
1

Modeling and Verification of Hybrid Systems by Extending
AADL
XIONG XU, Institute of Software, Chinese Academy of Sciences, China

EHSAN AHMAD∗, Saudi Electronic University, Saudi Arabia
SHULING WANG∗, Institute of Software, Chinese Academy of Sciences, China

XIANGYU JIN, Institute of Software, Chinese Academy of Sciences, China

BOHUA ZHAN, Huawei Technologies Co., Ltd., China
NAIJUN ZHAN, Peking University & Zhong Guan Cun Lab., China

System level design, and dependability prediction of safety-critical systems demand integration of architectural

and analysis artifacts in a single development environment. Hybrid systems, with mutual dependencies and

extensive interactions between the control portion and its physical environment, further intensify this need.

Architecture Analysis & Design Language (AADL) is a model-based engineering language for the architectural

design and analysis of embedded control systems. Core AADL has been extended with sub-languages for

modeling and analysis of discrete behavior of the control portion, but not for continuous behavior of the

physical environment. In a previous work, we have introduced Hybrid Annex for continuous behavior modeling

as part of initial findings of an ongoing research effort on fulfilling the need for integrated modeling of the

computing system along with its physical environment. In this paper, we first detail complete structure of

the Hybrid Annex along with appropriate examples for each section. Then, we present formal semantics

of the synchronous subset of AADL models annotated with Hybrid Annex specifications using Hybrid

Communicating Sequential Processes (HCSP). Formal semantics are used to verify correctness of AADL

models (with Hybrid Annex specifications) using Hybrid Hoare Logic (HHL). A case study on a realistically-

scaled automatic cruise control system is provided to demonstrate modeling and verification of hybrid systems

using AADL with the proposed extension.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; • Theory
of computation→ Timed and hybrid models; • Computing methodologies→ Modeling and simulation.

Additional Key Words and Phrases: AADL, behavior modeling, cyber-physical system, formal semantics,

HCSP, HHL, hybrid annex, hybrid system

ACM Reference Format:
Xiong Xu, Ehsan Ahmad, Shuling Wang, Xiangyu Jin, Bohua Zhan, and Naijun Zhan. 2025. Modeling and Veri-

fication of Hybrid Systems by Extending AADL. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2025),
51 pages. https://doi.org/10.1145/3737698

∗
Corresponding author.

Authors’ addresses: Xiong Xu, National Key Laboratory of Space Integrated Information System, Institute of Software,

Chinese Academy of Sciences, Beijing, China; Ehsan Ahmad, e.ahmad@seu.edu.sa, College of Computing and Informatics,

Saudi Electronic University, Saudi Arabia; Shuling Wang, wangsl@ios.ac.cn, National Key Laboratory of Space Integrated

Information System, Institute of Software, Chinese Academy of Sciences, Beijing, China; Xiangyu Jin, KLSS (CAS) and

SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China; Bohua Zhan, Huawei Technologies Co., Ltd.,

Beijing, China; Naijun Zhan, njzhan@pku.edu.cn, School of Computer Science and Key Laboratory of High Confidence

Software Technology, Peking University & Zhong Guan Cun Lab., Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2025/1-ART1 $15.00

https://doi.org/10.1145/3737698

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0003-4236-9992
HTTPS://ORCID.ORG/0000-0001-8593-2824
HTTPS://ORCID.ORG/0000-0002-2798-2660
HTTPS://ORCID.ORG/0000-0001-6176-2242
HTTPS://ORCID.ORG/0000-0001-5377-9351
HTTPS://ORCID.ORG/0000-0003-3298-3817
https://doi.org/10.1145/3737698
https://orcid.org/0000-0003-4236-9992
https://orcid.org/0000-0001-8593-2824
https://orcid.org/0000-0002-2798-2660
https://orcid.org/0000-0001-6176-2242
https://orcid.org/0000-0001-5377-9351
https://orcid.org/0000-0003-3298-3817
https://doi.org/10.1145/3737698

1:2 Xu and Ahmad et al.

1 INTRODUCTION
Embedded systems have become ubiquitous in our daily life with significant impact on automotive,

aerospace, consumer electronics, communications, medical, manufacturing, and so on. Such systems

make use of computing units to monitor and control physical processes to carry out highly complex,

and often critical functions. Correct design and development of these systems is challenging due

to a thorough validation and verification activity required to meet expected requirements and to

fulfill the quality criteria mandated by any relevant standards. Our reliance on embedded systems

is truly based on their dependability, which can only be assured by behavior of the control system

under the diverse states of physical environment in which it must operate.

Model-Based Engineering (MBE) has been successfully applied across different engineering

disciplines for correctly developing complex embedded systems [37, 43]. MBE starts with defining

an initial system model, then extensive analysis and verification are conducted based on the

model so that errors can be detected and corrected at early design stages. Afterwards, model

transformation techniques are applied to transform abstract formal models into more concrete

models, and even into source code. Hybrid Systems are models of embedded systems with precise

mathematical semantics, wherein continuous dynamics of the physical environment are combined

with discrete transitions of the computing units to describe the overall behavior of the system in

its environment [6, 17, 36, 46, 47]. Such systems interact with their external environment so as to

monitor and control the controlled variables necessary for ensuring correct system functionality.

Hybrid system models consist of several components (with continuous and discrete dynamics)

interacting with each other to perform the overall system behavior. For example in transportation

systems, medical devices, and industrial plants; the motion of a vehicle, biological cell growth and

body temperature, and chemical reaction are modeled by continuous dynamics. The sequence

of events in control modes in a moving vehicle, reaction to a particular body temperature in

medical devices, and the contacts of valves and pumps in industrial plants, are modeled by the

discrete dynamics [45]. Through the use of hybrid models, rigorous analysis and verification of

safety-critical embedded systems become feasible.

There are already several modeling languages and tools in the community of MBD for hybrid

and cyber-physical systems. We can distinguish two types of modeling approaches: functional

and architecture [25]. Functional modeling languages focus on the “what”, i.e., what the system is

doing, such as SCADE [28] and Simulink/Stateflow [48, 49]), while architecture languages focus on

the “how”, i.e., how the system provides a service and supports its functions, such as SysML and

AADL. Compared with other frameworks (especially the “how” approaches), AADL is excellent in

modeling system architecture. Basically, the architecture model is a central development artifact,

i.e., the backbone of development process: once we have the architecture model, we can analyze

the system, generate the implementation, and derive tests from it.

Architecture Analysis & Design Language (AADL) [29] is now used all over the world and

extensively in many other safety-critical domains including automotive manufacturing, healthcare,

avionics, and the military. For example, in spite of the fact that the AUTOSAR consortium uses the

AUTOSAR modeling language, the SAE supports the exploration of AADL as a standard modeling

language for the automobile sector because of its broad analysis support [59].The COMPASS [20]

project focused on using AADL for safety analysis, which led the Error Model Annex [1] and the

D-MILS [22] project to use AADL for security analysis. The University of Minnesota and Rockwell-

Collins participated in many Defense Advanced Research Projects Agency (DARPA) projects [61]

and developed a lot of AADL tools, such as AGREE and RESOLUTE. The CMU-SEI has applied the

AADL technology to several projects, including SAVI [58], a project that regroups major avionics

and aerospace companies and demonstrated the value of MBD for safety-critical software.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:3

In accordance with the principles of system engineering, AADL facilitates the hierarchical as-

sembly of large systems by dissecting them into more manageable sub-components and minimizing

mismatched assumptions to guarantee a functional integration. AADL promote Architecture-

Centric Virtual Integration (ACVI) for system engineering to cope with the challenges of system

integration. When integrating several components or subsystems of various discrete and con-

tinuous dynamics, this method is highly helpful for hybrid systems. Although, the component

and connection constructs of AADL are only sufficient for modeling the structure of a system

architecture, AADL supports extensions to its core language by way of properties and annexes for

behavior specification and analysis. The Behavior, and Behavior Language for Embedded Systems

with Software (BLESS) annexes were introduced to use state transition mechanisms with guards

and actions to model the discrete behavior of control systems [40, 42]. In order to prove correctness,

BLESS incorporates a feature that generates verification conditions automatically and facilitates

interactive theorem proof using first-order logic. Similarly, DEVS annex, based on discrete-event

system specification was introduced for behavior simulation using DEVS-Suite simulator [5].

Although, these annexes precisely specify behavior of software components, they are not designed

to model the continuous behavior of the environment with which the engineered system interacts.

Hybrid system models endeavor to express behavior of the engineered system together with its

environment. In order to fully understand how the behaviors in one domain influence those in the

other demands an integrated approach to the modeling of the computing units and the physical

environment of the respective domains. To equip AADL for hybrid system modeling and analysis,

the core language needs to be extended.

Formal semantics are crucial for formal analysis and verification of safety-critical systems. For

formal verification of AADL models, it is required not only to define the formal semantics of the

core language but also define the formal semantics of the dedicated annex, used for continuous

behavior modeling, in such a language which is designed to model and formally verify the hybrid

systems.

1.1 Contributions
This paper is based on our previous works [2, 3, 66] with the extension and originality mainly

reflected in the following aspects:

• Some of the preliminary results of furnishing AADL for hybrid system modeling and verifi-

cation were presented in [2, 3]. This paper contains complete description of the syntax and

semantics of each element of Hybrid Annex (HA) sub-language, using appropriate examples.

• We present the translation from (informal) AADL models with HA to (formal) HCSP models

which can be analyzed by simulation and verification.

• Simulation of the translated HCSP models of the extended AADL models with HCSP Simula-

tor [66] discussed along with verification through HHL prover [64, 71] —in-house developed
Hybrid Hoare Logic theorem provers.

• Additionally, a more realistic case study of automatic cruise control system is used to illustrate

use of the AADL with HA sub-language for modeling, simulation, and verification of complex

hybrid safety-critical systems.

This paper also presents formal semantics of AADL execution and synchronous communication

models using latest HCSP constructs, in complete detail. The translation algorithm is revised to

be used for AADL models with multiple threads having multiple connections. Our expression of

formal semantics of HA and AADL run-time, using HCSP, illustrates how safety-critical hybrid

systems can be modeled and verified in a development environment in both discrete and continuous

domains.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:4 Xu and Ahmad et al.

1.2 Outline
Section 2 introduces the HCSP, and AADL with its structure and behavior specification mechanism.

Section 3 presents a detailed description of HA syntax and semantics, illustrating each language

production with a small example modeling different aspect of a hybrid system. In Section 4,

a realistically-scaled automatic cruise control system is presented to illustrate the use of the

proposed HA. Section 5 describes AADL run-time mechanisms with emphasis on its execution

and synchronous communication models and Section 6 introduces their formal semantics with the

HCSP, i.e., translating AADL models with HA to (formal) HCSP models. Section 7 presents the

simulation and verification of the translated HCSP model of the case study introduced in Section 4

with the aid of the simulator and HHL prover of HCSP. Section 8 presents a summary of the related

work, and Section 9 summarizes this paper.

2 BACKGROUND
This section presents the basic AADL notions and notations and an overview of HCSP with its

simulator and verification tool.

2.1 AADL
Architecture Analysis & Design Language (AADL), as an architectural description language of

embedded systems [40], has successfully been applied in several safety-critical industrial case

studies in domains like medical and aerospace engineering. The System Architecture Virtual

Integration (SAVI) project for multi-vendor avionics systems has selected AADL as its architecture

language [30]. SAVI emphasizes virtual integration of architectural components during system

engineering, so later actual integration proceeds correctly.

Architectural modeling in AADL is realized through the component specification of both the

application software, and the execution platform it is to run on. Component Type, and Implementation
classifiers, corresponding to system entities, are instantiated and then connected together to form

the system architecture model.

Component interface elements, called ports, are specified in the features section of a type classifier.
AADL provides data, event, and event data ports to transmit and receive data (without queuing),

control (queuing at the recipient), and combined control and data (queuing at the recipient) signals,

respectively. Application software may contain process, thread, data, and subprogram components

to represent shared memory space, control flow, local data sub-components, and the callable

code. The execution platform is made up of computation and communication resources, primarily

consisting of processor,memory, bus, and device components to represent the hardware and software

responsible for thread scheduling and execution, code and data storage, physical connections among

components, and interactive components like actuators and sensors.

AADL provides system components to model the composition of the software, and execution

platform components, and abstract components to model interfaces without further elaboration.

Open Source AADL Tool Environment (OSATE) [53] is a development environment built on Eclipse

to implement AADL for modeling and analysis of real-time embedded systems. OSATE not only

provides full-features text editor and a set of analysis plug-ins, but also supports domain-specific

analysis plug-in development.

AADL is extendable, and additional sub-languages for modeling and analysis can be added

through its annex mechanism. The component and connection constructs of AADL are sufficient

for modeling the structure of a system architecture. However, development of dependable systems

requires detailed behavior modeling, which AADL lacks. The Behavior (BA), and BLESS annexes [40,

42] were introduced to address this shortcoming. They both use state transition mechanisms with

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:5

guards and actions to model the discrete behavior of control systems. BLESS provides a declarative

behavior interface specification language, an action language for defining subprogram behavior,

and a state transition machine language for defining reactive behavior. To prove that all executions

of BLESS programs uphold their specifications, a BLESS proof engine automatically generates

verification conditions, and transforms programs having proof outlines into complete, formal proofs.

Even with addition of the BA and BLESS annexes, AADL still lacks continuous behavior modeling,

so nothing related to the physical portion of a hybrid system can be modeled or verified. Hybrid

Annex (HA) was introduced in [3], for specifying the continuous behavior of model components,

and the cyber-physical interaction. Some of the preliminary results of furnishing AADL for hybrid

system modeling and verification were also presented in [2].

2.2 HCSP
Hybrid Communication Sequential Processes (HCSP) is an extension of Hoare’s Communicating

Sequential Processes (CSP) [38] for hybrid systems [35, 72] . In HCSP, differential equations are

introduced to model continuous evolution of the physical processes (in the physical environment)

along with interrupts. A hybrid system in HCSP is a parallel composition of networked sequential

processes interacting through dedicated channels, or a repetition of a sub-system. Processes in

parallel can only interact through communication, and no shared variables are allowed.

2.2.1 Syntax. The processes of HCSP are constructed as follows:

P F skip | 𝑥 B 𝑒 | wait(𝑑) | ch?𝑥 | ch!𝑒 | 𝐵 → P | ⟨¤𝒔 = 𝐹 (𝒔)&𝐵⟩
| 8𝑖∈𝐼 (ch𝑖□𝑖 −→ P𝑖) | ⟨¤𝒔 = 𝐹 (𝒔)&𝐵⟩ ⊵ 8𝑖∈𝐼 (ch𝑖□𝑖 −→ P𝑖)
| X | 𝜇X.P | P # P′ | P ⊔ P′

S F P | S∥S′

Here P, P′, and P𝑖 represent sequential processes, whereas S and S′ stand for (sub)systems, ch and

ch𝑖 are communication channels, while ch𝑖□𝑖 is a communication event which can either be an input

event ch?𝑥 or an output event ch!e, B and e are boolean and arithmetic expressions respectively,

and d is a non-negative real constant.
Process skip terminates immediately without updating variables, and process 𝑥 B 𝑒 assigns the

value of expression 𝑒 to variable 𝑥 and then terminates. Process wait(𝑑) keeps idle for 𝑑 time units

without any change to respective variables. Interaction between processes is based on two types

of communication events: ch!𝑒 sends the value of 𝑒 along channel ch and ch?𝑥 assigns the value

received along channel ch to variable 𝑥 . Communication takes place when both the source, and the

destination processes are ready.

HCSP supports both sequential and concurrent composition. A sequentially composed process

P #P′ behaves as P first, and if it terminates, as P′ afterwards. The alternative process 𝐵 → P behaves
as P only if 𝐵 is true and terminates otherwise. We can then define the conditional

if 𝐵 then P else P′ ≜ 𝑓 B 0 # 𝐵 → (𝑓 B 1 # P) # (𝑓 = 0 ∧ ¬𝐵) → P′

where 𝑓 is a fresh variable indicating whether the branch corresponding to 𝐵 being true is taken.

Internal choice between processes P and P′, denoted as P ⊔ P′, is resolved by the process itself.

Communication controlled external choice 8𝑖∈𝐼 (ch𝑖□𝑖 −→ P𝑖) specifies that as soon as one of the

communications ch𝑖□𝑖 takes place, the process starts behaving as respective process P𝑖 .
Continuous evolution is specified as ⟨¤𝒔 = 𝐹 (𝒔)&𝐵⟩. Real variables 𝒔 evolve continuously according

to differential equations 𝐹 as long as the boolean expression 𝐵 is true. In HCSP, continuous evolution

can be preempted due to the following interrupts:

Boundary Violation ⟨¤𝒔 = 𝐹 (𝒔)&𝐵⟩ evolves until the boundary condition 𝐵 becomes false.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:6 Xu and Ahmad et al.

Communication ⟨¤𝒔 = 𝐹 (𝒔)&𝐵⟩ ⊵ 8𝑖∈𝐼 (ch𝑖□𝑖 −→ P𝑖) behaves like ⟨¤𝒔 = 𝐹 (𝒔)&𝐵⟩, except that
the continuous evolution is preempted whenever one of the communications ch𝑖□𝑖 takes
place, which is followed by respective P𝑖 .

The recursion 𝜇X.P means that the execution of P can be repeated by replacing each occurrence

of X with 𝜇X.P itself during executing P, i.e., 𝜇X.P behaves like P[𝜇X.P]. Finally, S defines an HCSP

system on the top level. A parallel composition S∥S′ behaves as if S and S′ run independently

except that they need to synchronize along the common communication channels.

