
1

WCET Estimation for CNN Inference on FPGA
SoC with Multi-DPU Engines

Wei Zhang, Yunlong Yu, Xiao Jiang, Nan Guan, Naijun Zhan, and Lei Ju

Abstract—The Deep Learning Processor Unit (DPU) released
in the official Xilinx Vitis AI toolchain stands as a commercial
off-the-shelf solution tailored for accelerating convolutional neu-
ral network (CNN) inference on Xilinx FPGA devices. While
most FPGA accelerator focus on high performance and energy-
efficiency, analyzing the worst-case execution time (WCET)
bound is essential for using CNN accelerations in real-time
embedded systems design. In this work, we show that in a multi-
DPU environment, the observed worst-case inference time for
a CNN inference task could become 3X larger w.r.t. the best
case inference time, which prompts the prominent importance
of a static timing analysis for FPGA-based CNN inference. We
propose, to the best of the authors’ knowledge, the first static
timing analysis framework for CNN inference in a multi-DPU
environment. The proposed framework introduces a generalized
timing behavior model for shared bus arbitration and memory
access contention between parallel running DPU engines. Addi-
tionally, it incorporates a fine-grained memory access contention
analysis that takes into account the characteristics of deep
learning applications. For a single-DPU environment, the analysis
result is 27% tighter in average compared with the state-of-
the-art results. Furthermore, our proposed method produces
relatively tight estimated results in the multi-DPU environment.

Index Terms—FPGA, static timing analysis, memory con-
tention, WCET estimation

I. INTRODUCTION

With the rapid development of machine learning technology,
Convolutional Neural Networks (CNNs) have been widely
adopted in timing critical embedded systems. For example,
multiple CNN models are used in the open autonomous
driving system Apollo for perception tasks including semantic
segmentation, obstacle detection, and so on [1]. In order to im-
prove the performance of computation and memory intensive
CNN inference on the resource constrained embedded devices,
heterogeneous embedded computing platforms become the
industrial practice for smart embedded system design. Typical
heterogeneous processors used for CNN inference including
general purpose graphics processing units (GPGPUs), field-
programmable gate arrays (FPGAs), and neural processing
units (NPUs).

Wei Zhang, Yunlong Yu, and Xiao Jiang are with the School of Cyber
Science and Technology, Shandong University, Qingdao, China, and also with
Quan Cheng Laboratory, Jinan, China.

Nan Guan is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, China.

Naijun Zhan is with the School of Computer Science and Key Laboratory
of High Confidence Software Technology, Peking University, Beijing, China,
and also with ZGC Lab. Beijing, China.

Lei Ju is with Quan Cheng Laboratory, Jinan, China (Corresponding author:
julei@sdu.edu.cn).

Among different types of heterogeneous processors, FPGA
demonstrates programmability and promising energy effi-
ciency. Many FPGA-based accelerators have been proposed
for CNN inference [2]. With application-specific hardware
design and ingenious software and hardware co-optimization
techniques, the performance and energy efficiency of FPGA-
based CNN inference accelerators have improved dramatically
over the last decade. In December 2019, Xilinx has officially
released the Deep Learning Processing Unit (DPU) with the
Vitis AI framework [3]. Xilinx DPU is a programmable engine
dedicated for convolutional neural network inference, which is
built on a specialized instruction set to facilitate the fast de-
ployment of efficient CNN inference on various Xilinx FPGA
devices. Xilinx provides IPs for different DPU architectures,
including B512, B800, B1024, B1152, B1600, B2304, B3136,
and B4096. In general, larger architecture provides better
inference performance, at the cost of higher FPGA hardware
resource usage. Furthermore, several DPUs can be deployed
simultaneously on an FPGA chip with adequate logic and on-
chip memory resources. Each DPU executes a CNN inference
task independently (with possibly different CNN models),
which allows parallel execution of multiple CNN inference
tasks. For example, at most 3 B4096 DPU architecture IPs
can be fit into the Xilinx ZCU102 evaluation board with the
XCZU9EG Zynq Ultrascale+ MPSoC device.

Soundly bounding the worst-case execution time (WCET)
is crucial for design of time critical embedded systems.
Recently, some machine learning-based methods [4], [5] are
proposed to predict the execution time for CNN tasks on
DPU. However, these methods focus on producing an accurate
average execution time estimates rather than generating a safe
upper bound on the execution time, which hinders their direct
application in designing time-critical systems. While static
timing analysis techniques that yields a sound WCET bound
have been well-studied for CPU-based systems [6], [7], little
work has investigated the worst case timing behavior of CNN
inference on FPGA. The first static timing analysis framework
for DPU-based CNN inference has been proposed in [8].
However, it targets on a single DPU environment.

