariant cylindrical algebraic decomposition. J. Symb. Comput. 76, 1-35
(2016)

Bradford, R.J., Davenport, J.H., England, M., Wilson, D.J.: Optimising problem
formulation for cylindrical algebraic decomposition. In: CICM. pp. 19-34 (2013)
Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with
applications to verification. Springer (2007)

Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J.
Symb. Comput. 32(5), 447-465 (2001)

Brown, C.W.: Companion to the tutorial presented at issac’04: Cylindrical alge-
braic decomposition. In: ISSAC, tutorial (2004), https://www.usna.edu/Users/
cs/wcbrown/research/ISSACO4/handout . pdf

Brown, C.W.: Open non-uniform cylindrical algebraic decompositions. In: ISSAC.
pp- 85-92 (2015)

Caviness, B.F., Johnson, J.R.: Quantifier Elimination and Cylindrical Algebraic
Decomposition. Texts and Monographs in Symbolic Computation (1998)
Chatterjee, K., Ibsen-Jensen, R., Goharshady, A.K., Pavlogiannis, A.: Algorithms
for algebraic path properties in concurrent systems of constant treewidth compo-
nents. ACM Trans. Program. Lang. Syst. 40(3), 9:1-9:43 (2018)

Chen, C., Maza, M.M., Xia, B., Yang, L..: Computing cylindrical algebraic decom-
position via triangular decomposition. In: ISSAC. pp. 95-102 (2009)

Chen, C., Zhu, Z., Chi, H.: Variable ordering selection for cylindrical algebraic
decomposition with artificial neural networks. In: International Congress on Math-
ematical Software. pp. 281-291 (2020)

Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Automata Theory and Formal Languages, 2nd GI Conference.
pp. 134-183. Springer (1975)

Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299-328 (1991)

https://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.
45.

Quantifier Elimination Meets Treewidth 19

Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer (2015)
Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Jour-
nal of Symbolic Computation 5(1-2), 29-35 (1988)

Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 Parameterized
Algorithms and Computational Experiments Challenge: The Second Iteration. In:
IPEC (2017)

Diestel, R.: Graph Theory (2nd ed.). Springer (2000)

Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: ISSAC.
pp. 111-118 (2004)

Dong, S., Lee, Y.T., Ye, G.: A nearly-linear time algorithm for linear programs with
small treewidth: a multiscale representation of robust central path. In: STOC. pp.
1784-1797 (2021)

Dorato, P., Yang, W., Abdallah, C.T.: Robust multi-objective feedback design by
quantifier elimination. J. Symb. Comput. 24(2), 153-159 (1997)

Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer (2012)
Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bod-
laender and courcelle. In: FOCS. pp. 143-152 (2010)

England, M., Florescu, D.: Comparing machine learning models to choose the
variable ordering for cylindrical algebraic decomposition. In: CICM. pp. 93-108
(2019)

Fichte, J.K., Hecher, M., Kieler, M.F.I.: Treewidth-aware quantifier elimination
and expansion for QCSP. In: CP. pp. 248-266 (2020)

Fourier, J.B.J.: Analyse des travaux de I’Academie Royale des Sciences, pendant
Pannée 1827. Partie mathématique (1826)

Gan, T., Chen, M., Li, Y., Xia, B., Zhan, N.: Reachability analysis for solvable
dynamical systems. IEEE Trans. Autom. Control. 63(7), 2003-2018 (2018)

Gu, Y., Song, Z.: A faster small treewidth sdp solver (2022), https://arxiv.org/
abs/2211.06033

Halin, R.: S-functions for graphs. Journal of geometry 8, 171-186 (1976)

Han, J., Dai, L., Hong, H., Xia, B.: Open weak CAD and its applications. J. Symb.
Comput. 80, 785-816 (2017)

Han, J., Jin, Z., Xia, B.: Proving inequalities and solving global optimization prob-
lems via simplified CAD projection. J. Symb. Comput. 72, 206-230 (2016)

Hong, H.: An improvement of the projection operator in cylindrical algebraic de-
composition. In: ISSAC. pp. 261-264 (1990)

Hong, H., Din, M.S.E.: Variant quantifier elimination. J. Symb. Comput. 47(7),
883-901 (2012)

Hong, H., Liska, R., Steinberg, S.L.: Testing stability by quantifier elimination. J.
Symb. Comput. 24(2), 161-187 (1997)