In order to support modularity, we extend HCSP to include procedures and modules. A procedure

definition follows the syntax proc 𝑝 = P, where P is a sequential process. The call to 𝑝 is equivalent

to executing process P. A module definition follows the syntax module𝑚(𝑇 𝑥) = {𝑝𝑟𝑜𝑐 P}, where
𝑇 𝑥 is a list of parameters, 𝑝𝑟𝑜𝑐 is a list of procedure definitions and P is a sequential process

including the call to these procedures. The module execution𝑚(𝑒) is equivalent to executing P by

instantiating 𝑥 by 𝑒 .

2.2.2 Simulator. A simulator for HCSP with a graphical user interface is introduced in [66], which

allows us to quickly obtain the result of running an HCSP process, in order to check that its behavior

is as expected. The simulator, implemented in Python, is customized for HCSP programs. In addition

to real numbers, the state of the system may contain strings and lists. Operations on lists as stack,

queue, or priority queue are supported. Solving of Ordinary Differential Equations (ODEs) is done

using Python’s scipy package (function solve_ivp), which is also able to accurately calculate the

time at which the boundary of the domain is reached using a root-finding algorithm. The simulator

is linked to a web interface which is able to show the HCSP process in pretty-printed form, the

steps of execution, and a plot of the variables in the process against time. This allows us to not

only view the result of running an HCSP process, but also find out what went wrong if the process

does not execute as expected.

2.2.3 HHL Prover. HHL Prover is an interactive prover implemented in Isabelle/HOL. In this prover,

we formalize the semantics of HCSP and the synchronization function of traces. For single process,

we give the partial correctness lemmas of hybrid Hoare logic with different HCSP commands.

Based on corresponding library of Ordinary Differential Equation, we give various rules of proving

differential invariant for continuous evaluations. To deal with parallel process and the handshake of

communications, we provide elimination rules for assertions on synchronized traces. With the help

of these lemmas, we can perform formal verification of the HCSP system and prove the properties

we need.

3 HYBRID ANNEX
This section presents the constructs of the Hybrid Annex (HA), an extension to AADL for hybrid

system modeling and verification. HA was briefly introduced in [3], here we described each HA

section in detail with its syntax, and grammar with appropriate examples. HA facilitates modeling

of the physical, real-world elements, or processes, that the system must interact with to achieve

its goals of monitoring and controlling one or more of those processes. For continuous behavior

modeling of sensors and actuators, HA sub-clauses are used within AADL device component

implementations. Continuous behavior modeling of physical processes/environment is achieved

through specificationswithinAADL abstract component implementations.Modeling hybrid systems

involves both discrete and continuous dynamics. The AADL core language does not provide

continuous behavior modeling, but it does have hardware and software components for discrete

dynamics modeling. To model this missing component of a hybrid system modeling—the physical

process/environment—we employ the Abstract component category.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:7

HA is expressive enough tomodel physical processes with complex continuous dynamics attached

to AADL ports and mapped with AADL connections. In this paper, we present an updated version

of HA to accommodate HHL for assertion and invariant specification for both continuous and

discrete behaviors.

Below we explain the Extended Backus-Naur Form (EBNF) of the HA grammar, in which: literals

are printed in bold; alternatives are separated by a pipe |; groupings are enclosed with parentheses

(); square braces [] delimit optional elements; and the closures { }+ and { }* are used to signify

one-or-more, and zero-or-more of the enclosed element, respectively. Following is the grammar of

the HA sub-clause:

hybrid_annex ::=
[assertion { Assertion }+]
[assume { assume_declaration }+]
[ensure { ensure_declaration }+]
[invariant invariant_declaration]
[variables { variable_declaration }+]
[constants constant_declarations]
[channels { channel_declaration }+]
behavior { behavior_declaration }+

Here, assertion, assume, ensure, invariant, variables, constants, channels, and behavior are the sections

of an HA sub-clause, each of which is dedicated to specify particular aspect of a detailed behavior

model.

3.1 Assertion Section
In addition to detailed (continuous and discrete) behaviormodeling, HA also accommodates behavior

constrains specification as assertions. Assertions are used to express constraints on any HA defined

behavior. The assertion section may declare assertions either for later inclusion in the invariant

section, thereby making a more concise invariant, or in assume and ensure sections for expressing

pre- and post-conditions at the component level or along with an HCSP process (as assume, ensure,

or invariant at the process level) in the behavior section. An assertion is a first-order logic formula

enclosed between << and >>.

Following is the grammar of the assertion section. The italicized prefix for identifiers gives “hints”

about the kind of identifier.

assertion_declaration ::=
{ referenced_assertion }+

referenced_assertion ::=
« assertion_identifier : predicate »

predicate::=
UQ_PredicateExpression |
EQ_PredicateExpression |
PredicateExpression

An assertion declared as a 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑑_𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 has a unique identifier which can be used for

reference in the assume, ensure, invariant, and behavior section. HA supports universal quantification

specified as𝑈𝑄_𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and existential quantification specified as𝐸𝑄_𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:8 Xu and Ahmad et al.

3.2 Assume Section
Assertions defined in the assume section specify the constraints imposed by the component on its

environment. These are the claims that any initial state of the component should satisfy.

3.3 Ensure Section
Behavior constraints specified in the ensure section must be satisfied by every terminating state

of the component starting from an initial state satisfying the constraints specified in the ensure

section, given that the behavior terminates.

3.4 Invariant Section
Behavior constraints defined in the invariant section which stipulates the property should be

satisfied throughout the behavior execution of the component. Note that there is only one invariant,

but it can be logically complex, having as many assertions as needed.

Below is the grammar of the assume, ensure, and invariant sections.

assume_declaration |
ensure_declaration |
invariant_declaration ::=

{ assertion_identifier | inline_assertion }+
inline_assertion ::=
« predicate »

predicate::=
UQ_PredicateExpression |
EQ_PredicateExpression |
PredicateExpression

Behavior constraints specification at component (in assume, ensure, and invariant sections) and

HCSP process level forms an HHL triple, an extension of Hoare Logic for hybrid systems [44], as

shown below. Here, 𝑃 is an HCSP process.

{𝑎𝑠𝑠𝑢𝑚𝑒} 𝑃 {𝑒𝑛𝑠𝑢𝑟𝑒 ; ⌈𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡⌉}
If behavior of the component is modeled by several sequential processes in parallel, say two, i.e., 𝑃1
and 𝑃2, each of which with its own local assume, ensure and invariant, i.e.,

{𝑎𝑠𝑠𝑢𝑚𝑒𝑖 } 𝑃𝑖 {𝑒𝑛𝑠𝑢𝑟𝑒𝑖 ; ⌈𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖⌉}
then, the corresponding HHL triple is a conjunction of the global and local assume, ensure, and

invariant, as given blow.

{𝑎𝑠𝑠𝑢𝑚𝑒1 ∧ 𝑎𝑠𝑠𝑢𝑚𝑒, 𝑎𝑠𝑠𝑢𝑚𝑒2 ∧ 𝑎𝑠𝑠𝑢𝑚𝑒} 𝑃1 ∥ 𝑃2 {𝑒𝑛𝑠𝑢𝑟𝑒1 ∧ 𝑒𝑛𝑠𝑢𝑟𝑒, 𝑒𝑛𝑠𝑢𝑟𝑒2 ∧ 𝑒𝑛𝑠𝑢𝑟𝑒 ;
⌈𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡1 ∧ 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡⌉, ⌈𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡2 ∧ 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡⌉}

Below is the assertion specification of an (overly) simplified train. It shows the assertion, assume,

ensure, and invariant sections used to specify behavior constraints of an AADL abstract component

SimpleTrain. All the variables used are declared in the variables section (not shown here).

Assertion with label SBL is a disjunction of [s=CTCS_Properties::start] and (v < iSeg_v2), where

s is current position of the train, start is a property declared in a property set CTCS_Properties to

represent the starting position of the train, v is the current velocity of the train, and iSeg_v2 is the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:9

abstract implementation SimpleTrain.impl

annex hybrid {**

assertion

<< SBL: [s=CTCS_Properties::start] or [v < iSeg_v2] >>

<< EBL: [v < iSeg_v1] >>

<< DSPV2: [s=CTCS_Properties::start] or [(v^2)+(2*b*s)

< (nSeg_v2+(2*b*iSeg_e))] >>

assume

<< [s=0] and [v=0] and [t=0] >>

ensure

<< [v >=0] or [a>=0] or ([t>Temp] and [t<Tdelay]) >>

invariant

<< SBL and EBL and DSPV2 >>

...

behavior

Move ::= ' DT 1 s = v ' & ' DT 1 v = a ' & ' DT 1 t = 1 '

**};

end SimpleTrain.impl;

service brake limit of the current track segment iSeg (track of a train is subdivided into several

distance segments for controlling the movement authorization). This assertion defines the service

brake limit for a train. It states that the train is either not moving (its position is at the starting

point) or its current velocity must be less than the service brake limit (v2) of the current track

segment, if it is moving in segment iSeg.

The second assertion with label EBL defines an emergency brake limit for the train by describing

that whenever the train is moving in a particular track segment iSeg, its current velocity v must be

less than the emergency brake limit v1.

The third assertion with label DSPV2 specifies that during operation the train is either at the start

position or its speed is less than dynamic speed profile of the current segment. It is a disjunction of

two terms: [s=CTCS_Properties::start], and [(v^2)+(2*b*s) < (nSeg_v2+(2*b*iSeg_e))]. Here, b is the

maximum deceleration when emergency brake is applied. Variable iSeg_e represents the end of the

current segment iSeg and variable nSeg_v2 represents the dynamic speed profile of the next segment

nSeg.

Behavior constraint << [s=0] and [v=0] and [t=0] >>, specified on line 9, in assume section de-

scribes the pre-condition that must be satisfied by the environment for the execution of the

abstract component SimpleTrain. It states the initialization of variables s, v, and t. Behavior con-

straint << [v>=0] or [a>=0] or ([t>Temp] and [t<Tdelay]) >> on line 12, in ensure section, specifies the

post-condition that must be true after the execution of SimpleTrain. This disjunction describes

that either the train is moving forward ([v>=0] or [a>=0]) or the sampling time did not expire

([t>Temp] and [t<Tdelay]).

The invariant section contains a conjunction of three assertions SBL, EBL, and DSPV2. It specifies

that during operation the speed of the train must be less then the service SBL and emergency brake

EBL limits and the dynamic speed profile of the current segment must follow a certain pattern

of deceleration (based on track condition of the next segment.) This conjunction must be true

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:10 Xu and Ahmad et al.

throughout the execution of SimpleTrain component. Process Move on line 19, defined in behavior

section, contains time derivation of s, v, and t to specify train movement. Processes in the behavior

section are further discussed in Section 3.7.

3.5 Variables Section
Local variables in the scope of an HA sub-clause are declared in the variables section along with

their data types. Data types are assigned to variables by classifier references to the appropriate

AADL (user definable) data components. Following is the grammar of the variables section:

variable_declaration ::=
variable_identifier
{ , variable_identifier }* :
data_component_classifier_reference

The referred external data component must either be part of the package containing the com-

ponent being annotated, or must be declared within the scope of another package that has been

imported using the AADL with clause. Following example shows the use of the variables section to

declare different types of variables.

...

annex hybrid {**

...

variables

t_clk , c_clk : CTCS_Types::Time

speed : Base_Types::Float

counter : Base_Type::Integer

...

**};

Variables t_clk, and c_clk are of type Time while variable speed is of type Float. Variable counter

is of type Integer. Data components Float, and Integer are defined in an AADL package Base_Types

while data component Time in defined in another AADL package CTCS_Types.

3.6 Constants Section
Constants in the scope of an HA sub-clause are declared in the constants section. Adhering to

standard convention: constants can only be initialized at declaration, and cannot be assigned

another value afterwards. A constant must be initialized with either an integer, or a real value,

and may include a description of its unit of measure. HA also supports specification of measuring

units. Common constants like the mathematical ratio 𝜋 and the physical gravitational attractive

force 𝑔 can easily be declared as pi = 3.14159 (no units) and g = 9.81 mpss (meters per second2),
respectively. The grammar of the constants section is as follows:

constant_declarations ::=
behavior_constant
{, behavior_constant }*

behavior_constant ::=
behavior_constant_identifier =
(integer_literal | real_literal | boolean_literal)
[unit_identifier]

Following example shows the use of constants section to declare different types of constants.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:11

...

annex hybrid {**

...

constants

pi = 3.14159 , g = 9.8 mpss ,

u = 1,

r = 18 cm

...

**};

Constants pi, and u are declared with values 3.14159, and 1, without any measuring units. Con-

stants g is declared with value 9.8 and measuring unit mpss for𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑2, while constant

r is declared with value 18 and measuring unit cm for 𝑐𝑒𝑛𝑡𝑖𝑚𝑒𝑡𝑒𝑟 .

3.7 Behavior Section
The behavior section of the HA sub-clause is used to specify the continuous and discrete behavior of

an AADL component in terms of concurrently-executing HCSP processes. Behavior specification

has process declarations, which in turn, may contain several predefined processes by different

constructs (sequential, concurrent, repetitive, etc.).

The process algebra notation that models hybrid system behavior is shown below, with the

ampersand sign & acting as a separator having no semantics.

behavior_declaration ::=
behavior_identifier ::=
[assume] process_declaration { & process_declaration }*
[ensure] [; { invariant }]

process_declaration:
stop | skip | wait time_value | assignment
| boolean_assignment | sequential_composition
| concurrent_composition | choice | repetition
| continuous_evolution | communication

Assertions before and after a behavior process specification, specified as assume and ensure
respectively, represent pre- and post-conditions while the invariant represent the process invariant
as explained in Section 3.4. The process invariant must be true throughout the execution of the

process it is specified for.

Below, we explain each of these algebraic notation which may constitute a continuous behavior

individually or in combination with other notations.

3.7.1 Stop process. The stop process does nothing but keeps idle for ever.

3.7.2 Skip process. The skip process terminates immediately having no further effect on variable

values. It is used to model the successful termination of the current execution.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:12 Xu and Ahmad et al.

3.7.3 Wait process. The wait keeps idle for a specific time value. During this idle period, the

respective process does not perform any action and the variables are unchanged. Below is the

syntax of the wait process:

time_value ::=
time_variable_identifier | real_literal time_unit

The time variable identifier can be a local variable identifier declared in the variables section. It

can also be a constant identifier declared in the constants section. The time unit defines a unit of

measurement of time and can be any time unit declared in the Time_Units enumerated property set

within the project specific property set in AS5506D [40]: ps, ns, us,ms, sec, min, hr.

3.7.4 Assignment process. The assignment process assigns the value of an expression to a local

variable declared in the variables section. Grammar of the assignment process is as under:

assignment ::=
variable_identifier := numeric_expression

3.7.5 Boolean assignment process. The boolean assignment process assigns the boolean value to a

local boolean type variable declared in variables section.

boolean_assignment ::=
Boolean_variable_identifier := boolean_expression

3.7.6 Sequential composition. HA supports both sequential and concurrent composition. Sequential

composition defines consecutively-executing processes. Below is the grammar of the sequential

composition.

sequential_composition ::=
{ behavior_identifier { ; behavior_identifier }+ }

A sequentially composed process {P ; Q} behaves as P first and after its successful termination,

behaves as Q. Behavior identifiers used in sequential composition must refer to behavior declarations.

3.7.7 Concurrent composition. A concurrently composed process {S1 || S2} behaves as if S1 and S2

run independently except that all interactions occur through communication events. Communica-

tion events between concurrently-composed behaviors, must occur along common communication

channels declared in the channels section, connecting processes S1 and S2. Below is the grammar of

the concurrent composition.

concurrent_composition ::=
{ behavior_identifier { || behavior_identifier }+ }

Behaviors defined using concurrent composition may not themselves be used in either sequential

or concurrent compositions. In concurrent compositions, communication channels (explained in

Section 3.8) must be shared pair-wise with complementary directions—in communication with out
communication. Variables used in common communication channels must have the same type,

and more than two processes can take part in a particular concurrent composition. Concurrently

executing processes S1 and S2 can neither share variables, nor input or output channels, hence

(VS1 ∩VS2 = ∅) ∧ (Σ𝑖𝑛 (S1) ∩ Σ𝑖𝑛 (S2) = Σ𝑜𝑢𝑡 (S1) ∩ Σ𝑜𝑢𝑡 (S2) = ∅)

whereV is a set of variables while Σ𝑖𝑛 and Σ𝑜𝑢𝑡 are the set of input and output channels, respectively.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:13

3.7.8 Choice process. Internal execution choice between processes P and Q, denoted as P [] Q is

resolved by the process itself. Following is the grammar of the choice process:

choice ::=
alternative { [] alternative }*

alternative ::=
(boolean_expression) -> process_identifier

Choice executes a process with an alternative having true boolean expression. When more than

one alternatives have true boolean expressions, the choice is resolved non-deterministically. When

no alternative has true boolean expression the choice is equivalent to skip. The alternative process
(b)-> P behaves as P only if the boolean expression b is true and terminates otherwise.

3.7.9 Repetition. The repetition executes a process for a finite number of times. Syntax of the

repetition is define below, where REPEAT is a reserved word:

repetition ::=
REPEAT [[(integer_literal
| integer_variable_identifier)]]
(process_identifier)

A variable identifier used in a REPEAT statement must refer to an integer value. Repetition can be

of following three type:

• The statement REPEAT (P) causes process P to be repeated a finite, unspecified number of times.

• The statement REPEAT [5](P) causes process P to be repeated five times.

• The statement REPEAT [n](P) causes process P to be repeated the value of integer variable n

times.