In this paper, we first show that for a given CNN model,
the DPU-based inference time is very stable in a single-
DPU environment (i.e., across different input images). It
meets the expectation since the computation workload remains
the same for input images with fixed resolution, and the
intra-task memory contention follows a similar pattern across
inputs. However, we then demonstrate that in a multi-DPU
environment, where independent CNN tasks are executed on
different DPU engines, the variance between the best-case and



2

worst-case inference time of a single CNN inference task is
up-to 300%, which prompts the prominent importance of a
static timing analysis for CNN inference on FPGA with multi-
DPU engines. In general, since each DPU core has dedicated
hardware resource to perform computation, the variance on the
per-image inference time is mainly caused by uncertain shared
memory access behaviors in a multi-DPU environment.

Contribution. This paper proposes a static timing analysis
framework for CNN inference in a multi-DPU environment.
The technical contributions are as follows.

• We perform a set of micro-benchmark studies to inves-
tigate the memory access behavior of DPU-base CNN
inference. Based on the study, we construct a generalized
timing behavior model for shared bus arbitration and
memory access contention, which allows deployment of
arbitrary number of DPU engines and port connection
configurations.

• Based on the above-mentioned memory timing behavior
model, we propose a static timing analysis framework
for DPU-based CNN inference. For single-DPU envi-
ronment, our estimated bound is 27% tighter compared
with the state-of-the-art results. Moreover, to the best of
the authors’ knowledge, this is the first framework that
supports WCET analysis of CNN inference in the multi-
DPU environment.

• We show that the memory configuration on the DPU ports
has distinct impact on both the measured and estimated
CNN inference time in the multi-DPU environment. The
default port configuration fails to provide the optimal
estimated WCET bound. On the other hand, our anal-
ysis framework allows the system designer to find the
WCET of CNN inference under different DPU memory
configuration, which leads to better system resource pro-
visioning.

II. BACKGROUND

A. FPGA SoCs and Xilinx DPU

FPGA is a hardware-programmable device with a high
integration of resources, which is widely considered as an ac-
celerator for computationally-intensive applications because of
its incomparable parallel acceleration potential. Unlike GPUs,
FPGAs have a flexible hardware configuration, and provide a
better performance per watt [9]. Owing to such advantages,
FPGAs have been extensively used for accelerating DNNs
[10]–[12].

FPGA is often combined with one or more CPU processors
to be integrated as an FPGA SoC. A schematic diagram of a
FPGA SoC is shown in Figure 1. It integrates a processing
system (PS) and programmable logic (PL). PS and PL com-
municate with each other via AXI protocols for data transfer
between the PL and the PS [13].

The Xilinx Deep Learning Processing Unit (DPU) is a
configurable computation engine for CNNs on an FPGA SoC,
which makes good use of the features of FPGA SoCs. The
DPU is deployed in the PL, and connect to the PS via
three different AXI ports, M_AXI_INS, M_AXI_DATA0, and
M_AXI_DATA1, for transferring instructions and data words.

Processing 
System (PS)

Programmable
Logic (PL)

PL-PS
interface

Fig. 1: A schematic diagram of FPGA SoCs.

The three interfaces of a DPU need to be connected to PL-PS
interfaces to access the DDR memory. M_AXI_DATA0 and
M_AXI_DATA1 are 128-bit interfaces and are responsible for
data transmission, while M_AXI_INS is 32-bit interface and
is responsible for instruction transmission.

There are several DPU architectures, including B512, B800,
B1024, B1152, B1600, B2304, B3136, and B4096, for users to
choose from, each architecture of DPU requires different on-
chip resources and provides different computing power. The
Xilinx DPUCZDX8G IP is named with its peak operations per
cycle. For instance, B4096 indicates that it can theoretically
perform 4096 (multiplication and accumulation) operations per
cycle. In general, a larger DPU core provides better perfor-
mance, at the cost of higher FPGA resource usage. We show
the resource usage of different DPU architectures in Table I.
Users can change DPU configurations based on the available
resource of the platform and computational requirement before
deployment.

TABLE I: Resource Usage of Different DPU Architectures.

DPU Arch (PP*ICP*OCP) BRAM URAM to BRAM DSP
B512(4*8*8) 73.5 4 78

B800(4*10*10) 91.5 2.25 117
B1024(8*8*8) 105.5 4 154

B1152(4*12*12) 123 2.75 164
B1600(8*10*10) 127.5 2.25 232
B2304(8*12*12) 167 2.75 326
B3136(8*14*14) 210 3.25 436
B4096(8*16*16) 257 3.75 562

Off Chip Memory

Fetcher

Decoder

Dispatcher

Data Mover

OnChip BRAM

BRAM Reader/Writer

PE PE PE PE…

C
o

m
p

u
ti

n
g

E
n

g
in

e

In
s

tru
c
tio

n

S
c
h

e
d

u
le

r

O
n

-C
h

ip
 

B
u

ffe
r

C
o

n
tro

lle
r

Control Computation

Read/WriteOnly Read data0 data1

data0 data1

Fig. 2: DPU Hardware Architecture.