Huang, Z., England, M., Wilson, D.J., Davenport, J.H., Paulson, L.C., Bridge,
J.P.: Applying machine learning to the problem of choosing a heuristic to select
the variable ordering for cylindrical algebraic decomposition. In: CICM. pp. 92-107
(2014)

Imbert, J.: About redundant inequalities generated by fourier’s algorithm. In:
AIMSA. pp. 117-127 (1990)

Imbert, J.: Fourier’s elimination: Which to choose? In: PPCP. pp. 117-129 (1993)
Inc., W.R.: Mathematica, Version 14.3, https://www.wolfram.com/mathematica,
champaign, 1L, 2025

https://arxiv.org/abs/2211.06033
https://arxiv.org/abs/2211.06033
https://www.wolfram.com/mathematica

20

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

H. Wu et al.

Jia, F., Dong, Y., Liu, M., Huang, P., Ma, F., Zhang, J.: Suggesting variable order
for cylindrical algebraic decomposition via reinforcement learning. NeurIPS 36,
76098-76119 (2023)

Jing, R., Maza, M.M., Talaashrafi, D.: Complexity estimates for fourier-motzkin
elimination. In: CASC. pp. 282-306 (2020)

Jirstrand, M.: Cylindrical algebraic decomposition-an introduction. Technical Re-
port, Linkoping University (1995)

Jirstrand, M.: Nonlinear control system design by quantifier elimination. J. Symb.
Comput. 24(2), 137-152 (1997)

Kapur, D.: A quantifier-elimination based heuristic for automatically generating
inductive assertions for programs. Journal of Systems Science and Complexity 19,
307-330 (2006)

Kloks, T.: Treewidth, Computations and Approximations. Springer (1994)
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer Publishing Company, Incorporated (2008)

Li, H., Xia, B., Zhang, H., Zheng, T.: Choosing better variable orderings for cylin-
drical algebraic decomposition via exploiting chordal structure. J. Symb. Comput.
116, 324-344 (2023)

Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. EMSOFT pp. 97-106 (2011)

Mallach, S.: On integer linear programs for treewidth based on perfect elimination
orderings (extended version). Acta Informatica 62(3), 34 (2025)

Maplesoft, a division of Waterloo Maple Inc..: Maple, https://hadoop.apache.
org, waterloo, Ontario, 2019

Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85-112 (2010)
McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. Phd thesis (computer sciences tech. rep. 578), Univ. Wisconsin—Madison.
(1985)

McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position of three-dimensional space. J. Symb. Comput. 5(1/2), 141-161 (1988)
Motzkin, T.S.: Beitrage zur theorie der linearen ungleichungen. Azriel (1936)
Promies, V., Abrahém, E.: A divide-and-conquer approach to variable elimination
in linear real arithmetic. In: FM (1). pp. 131-148 (2024)

Promies, V., Nalbach, J., Abrahém, E., Kobialka, P.: Fmplex: Exploring a bridge
between fourier-motzkin and simplex. Log. Methods Comput. Sci. 21(2) (2025)
Robertson, N., Seymour, P.D.: Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B 36(1), 49-64 (1984)

Robertson, N.; Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309-322 (1986)

Rodriguez-carbonell, E., Kapur, D.: Automatic generation of polynomial loop in-
variants: Algebraic foundations. In: ISSAC. pp. 266-273 (2004)

Saugata Basu, Richard Pollack, M.F.R.: Algorithms in Real Algebraic Geometry.
Springer Berlin, Heidelberg (2006)

Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1998)
Strzebonski, A.W.: Cylindrical algebraic decomposition using local projections. J.
Symb. Comput. 76, 36—64 (2016)

Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: ISSAC. pp. 329-336. ACM (2011)

Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discret. Appl.
Math. 126(2-3), 261-273 (2003)

https://hadoop.apache.org
https://hadoop.apache.org

71.

72.

73.

Quantifier Elimination Meets Treewidth 21

Tamaki, H.: Positive-instance driven dynamic programming for treewidth. J.
Comb. Optim. 37(4), 1283-1311 (2019)

Tarski, A.: The Completeness of Elementary Algebra and Geometry. Reprinted in
1967 by CNRS, Institute Blaise Pascal, Paris (1930)

Wu, H., Zhu, J., Goharshady, A.K., An, J., Xia, B., Zhan, N.: Quantifier elimination
meets treewidth (2026), https://arxiv.org/abs/2601.00312

https://arxiv.org/abs/2601.00312

	Quantifier Elimination Meets Treewidth