3.7.10 Continuous evolution. Behavior of a physical, controlled variable of a hybrid system is

specified by continuous evolution. The semantics of continuous evolution are: a differential equation

holds when its (optional) boolean expression evaluates to true, and until its (optional) interrupt

occurs.

The continuous evolution statement forces values of variables declared in the variables section

to follow differential equations as long as an optional boolean expression is true. The boolean

expression specifies boundary condition of the variables. Continuous evolution terminates as soon

as the boolean expression turns to false. Interruption of continuous evolution due to boundary

condition is known as boundary interrupt. Continuous evolution can also be preempted due to timed,
and communication interrupts, as presented in the Section 3.7.11 in relation with cyber-physical

interaction modeling.

Below is the grammar of the continuous evolution:

continuous_evolution ::=
’differential_expression = differential_expression’
[< boolean_expression >] [interrupt]

Differential expression: Differential expressions consist of several differentials combined using

the usual multiplication (∗), addition (+), and subtraction (−) operators. Differentials may be numeric

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:14 Xu and Ahmad et al.

literals, a variable optionally raised to a numeric literal power, a derivative w.r.t time, a partial

derivative, or a parenthesized differential expression.

differential_expression ::=
differential
| differential { * differential }+
| differential { + differential }+
| differential - differential

differential ::=
numeric_literal
| variable_identifier [^ numeric_literal]
| derivative_expression
| derivative_time
| (differential_expression)

Derivative expression: Apartial derivative expression is indicated using the keyword DE followed

by the order of the differential equation, then the dependent variable, and finally the independent

variable. For example, the rate of change of variable 𝑦 with respect to 𝑥 , denoted
𝑑𝑦

𝑑𝑥
, a first

order equation, is specified as ' DE 1 y x ', while the second order equation
𝑑2𝑦

𝑑𝑥2
is specified with

' DE 2 y x '. Here, ' is the delimiter at the start and end of each differential expression.

derivative_expression ::=
DE order_integer_literal dependent_variable_identifier
independent_variable_identifier

Derivative time: A similar notation is defined for derivatives w.r.t. time–a frequently encoun-

tered concept in real-time systems. Here the keyword is DT, and the independent variable, always

being time, is not needed. Thus, the rate of change of 𝑦 with respect to time 𝑡 ,
𝑑𝑦

𝑑𝑡
, is specified as

' DT 1 y '.

derivative_time ::=
DT order_integer_literal variable_identifier

3.7.11 Communication. Communication between physical processes uses the channels declared

in the channels section of the respective behavior specifications, while communication with other

AADL components relies on the ports that are declared in the component’s type. HA accommodates

assignment and communication of continuous variables, as a result analog-to-digital and digital-to-

analog converters can easily be modeled as communication events.

communication ::=
port_communication | channel_communication

port_communication ::=
port_identifier (?|!)
([variable_identifier])

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:15

channel_communication ::=
channel_identifier (?|!)
[variable_identifier]

Channel communication synchronizes involved processes and can only occur when both sender

and receiver are ready and may cause one of them to wait. Port communication has semantics of

AADL core language. Communication events are of two types: input event and output event. A
port input event p1?(x) specifies that an input value is received from port p1 and stored in a local

variable x. A port output event p2!(y) specifies that an output value of variable y is sent out through

port p2. A channel input event ch1?z specifies that an input value is received from channel ch1 and

stored in a local variable z. A channel output event ch2!w specifies that an output value of variable w

is sent out along channel ch2.

Interrupts: Continuous process evolution may be terminated after a specific time, or on a com-

munication event. These are invoked through timed, and communication interrupts, respectively.

A timed interrupt preempts continuous evolution after a given amount of time whereupon the

process then assumes the behavior specified by the interrupt. A process with continuous evolution,

boundary interrupt, and a timed interrupt, continues its evolution if it terminates due to boundary

interrupt before time value, time units. Otherwise, after a specific time value, the process behaves

like the next specified process.

A communication interrupt preempts continuous evolution whenever communication takes

places along any one of the named ports or channels. A process with continuous evolution, boundary

interrupt, and a communication interrupt continues its evolution except that the continuous

evolution is interrupted whenever any communication event takes place along any channel or port.

interrupt ::=
timed_interrupt | communication_interrupt

timed_interrupt ::=
[> time_value]> { behavior_identifier }+
time_value ::=
time_variable_identifier | real_literal time_unit

communication_interrupt ::=
[[> port_or_channel_identifier ~> process_identifier
{ , port_or_channel_identifier ~> process_identifier }*]]>

For timed interrupt, as soon the time value expires, the process behaves as specified after]>. For
communication interrupt The communication event can either be an input or an output event. As

soon as the communication event takes place, the process behaves as the next process specified

right after ~>.
Following code snippet illustrates continuous behavior specification using ordinary and partial

differential equations attached to the implementation classifier of an abstract component AlphaTest.

Behavior processes in this example are not related to each other.

abstract implementation AlphaTest.impl

annex hybrid {**

...

variables

s , v , x , a , y , z, u : Base_Types::Float

t : CTCS_Types::Time

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:16 Xu and Ahmad et al.

constants

c = 0.0123 , alpha = 19 mmsps

behavior

Train ::= 'DT 1 s = v' & 'DT 1 v = a' & 'DT 1 t = 1'

WE ::= 'DT 2 y = (c^2) * DE 2 y x'

HE ::= 'DT 1 u - (alpha * ((DE 2 u x) + (DE 2 u y) + (DE 2 u z))) = 0'

**};

end AlphaTest.impl;

All the required variables and constants are declared in respective sections with appropriate data

types, and initial values with measuring units.

Process Train, on line 13, specifies of motion of a (simplified) train; where s is the displacement, v

is the velocity, a is the acceleration, and t is the train clock time.

On line 14, process WE specifies wave behavior in a one dimension space. Where c is a constant

and is declared in constants section with value 0.0123.

Process HE, on line 15, specifies temperature change in a 3D space. Where alpha is the thermal

diffusivity of the material or substance in use, u is the temperature, and x, y, z are the dimensions.

For air (the substance used in this example) at 300
◦
K, alpha is 19𝑚𝑚2/𝑠𝑒𝑐 , specified as 19 mmsps in

the constants section.

3.8 Channels Section
A computing unit’s extensive interactions with, and strong dependence on its physical environment

makes precise specification of the system’s cyber-physical interaction (communication between

computing units and their physical environment) an essential part of hybrid system modeling.

channel ::=
channel_identifier {, channel_identifier }* :
data_component_classifier_reference

HA channels only support unidirectional communication and a process may not use the same

channel for both input and output communication events. Channel declarations contain AADL

data component classifier references to specify type of the data sent or received along a particular

channel. Extensive support for interaction and continuous evolution preemption due to timed and

communication interrupts is a major contribution of the HA.

4 RUNNING EXAMPLE: AN AUTOMATICALLY CRUISE CONTROL SYSTEM
In this section, we introduce an automatic cruise control system (ACCS) as the case study to illustrate

the whole procedure of modeling, simulation, and verification. The ACCS captures pictures while

the car is operating in order to detect obstacles on the road. Obstacle detection and velocity control

are critical functions that must operate in a real-time, deterministic fashion. There are two basic

requirements for the system:

Hard The car must not collide onto the obstacle ahead;

Soft The evolution of the car should follow the driver’s intent as much as possible.

This example is adapted from the self-driving car system in [25], where it is modeled only in AADL,

and then extended in [66] by adding physical environment and control components modeled in

Simulink/Stateflow. In this paper, we modify the architecture of the ACCS in [66] and the behavior

of the AADL components in the system is now described by the HA proposed in Section 3.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:17

Fig. 1. The automatically cruise control system (ACCS)

4.1 Architecture and Behavior
The architecture of the ACCS decomposes to three levels, shown in Fig. 1. The physical layer

contains a car, a driver controlling the car, and a truck in front of the car as an obstacle. The

software level defines control of the system and it contains three processes for obstacle detection,

velocity control, and panel control, and each process is composed of several threads. These processes

interact with the environment (the physical layer) through devices. The platform layer consists

of buses, processors, and some devices. The connections between processes and devices could be

bound to buses and all the threads are bound to processors, with some scheduling policies such as

FIFO (First-In-First-Out) and HPF (High-Priority-First).

The execution of the ACCS is as follows. The car is placed at the starting point initially and the

driver at the wheel can accelerate and decelerate the car by the device user_panel. Process pan_ctr

receives a command from the driver and the thread vel_comp in the process computes a desired

velocity (des_v) and sends it to the process controlling the velocity of the car (vel_ctr). Meanwhile,

process obs_det detects the truck by a radar and provides the velocity controller process (vel_ctr)

with the real-time position of the truck (obs_p). Process vel_ctr computes a command (cmd) from the

received obstacle (truck) position (obs_p), the position (car_p by GPS) and velocity (car_v by velometer)

of the car, and the desired velocity (des_v) from the driver. Concretely, the thread PI_ctr in the

process computes a desired acceleration (des_a) according to the real-time velocity of the car and

the desired velocity set by the driver and sends the result to the thread emerg in the process. Thread

emerg collects the real-time position and velocity of the car, the desired acceleration provided by

PI_ctr, and the real-time position of the obstacle to work out a command (cmd), by some emergency

control strategy. Finally, process vel_ctr outputs the command to the actuator which controls the

motion of the car and the above procedure repeats.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:18 Xu and Ahmad et al.

4.2 Physical Level
The truck, car, and driver are modeled as AADL abstract components. The type of the truck is shown

below. It is an abstract component with one output data port obs_p denoting that the position of the

truck can be sensed by other AADL components.

abstract truck

features

obs_p : out data port Base_Types::Float;

end truck;

We assume the truck is placed at the position of 35 m ahead of the car initially (Init) and then

stays motionless for 10 s (Stay) before moving forward for 10 s with velocity 2 m/s (Run). After that,

it moves to another lane and will no longer be in front of the car (Away). Before the truck moves

to another lane, the environment of the truck can sense the real-time position (p) of the truck at

any time through the output data port obs_p. This behavior can be described by the following HA,

where t and p denote the local time and the position of the truck.

abstract implementation truck.imp

annex hybrid {**

variables

t , p : Base_Types::Float

channels

obs_p! : Base_Types::Float

behavior

Main ::= Init; Stay; Run; Away

Init ::= t := 0; p := 35

Stay ::= 'DT 1 t = 1' < t<10 > [[>obs_p!p ~> Stay]]>

Run ::= 'DT 1 t = 1 & DT 1 p = 2' < t<20 > [[>obs_p!p ~> Run]]>

Away ::= 'DT 1 t = 1' [[>obs_p!0 ~> Away]]>

**}

end truck.imp;

The car moves according to the ODE { ¤𝑝 = 𝑣, ¤𝑣 = 𝑎}, where 𝑝 , 𝑣 , and 𝑎 denote the position,

velocity, and acceleration of the car, respectively, and they are set to 0 initially. During the evolution,

the car can be actuated by the acceleration from the input data port car_a and its position and

velocity can be sent out through the output data ports car_p and car_v, respectively. In summary,

the car can be modeled by the following abstract component with HA:

abstract car

features

car_a : in data port Base_Types::Float;

car_p : out data port Base_Types::Float;

car_v : out data port Base_Types::Float;

end car;

abstract implementation car.imp

annex hybrid {**

variables

p , v , a : Base_Types::Float

channels

car_a?, car_p!, car_v! : Base_Types::Float

behavior

Main ::= Init; Run

Init ::= p := 0; v := 0; a := 0

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:19

Run ::= 'DT 1 p = v' & 'DT 1 v = a'

[[> car_a?a ~> Run , car_p!p ~> Run , car_v?v ~> Run]]>

**}

end car.imp;

The behavior of the driver is trivial: it first speeds up the car three times with time interval 0.5s

in between to set a desired speed to 3m/s. After 29s, the driver continues to speed down twice in

0.5s time intervals to decrease the desired speed. The driver sends the command (acceleration or

deceleration) through the output event port cmd, and its AADL code is shown as below:

abstract driver

features

cmd : out event port Base_Types::Integer;

end driver;

abstract implementation driver.imp

annex hybrid {**

constants

acc = 1, dec = -1

channels

cmd! : Base_Types::Integer

behavior

Main ::= Up; Wait; Down

Up ::= cmd!acc; wait 0.5; cmd!acc; wait 0.5; cmd!acc

Wait ::= wait 29

Down ::= cmd!dec; wait 0.5; cmd!dec

**}

end driver.imp;

4.3 Software Level
The software level is composed of three AADL processes: obs_det for detecting the obstacle in front

of the car, vel_ctr for controlling the car, and pan_ctr for dealing with the commands from the user

panel. These three processes are connected to make the evolution of the car follow the driver’s

intent as much as possible, and in the meantime the car should not collide onto the obstacle ahead.

4.3.1 Obstacle Detection. The obstacle detection process obs_det contains one thread: obs_p_comp,

which acquires obstacle positions from the input data port pos and transfers the processed positions

through the output data port obs_p. Concretely, the AADL code of this thread is as follows, where x,

and y are temporary variables.

thread obs_p_comp

features

pos : in data port Base_Types::Float;

obs_p : out data port Base_Types::Float;

properties

Dispatch_protocol => Periodic;

Period => 97 ms;

Deadline => 97 ms;

Compute_execution_time => 20 ms;

Priority => 1;

end obs_p_comp;

thread implementation obs_p_comp.imp

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:20 Xu and Ahmad et al.

annex hybrid {**

variables

x , y : Base_Types::Float

channels

pos?, obs_p! : Base_Types::Float

behavior

Input ::= pos?x

Main ::= y := x

Output ::= obs_p!y

**}

end obs_p_comp.imp;

Finally, the process of obstacle detection (obs_det) is modeled as follows:

process obs_det

features

pos : in data port Base_Types::Float;

obs_p : out data port Base_Types::Float;

end obs_det;

process implementation obs_det.imp

subcomponents

obs_p_comp : thread obs_p_comp.imp;

connections

c0 : pos -> obs_p_comp.pos;

c1 : obs_p_comp.obs_p -> obs_p;

end obs_det.imp;

4.3.2 Velocity Control. The process vel_ctr for velocity control consists of two threads: PI_ctr and

emerg. The thread PI_ctr receives the car speed at the input data port car_v and a desired speed at

the input data port des_v; then it computes a desired acceleration and sent it out through port des_a.

The type of PI_ctr is shown as below:

thread PI_ctr

features

car_v : in data port Base_Types::Float;

des_v : in data port Base_Types::Float;

des_a : out data port Base_Types::Float;

properties

Dispatch_protocol => Periodic;

Period => 7 ms;

Deadline => 7 ms;

Compute_execution_time => 1 ms;

Priority => 1;

end PI_ctr;

Concretely, it computes the difference between the desired and the real velocities of the vehicle

and then sends the difference to discrete PI controller with a wind-up method (back-calculation) to

calculate a desired acceleration. The computation is specified by the HA in the implementation of

this thread as follows:

thread implementation PI_ctr.imp

annex hybrid {**

constants

period = 7 ms

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:21

variables

Integrator_DSTATE : Base_Types::Float

v_car , v_des , a_des : Base_Types::Float

Sum , IntegralGain , SumFdbk , SumFdbk_0 : Base_Types::Float

channels

car_v?, des_v?, des_a! : Base_Types::Float

behavior

Init ::= Integrator_DSTATE := 0

Input ::= car_v?v_car; des_v?v_des

Main ::= Sum := v_des - v_car; IntegralGain := Sum;

SumFdbk := Sum + Integrator_DSTATE;

(SumFdbk > 3) -> (SumFdbk_0 := 3) [] (SumFdbk < -3) -> (SumFdbk_0 := -3)

[] (-3 <= SumFdbk <= 3) -> (SumFdbk_0 := SumFdbk);

IntegralGain := (SumFdbk_0 - SumFdbk + IntegralGain) * period

+ Integrator_DSTATE;

Sum := Sum + IntegralGain;

(Sum > 3) -> (a_des := 3) [] (Sum < -3) -> (a_des := -3)

[] (-3 <= Sum <= 3) -> (a_des := Sum);

Integrator_DSTATE := IntegralGain

Output ::= des_a!a_des

**}

end PI_ctr.imp;

The thread emerg receives obstacle position at port obs_p, car position at port car_v, car speed at

port car_p, and the desired acceleration at port des_a, and outputs a command at port car_a based

on all these inputs. It checks whether the desired acceleration is safe with respect to obstacle

position. If so this is allowed as the final command. Otherwise, it overrides the command with a

safe deceleration. Concretely, the control of emerg is based on the Maximum Protection Curve [66]

computed as follows:

𝑉lim (car𝑝) =


𝑣max if obs𝑝 − car𝑝 ≥ 𝑣2max

(−2𝑎min)√︁
−2𝑎min · (obs𝑝 − car𝑝) if 0 < obs𝑝 − car𝑝 <

𝑣2max
(−2𝑎min)

0 otherwise

where car𝑝 and obs𝑝 are the respective current positions of the car and the obstacle, 𝑣max is the

maximum velocity that the car can reach and 𝑎min < 0 is the braking deceleration of the car. If

the obstacle is out of the safe distance (−𝑣2max/2𝑎min) of the vehicle, the upper limit velocity of the

vehicle can be the maximum 𝑣max ; if not, the velocity should not exceed

√︁
−2𝑎min · (obs𝑝 − car𝑝)

in order to avoid the collision (provided obs𝑝 − car𝑝 > 0); otherwise, if obs𝑝 − car𝑝 ≤ 0, then a

collision has already happened, and the vehicle should stop (𝑉lim (car𝑝) = 0).