The hardware architecture of DPU is shown in Figure
2. The user is able to write high-level language programs
on the PS side to control the DPU core to run the user-
specified model through a number of drivers and APIs. A



3

Read address channel

Read data channel

Write address channel

Write data channel

Write response channel

AXI
Master
Interface

AXI
Slave

Interface

Address
and

control

Address
and

control

Write
response

Read
Data

Read
Data

Read
Data

Read
Data

Write
Data

Write
Data

Write
Data

Write
Data

Fig. 3: Different channels between AXI master interface and
slave interface.

CNN model must be compiled into a .xmodel file by Vitis
AI [3] before running on a DPU. After start-up, the DPU
fetches instructions from the off-chip memory to control the
operation of the computing engine. On-chip memory is used
to buffer input, intermediate, and output data to achieve high
throughput and efficiency and reduce the external memory
bandwidth consumption. A deep pipelined design is used for
the computing engine. The processing elements (PEs) take
full advantage of the fine-grained building blocks such as
multipliers, adders, and accumulators in Xilinx devices.

The performance of a DPU highly depends on the mem-
ory access latency and its own computing capability. The
computing capability is determined by the allocated resources
and the system frequency, which are inherent to the DPU’s
architecture. When a DPU is deployed on an FPGA, its com-
puting power remains fixed since it has dedicated computing
resources. Consequently, the variation in the execution time
primarily stem from the unpredictable memory access latency.

B. Advanced eXtensible Interface(AXI)

AXI is the most important part of the Advanced Microcon-
troller Bus Architecture (AMBA) protocol proposed by ARM
[14]. The AXI bus has five channels: read address channel,
write address channel, read data channel, write data channel,
and write response channel. Each channel is unidirectional
and follows the same handshake mechanism, relying on the
VALID and READY signals to complete a single exchange of
information which we call a transfer. There can be multiple
data transfers per address, this is called a burst. A transaction
is an entire burst of transfers, containing an address transfer,
one or more data transfers, and a response transfer for write
transactions.

An AXI read transaction requires multiple transfers on 2
read channels. First, an address request is sent from the master
to the slave on the read address channel to set the address
and some control signals. Then the data for this address is
transmitted from the slave to the master on the read data
channel. An AXI write transaction requires multiple transfers
on the 3 write channels. First, an address request is sent from
the master to the slave on the write address channel. The data
for this address is then transmitted from the master to the slave
on the write data channel. Finally, the write response is sent

from the slave to the master on the write response channel to
indicate whether the transmission is successful. The data flow
on different channels between the master port and the slaver
port are presented in Figure 3.

III. MOTIVATION

Bounding the worst-case execution time (WCET) is crucial
in real-time system design, especially when the execution time
of the real-time tasks is unstable. In this section, we perform
a set of experiments to measure the execution time of CNN
inference on DPU to reveal its timing behavior.

The experiment is conducted on Xilinx ZCU102 evaluation
board with Zynq UltraScale+ XCZU9EG MPSoC. Firstly, we
configure a B4096 DPU, and execute Mobilenetv2 [15] on
it. We run Mobilenetv2 20000 times with random images
with the same dimension from imageNet dataset [16] and
measure the execution time for each inference. Experimental
results in Figure 4 show that, the minimum inference time
per image is 5.56ms, while the maximum inference time is
5.81ms. The results indicate a relatively small variation in
inference time, with a difference of less than 7% during single
DPU execution. Similarly, when performing Yolov3 [17] in-
ference with Cityscapes [18], we observe a 2.49% variation in
inference time between the best and worst measurements (i.e.,
8.867 and 9.093, respectively) during the 20000 iterations.
Therefore, it can be observed that CNN inference in a single
DPU environment exhibits a highly stable measured execution
time.

4 5 6 7 8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

1.0

C
um

u
la

ti
ve

 P
ro

b
ab

ili
ty

Latency(ms)

 multi-DPUs
 single-DPU

Fig. 4: Inference time distribution of Mobilenetv2 in the
single-DPU and multi-DPU environments.

Most modern autonomous systems generally execute mul-
tiple CNN applications in parallel for different tasks. For
instance, in the open autonomous driving system Apollo,
several DNNs need to be executed in parallel [19] to perform
various tasks including planing, localization, perception, etc.
Xilinx provides the capability to deploy multiple DPUs to
execute different CNN instances concurrently. In general,
static timing analysis for the inference time of a particular
CNN inference task in a multi-DPU environment can be a very
challenging problem, due to the shared resource contentions
between different DPUs.

To demonstrate the timing analysis challenge in a multi-
DPU environment, we deploy three B4096 DPUs concurrently
on the ZCU102 platform (i.e., maximum number of B4096
DPU cores can be deployed on ZCU102). For clarity, we refer
the three DPUs as DPU1, DPU2 and DPU3, respectively. We
follow the official guidelines [20] to configure each DPU, en-
suring proper connectivity and interface setup. Specifically, the



4

instruction interfaces of the three DPUs are interconnected and
connected to S_AXI_LPD. As for the DPU data interfaces, the
connections are as follows:
• DPU1: data0 to S_AXI_HP0, data1 to S_AXI_HP1
• DPU2: data0 to S_AXI_HP2, data1 to S_AXI_HP3
• DPU3: data0 to S_AXI_HPC0, data1 to S_AXI_HPC1

We conducted experiments running two instances of
YOLOv4 [21] and one instance of Mobilenetv2 on DPU1,
DPU2, and DPU3, respectively. We continuously process
20, 000 input images using Mobilenetv2 on DPU1 while
simultaneously running YOLOv4 on DPU2 and DPU3 with
different sets of images. The distribution of the inference
time of Mobilenetv2 in the multi-DPU environment is
depicted in Figure 4, where the maximum execution time
is approximately 200% greater than the minimum observed
inference time.

The examples presented above highlight the significance
of timing analysis for CNN inference in a multi-DPU en-
vironment, particularly in the context of real-time system
design using DPUs. However, the state-of-the-art worst-case
analysis [8] for CNN inference only targets on the single-
DPU environment and does not support to produce a WCET
bound in a multi-DPU environment. Unlike the single-DPU
scenario, measurement based WCET estimation might fail to
find a safe bound for individual CNN inference tasks running
on each DPU due to the huge variance between the best
and worst inference time per input image. During the CNN
inference, DPU accesses data from the memory and perform
the computation on its dedicated PEs. Note, the computation
phase may overlap with the memory access phase. For a
given CNN model and input image size, since the Multiply-
Accumulate (MAC) operations are exact and the FPGA-based
DPU engine has very regular clock-level timing behavior,
the computation cost (including access latency of the FPGA
on-chip block RAMs) is deterministic. Our results shown
in Figure 4 also demonstrate the stable inference time over
different input images with same dimension in a single-DPU
environment, as the off-chip main memory access contention
behavior between different ports of a DPU are very similar
across different input images.

In a multi-DPU environment, the main memory access
contention cost becomes uncertain due to non-deterministic
interleaving among different DPU engines. As a result, effec-
tively bounding the shared memory contention cost is critical
for obtaining a static worst-case inference time.

IV. SYSTEM MODEL

This section first presents the hardware model of Xilinx
DPU on FPGA SoC in section IV-A. To simplify the presen-
tation, we use Xilinx ZCU102 to illustrate the hardware model.
Note that the proposed method generalizes the hardware
architecture and can also be extended to deal with DPUs on
other FPGA SoCs. Then the software model of DPUs is also
presented in section IV-B.

A. Hardware Model
DPUs are deployed in the PL of the FPGA, and each DPU

contains three ports, two data ports, and one instruction port, to

DDR memory Controller

PL-PS 

Interfaces

XPI 

Ports

DDR Port Arbiter

LPD

S0 S1 S2 S3 S4 S5

DPU1

ins

data0 data1

DPU1

ins

data0 data1

PL

PS

CCI

DPU2

ins

data0 data1

DPU2

ins

data0 data1

DPU3

ins

data0 data1

DPU3

ins

data0 data1

PL Interconnect (IC1)

HPC0 HPC1 HP0 HP1 HP2 HP3

PS Interconnect (IC2)

Fig. 5: The system architecture.

access data/instructions from the memory, respectively. These
ports are connected to the PL-PS interfaces through the AXI
interconnects.

In the case of Xilinx ZCU102, there are 7 PL-PS interfaces
available, LPD, HPC0, HPC1, HP0, HP1, HP2, and HP3 as
shown in Figure 5. Different PL-PS interfaces will access
data from different XPI ports through a PS interconnect and
a Cache Coherent Interconnect(CCI). Then, these XPI ports
are arbitrated in a round robin mode by default to access
the DDR memory. Thus, when a transaction is issued by a
DPU, it may contend with other transactions on at most 3
interconnects (i.e., PL interconnect, PS interconnect, and CCI),
as well as the DDR port arbiter. As discussed in Section
III, contentions on these interconnects and DDR port arbiter
lead to the unpredictable timing behavior of DPUs. A detailed
analysis of such contentions is presented in the section V.