At each iteration, emerg predicts the position 𝑠next and velocity 𝑣next of the car at the next period

based on the desired acceleration (des𝑎) provided by PI_ctr (see Fig. 1). Concretely, they can be

computed by

𝑣next = car𝑣 + des𝑎 · period
𝑝next = car𝑝 + car𝑣 · period + 1

2
· des𝑎 · period2

where period is the period of the thread emerg.

If, at the next period, the velocity does not exceed the upper limit computed as above, i.e.,

𝑣next ≤ 𝑉lim (𝑝next), then the desired acceleration des𝑎 is safe; if not, it continues to test if the

constant velocity (no acceleration or deceleration) is safe (car𝑣 ≤ 𝑉lim (car𝑝 + car𝑣 · period));
otherwise, the emergency alerts and the thread emerg outputs the minimal deceleration (𝑎min < 0)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:22 Xu and Ahmad et al.

to brake the car. The above control strategy can be described by

𝑎(car𝑝 , car𝑣) =


des𝑎 if 𝑣next ≤ 𝑉lim (𝑝next)
0 if car𝑣 ≤ 𝑉lim (car𝑝 + car𝑣 · period)

𝑎min otherwise

In summary, the thread emerg is modeled as follows:

thread emerg

features

obs_p : in data port Base_Types::Float;

car_p : in data port Base_Types::Float;

car_v : in data port Base_Types::Float;

des_a : in data port Base_Types::Float;

cmd : out data port Base_Types::Float;

properties

Dispatch_protocol => Periodic;

Period => 5 ms;

Deadline => 5 ms;

Compute_execution_time => 1 ms;

Priority => 2;

end emerg;

thread implementation emerg.imp

annex hybrid {**

constants

v_max = 10 m/s

a_min = -3 m/s

period = 5 ms

variables

p_obs , p_car , v_car , a_des , CMD : Base_Types::Float

p , v , v_lim : Base_Types::Float

channels

obs_p?, car_p?, car_v?, des_a?, cmd! : Base_Types::Float

assume

<< [p_car = 0] and [v_car = 0] >>

invariant

<< [p_car <= p_obs] and [v_car <= v_lim] >>

ensure

<< [p_car <= p_obs] >> -- The car will never collide into the obstacle ahead

behavior

Input ::= obs_p?p_obs; car_p?p_car; car_v?v_car; des_a?a_des

Main ::= p := p_car + v_car * period + 0.5 * a_des * period^2;

v := v_car + a_des * period; Comp_V_lim;

(v <= v_lim) -> (CMD := a_des) []

(v > v_lim) -> (p := p_car + v_car * period; Comp_V_lim;

(v_car <= v_lim) -> (CMD := 0) [] (v_car > v_lim) -> (CMD := a_min)

)

Comp_V_lim ::=

(p_obs - p >= v_max^2 / (-2 * a_min)) -> (v_lim := v_max) []

(p_obs - p < v_max^2 / (-2 * a_min)) -> (

(p_obs - p > 0) -> (v_lim := sqrt(-2 * a_min * (p_obs - p))) []

(p_obs - p <= 0) -> (v_lim := 0)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:23

)

Output ::= cmd!CMD

**}

end emerg.imp;

Finally, the process of velocity control (vel_ctr) is modeled as follows:

process vel_ctr

features

obs_p : in data port Base_Types::Float;

car_p : in data port Base_Types::Float;

car_v0 : in data port Base_Types::Float;

car_v1 : in data port Base_Types::Float;

des_v : in data port Base_Types::Float;

cmd : out data port Base_Types::Float;

end vel_ctr;

process implementation vel_ctr.imp

subcomponents

emerg : thread emerg.imp;

PI_ctr : thread PI_ctr.imp;

connections

c0 : obs_p -> emerg.obs_p;

c1 : emerg.cmd -> cmd;

c2 : car_p -> emerg.car_p;

c3 : car_v0 -> emerg.car_v;

c4 : car_v1 -> PI_ctr.car_v;

c5 : des_v -> PI_ctr.des_v;

c13: PI_ctr.des_a -> emerg.des_a; -- Asynchronous

end vel_ctr.imp;

4.3.3 Panel Control. The process pan_ctr includes only one thread vel_comp. It receives events

from event port in_event and transfers the receive events through event port out_event. The driver

can control the car by triggering events acc and dec to increase and decrease the desired speed,

respectively. The thread pan_ctr_th is modeled as below:

thread vel_comp

features

cmd : in event port Base_Types::Float;

des_v : out data port Base_Types::Float;

properties

Dispatch_protocol => Aperiodic;

Deadline => 100 ms;

Compute_execution_time => 10 ms;

Priority => 0;

end vel_comp;

thread implementation vel_comp.imp

annex hybrid {**

variables

CMD , v_des : Base_Types::Float

channels

cmd?, des_v! : Base_Types::Float

behavior

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:24 Xu and Ahmad et al.

Init ::= v_des := 0

Input ::= cmd?CMD

Main ::= (CMD = 1) -> (v_des := v_des + 1)

[] (CMD = -1) -> (v_des := v_des - 1);

Output ::= des_v!v_des

**}

end vel_comp.imp;

Then, the process of panel control pan_ctr is modeled as follows:

process pan_ctr

features

cmd : in event port Base_Types::Float;

des_v : out data port Base_Types::Float;

end pan_ctr;

process implementation pan_ctr.imp

subcomponents

vel_comp : thread vel_comp.imp;

connections

c0 : cmd -> vel_comp.cmd;

c1 : vel_comp.des_v -> des_v;

end pan_ctr.imp;

4.4 Platform Level
The platform is composed of a bus, a processor, and some devices. Devices serve as the “routers”

that connect the physical and software levels. All the devices in the ACCS are modeled as follows:

device radar

features

radar_data : in data port Base_Types::Float;

pos : out data port Base_Types::Float;

properties

Dispatch_protocol => Periodic;

Period => 10 ms;

end radar;

device implementation radar.imp

annex hybrid {**

variables

data_radar , POS : Base_Types::Float

channels

radar_data?, pos! : Base_Types::Float

behavior

Input ::= radar_data?data_radar

Main ::= POS := data_radar

Output ::= pos!POS

**}

end radar.imp;

device actuator

features

cmd : in data port Base_Types::Float;

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:25

car_a : out data port Base_Types::Float;

properties

Dispatch_protocol => Aperiodic;

end actuator;

device implementation actuator.imp

annex hybrid {**

variables

CMD , a_car : Base_Types::Float

channels

cmd?, car_a! : Base_Types::Float

behavior

Input ::= cmd?CMD

Main ::= a_car := CMD

Output ::= car_a!a_car

**}

end actuator.imp;

device GPS

features

GPS_data : in data port Base_Types::Float;

pos : out data port Base_Types::Float;

properties

Dispatch_protocol => Periodic;

Period => 6 ms;

end GPS;

device implementation GPS.imp

annex hybrid {**

variables

data_GPS , POS : Base_Types::Float

channels

GPS_data?, pos! : Base_Types::Float

behavior

Input ::= GPS_data?data_GPS

Main ::= POS := data_GPS

Output ::= pos!POS

**}

end GPS.imp;

device velometer

features

vel_data : in data port Base_Types::Float;

vel : out data port Base_Types::Float;

properties

Dispatch_protocol => Periodic;

Period => 10 ms;

end velometer;

device implementation velometer.imp

annex hybrid {**

variables

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:26 Xu and Ahmad et al.

data_vel , VEL : Base_Types::Float

channels

vel_data?, vel! : Base_Types::Float

behavior

Input ::= vel_data?data_vel

Main ::= VEL := data_vel

Output ::= vel!VEL

**}

end velometer.imp;

device user_panel

features

in_event : in event port Base_Types::Integer;

out_event : out event port Base_Types::Integer;

properties

Dispatch_protocol => Aperiodic;

end user_panel;

device implementation user_panel.imp

annex hybrid {**

variables

event_in , event_out : Base_Types::Integer

channels

in_event?, out_event! : Base_Types::Integer

behavior

Input ::= in_event?event_in

Main ::= event_out := event_in

Output ::= out_event!event_out

**}

end user_panel.imp;

The connections between devices and processes are all bound to a bus, and all the threads in the

processes are bound to a processor adopting HPF scheduling policy. The bus and processor are

modeled as follows:

bus bus0

properties

latency => 3 ms;

end bus0;

bus bus1

properties

latency => 3 ms;

end bus1;

processor cpu

properties

scheduling_protocol => (HPF);

end cpu;

As it should be, we can consider multiple buses and multiple processors. Each bus has the

property of latency denoting the transfer delay and each processor has its own scheduling policy,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:27

thus we can consider different settings of buses and processors to observe the impact on the system

performance caused by bus and processor.

4.5 Composite System
The whole system of the ACCS can be described by the AADL models of the physical, software,

and platform levels, and they are connected together to form the following system model:

system ACCS

end ACCS;

system implementation ACCS.imp

subcomponents

-- Physical Level

truck : abstract truck.imp;

car : abstract car.imp;

driver : abstract driver.imp;

-- Software Level

obs_det : process obs_det.imp;

vel_ctr : process vel_ctr.imp;

pan_ctr : process pan_ctr.imp;

-- Platform Level

radar : device radar.imp;

actuator : device actuator.imp;

GPS : device GPS.imp;

velometer : device velometer.imp;

user_panel : device user_panel.imp;

bus0 : bus bus0;

cpu : processor cpu;

connections

c0 : truck.obs_p -> radar.radar_data; -- Synchronous

c1 : radar.pos -> obs_det.pos; -- Asynchronous

c2 : vel_ctr.cmd -> actuator.cmd; -- Synchronous

c3 : actuator.car_a -> car.car_a; -- Synchronous

c4 : car.car_p -> GPS.GPS_data; -- Synchronous

c5 : GPS.pos -> vel_ctr.pos; -- Asynchronous

c6 : car.car_v -> velometer.vel_data; -- Synchronous

c7 : velometer.vel -> vel_ctr.car_v0; -- Asynchronous

c8 : velometer.vel -> vel_ctr.car_v1; -- Asynchronous

c9 : driver.cmd -> user_panel.in_event; -- Synchronous

c10 : user_panel.out_event -> pan_ctr.cmd; -- Asynchronous

c11 : obs_det.obs_p -> vel_ctr.obs_p; -- Asynchronous

c12 : pan_ctr.des_v -> vel_ctr.des_v; -- Asynchronous

properties

actual_processor_binding => (reference (cpu)) applies to

obs_det , velo_ctr , pan_ctr;

actual_connection_binding => (reference (bus0)) applies to c0;

actual_connection_binding => (reference (bus1)) applies to c1;

actual_connection_binding => (reference (bus0)) applies to c2;

actual_connection_binding => (reference (bus0)) applies to c3;

actual_connection_binding => (reference (bus0)) applies to c4;

actual_connection_binding => (reference (bus0)) applies to c5;

actual_connection_binding => (reference (bus0)) applies to c6;

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:28 Xu and Ahmad et al.

Fig. 2. Thread execution state machine

actual_connection_binding => (reference (bus0)) applies to c7;

actual_connection_binding => (reference (bus0)) applies to c8;

actual_connection_binding => (reference (bus0)) applies to c9;

actual_connection_binding => (reference (bus0)) applies to c10;

end ACCS.imp;

where the connection c1 is bound to bus1 and the others are bound to bus0.

5 AADL RUN-TIME SEMANTICS
The AADL standard [40] defines semantics for run-time services including communication, and

thread creation, dispatch, suspension, and disposal using timed automata.

Thread life cycle, as depicted in Fig. 2 is same for every thread. Thread execution uses two types

of timed automata states: action states and rest states. Threads in action states are forced to execute

associated program code while in rest states threads do not perform any execution. Initialize,
Activate, Deactivate, Compute, and Finalize are the action states while Halted, AwaitMode, and
AwaitDispatch are the rest states. Active states can have properties specifying the source code entry

points, computation time, and deadlines. For example, Initialize_Entrypoint property identifies the

subprogram in the source code to be executed in the initialize state, Initialize_Execution_Time spec-
ifies the time a thread consumes to execute its initialization code sequence, and Initialize_Deadline
is a property to specify maximum time allowed to complete the initialization code sequence.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:29

(a) Immediate connection (b) Delayed connection

Fig. 3. Synchronous connections for deterministic sampling

A thread in AwaitDispatch state is active in current operational mode (AADL supports more than

one operational modes), and is waiting for dispatch. Thread dispatch condition is type dependent. A

periodic thread is dispatched after a fixed time interval specified in its period property. An aperiodic

thread, if its predefined dispatch port is not connected, is dispatched each time it receives an event,

otherwise it is dispatched each time it receives an event on the dispatch port.

A thread is initialized after the respective process is loaded into memory and is directly moved

to the AwaitDispatch state if it is active in current process mode, otherwise it is moved to the

AwaitMode state. Thread dispatch is controlled by Enabled(t) function, and Wait_For_Dispatch
invariant in the AwaitDispatch state. A clock variable t is reset each time an active state is entered,

and the timing assertion assert t ≤ (state_Deadline +Recover_Deadline) is placed in the active state

to specify deadline violation. If this assertion in any active state is violated, the thread is moved to

the Halted state.

5.1 Immediate Communication
Inter-thread communication in synchronous data flow situations can either be immediate, or delayed,
depending on the data port connections. For an immediate connection, data values are transmitted

whenever the source thread completes its execution. Meanwhile the destination thread is suspended,

and the value received at the destination is the value produced by the latest completion of the

source thread. For immediate connection, the threads must share a common dispatch.

Fig. 3(a) shows an immediate connection between two threads T1 and T2, where T1 is the

source thread with a sampling rate of 10 Hertz (calculated from its period property), and T2 is

the destination thread with the same sampling rate. Whenever T1 completes its execution, it

immediately transmits data to T2 through its out data port.

5.2 Delayed Communication
For a delayed connection, the output is transmitted at the deadline of the source thread and is

available to the destination thread at the next dispatch. The value received at the destination is that

produced at the latest deadline of the source thread. For delayed connections, threads do not need

to share a common dispatch. Fig. 3(b) shows a delayed connection between two threads T1 and T2,

where T1 is a source thread with a sampling rate of 10 Hertz (calculated from its period property),

and T2 is a destination thread with the same sampling rate. The threads do not share a common

dispatch, their sampling rates could be different. Whenever T1 completes its execution, it waits

for the deadline. Once passed, T1 transmits the value to T2 through its out data port, in the next

dispatch.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:30 Xu and Ahmad et al.

To further ensure deterministic exchange of data and to limit the amount of jitter between

different frequency periodic threads, AADL also considers over and under-sampling in addition to

the normal synchronous case of communication for both delayed and immediate communication.

Formal semantic definition for over and under-sampling is a subject of a future work, no further

details are provided for these cases.

5.3 Synchronous and asynchronous connections
The immediate (Section 5.1) and delayed (Section 5.2) communication specify when threads out-

put and complete the computation. In this section, we consider synchronous and asynchronous

communications of connections, i.e., we distinguish some of the connections in AADL between

synchronous and asynchronous. Concretely, if two ports are connected synchronously, their com-

munication only happens when they are ready, which may cause synchronous waiting; however, if

two ports are connected asynchronously, i.e., there is a buffer between them, then the input and

output ports get and put messages from and to the buffer at proper time instants, respectively.

Therefore, asynchronization will not cause any communication delay but the input port of an

asynchronous connection may receive out-of-date messages. For example, in our case study (Fig. 1),

the connections between the physical car and devices actuator, GPS, and velometer are synchronous,

while the ones between devices GPS and velometer and process vel_ctr are asynchronous.

6 FROM AADLWITH HYBRID ANNEX TO HCSP
In this section, we present a translation from AADL with HA to HCSP, and we consider translation

of processors, threads, devices, physical environments, connections, and buses in turn.

Remark 6.1. The translation from the extended AADL models introduced in this paper is different
from the one proposed in [66] and the different reflects mainly in the following two aspects:

(1) The AADL is extended with HA, a paradigm that describes the hybrid behavior of AADL
components, in this paper while in [66], it is extended with Simulink/Stateflow, i.e., the hybrid
behavior of a component is modeled by a Simulink/Stateflow diagram.

(2) The translation to HCSP in this paper is simplified significantly based on the latest HCSP
constructs, especially, with the introduction of procedures.

6.1 Processors
AADL processor components are modeled as schedulers used for scheduling threads. Detailed

specification of the scheduling policies and protocols is beyond the scope of this paper as we are

not aiming for schedulability analysis. There are several scheduling policies and in this section, we

introduce two of them: FIFO (First-In-First-Out) and HPF (Highest-Priority-First).

6.1.1 FIFO. The FIFO scheduler is represented as a parametric module SchedulerFIFO(sid) in
Module 1, where sid denotes the scheduler identifier. Each scheduler has a unique identifier. It

starts by initializing (@Initialize) the local time (𝑡) and thread pool (Pool) of the scheduler and
then schedules (@Schedule) the threads bound to it.

In the scheduling procedure, the scheduler is Idle if the thread pool is empty (len(Pool) == 0)

and Busy otherwise. In the Idle status, it monitors the requests from threads. Concretely, the

local time 𝑡 of the scheduler keeps going (⟨¤𝑡 = 1&true⟩) until (⊵) the communication on channel

reqProcessor occurs. The input channel reqProcessor [sid] [_tid]? is parameterized: sid and _tid
denote the identifiers of the scheduler and the requesting thread, respectively. Notice that the

identifier of the thread is prefixed with an underline, which means that parameter _tid will be

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:31

instantiated by pattern matching. For example, the parallel composition

reqProcessor[0] [_tid]?∥reqProcessor[0] [0]!∥reqProcessor[0] [1]!
is equivalent to

reqProcessor[0] [0]?∥reqProcessor[0] [1]?∥reqProcessor[0] [0]!∥reqProcessor[0] [1]!
Upon the communication on channel reqProcessor occurs, the scheduler receives from the re-

questing thread a deadline and then pushes the thread information (the thread identifier _tid
together with the final time 𝑡 +deadline for scheduling the thread) to the thread pool (Pool, regarded
as a queue) which should be empty at the very moment (assert(len(Pool) == 0)). After that, the
scheduler gets into Busy status.