1) Interconnect: When the number of data ports and in-
struction ports exceeds the available PL-PS interfaces, an
interconnect is used to arbitrate memory access transactions.
An interconnect contains several master ports and several slave
ports, where the master ports are responsible for sending
requests of data and slave ports receive and process the re-
quests from the master ports. When the counts of master ports
exceeds the counts of slave ports, the interconnect typically
employs an arbitration scheme to determine which master port
is granted access to the shared resources at any given time.
For the PL interconnect, the master ports are connected to
DPUs’ data ports or instruction ports while the slave ports are
connected to the PL-PS interfaces.

In the case of Xilinx ZCU102, which has 7 PL-PS inter-
faces, it is capable of deploying 3 B4096 DPUs. These 3 DPUs
together have a total of 6 data ports and 3 instruction ports
to share only 7 PL-PS interfaces. By the DPU configuration
provided by Xilinx [3], 3 instruction ports are connected
to the LPD interface via an AXI interconnect, while other
ports have their own PL-PS interfaces as shown in Figure
5. Consequently, in the worst-case, when a DPU fetches an
instruction from the DDR memory, it needs to wait for all the
transactions that have been issued on the corresponding PL-
PS interface. Similarly, on the PS interconnect, a transaction
must also wait transactions on other master ports. The CCI



5

is a special case, as it contains two master ports and two
slave ports, transactions issued on it do not need to wait for
other transactions from other ports, but may lead to additional
memory access latency.

The timing behavior of DPUs when executing in isolation
shown in section III implies that, the memory access latency
is relatively stable if there are no contentions on these in-
terconnects. Based on this observation, we firstly measure
the memory access latency without taking into account any
contentions that may arise on the interconnects or the DDR
port arbiter. Subsequently, we statically bound the additional
execution time that is caused specifically by these contentions.

2) PL-PS interface: A Xilinx FPGA SoC typically contains
three types of PL-PS interfaces, each with different memory
access times. DPUs with the same architecture connected with
different types of PL-PS interfaces have different inference
time. Generally, HP offers the shortest memory access time,
followed by HPC, and finally LPD.

We conduct experiments to explore the influence of different
memory port configurations on the execution time of DPU
applications. Specifically, we deploy a B4096 DPU on the
FPGA SoC and test it with three different memory port
configurations:

1) conf 1: instruction port is connected with S_AXI_HP3,
while two data ports are connected with S_AXI_HP0.

2) conf 2: instruction port is connected with S_AXI_HP3,
while two data ports are connected with S_AXI_HPC0.

3) conf 3: instruction port is connected with S_AXI_HP3,
while two data ports are connected with S_AXI_LPD.

For each memory configuration, we run three different CNNs,
YOLOv3, YOLOv4, Mobilenetv2 for 5000 times and measure
the average execution time.

TABLE II: The execution time of different DNNs using
different types of PL-PS interfaces

DNN Configuration execution time (ms)

Object Detect conf 1 8.256

(YOLOv3) conf 2 9.304
conf 3 24.821
conf 1 62.146

YOLOv4 conf 2 73.175
conf 3 187.052
conf 1 2.894

Mobilenetv2 conf 2 3.304
conf 3 8.919

Experimental results shown in Table II reveal that various
types of PL-PS interface exhibit distinct memory access la-
tencies. Therefore, when computing the WCET of DPUs, the
access speed of different types of PL-PS interfaces should also
be considered.

B. Software Model

CNNs tasks executed on the DPU can be divide into four
different phases:

• Read instructions phase: The DPU reads instructions from
the DDR memory through the instruction port.

• Read data phase: The DPU reads data words from the
DDR memory through the two data ports.

• Write data phase: The DPU writes data words to the DDR
memory through the two data ports.

• Elaboration phase: The duration that the DPU only per-
forms calculations and no activity on the bus is per-
formed.

It has been revealed that the DPU employs a parallel-series
execution model, where the read data phase occurs in parallel
with the read instructions phase and the write data phase [8], as
illustrated in Figure 6. During the memory access phases, the
DPU also performs computations concurrently. We follow the
existing method [8] to measure the time duration when there is
no bus activity to bound execution time of computation that do
not overlap with memory access, referred to as the Elaboration
phase. Given that various DPU architectures adhere to the
same execution model but differ in resource utilization, the
proposed method is not constrained by the specific DPU
architecture in use.

input

read data 

phase

read ins
phase

write data 

phase

elab
phase

output

DPU execution process

Fig. 6: The DPU execution model.

The Xilinx Vitis AI compiler fuses one or more consecutive
layers into one DPU node, the basic DPU processing unit, to
reduce the memory communication overhead and improve the
parallelism. We use the control flow graph (CFG) composed
by DPU nodes to model the structure of CNN tasks as shown
in Figure 7. Note, the DPU node and the control flow between
them can be obtained at compile time by the Xilinx Vitis
AI compiler, and each DPU node follows the parallel-series
execution model illustrated in 6. We show a fragment of the
CFG of MobilenetV2 compiled by Vitis AI 2.0 in Figure
7. Xilinx Vitis AI compiler fuses the convolution layer, the
BiasAdd layer, and the Relu layer into a single DPU node.

input Output

fusion

node1

Merged

Layer

Merged

Layer

Merged

Layer

pool ……
……

node2 node3
node4,5,…,n

Conv BiasAdd ReluConv BiasAdd Relu

Merged

Layer

Merged

Layer

Merged

Layer

Fig. 7: The fragment of CFG of MobilenetV2 compiled by
Vitis AI.

V. TIMING ANALYSIS FOR CNN TASKS

This section introduces the proposed timing analysis frame-
work. We begin by introducing the model of the execution
time in section V-A. Subsequently, we show the proposed
timing analysis method in section V-B and section V-C. To
enhance clarity and comprehension, we provide a summary of



6

the notations and terminologies employed in this work, which
can be found in Table III.

TABLE III: Notations and terminologies

Symbol Meaning

taddr/word
read/write

the measured maximum time duration for transferring
data (i.e., an address request, a write response, or a data
word ) between DPU ports and PL-PS interface.

tHP/HPC/LPD
read/write

the measured maximum time duration from when a
transaction is issued by HP/HPC/LPD in PS until the
latest response is received.

nIC counts of active master ports on the interconnect IC
NINS counts of transactions issued by DPU instruction port

ND 0/D 1
R/W

counts of transactions issued by DPU data0/data1 port
in read/write data phase

∆INS
counts of data words issued by DPU instruction port in
read instructions phase

∆
D 0/D 1
R/W

counts of data words issued by DPU data0/data1 port
in read/write data phase

TR/W/INS/ELAB the execution time of each DPU phase

Ttrsf/wait
R/W/INS the transfer/waiting time of each DPU phase

Textra
R/W/INS

the additional execution time incurred due to the con-
tention and interference among multiple DPUs

Tbase
R/W/INS

the worst-case execution time when the DPU is exe-
cuted independently

A. Modeling inference time with multi-DPU engines
Based on the parallel-series DPU execution model shown

in Figure 6, the DPU inference time can be bounded by:

T = max{TR,TINS + TW}+ TELAB (1)

TELAB denotes the time duration that has no off-chip mem-
ory accesses and is thus relatively stable in a single DPU
environment. We follow the method [8] to measure the TELAB
in a single DPU environment to bound the time required for
elaboration in the multi-DPU environment. Given that CNN
tasks face increased memory access delays due to inter-DPU
contentions while computation time remains relatively stable,
the TELAB determined in the single DPU context serves as
a conservative estimate for time allocation in the multi-DPU
setting. Therefore, the major problem of computing the worst-
case inference time is to bound the memory access time of
other DPU phases, i.e., TR, TINS, and TW.

We further decompose the execution time of different
memory access phases into two components: the base exe-
cution time (i.e., Tbase

R/W/INS) and the extra execution time (i.e.,
Textra

R/W/INS). The base execution time of a transaction denotes
the memory access time without contentions with other DPUs,
while the waiting time of a transaction denotes the time that
a transaction needs to wait on the interconnects and the DDR
port arbiter.

Tα = Tbase
α + Textra

α , α ∈ {R,W, INS}

By equation 1 the worst-case execution time can be further
represented by:

T = max{Tbase
R + Textra

R ,Tbase
INS + Textra

INS + Tbase
W + Textra

W }+ TELAB

Since,

max{Tbase
R + Textra

R ,Tbase
INS + Textra

INS + Tbase
W + Textra

W } ≤
max{Tbase

R ,Tbase
INS + Tbase

W }+max{Textra
R ,Textra

INS + Textra
W }

We define the base execution time (i.e., Tbase) and the extra
execution time (i.e., Textra) as:

Tbase = max{Tbase
R ,Tbase

INS + Tbase
W } (2)

Textra = max{Textra
R ,Textra

INS + Textra
W } (3)

Then, the worst case execution time can also be bounded by:

Tbase + Textra + TELAB

where the base execution time analysis (Tbase) and the extra
execution time analysis (Textra) are shown in section V-B and
V-C1, respectively.