A Busy scheduler first fetches the information of the thread at the head of the thread pool

((tid, deadline) B head(Pool)) and then remove it from the pool (Pool B tail(Pool)). If the current
time of the scheduler is less than the deadline of the thread (𝑡 < deadline), it sends the thread
(identified by tid) a run signal (run[sid] [tid]!) and then performs the computation (@Compute). If,
however, the thread has expired (𝑡 ≥ deadline), the scheduler will ignore it and then schedule the

next thread (if any) from the pool (@Schedule).
In the Compute status, the local time of the scheduler keeps going until either (1) another thread is

requiring the processor (reqProcessor [sid] [_tid]?) or (2) the thread being scheduled completes its

execution (complete_exec[sid] [tid]?). In the first case, it pushes the information of the requesting

thread onto the thread pool and then returns to the Compute status. In the second case, it simply

stops (skip) and then starts the next schedulling (@Schedule, the last line of procedure Busy).

Remark 6.2. Normally, the output channel run[sid] [tid]! in procedure Busy should be extended
as ⟨¤𝑡 = 1&true⟩ ⊵ 8(run[sid] [tid]! −→ skip) for that synchronous communications may wait and
during the waiting period the local time of the scheduler should go forward. The reason we use the
simple form is that we expect that run[sid] [tid]! does not wait, i.e., the run signal invoked by the
scheduler should be dealt with immediately.

6.1.2 HPF. The HPF scheduler is represented as a parametric module SchedulerHPF(sid) in

Module 2. Since the frameworks of FIFO and HPF schedulers are similar, we only explain their

differences. The major difference is that the HPF scheduler selects threads from thread pool by

priority. Thus, it is necessary to collect the priority of each thread.

An Idle scheduler waits for the requests from the threads to be scheduled. Once it receives a

request via input channel reqProcessor [sid] [_tid]?, it adds the thread information (thread identifier

_tid, the final time 𝑡 + deadline for scheduling the thread, and the priority of the thread) to the

empty pool. After that, it becomes Busy.
Similar to the FIFO scheduler in Module 1, a Busy HPF scheduler also fetches and then removes

the head thread from the thread pool. Note that here we assume that the threads in Pool are sorted
in descending order by priority, say well-ordered, thus the first thread in the pool always takes the

highest priority. If the selected thread has a channel to run, the scheduler gets into Compute status.

In Compute status, if the scheduler receives a request from another thread, it will interrupt to deal

with the (potential) Preemption. Concretely, it compares the priorities of the thread being scheduled

(prior) and the one requiring for scheduling (prior ′). If prior ′ > prior , i.e., the requesting thread takes
the higher priority, the running thread (identified by tid) will be preempted (preempt [sid] [tid]!) and
put back to the head of the thread pool (Pool B push([tid, deadline, prior], Pool)). Since the running
thread takes the highest priority, the updated Pool is also well-ordered. After that, the running

thread switches to the newly added thread ((tid, deadline, prior) B (_tid, 𝑡 + deadline′, prior ′)),
which is then scheduled to execute (run[sid] [tid]!).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:32 Xu and Ahmad et al.

Module 1. FIFO scheduler

module SchedulerFIFO(sid):

procedure Initialize begin
𝑡 B 0 # Pool B [] # Initializing the the local time (t) and thread pool (Pool) of the scheduler

end

procedure Idle begin

⟨¤𝑡 = 1&true⟩ ⊵ 8
(
reqProcessor [sid] [_tid]?deadline −→ assert(len(Pool) == 0)#
Pool B push(Pool, [_tid, 𝑡 + deadline]) # @Busy

)
end

procedure Compute begin

⟨¤𝑡 = 1&true⟩ ⊵ 8
(
reqProcessor [sid] [_tid]?deadline −→ Pool B push(Pool, [_tid, 𝑡 + deadline]) # @Compute,
complete_exec [sid] [tid]? −→ skip

)
end

procedure Busy begin
(tid, deadline) B head(Pool) # Pool B tail(Pool)#
(𝑡 < deadline) → (run[sid] [tid]! # @Compute)#
@Schedule#

end

procedure Schedule begin
if (len(Pool) == 0) {@Idle} else {@Busy}

end

begin
@Initialize # @Schedule

end
endmodule

If the thread requiring the processor does not take the higher priority than the running thread,

i.e., prior ′ ≤ prior , the requesting thread will then be inserted to the (well-ordered) thread pool

such that the updated Pool is well-ordered as well. Procedure Insert implements the insertion

algorithm. Concretely, we maintain two well-ordered queues (lists) Pool and Pool′. The former

stores the threads taking lower priority than the requesting thread while the latter stores the others.

Then, the updated Pool can be obtained by the concatenation of Pool′, the inserted thread, and

the old Pool, i.e., Pool′ B push(Pool′, [_tid, 𝑡 + deadline′, prior ′]) # Pool B push(Pool′, Pool). After
Preemption, the scheduler returns to the Compute status.

6.2 Threads
Based on specific properties, associated connections, and timing constraints, each thread corre-

sponding to the state machine shown in Fig. 2 is translated into one HCSP process. AADL modal

semantics are not considered here, so every thread has only one operational mode. Following

parallel composition of HCSP processes Dispatch and Execution represents the HCSP process

corresponding to an AADL thread:

Thread F Dispatch∥Execution

where Dispatch specifies dispatching the thread and Execution implements the state machine of

Fig. 2. The two processes have repeating behavior and can only communicate through channels.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:33

Module 2. HPF scheduler

module SchedulerHPF(sid):

procedure Initialize begin
𝑡 B 0 # Pool B []

end

procedure Idle begin

⟨¤𝑡 = 1&true⟩ ⊵ 8
(
reqProcessor [sid] [_tid]?(deadline, prior) −→ assert(len(Pool) == 0)#

Pool B push(Pool, [_tid, 𝑡 + deadline, prior]) # @Busy

)
end

procedure Loop begin
if (¬success ∧ len(Pool) > 0) {
(tid′′, deadline′′, prior′′) B head(Pool) # Pool B tail(Pool)#
if (prior′ > prior′′) {success B true} else {Pool′ B push(Pool′, [tid′′, deadline′′, prior′′]) }#
@Loop
} else {Pool′ B push(Pool′, [_tid, 𝑡 + deadline′, prior′]) # Pool B push(Pool′, Pool) }

end

procedure Insert begin
Pool′ B [] # success B false # @Loop

end

procedure Preempt begin
if (prior′ > prior) {

preempt [sid] [tid]!#
Pool B push([tid, deadline, prior], Pool)#
(tid, deadline, prior) B (_tid, 𝑡 + deadline′, prior′)#
run[sid] [tid]!
} else {@Insert}#
@Compute

end

procedure Compute begin

⟨¤𝑡 = 1&true⟩ ⊵ 8
(
reqProcessor [sid] [_tid]?(deadline′, prior′) −→ @Preempt,
complete_exec [sid] [tid]? −→ skip

)
end

procedure Busy begin
assert(the threads in Pool has been sorted in descending order by priority)

(tid, deadline, prior) B head(Pool) # Pool B tail(Pool)#
(𝑡 < deadline) → (run[sid] [tid]! # @Compute)#
@Schedule

end

procedure Schedule begin
if (len(Pool) == 0) {@Idle} else {@Busy}

end

begin
@Initialize # @Schedule

end
endmodule

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:34 Xu and Ahmad et al.

Module 3. Periodic dispatch

module Periodic_DIS(tid, period):

procedure Execute begin
dispatch[tid]!#
𝑡 B 0 # ⟨¤𝑡 = 1&𝑡 < period⟩ ⊵ 8(complete_comp [tid]? −→ ⟨¤𝑡 = 1&𝑡 < period⟩)#
@Execute

end

begin
@Execute

end
endmodule

Module 4. Aperiodic dispatch

module Aperiodic_DIS(tid, inConn):

procedure Execute begin
inputs [inConn]?event # dispatch[tid]!event#
𝑡 B 0 # ⟨¤𝑡 = 1&true⟩ ⊵ 8(complete_comp [tid]? −→ skip)#
@Execute

end

begin
@Execute

end
endmodule

6.2.1 Dispatch. Since the properties section of a thread specifies the dispatch_protocol (periodic

or aperiodic), deadline, and period (if periodic) of the thread, the dispatcher for the thread can be

constructed according to these information.

A periodic thread is dispatched after every fixed time interval specified in its period property. The

dispatch process for a periodic thread with thread identifier tid and dispatch period is specified
in Module 3. A periodic dispatcher is a recursive process which, at each iteration, dispatches its

thread (identified by tid) by output channel dispatch[tid]! and then waits for one period. During
the waiting period, it monitors the signal complete_comp, indicating the computation completes,

from the thread. If the computation of the thread completes, the dispatcher will still evolve until

the current period completes (⟨¤𝑡 = 1&𝑡 < period⟩). After that, it will start the next dispatching
and the procedure repeats (@Execute).
An aperiodic thread is triggered by an incoming event, so an aperiodic dispatcher is always

associated with some input connection to the thread. As shown in Module 4, an aperiodic dispatcher

takes two parameters: the identifier of the thread to be dispatched (tid) and an input connection

(inConn) to the thread. An aperiodic dispatcher will be activated by the input event received from

the input connection, i.e., it is invoked by inputs[inConn]?event. Once it is invoked, it dispatches
the thread by sending the received event, i.e., dispatch[tid]!event. Then, it waits until the thread
completes its computation (complete_comp[tid]?). After that, it waits for the next activation and

the procedure repeats (@Execution).

6.2.2 Execution. The execution behavior of a thread is specified in Module 5, where the parameters

mean that the thread of tid is bound to the processor of sid. At the beginning, the thread is

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:35

Initialized by setting the initial values of the variables including the wcet (Worst Case Execution

Time), deadline, priority, and so on of the thread. All these information can be obtained from the

properties section of the thread, where compute_execution_time denotes the wcet here. In addition, the

state variables of the thread should also be Initialized, which is specified by Init in the behavior

section of the HA of the thread. For example, the initialization of the thread PI_ctr of the ACCS in

Section 4.3.2 can be written as follows:

procedure Initialize begin
period B 0.007 # deadline B 0.007 # wcet B 0.001 # prior B 1#
Integrator_DSTATE B 0 # state variable

end

After the initialization, the thread can perform Execution, which is a recursive procedure. The

Execution of the thread starts once it is dispatched by a periodic (Module 3) or aperiodic (Module 4)

dispatcher, depending on whether it is a periodic thread or not. Upon dispatched, it gets data from

the input connections (@Input). Each input channel inputs[inConn𝑖]?in𝑖 in Input corresponds to

an input connection inConn𝑖 to the thread, where in𝑖 is the name of the corresponding input port.

Then, the thread requires the processor it is bound to for the computation based on the input data.

Concretely, it sends the processor, which is translated to a scheduler specified in Module 1 or 2, its

deadline and priority via channel reqProcessor , i.e., reqProcessor [sid] [tid]!(deadline, prior). After
that, the local time 𝑡 of the thread is initialized (𝑡 B 0) and then it waits for the run signal from the

scheduler. If it has failed to run before the deadline, the thread will give up waiting and start the

next Execution; otherwise, i.e., it receives a run signal before the deadline, the execution time of

the thread is initialized (𝑐 B 0) and the thread begins to Run.
In procedure Run, the thread evolves until either (1) its local time (𝑡) reaches the deadline, (2) its

execution time (𝑐) reaches the wcet, or (3) it is preempted by another thread with higher priority. For

the third case (preempted is true), it will be put into the thread pool and keeps waiting for the next

run signal until the deadline arrives. If the thread stops without being preempted, it notifies the

scheduler that its execution completes (complete_exec[sid] [tid]!); if the execution time (𝑐) of the

thread reaches its wcet, it informs the dispatcher the computation completes (complete_comp[tid]!)
and then Outputs the results.
Before the output, it is necessary to get the computation Results. The procedure Result is

obtained from the Main process in the behavior section of the HA of the thread. Notice that the use

of Main may introduce into other auxiliary procedures. For example, the use of Main in thread emerg

(Section 4.3.2) will bring in Comp_V_lim as the auxiliary procedure. After computing the outputs

out𝑖 from the inputs and states by Result, it sends the results out through the output connections

(outputs[outConn𝑖]!out𝑖), where outConn𝑖 is an output connection from the port out𝑖 of the thread.
It should be noted that if some output connection is bound to a bus, the thread should obtain the

permission to the bus before outputting. Concretely, if the output connection outConn𝑖 is bound to

bus𝑗 , the output outputs[outConn𝑖]!out𝑖 in procedure Output should be replaced with

⟨¤𝑡 = 1&𝑡 < deadline⟩ ⊵ 8(reqBus[bus𝑗] [outConn𝑖]!out𝑖 −→ skip)

which indicates that the thread must obtain the permission to bus𝑗 before the deadline. Upon it

gets the permission (the communication on reqBus occurs), it sends the bus the output result (out𝑖).
Section 6.6 introduces the behavior of buses.

Remark 6.3. One may think that the outputs[outConn𝑖]!out𝑖 above should be modified as

outputs[tid] [outport𝑖]!out𝑖

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:36 Xu and Ahmad et al.

Module 5. Thread execution

module EXE(tid, sid):

procedure Initialize begin
wcet B · · · # deadline B · · · # prior B · · · # # Constant variables

®𝑠 B · · · # The vector of the state variables of the thread

end

procedure Input begin
inputs [inConn1]?in1 # · · · # inputs [inConn𝑛]?in𝑛

end

procedure Result begin
Compute the outputs from the inputs and states

out1 B 𝑓1 (in1, · · · , in𝑛, ®𝑠) # · · · # out𝑚 B 𝑓𝑚 (in1, · · · , in𝑛, ®𝑠)#
®𝑠 B 𝑓 (in1, · · · , in𝑛, ®𝑠) # Update the states of the thread

end

procedure Output begin # Without buses

@Result#
outputs [outConn1]!out1 # · · · # outputs [outConn𝑚]!out𝑚

end

procedure Run begin
preempted B false#
⟨¤𝑡 = 1, ¤𝑐 = 1&𝑐 < wcet ∧ 𝑡 < deadline⟩ ⊵ 8(preempt [sid] [tid]? −→ preempted B true)#
if (preempted) { ⟨¤𝑡 = 1&𝑡 < deadline⟩ ⊵ 8(run[sid] [tid]? −→ @Run) }
else {complete_exec [sid] [tid]! # (𝑐 ≥ wcet) → (complete_comp [tid]! # @Output) }

end

procedure Execute begin
dispatch[tid]?# # We use dispatch[tid]?event for aperiodic dispatch

@Input# # Get inputs from data ports

reqProcessor [sid] [tid]!(deadline, prior)# # We remove prior if sid adopts the FIFO policy

t and c are the local and execution times of the thread, respectively

𝑡 B 0 # ⟨¤𝑡 = 1&𝑡 < deadline⟩ ⊵ 8(run[sid] [tid]? −→ 𝑐 B 0 # @Run)#
@Execute

end

begin
@Initialize # @Execute

end
endmodule

because the latter clarifies the fact that out𝑖 is sent through the output port outport𝑖 of the thread
tid. However, we prefer the former for the simple reason that there may be multiple connections, say
outConn𝑖, 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 , from one output port, say outport𝑖 . For this case, we can use

outputs[outConn𝑖,1]!out𝑖 # · · · # outputs[outConn𝑖,𝑘]!out𝑖
to express that out𝑖 is broadcast via the 𝑖-th output port. For the same reason, we use inputs[inConn]?
instead of inputs[tid] [inport]? in this paper.

In Module 5, the immediate connection (Fig. 3(a)) is considered. However, for the delayed connec-

tion (Fig. 3(b)), the thread sends the computation results out and completes the computation after

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:37

Module 6. Aperiodic device

module device_name():

procedure Initialize begin
®𝑠 B · · · # The vector of the state variables of the device

end

procedure Input begin
inputs [inConn1]?in1 # · · · # inputs [inConn𝑛]?in𝑛

end

procedure Compute begin
Compute the outputs and update the states

out1 B 𝑓1 (in1, · · · , in𝑛, ®𝑠) # · · · # out𝑚 B 𝑓𝑚 (in1, · · · , in𝑛, ®𝑠) # ®𝑠 B 𝑓 (in1, · · · , in𝑛, ®𝑠)
end

procedure Output begin
outputs [outConn1]!out1 # · · · # outputs [outConn𝑚]!out𝑚

end

procedure Execute begin
@Input # @Compute # @Output # @Execute

end

begin
@Initialize # @Execute

end
endmodule

it reaches the deadline. Concretely, the sequential composition complete_comp[tid]! #@Output in

procedure Run of Module 5 should be modified as

⟨¤𝑡 = 1&𝑡 < deadline⟩ # @Output # complete_comp[tid]!

for the delay connection.

6.3 Devices
Similar to threads (Section 6.2), a device gets inputs at its input ports and outputs the results through

its output ports after performing some computation. The major difference between the behaviors

of threads and devices is that a device is not bound to any processor. There are various kinds of

devices in the real world and it is impossible to consider all of them in this paper. In addition,

devices are not our concerns, so we only address two kinds of devices: periodic and aperiodic.
The behavior of an aperiodic device is specified in Module 6. After the initialization of the states

(@Initialize), the device begins to Execute, which is a recursive procedure. At each iteration

of the recursion, it gets inputs from the input connections (@Input), computes the outputs and

updates its states according to the inputs and current states (@Compute), and finally outputs the

computation results (@Output). The procedure Compute is obtained from the Main process in the

behavior section of the HA of the device. The HCSP model of a periodic device is shown in Module 7.

The only difference between periodic and aperiodic devices is that a periodic device will wait for

one period before the next execution.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:38 Xu and Ahmad et al.

Module 7. Periodic device

module device_name(period):
.
.
.

procedure Execute begin
@Input # @Compute # @Output # wait(period) # @Execute

end
.
.
.

endmodule

Module 8. The HCSP model of the car

module car():

procedure Initialize begin
𝑝 B 0 # 𝑣 B 0 # 𝑎 B 0 # Position (p), velocity (v), and acceleration (a)

end

procedure Execute begin

⟨ ¤𝑝 = 𝑣, ¤𝑣 = 𝑎&true⟩ ⊵ 8 ©­«
inputs [c3]?𝑎 −→ @Execute,
outputs [c4]!𝑝 −→ @Execute,
outputs [c6]!𝑣 −→ @Execute

ª®¬
end

begin
@Initialize # @Execute

end
endmodule

6.4 Physical Environments
The environment includes continuous and discrete processes interacting with the software level

(through devices potentially). Different from threads and devices, an environment is more flexible

and hence there is no pattern (such asModule 5 for threads) describing the behavior of environments.

On the other hand, this flexibility leaves more space for the designer to model the environment.

To illustrate this, we show how to translate the car in the physical level (Section 4.2) of the ACCS.

Concretely, the HCSP model of the car is shown in Module 8 and it is obtained from the Main process

in the behavior section of the HA of the car. The Main process is a sequential composition of two sub-

processes Init and Run, which are translated to two procedures in Module 8, and the communications

through the ports of car are unified into the form input [inConn𝑖]in𝑖 and output [outConn𝑖]out𝑖 .
From the architecture of the ACCS (Fig. 1), c3 is the input connection to port car_a, and c4 and c6
are the output connections from ports car_p and car_v, respectively.

6.5 Port Connections
A port is an interface for the directional transfer of data, events, or both into or out of an AADL

component [29]. Port connections are pathways for such directional transfers between components.

Data ports are interfaces for state data transmission among components without queuing. Event

ports are interfaces for the communication of events that may be queued. Event data ports are

interfaces for message transmission with queuing, and these interfaces enable the queuing of the

data associated with an event.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:39

Module 9. Synchronous connection

module SyncConn(conn):

procedure Execute begin
outputs [conn]?msg # inputs [conn]!msg # @Execute

end

begin
@Execute#

end
endmodule

The connections between ports can be classified as either synchronous or asynchronous, and

accordingly, we present synchronous and asynchronous communication models using HCSP. Simi-

larly to CSP [38] and other classic process calculi [50], HCSP adopts the handshake communication,

upon which more complex communication paradigms can be formally defined [51]. Ports connected

synchronously will communicate in a synchronized manner: if one party is not ready, the other

should wait. The synchronous communication between ports can be represented naturally based

on HCSP’s handshake communication, as illustrated in Module 9. In this module, outputs[conn] is
a channel denoting the output port of the source component of connection conn and inputs[conn]
is a channel representing the input port of the target component of conn (see, for instance, Mod-

ules 5). During each iteration, it receives a message (msg) from the output port of the source

of the connection, i.e., outputs[conn]?msg, and then sends the message to the input port of the

target of the connection, i.e., inputs[conn]!msg. If the target is performing some execution, i.e., its

inputs[conn]? is not ready, then the inputs[conn]!msg should wait, thereby reflecting the semantics

of synchronous communication.

Compared to synchronous connections, the asynchronous case presents greater complexity, as

it requires us to model asynchronous communication between ports using HCSP’s synchronous

communication mechanism. To formalize the semantics of asynchronous communication between

data ports, we employ the external choice construct (8) within HCSP, as illustrated in Module 10.

Intuitively, an asynchronous connection between data ports serves as a data buffer with a capacity

of one, which can also be regarded as a data variable. Initially, it receives the initial data from the

output port of the connection’s source (@Execute). Subsequently, a recursive process (@Execute)
is established, offering two external choices that allow the source and the target of the connection

to write and read the data asynchronously whenever they are triggered. Specifically, when the

source intends to output data, i.e., outputs[conn]!, the branch prefixed with outputs[conn]?data
is triggered (left), meaning the data will be stored in the data buffer. Conversely, when the target

wishes to input a value, i.e., inputs[conn]?, the branch prefixed with inputs[conn]!data is triggered
(right), allowing the target to retrieve the data stored in the buffer. The mechanism of external

choice ensures two key aspects: (1) the source can transmit data directly through the output port at

the end of execution, without needing to wait for the target to be ready to receive; and (2) if the

source generates output data while the target is in the midst of execution, this data will be stored

in the data buffer without affecting (or interrupting) the target’s execution.

For the asynchronous communication between event ports, in addition to coordinating the asyn-

chronous input and output between ports using external choice, a queue is also needed to buffer the

events being transmitted, as illustrated in Module 11. Initially, the Queue is empty (@Initialize).
Subsequently, it enters a recursive procedure where it appends incoming events to the end of the

queue and takes the head events from it (@Execute). Specifically, during each iteration, if the queue

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:40 Xu and Ahmad et al.

Module 10. Asynchronous data connection

module Async_Data_Conn(conn):

procedure Input begin
outputs [conn]?data

end

procedure Execute begin
(outputs [conn]?data −→ @Execute) 8 (inputs [conn]!data −→ @Execute)

end

begin
@Input # @Execute

end
endmodule

Module 11. Asynchronous event connection

module Async_Event_Conn(conn):

procedure Initialize begin
Queue B []

end

procedure Execute begin
if (len(Queue) == 0) {
outputs [conn]?event # Queue B [event]
} else {

8
(
outputs [conn]?event −→Queue B push(Queue, event),
inputs [conn]!head(Queue) −→Queue B tail(Queue)

)
} # @Execute

end

begin
@Initialize # @Execute

end
endmodule

is empty (len(Queue) == 0), it awaits an output from the connection source and then places the

received event into the now-empty queue (outputs[conn]?event #Queue B [event]); alternatively, if
the queue is not empty, it has two options: it can either receive an event from the connection source

(outputs[conn]?event) and append it to the queue (Queue B push(Queue, event)), or it can send the

head event in the queue to the connection target (inputs[conn]!head(Queue)) and then remove it

from the queue (Queue B tail(Queue)). For example, the component vel_comp in the ACCS (Fig. 1)

is an aperiodic thread, triggered by the cmd event produced from the user_panel device. The seman-

tics of the connection (c10) between the two event ports are defined by Async_Event_Conn(c10).
Specifically, when the user_panel generates a cmd, the connection, i.e., Async_Event_Conn(c10),
queues it. On the vel_comp thread side, its aperiodic dispatch mechanism (refer to Module 4) mon-

itors the connection’s queue: if the queue is non-empty, inputs[c10]?event is triggered, and the

received event activates the vel_comp thread, i.e., dispatch[vel_comp]!event.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:41

Module 12. The behavior of bus

module Bus(bid, d):

procedure Execute begin
reqBus [bid] [_conn]?msg −→ wait(d) # outputs [_conn]!msg # @Execute

end

begin
@Execute

end
endmodule

The asynchronous communication semantics between event data ports are similar to those

between event ports, with the only modification being the extension of the event variable in

Module 11 to a pair (event, data), which represents an event carrying data.
In addition, we can model more complex communication paradigms such as one-to-many para-

digm using HCSP. For example, in the ACCS (Fig. 1), device velometer transmits the sensed vehicle

speed data via its output port to the input ports of threads emerg and PI_ctr by connections c7
and c8, respectively. This one-to-many communication semantics can be defined by the parallel

composition the semantics of c7 and c8, i.e., Async_Data_Conn(c7)∥Async_Data_Conn(c8). For
more examples of the communication semantics between ports introduced above, readers may refer

to the case study (Section 7), where the process Conn in Section 7.1 defines the HCSP semantics for

all connections in the case study of ACCS (Fig. 1).

6.6 Buses
The connections introduced in Section 6.5 may be bound to buses. If a connection is bound to a

bus, the source of the connection should request the permission for using the bus before sending

messages via the connection. The behavior of a bus with identifier bid and latency d is specified in

Module 12. Assume that there are 𝑛 connections, say conn1, · · · , conn𝑛 , bound to the bus. Then,

the behavior of the bus is shown as follows:

𝜇X. 8
©­­«
reqBus[bid] [conn1]?msg

1
−→ wait(d) # outputs[conn1]!msg

1
X,

...
...

...

reqBus[bid] [conn𝑛]?msg𝑛 −→ wait(d) # outputs[conn𝑛]!msg𝑛 # X

ª®®¬
At each iteration, it provides 𝑛 external choices receiving the requests for the bus. If the 𝑖-th

connection gets the permission to the bus, i.e., the 𝑖-th branch is selected by receiving a message

msg𝑖 from the source of the connection (reqBus[bid] [conn𝑖]?msg𝑖), then it waits for d time units

before sending msg𝑖 out (outputs[conn𝑖]!msg𝑖). The above process can be abstracted to Module 12,

where _conn can match any connection bound to the bus.

Remark 6.4. The sequential composition wait(d) # outputs[_conn]!msg in Module 12 models the
latency of the bus transferring messages. During the transfer period (wait(d)), any request for the bus
will wait until the current message on the bus is sent out successfully (outputs[_conn]!msg).

6.7 Restrictions on AADL
In this work, we only take part of AADL components including processes, threads, processors,

buses, devices, abstract components (used to model physical environment), and port connections

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:42 Xu and Ahmad et al.

between components, into account. Other components have not been considered, for instance,

memories and processors with more scheduling policies. The reasons for the restriction include:

(1) We concern more on the abstract and formal model of AADL. The design details of AADL

will lead to complex and redundant formal models, which prevents us from verifying the key

properties (like safety and latency) of AADL models;

(2) The HA proposed in this paper is used to describe the hybrid and physical behaviors of

components, i.e., we focus more on behavioral components like threads. The components

regarding resource (for instance, memories) are not the concern of this paper. In our future

work, we will consider the effect of resource constraints on AADL models.

For port communication, this paper introduces the communication semantics of basic data, event,

and event-data ports using HCSP. More interesting characteristics of AADL ports, which represent

different communication models, can also be captured using HCSP. All in all, the paper’s emphasis

is on extending AADL to hybrid systems and developing analysis and verification methods based

on this extended framework. Therefore, to maintain focus on this motivation, we present only the

HCSP formal semantics for the commonly used components and ports. The semantics of other

components and ports with interesting properties [52] can likewise be defined using HCSP but are

not included in this paper.

7 CASE STUDY
The architecture and behavior of the ACCS have been illustrated in Section 4. In this section, we

transform it to a formal model of HCSP by the translation algorithm introduced in Section 6. Then,

we introduce the simulation and verification for the translated HCSP model of the ACCS.

7.1 Translation
The physical level consists of a truck as a mobile obstacle, a car behind the truck, and a driver
controlling the car. All of the three physical objects have been modeled by AADL with hybrid

annex in Section 4.2 and their translated HCSP models are specified in Section 6.4. In summary, the

physical level can be described as follows:

Physical ≜ truck()∥car()∥driver()

The software level contains several AADL processes, and each of the processes is composed

of several threads. According to Section 6.2, the HCSP model of a Thread consists of two parts: a

periodically Dispatcher and the Execution of the thread. Concretely,

obs_p_comp ≜ Periodic_DIS(0, 0.097)∥EXE(0, 0)
emerg ≜ Periodic_DIS(1, 0.005)∥EXE(1, 0)

PI_ctr ≜ Periodic_DIS(2, 0.007)∥EXE(2, 0)
vel_comp ≜ Aperiodic_DIS(3, c10)∥EXE(3, 0)

where the identifiers of threads obs_p_comp, emerg, PI_ctr, and vel_comp are 0, 1, 2, and 3,

respectively, and they are all bound to the processor whose identifier is 0. Then, the HCSP models

of the AADL processes can be represented by

obs_det ≜ obs_p_comp
vel_ctr ≜ emerg∥PI_ctr
pan_ctr ≜ vel_comp

The parallel composition of these processes forms the HCSP model of the software level:

Software ≜ obs_det∥vel_ctr∥pan_ctr

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:43

The platform level includes the devices connecting the physical and software levels, some buses

and processors. These components form the following parallel composition:

Platform ≜ radar(0.01)∥actuator()∥GPS(0.006)∥velometer(0.01)∥user_panel()
∥SchedulerHPF(0)∥bus(0, 0.003)∥bus(1, 0.003)

Note that this platform contains two buses (identifiers 0 and 1) with latency 3 ms.

Do not forget that the connections between the AADL components should also be translated to

HCSP models. For this case study, we have the following connections:

Conn ≜ Sync_Conn(c0)∥Async_Data_Conn(c1)∥Sync_Conn(c2)∥Sync_Conn(c3)
∥Sync_Conn(c4)∥Async_Data_Conn(c5)∥Sync_Conn(c6)∥Async_Data_Conn(c7)
∥Async_Data_Conn(c8)∥Sync_Conn(c9)∥Async_Event_Conn(c10)
∥Async_Data_Conn(c11)∥Async_Data_Conn(c12)∥Async_Data_Conn(c13)

Finally, the translated HCSP model of the ACCS can be obtained as follows:

ACCS ≜ Physical∥Software∥Platform∥Conn

If assume, invariant, and ensure sections are specified for the above components in the original

AADL model, then through translation, we will obtain an HCSP specification to be proved, with

the following form: ACCS_Spec ≜ {assume}ACCS{ensure; ⌈invariant⌉}.

7.2 Simulation
In [66], we developed an HCSP simulator by which we can simulate the HCSP programs translated

from the original AADL model with hybrid annex and then observe the execution result of the

original model intuitively. Hence, with the aid of the HCSP simulator, we can observe the impact

on systems under different configurations.

In this section, the whole translated HCSP model of the ACCS in Fig. 1 is used to run the

simulation, where we consider the impact of different bus configurations on the behavior of the car.

Concretely, we consider three configurations for buses: (1) no bus; (2) two buses with latency 3 ms:

the connection between device radar to obstacle detection process obs_det is bound to a specific

bus, and the other connections between the devices and the processes are all bound to the other

bus; (3) three buses with latency 5 ms: the connection between device radar and obstacle detection

process obs_det and the connection between velocity control process vel_ctr to device actuator are

bound to two separate buses, and the other connections between the devices and the processes are

bound to the left bus.

The simulation results of the three bus configurations are shown in Fig. 4. The left shows the

velocity evolutions of the car under different bus configurations, and we can see that under the

configuration of two buses with latency 3 ms (blue line), there is a clear delay for the change of

the velocity of the car: the truck appears in front of the car as an obstacle at 10 s (see the right of

Fig. 4), but the car begins to decelerate about 4 s after the truck appears. However, under the other

two configurations, the car can decelerate in about 2 s. From these results, we can observe that

the configuration that three buses with latency 5 ms may be a better choice because it causes less

delay, but on the other hand, it may cause larger fluctuations: the highest velocity of the car under

this configuration is up to 5 m/s, higher than the two other configurations.

7.3 Verification
The motivation of translating AADL with hybrid annex to HCSP is to verify the informal AADL

models. In this section, we introduce verification of HCSP models by theorem proving. Verification

using HHL prover is based on Hybrid Hoare Logic (HHL) in the proof assistant Isabelle.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:44 Xu and Ahmad et al.

0 5 10 15 20 25 30 35 40
time (s)

0

1

2

3

4

5

ve
hi

cle
 v

el
oc

ity
 (m

/s
)

car: no bus
car: 2 buses 3 ms
car: 3 buses 5 ms

0 5 10 15 20 25 30 35 40
time (s)

0

20

40

60

80

100

po
sit

io
n

(m
)

car: no bus
car: 2 buses 3 ms
car: 3 buses 5 ms
truck: obstacle

Fig. 4. The velocity and position of the car under different bus settings

The HHL Prover is an interactive theorem prover for verifying HCSP. We give the big step

semantics of the HCSP process and define the relation of the form (𝑐, 𝑠) ⇒ (𝑠 ′, 𝑡𝑟), which means

that executing process 𝑐 starting from state 𝑠 leads to the final state 𝑠 ′, where 𝑡𝑟 is the list of resulting
tracks. The track list contains two types of track blocks: continuous modules and communication

modules. We use the extended Hoare triple {𝑃}𝑐{𝑄} to describe the partial correctness of the

process. Assertions P and Q are predicates of the state and trajectory of the process before it starts

and after it ends, respectively. During the proof, we first verify the individual behavior of the

process to get its Hoare triple, and then use the synchronization rule of the trajectories to combine

the assertions which have communication handshakes with each other, and finally get the complete

assertion to verify the property of the parallel process.

However, the original generated HCSP model of the ACCS is so complicated which covers all

the components of ACCS including Physical, Software, Platform and Conn, and would be very

costly to verify thoroughly. Thus, we consider verifying the safety of the controlling strategy of

the ACCS specified in emerg component, which is the main safety-critical part of the whole system.