B. Computing the base execution time of each DPU phase

The base execution time analysis produces the inference
time when the DPU is executed independently. The proposed
base execution time analysis is a generalized WCET analysis
framework that considers various memory port configurations,
where transactions issued by different DPU phases can contend
with each other, resulting in waiting time. We further decom-
pose the base execution time into two components: the transfer
time (i.e., Ttrsf

R/W/INS) and the waiting time (i.e., Twait
R/W/INS). The

transfer time denotes the duration required for transactions to
complete without encountering any contention. The waiting
time refers to the additional waiting time resulting from
contentions among read transactions between the instruction
port and the data ports of the same DPU. It is important to
distinguish the waiting time from the extra execution time,
as the extra execution time specifically accounts for the time
spent on contentions among different DPUs.

Tbase
α = Ttrsf

α + Twait
α , α ∈ {R,W, INS}

The completion of a transaction involves four sequential
steps. Initially, a read transaction initiates an address request
to the PL-PS interface (represented by taddr

read). Subsequently,
this request is transmitted to the memory (i.e., DDR). Fol-
lowing this, multiple data words are read back to the PL-PS
interface. Finally, diverse data words are dispatched to the
DPU (indicated by tword

read ). In our study, due to the inability
to monitor DDR port activities, we merge the second and
third steps, and the time duration is bounded by measuring
the period from when the transaction is triggered by the PL-
PS interface until all responses are received by the PL-PS
interface, denoted as tHP/HPC/LPD

read/write . Moreover, a transaction may
encompass varying counts of memory transfers. Given the
unavailability of detailed DPU hardware design information
and the relatively constant transfer time, we measure the
maximum transfer time (i.e., taddr

read , tHP/HPC/LPD
read , and tword

read ) to
set an upper limit on the transfer time of the read instruction
phase. In scenarios where the specifics of the DDR bus
architecture and DPU design are publicly accessible, a more
granular transfer time analysis could be integrated to enhance
the precision of the analysis. Therefore, the transfer time of
the read instructions phase is bounded by:

Ttrsf
INS =NINS · taddr

read + NINS · tHP/HPC/LPD
read +∆INS · tword

read



7

Different from the instruction phase, the DPU fetch data
via two data ports. Since the interleaving of transactions be-
tween different data ports are not detailed, we pessimistically
consider that the transactions issued from different data ports
are not overlapped to safely compute the upper bound on the
memory access time of the read data phase.

Ttrsf
R = (ND 0

R + ND 1
R ) · tHP/HPC/LPD

read +

(ND 0
R +ND 1

R ) · taddr
read + (∆D 0

R +∆D 1
R ) · tword

read

(4)

Compared to the read data phase, the write data phase
involves not only transferring data to the memory but also
waiting for a corresponding write response. We also measure
the maximum duration for transferring the write response to
bound the write response duration, denoted by write tresp

write. So,
the transfer time of the write data phase is bounded by:

Ttrsf
W = (ND 0

W + ND 1
W ) · tHP/HPC/LPD

write +

(ND 0
W +ND 1

W ) · (taddr
write + tresp

write) + (∆D 0
W +∆D 1

W ) · tword
write

(5)

Since the AXI has independent channels for read data,
read address, write data, write address, and write response,
when the DPU operates independently, contention may arise
between the read data phase and the read instruction phase
on the read data and read address channels, leading to wait
times. When two transactions contend, the maximum wait time
equals the transfer time of the currently processed transac-
tion. The transfer time of a transaction is dictated by the
specific PL-PS interface it connects to and can be denoted
as ttrsf

read(D 0/D 1/INS). Therefore, following the round-robin
arbitration policy, we have the following equation:

Twait
INS =min{2 · NINS,ND 0

R + ND 1
R }

· max{ttrsf
read(D 0), ttrsf

read(D 1)}
Twait

R =min{NINS,ND 0
R + ND 1

R } · ttrsf
read(INS)

By the round-robin policy, a transaction from the read
instruction phase can wait for a maximum of two read data
transactions, considering that a DPU features two data ports
(i.e., 2 · NINS). Additionally, the total number of transactions
that the read instruction phase needs to wait for never surpasses
the total count of transactions from the read data phase (i.e.,
ND 0

R + ND 1
R ). Therefore, Twait

INS takes the minimum value
between them. Therefore, the waiting time does not exceed
the total transfer time of transactions that need to wait. The
computation for Twait

R is similar.