Concretely, we consider part of the HCSP model of the ACCS that corresponds to the controlling

strategy with two main components: a controller (Ctrl) and a physical car (Car), as shown in

Module 13, where the controller adopts the controlling algorithm specified in the translated emerg
HCSP process. Furthermore, the assertion part specified in the thread emerg is translated to HCSP

model directly to form a complete specification to be proved, which has the following form:

{𝑝 = 0 ∧ 𝑣 = 0} Car(v0,p0)∥Ctrl {𝑝 ≤ p_obs; ⌈𝑝 ≤ p_obs ∧ 𝑣 ≤ 𝑣lim⌉} (1)

where, the pre-condition, post-condition and invariant correspond to the assertions specified in

assume, ensure, and invariant sections of thread emerg of the ACCS respectively. Next we use the HHL
prover to prove the above safety specification.

For the component Car, we prove the following triple:

{𝑒𝑚𝑝} Car(v0,p0) {∃𝑎′ 𝑝𝑠. 𝑐𝑎𝑟_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 (v0, p0, 𝑎′, 𝑝𝑠) ∧ 𝑐𝑎𝑟_𝑏𝑙𝑜𝑐𝑘 (v0, p0, 𝑎′, 𝑝𝑠)}
and for Ctrl, we have:

{𝑒𝑚𝑝} Ctrl {∃𝑣 ′ 𝑝 ′ 𝑐𝑠. 𝑐𝑡𝑟𝑙_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 (𝑣 ′, 𝑝 ′, 𝑐𝑠) ∧ 𝑐𝑡𝑟𝑙_𝑏𝑙𝑜𝑐𝑘 (𝑣 ′, 𝑝 ′, 𝑐𝑠)}
the predicates 𝑐𝑎𝑟_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 and 𝑐𝑡𝑟𝑙_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 calculate the end state for each process, 𝑐𝑎𝑟_𝑏𝑙𝑜𝑐𝑘

and 𝑐𝑡𝑟𝑙_𝑏𝑙𝑜𝑐𝑘 records the corresponding trace block, where the existence variables in the assertions

represent unknown values during the communications to be determined.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:45

By the synchronization rule, we get

{𝑙𝑜𝑜𝑝_𝑖𝑛𝑣 (v0, p0) ∧ 𝑒𝑚𝑝} Car(v0,p0)∥Ctrl {∃𝑛. 𝑡𝑜𝑡_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 (v0, p0, 𝑛) ∧ 𝑡𝑜𝑡_𝑏𝑙𝑜𝑐𝑘 (v0, p0, 𝑛)}

where loop_inv shows the safety property we want to prove loop_inv(𝑣, 𝑝) := 𝑝 ≤ p_obs ∧ 𝑣 ≤
𝑣lim. The definition of post-condition implies the following formulas:

𝑠 |= 𝑡𝑜𝑡_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 (𝑣, 𝑝, 0) ←→ 𝑣𝑠 = 𝑣 ∧ 𝑝𝑠 = 𝑝

𝑠 |= 𝑡𝑜𝑡_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 (𝑣, 𝑝, 𝑛+1) ←→ 𝑠 |= 𝑡𝑜𝑡_𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 (𝑣+𝑎 ·period, 𝑝+𝑎 ·period+ 1
2

·𝑎 ·period2, 𝑛)

where 𝑎 is the acceleration computed by InOut. Moreover, we can prove that

𝑙𝑜𝑜𝑝_𝑖𝑛𝑣 (𝑣, 𝑝) −→ 𝑙𝑜𝑜𝑝_𝑖𝑛𝑣 (𝑣 + 𝑎 · period, 𝑝 + 𝑎 · period + 1

2

· 𝑎 · period2)

Overall, we can obtain that when the initial value v0 and p0 satisfy the safety property, the end

state of this process after each repetition will be safe and furthermore 𝑙𝑜𝑜𝑝_𝑖𝑛𝑣 is preserved. This

indicates that the safety specification (1) holds for the controlling strategy of the ACCS system.

Remark 7.1. The verification of HCSP processes in HHL prover is performed in Isabelle/HOL, which
is an interactive theorem prover and conducts proof by choosing appropriate lemmas at each step,
without exhaustive checking of reachable sets of the system to be modeled. The effort of the proof in
theorem proving is usually measured by the lines of proof scripts and the automation it supports. For
HHL prover, it consists of a set of lemmas that correspond to the inference rules of HHL and the axioms
of the assertion logic, and it provides some automation support on using these lemmas [60]. For the
above case study, when the whole proof is constructed, the runtime of the file containing the model and
the proof costs only a few seconds.

8 RELATEDWORK
The works most closely related to ours, in terms of providing AADL with behavior modeling

support, are the behavior (BA) [40], and BLESS [42], and DEVS [5] annexes. Both BA and BLESS

use state transition systems to model the discrete behavior of control systems while DEVS annex

is based on Discrete-Event System Specification specifically targeted for DEVS-Suite simulation

[4]. Our proposed Hybrid Annex (HA) is focused on modeling the cyber-physical interaction, and

continuous behavior of physical process to be monitored and controlled by the control system.

Another work closely related to ours is MARS [70], an integrated tool-chain for modeling,

analysis, verification and code generation of cyber-physical systems. With MARS, one can build

a graphical model of a system to be developed with AADL⊕S/S, a combination of AADL and

Simulink/Stateflow [48, 49], and then conduct extensive simulation [66]. As pointed out in [66], the

integration of different paradigms may result in extra burden. Particularly, it requires to compute a

type classifier for each of Simulink/Stateflow diagram, which remains challenging theoretically.

Besides, like Simulink/Stateflow, the reliability of a system developed with AADL⊕ S/S is not

guaranteed, if it only relies on simulation, because of the incompleteness of simulation. In order to

formally verify AADL⊕S/S graphical models, AADL⊕S/S is translated to HCSP automatically [67].

Using Hybrid Hoare Logic [44] and its theorem prover [64], the translated HCSP formal model

can be verified. The correctness of the translation is proved with Higher-order UTP (HUTP) [65]

theoretically. Finally, the notion of approximate bisimulation is proposed so that one can discretize

a given HCSP process correctly in the sense of approximate bisimulation [68]. Based on which, sets

of refinement rules are provided through which one can refine an HCSP process into a piece of

SystemC [68] or ANSI-C code [63].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:46 Xu and Ahmad et al.

Module 13. The parallel composition of Car and Ctrl

module Car(v0, p0):
begin

𝑣 B v0 # 𝑝 B p0#
car_v!𝑣 # car_p!𝑝 # car_a?𝑎#(
⟨ ¤𝑝 = 𝑣, ¤𝑣 = 𝑎&true⟩ ⊵ 8(car_v!𝑣 −→ car_p!𝑝 # car_a?𝑎)

)∗
end
endmodule

module Ctrl(period, p_obs, a_des, v_max, a_min):
procedure Comp_V_lim begin

if (p_obs − 𝑝′ ≥ v_max2/(−2 · a_min)) {𝑣
lim
B v_max} else {

if (p_obs − 𝑝′ > 0) {𝑣
lim
B

√︁
−2 · a_min · (p_obs − 𝑝′) } else {𝑣

lim
B 0}

}
end
procedure InOut begin
car_v!𝑣 # car_p!𝑝#
𝑝′ B 𝑝 + 𝑣 · period + 1

2
· a_des · period2 # 𝑣′ B 𝑣 + a_des · period # @Comp_V_lim#

if (𝑣′ ≤ 𝑣
lim
) {𝑎 B a_des} else {𝑝′ B 𝑝 + 𝑣 · period # @Comp_V_lim#

if (𝑣 ≤ 𝑣
lim
) {𝑎 B 0} else {𝑎 B a_min}

}#
car_a!𝑎#

end
begin

@InOut #
(
wait(period) # @InOut

)∗
end
endmodule

system
Car∥Ctrl

endsystem

In [11], Banerjee, et al. discussed the modeling of Body Area Networks (BANs—networks of

medical devices attached to a human body) with AADL using the region of impact, and the region

of interest based on impacting, impacted, and monitored parameters. Boundaries of these regions

are determined by both the cyber properties (e.g., sensing range and communication range) and the

physical properties (e.g., extent of heat dissipation) of the medical devices. Each medical device with

its regions is termed a Local Cyber-Physical System (LCPS), and a collection of LCPSs constitute

a Global Cyber-Physical System (GCPS). The BAN-CPS annex has been proposed to specify the

physical dynamics of human tissues, which are normally determined by differential equations

based on Pennes’ bio-heat equation.

Our proposed HA is more expressive in specifying the primitives of hybrid system models, e.g.,
variables with data types, constants with measuring units, and behavior with complex boolean

expressions. It also provides extensive support for cyber-physical interaction modeling through

use of timed and communication interrupts—an essential element of hybrid system modeling not

provided for to such an extent by related efforts. Exclusive support for behavior constraints and

the definition of component invariants with BLESS Assertions is a novel feature of our HA.

Formalization of AADL has been explored a lot. Yang et al [69] have formalized BA by translating

it into Time Abstract State Machine (TASM). Process algebra interpretation of AADL models is

presented in [62]. They have translated AADL models to process algebra ACSR and Real-Time

Calculus (RTC) for performance evaluation using VERSA and RTC Toolbox respectively. COMPASS

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

Modeling and Verification of Hybrid Systems by Extending AADL 1:47

tool-set used a variant of AADL called SLIM and SuSMv model checker for safety, dependability and

performance evaluation [16]. In [19], a tool called AADL2BIP based on BIP (Behavior Interaction

Priority) for safety property verification has been introduced. [39] reports on an ongoing effort to

capture AADL using Coq and delivers the mechanization of a significantly large subset of AADL

along with verification capabilities. [12] proposes a statistical model checking-based framework that

can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various

performance queries. Uncertain hybrid AADL proposed in [12] is an extension of AADL and our

Hybrid Annex together with other existing annexes by introducing Uncertain Annex there.

Considerable amount of efforts are made to formalize AADL, but most of them are focused on

control systems with discrete behavior. To our best knowledge, expression of continuous time

modeling based on an AADL annex sub-language has not been explored before.

There have been a number of modeling languages proposed for formalizing hybrid systems.

The most popular is hybrid automata [6, 47], with real-time temporal logics interpreted on their

behaviors as specification languages. However, analogous to state machines, hybrid automata

provides little support for structured description and composition. We refer to [24], and [18], for

extensive review on languages and tools introduced for specification and analysis of hybrid systems.

Platzer proposed hybrid programs [54, 56] and the related first-order dynamic logic, differential
dynamic logic (dL) for the compositional modeling and deductive verification by reducing properties

of hybrid systems to properties of their parts [55]. In differential dynamic logic, the correctness of

a transition behavior can be expressed as formulas based on the operational models of the hybrid

system. Discrete transitions are specified as instantaneous assignments of values to state variables

which, can be combined to handle simultaneous assignments. However, in his work, parallelism

and communication were not well handled, that occur ubiquitously in AADL models.

Zélus [13–15] extends Lustre, a synchronous dataflow language, to support the description of

continuous behavior and it implements a type system based on which some erroneous behaviors

can be checked statically. There are extended Event-B framework based on refinement and proof

for modeling and verifying hybrid systems, for instance, core hybrid Event-B [8–10] and Event-

B hybridation [27]. In addition, PTIDES [26] is a programming model for distributed real-time

embedded systems.

Some approaches on the co-modeling and co-simulation of systems have been proposed to design

a system by considering its different viewpoints. Metropolis [7, 23] is a platform-based design

environment for heterogeneous systems, that provides simulation, verification, and code synthesis

by transforming all models to a unified meta-model language. It focuses on the discrete setting for

system behaviors. Ptolemy [57] combines different models of computation in terms of actors and

provides co-modeling and co-simulation for the combined models. Functional Mock-up Interface

(FMI 3.0) [41] is an industrial standard maintained by the Modelica Association that enables the

exchange and co-simulation of dynamic component models. It couples different simulation tools at

system level by coordinating and synchronizing their respective executions. However, Ptolemy

supports very limited facilities to model continuous dynamics [21], and furthermore, both Ptolemy

and FMI are not designed for hardware architecture modeling and analysis as specified by AADL.

Reference [31] gives a survey on the state-of-the-art techniques for co-simulation and reference [32]

provides some introductory material for co-simulation of continuous systems. Other recent works

on co-simulation include [33], [34], and so on.

9 CONCLUSION AND FUTUREWORK
AADL, augmented with the HA sublanguage, can model continuous behavior of the physical

process to be monitored and controlled by the control system. Translation of HA semantics into

HCSP, of synchronous subset of AADL annotated with HA supports modeling, simulation, and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

1:48 Xu and Ahmad et al.

formal verification of hybrid systems. The application of the HA for modeling, and translation into

HCSP for verification, is illustrated using an example hybrid system. The Hybrid Communicating

Sequential Processes (HCSP) translation of an AADL model using HA was verified using an in-

house developed HHL prover. Being a step towards formalization of continuous behavior and

cyber-physical interaction modeling and verification using AADL, this study has opened new

domains for research in AADL.

Our future work includes enhancement of the current approach to cover asynchronous subset

of AADL which is based on aperiodic thread with event-driven communication models and the

development of a plug-in to Open-Source AADL Tool Environment (OSATE), the development en-

vironment for AADL modeling, for automatic translation of AADL models (with HA specifications)

to HCSP processes and verification using the automatic theorem prover HHLPy [60].

ACKNOWLEDGMENTS
This work has been partially funded by the National Key R&D Program of China under grant

No. 2022YFA1005100 and 2022YFA1005101, the NSFC under grant No. 62192732, 62402479, and

62032024, the CAS Project for Young Scientists in Basic Research under grant No. YSBR-040, and

the Major Project of ISCAS (ISCAS-ZD-202302).

REFERENCES
[1] AADL-EMV2. [n.d.]. AADL Error Model Annex v2. https://saemobilus.sae.org/content/as5506/1

[2] Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou. 2014. Adding Formal Meanings to

AADL with Hybrid Annex. In FACS 2014 (LNCS, Vol. 8997), Ivan Lanese and Eric Madelaine (Eds.). Springer, 228–247.

https://doi.org/10.1007/978-3-319-15317-9_15

[3] Ehsan Ahmad, Brian R. Larson, Stephen C. Barrett, Naijun Zhan, and Yunwei Dong. 2014. Hybrid annex: an AADL

extension for continuous behavior and cyber-physical interaction modeling. In HILT 2014, Michael B. Feldman and

S. Tucker Taft (Eds.). ACM, 29–38. https://doi.org/10.1145/2663171.2663178

[4] Ehsan Ahmad and Hessam S. Sarjoughian. 2023. An Environment for Developing Simulatable AADL-DEVS Models.

Simul. Model. Pract. Theory 123 (2023), 102690. https://doi.org/10.1016/J.SIMPAT.2022.102690

[5] Ehsan M. Ahmad and Hessam S. Sarjoughian. 2019. A Behavior Annex For AADL Using The DEVS Formalism. In

SpringSim 2019, Alberto A. Del Barrio, Christopher J. Lynch, Fernando J. Barros, Xiaolin Hu, and Andrea D’Ambrogio

(Eds.). IEEE, 1–12. https://doi.org/10.23919/SPRINGSIM.2019.8732894

[6] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. 1992. Hybrid Automata: An Algorithmic

Approach to the Specification and Verification of Hybrid Systems. In Hybrid Systems (LNCS, Vol. 736), Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel (Eds.). Springer, 209–229. https://doi.org/10.1007/3-540-

57318-6_30

[7] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone, and Alberto L. Sangiovanni-

Vincentelli. 2003. Metropolis: An Integrated Electronic System Design Environment. Computer 36, 4 (2003), 45–52.
https://doi.org/10.1109/MC.2003.1193228

[8] Richard Banach. 2024. Core Hybrid Event-B III: Fundamentals of a reasoning framework. Sci. Comput. Program. 231
(2024), 103002. https://doi.org/10.1016/J.SCICO.2023.103002

[9] Richard Banach, Michael J. Butler, Shengchao Qin, Nitika Verma, and Huibiao Zhu. 2015. Core Hybrid Event-B I: Single

Hybrid Event-B machines. Sci. Comput. Program. 105 (2015), 92–123. https://doi.org/10.1016/J.SCICO.2015.02.003

[10] Richard Banach, Michael J. Butler, Shengchao Qin, and Huibiao Zhu. 2017. Core Hybrid Event-B II: Multiple cooperating

Hybrid Event-B machines. Sci. Comput. Program. 139 (2017), 1–35. https://doi.org/10.1016/J.SCICO.2016.12.003

[11] Ayan Banerjee, Sailesh Kandula, Tridib Mukherjee, and Sandeep K. S. Gupta. 2012. BAND-AiDe: A Tool for Cyber-

Physical Oriented Analysis and Design of Body Area Networks and Devices. ACM Trans. Embed. Comput. Syst. 11, S2
(2012), 49:1–49:29. https://doi.org/10.1145/2331147.2331159

[12] Yongxiang Bao, Mingsong Chen, Qi Zhu, Tongquan Wei, Frédéric Mallet, and Tingliang Zhou. 2017. Quantitative

Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 36, 12 (2017), 1989–2002. https://doi.org/10.1109/TCAD.2017.2681076

[13] Albert Benveniste, Timothy Bourke, Benoît Caillaud, Jean-Louis Colaço, Cédric Pasteur, and Marc Pouzet. 2018.

Building a Hybrid Systems Modeler on Synchronous Languages Principles. Proc. IEEE 106, 9 (2018), 1568–1592.

https://doi.org/10.1109/JPROC.2018.2858016

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

https://saemobilus.sae.org/content/as5506/1
https://doi.org/10.1007/978-3-319-15317-9_15
https://doi.org/10.1145/2663171.2663178
https://doi.org/10.1016/J.SIMPAT.2022.102690
https://doi.org/10.23919/SPRINGSIM.2019.8732894
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1109/MC.2003.1193228
https://doi.org/10.1016/J.SCICO.2023.103002
https://doi.org/10.1016/J.SCICO.2015.02.003
https://doi.org/10.1016/J.SCICO.2016.12.003
https://doi.org/10.1145/2331147.2331159
https://doi.org/10.1109/TCAD.2017.2681076
https://doi.org/10.1109/JPROC.2018.2858016

Modeling and Verification of Hybrid Systems by Extending AADL 1:49

[14] Timothy Bourke, Francois Carcenac, Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. 2017. A

Synchronous Look at the Simulink Standard Library. ACM Trans. Embed. Comput. Syst. 16, 5s (2017), 176:1–176:24.
https://doi.org/10.1145/3126516

[15] Timothy Bourke and Marc Pouzet. 2013. Zélus: a synchronous language with ODEs. In HSCC 2013, Calin Belta and

Franjo Ivancic (Eds.). ACM, 113–118. https://doi.org/10.1145/2461328.2461348

[16] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas Noll, and Marco Roveri. 2011.

Safety, Dependability and Performance Analysis of Extended AADL Models. Comput. J. 54, 5 (2011), 754–775.

https://doi.org/10.1093/COMJNL/BXQ024

[17] Michael Stephen Branicky. 1995. Studies in Hybrid Systems: Modeling, Analysis, and Control. Massachusetts Institute of

Technology, Cambridge, MA, USA.

[18] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L. Sangiovanni-Vincentelli. 2006. Languages and

Tools for Hybrid Systems Design. Found. Trends Electron. Des. Autom. 1, 1/2 (2006). https://doi.org/10.1561/1000000001

[19] Mohamed Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis. 2008. Translating AADL into BIP -

Application to the Verification of Real-Time Systems. In MODELS 2008 (LNCS, Vol. 5421), Michel R. V. Chaudron (Ed.).

Springer, 5–19. https://doi.org/10.1007/978-3-642-01648-6_2

[20] COMPASS. [n.d.]. COMPASS. http://www.compass-toolset.org/

[21] Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masin, and Stavros Tripakis. 2019. Hybrid

co-simulation: it’s about time. Softw. Syst. Model. 18, 3 (2019), 1655–1679. https://doi.org/10.1007/S10270-017-0633-6

[22] D-MILS. [n.d.]. Distributed MILS. http://www.d-mils.org

[23] Abhijit Davare, Douglas Densmore, Trevor Meyerowitz, Alessandro Pinto, Alberto Sangiovanni-Vincentelli, Guang

Yang, Haibo Zeng, and Qi Zhu. 2007. A Next-Generation Design Framework for Platform-based Design. In DVCon
2007.

[24] Jennifer M. Davoren and Anil Nerode. 2000. Logics for hybrid systems. Proc. IEEE 88, 7 (2000), 985–1010. https:

//doi.org/10.1109/5.871305

[25] Julien Delange. 2017. AADL in Practice. Reblochon Development Company.

[26] Patricia Derler, Thomas Huining Feng, Edward A Lee, Slobodan Matic, Hiren D Patel, Yang Zhao, and Jia Zou. 2008.

PTIDES: A programming model for distributed real-time embedded systems. University of California, Berkeley, EECS
Technical Report. EECS-2008-72 (2008).

[27] Guillaume Dupont, Yamine Aït Ameur, Neeraj Kumar Singh, and Marc Pantel. 2021. Event-B Hybridation: A Proof and

Refinement-based Framework for Modelling Hybrid Systems. ACM Trans. Embed. Comput. Syst. 20, 4 (2021), 35:1–35:37.
https://doi.org/10.1145/3448270

[28] Esterel Technologies. [n.d.]. SCADE suite. http://www.esterel-technologies.com/products/scade-suite

[29] Peter Feiler and David Gluch. 2012. Model-Based Engineering with AADL: An Introduction to the SAE Architecture
Analysis & Design Language. Addison-Wesley.

[30] Peter Feiler, Jörgen Hansson, Dionisio de Niz, and Lutz Wrage. 2009. System Architecture Virtual Integration: An
industrial Case Study. Technical Report CMU/SEI-2009-TR-017. SEI, CMU.

[31] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2018. Co-Simulation: A

Survey. ACM Comput. Surv. 51, 3 (2018), 49:1–49:33. https://doi.org/10.1145/3179993

[32] Cláudio Gomes, Casper Thule, Peter Gorm Larsen, Joachim Denil, and Hans Vangheluwe. 2018. Co-simulation of

Continuous Systems: A Tutorial. CoRR abs/1809.08463 (2018). arXiv:1809.08463

[33] Simon Thrane Hansen, Casper Thule, Cláudio Gomes, Kenneth Lausdahl, Frederik Palludan Madsen, Giuseppe Abbiati,

and Peter Gorm Larsen. 2024. Co-simulation at different levels of expertise with Maestro2. J. Syst. Softw. 209 (2024),
111905. https://doi.org/10.1016/J.JSS.2023.111905

[34] Simon Thrane Hansen, Casper Thule, Cláudio Gomes, Jaco van de Pol, Maurizio Palmieri, Emin Oguz Inci, Fred-

erik Palludan Madsen, Jesus Alfonso, José Ángel Castellanos, and José Manuel Rodriguez-Fortun. 2022. Verification

and synthesis of co-simulation algorithms subject to algebraic loops and adaptive steps. Int. J. Softw. Tools Technol.
Transf. 24, 6 (2022), 999–1024. https://doi.org/10.1007/S10009-022-00686-8

[35] Jifeng He. 1994. From CSP to hybrid systems. Prentice Hall International (UK) Ltd., GBR, 171–189.
[36] Thomas A. Henzinger. 1996. The Theory of Hybrid Automata. In LICS 1996. IEEE Computer Society, 278–292.

https://doi.org/10.1109/LICS.1996.561342

[37] Thomas A. Henzinger and Joseph Sifakis. 2006. The Embedded Systems Design Challenge. In FM 2006 (LNCS, Vol. 4085),
Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). Springer, 1–15. https://doi.org/10.1007/11813040_1

[38] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun. ACM 21, 8 (1978), 666–677. https://doi.org/10.

1145/359576.359585

[39] Jérôme Hugues, Lutz Wrage, John Hatcliff, and Danielle Stewart. 2022. Mechanization of a Large DSML: An Experiment

with AADL and Coq. In MEMOCODE 2022. IEEE, 1–9. https://doi.org/10.1109/MEMOCODE57689.2022.9954589

[40] SAE International. 2022. SAE AS5506 Rev. D Architecture Analysis and Design Language (AADL). SAE International.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

https://doi.org/10.1145/3126516
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.1093/COMJNL/BXQ024
https://doi.org/10.1561/1000000001
https://doi.org/10.1007/978-3-642-01648-6_2
http://www.compass-toolset.org/
https://doi.org/10.1007/S10270-017-0633-6
http://www.d-mils.org
https://doi.org/10.1109/5.871305
https://doi.org/10.1109/5.871305
https://doi.org/10.1145/3448270
http://www.esterel-technologies.com/products/scade-suite
https://doi.org/10.1145/3179993
https://arxiv.org/abs/1809.08463
https://doi.org/10.1016/J.JSS.2023.111905
https://doi.org/10.1007/S10009-022-00686-8
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1007/11813040_1
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/MEMOCODE57689.2022.9954589

1:50 Xu and Ahmad et al.

[41] Andreas Junghanns, Cláudio Gomes, Christian Schulze, Klaus Schuch, Pierre R., Matthias Blaesken, Irina Zacharias,

Andreas Pillekeit, Karl Wernersson, Torsten Sommer, Christian Bertsch, Torsten Blochwitz, and Masoud Najafi. 2021.

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications. In Proceedings of 14th Modelica
Conference 2021.

[42] Brian R. Larson, Patrice Chalin, and John Hatcliff. 2013. BLESS: Formal Specification and Verification of Behaviors for

Embedded Systems with Software. In NASA Formal Methods 2013 (LNCS, Vol. 7871), Guillaume Brat, Neha Rungta, and

Arnaud Venet (Eds.). Springer, 276–290. https://doi.org/10.1007/978-3-642-38088-4_19

[43] Edward A. Lee. 2000. What’s Ahead for Embedded Software? Computer 33, 9 (2000), 18–26. https://doi.org/10.1109/2.

868693

[44] Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen Zhou, and Liang Zou. 2010. A Calculus for

Hybrid CSP. In APLAS 2010 (LNCS, Vol. 6461), Kazunori Ueda (Ed.). Springer, 1–15. https://doi.org/10.1007/978-3-642-

17164-2_1

[45] John Lygeros. 2004. Lecture Notes on Hybrid Systems. In Notes for an ENSIETA workshop.
[46] Oded Maler, Zohar Manna, and Amir Pnueli. 1991. From Timed to Hybrid Systems. In Real-Time: Theory in Practice,

REX Workshop (LNCS, Vol. 600), J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grzegorz Rozenberg (Eds.).

Springer, 447–484. https://doi.org/10.1007/BFB0032003

[47] Zohar Manna and Amir Pnueli. 1992. Verifying Hybrid Systems. In Hybrid Systems (LNCS, Vol. 736), Robert L. Grossman,

Anil Nerode, Anders P. Ravn, and Hans Rischel (Eds.). Springer, 4–35. https://doi.org/10.1007/3-540-57318-6_22

[48] MathWorks Inc. 2013. Simulink User’s Guide. http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf.
[49] MathWorks Inc. 2013. Stateflow User’s Guide. http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf.
[50] Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92. Springer.

https://doi.org/10.1007/3-540-10235-3

[51] Robin Milner. 1989. Communication and concurrency. Prentice Hall.
[52] Hana Mkaouar, Bechir Zalila, Jérôme Hugues, and Mohamed Jmaiel. 2020. A formal approach to AADL model-based

software engineering. Int. J. Softw. Tools Technol. Transf. 22, 2 (2020), 219–247. https://doi.org/10.1007/S10009-019-

00513-7

[53] OSATE. 2024. Open Source AADL Tool Environment, Version 2.14.0. https://www.osate.org. (accessed on March 24,

2024).

[54] André Platzer. 2007. Differential Dynamic Logic for Verifying Parametric Hybrid Systems. In TABLEAUX 2007 (LNCS,
Vol. 4548), Nicola Olivetti (Ed.). Springer, 216–232. https://doi.org/10.1007/978-3-540-73099-6_17

[55] André Platzer. 2008. Differential Dynamic Logic for Hybrid Systems. J. Autom. Reason. 41, 2 (2008), 143–189.

https://doi.org/10.1007/S10817-008-9103-8

[56] André Platzer. 2010. Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer. https:

//doi.org/10.1007/978-3-642-14509-4

[57] Claudius Ptolemaeus (Ed.). 2014. System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org. http:

//ptolemy.org/books/Systems

[58] SAVI. [n.d.]. System Architecture Virtual Integration. http://savi.avsi.aero/

[59] Oliver Scheid. 2015. AUTOSAR Compendium - Part 1: Application & RTE. Bruchsal: CreateSpace Independent Publishing
Platform.

[60] Huanhuan Sheng, Alexander Bentkamp, and Bohua Zhan. 2023. HHLPy: Practical Verification of Hybrid Systems

Using Hoare Logic. In FM 2023 (LNCS, Vol. 14000), Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker (Eds.).

Springer, 160–178. https://doi.org/10.1007/978-3-031-27481-7_11

[61] SMACCM. [n.d.]. Secure Mathematically-Assured Composition of Control Models. http://loonwerks.com/projects/

smaccm.html

[62] Oleg Sokolsky, Insup Lee, and Duncan Clarke. 2009. Process-Algebraic Interpretation of AADL Models. In Reliable
Software Technologies - Ada-Europe 2009 (LNCS, Vol. 5570), Fabrice Kordon and Yvon Kermarrec (Eds.). Springer, 222–236.

https://doi.org/10.1007/978-3-642-01924-1_16

[63] Shuling Wang, Zekun Ji, Xiong Xu, Bohua Zhan, Qiang Gao, and Naijun Zhan. 2024. Formally Verified C Code

Generation from Hybrid Communicating Sequential Processes. In ICCPS 2024. IEEE, 123–134. https://doi.org/10.1109/

ICCPS61052.2024.00018

[64] Shuling Wang, Naijun Zhan, and Liang Zou. 2015. An Improved HHL Prover: An Interactive Theorem Prover for

Hybrid Systems. In ICFEM 2015 (LNCS, Vol. 9407), Michael J. Butler, Sylvain Conchon, and Fatiha Zaïdi (Eds.). Springer,

382–399. https://doi.org/10.1007/978-3-319-25423-4_25

[65] Xiong Xu, Jean-Pierre Talpin, Shuling Wang, Bohua Zhan, and Naijun Zhan. 2023. Semantics Foundation for Cyber-

physical Systems Using Higher-order UTP. ACM Trans. Softw. Eng. Methodol. 32, 1 (2023), 9:1–9:48. https://doi.org/10.

1145/3517192

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

https://doi.org/10.1007/978-3-642-38088-4_19
https://doi.org/10.1109/2.868693
https://doi.org/10.1109/2.868693
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/BFB0032003
https://doi.org/10.1007/3-540-57318-6_22
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/S10009-019-00513-7
https://doi.org/10.1007/S10009-019-00513-7
https://www.osate.org
https://doi.org/10.1007/978-3-540-73099-6_17
https://doi.org/10.1007/S10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://savi.avsi.aero/
https://doi.org/10.1007/978-3-031-27481-7_11
http://loonwerks.com/projects/smaccm.html
http://loonwerks.com/projects/smaccm.html
https://doi.org/10.1007/978-3-642-01924-1_16
https://doi.org/10.1109/ICCPS61052.2024.00018
https://doi.org/10.1109/ICCPS61052.2024.00018
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1145/3517192
https://doi.org/10.1145/3517192

Modeling and Verification of Hybrid Systems by Extending AADL 1:51

[66] Xiong Xu, Shuling Wang, Bohua Zhan, Xiangyu Jin, Jean-Pierre Talpin, and Naijun Zhan. 2022. Unified graphical

co-modeling, analysis and verification of cyber-physical systems by combining AADL and Simulink/Stateflow. Theor.
Comput. Sci. 903 (2022), 1–25. https://doi.org/10.1016/J.TCS.2021.11.008

[67] Xiong Xu, Bohua Zhan, Shuling Wang, Jean-Pierre Talpin, and Naijun Zhan. 2023. A denotational semantics of

Simulink with higher-order UTP. J. Log. Algebraic Methods Program. 130 (2023), 100809. https://doi.org/10.1016/J.

JLAMP.2022.100809

[68] Gaogao Yan, Li Jiao, Shuling Wang, Lingtai Wang, and Naijun Zhan. 2020. Automatically Generating SystemC Code

from HCSP Formal Models. ACM Trans. Softw. Eng. Methodol. 29, 1 (2020), 4:1–4:39. https://doi.org/10.1145/3360002

[69] Zhibin Yang, Kai Hu, Dianfu Ma, and Lei Pi. 2009. Towards a formal semantics for the AADL behavior annex. In

DATE 2009, Luca Benini, Giovanni De Micheli, Bashir M. Al-Hashimi, and Wolfgang Müller (Eds.). IEEE, 1166–1171.

https://doi.org/10.1109/DATE.2009.5090839

[70] Bohua Zhan, Xiong Xu, Qiang Gao, Zekun Ji, Xiangyu Jin, Shuling Wang, and Naijun Zhan. 2024. Mars 2.0: A Toolchain

for Modeling, Analysis, Verification and Code Generation of Cyber-Physical Systems. CoRR abs/2403.03035 (2024).

https://doi.org/10.48550/ARXIV.2403.03035 arXiv:2403.03035

[71] Naijun Zhan, Bohua Zhan, Shuling Wang, Dimitar P. Guelev, and Xiangyu Jin. 2023. A Generalized Hybrid Hoare

Logic. CoRR abs/2303.15020 (2023). https://doi.org/10.48550/ARXIV.2303.15020 arXiv:2303.15020

[72] Chaochen Zhou, Ji Wang, and Anders P. Ravn. 1995. A Formal Description of Hybrid Systems. In Hybrid Systems
III: Verification and Control 1995 (LNCS, Vol. 1066), Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag (Eds.).

Springer, 511–530. https://doi.org/10.1007/BFB0020972

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

https://doi.org/10.1016/J.TCS.2021.11.008
https://doi.org/10.1016/J.JLAMP.2022.100809
https://doi.org/10.1016/J.JLAMP.2022.100809
https://doi.org/10.1145/3360002
https://doi.org/10.1109/DATE.2009.5090839
https://doi.org/10.48550/ARXIV.2403.03035
https://arxiv.org/abs/2403.03035
https://doi.org/10.48550/ARXIV.2303.15020
https://arxiv.org/abs/2303.15020
https://doi.org/10.1007/BFB0020972

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 AADL
	2.2 HCSP

	3 Hybrid Annex
	3.1 Assertion Section
	3.2 Assume Section
	3.3 Ensure Section
	3.4 Invariant Section
	3.5 Variables Section
	3.6 Constants Section
	3.7 Behavior Section
	3.8 Channels Section

	4 Running Example: An Automatically Cruise Control System
	4.1 Architecture and Behavior
	4.2 Physical Level
	4.3 Software Level
	4.4 Platform Level
	4.5 Composite System

	5 AADL Run-time Semantics
	5.1 Immediate Communication
	5.2 Delayed Communication
	5.3 Synchronous and asynchronous connections

	6 From AADL with Hybrid Annex to HCSP
	6.1 Processors
	6.2 Threads
	6.3 Devices
	6.4 Physical Environments
	6.5 Port Connections
	6.6 Buses
	6.7 Restrictions on AADL

	7 Case Study
	7.1 Translation
	7.2 Simulation
	7.3 Verification

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