C. Extra execution time analysis

Parallel executing CNN tasks on different DPUs may issue
transactions simultaneously, and thus may contend with each
other, leading to non-deterministic memory access latency. We
in this section first show a basic extra execution time analysis
in section V-C1, and then a fine-grained extra execution time
analysis is shown in V-C2.

1) Extra execution time analysis between CNN tasks: The
extra execution time is generally spent on the interconnect
arbitration and the DDR port arbitration. During the memory
access, three interconnects may be visited, PL interconnect,
PS interconnect, and CCI as shown in Figure 5. All the

interconnects adopt the round-robin arbitration mechanism
[14]. Since CCI contains two master ports and two slave ports,
under the round-robin arbitration mechanism, a transaction
does not need to wait other transactions when visiting CCI. In
this section, we compute the extra execution time on the PL
interconnect (denoted by IC1), the PS interconnect (denoted
by IC2), and the DDR port arbiter (denoted by PA).

IC1 and IC2 may contain several master ports, and only one
slave port. Master ports and slave ports have a read and a
write channel which can be access in parallel. In this paper,
we consider a general interconnect model, n:1 interconnect
model, i.e., the interconnect contains n master ports, denoted
by P1,P2, . . . ,Pn, and one slave port. We denote the counts
of transactions issued on Pi as Ni. For Ni transactions issued
by DPU DPUa, we can use the following lemma to calculate
the maximum number of transactions of other DPUs that they
need to wait for.

Lemma 1. For all the read/write transactions issued on Pj by
DPUa, the maximum number of transactions from other DPUs
they should wait for can be bounded by:

N Ri
wait(DPUa) =

nIC∑
i=1

min
{

Nread
j (DPUothers),Nread

i (DPUa)
}

N Wi
wait(DPUa) =

nIC∑
i=1

min
{

Nwrite
j (DPUothers),Nwrite

i (DPUa)
}

(6)
, where Nwrite

j (DPUa)/Nread
j (DPUa) returns the count of

transactions that issued on Pi’s write/read channel from
DPUa, which can be computed through a backward data-
flow analysis during the computation of each DPU phase.
Nwrite
j (DPUothers)/Nread

j (DPUothers) returns the count of trans-
actions that issued by other DPUs, which can be computed by
Nread
j − Nread

j (DPUa).

Proof. On the interconnect, transactions on a master port (i.e.,
Pi) should wait for transactions on its sibling master ports.
Since the interconnect adopts a round robin arbitration method,
for each of its sibling master ports (i.e., Pj), the maximum
number of transactions Pi should wait does not exceed the
counts of transactions issued on Pj from other DPUs (i.e.,
Nread

j (DPUothers) ) and the counts of transactions issued on
its own port Pi (i.e., Nread

i (DPUa)). So the total number of
transactions from other DPUs that need to wait do not exceed
the sum of the wait transactions of all the sibling ports, as
shown in equation 6.

We follow lemma 1 to compute the extra execution time
of each DPU phase on IC1, IC2, and PA, which are denoted
by TIC1 , TIC2 , TPA and detailed in the following. So the extra
execution time of each DPU phase can be computed by:

Textra
INS =TIC1

INS + TIC2
INS + TPA

INS

Textra
R =TIC1

R + TIC2
R + TPA

R

Textra
W =TIC1

W + TIC2
W + TPA

W

(7)

Read instructions phase: According to the hardware struc-
ture shown in section IV-A, each DPU port can only be



8

connected with one master port of an interconnect in IC1
and IC2. We denote the port numbers connected with the
instruction port of the DPU in IC1 and IC2 as ICins

1 and ICins
2 ,

respectively. By lemma 1, the transactions from other DPUs
that may be contend with can be computed as N readwait, and
therefore the extra execution time of the read instruction phase
on IC1 is bounded by:

TIC1
INS = N readICins

1
wait · tPS

read(ins) (8)

Similarly, on the IC2, the extra execution time of the read
instruction phase is bounded by:

TIC2
INS = N readICins

2
wait · tPS

read(ins) (9)

The computation method for extra execution time on PA is
similar to the which on the interconnect. On the DDR port
arbiter, among all the 6 DDR ports, at most 5 can be used
by DPUs [20], and at most one can be serviced at any given
time. Due to the lack of publicly disclosed detailed information
about the DDR, it is challenging to accurately measure the
time required to complete a transaction service. Therefore, in
a conservative manner, we adopt the duration from the time
when a transaction is issued from the HP interface to the
time when the the corresponding first word from the DDR
memory is read back to the HP interface after removing all
the interference, denoted by tHP

read/ tHP
write, to bound the DDR port

service time. It is worth noting that if the internal details of
the DDR become publicly available, our results can be further
refined and improved.

We denote the XPI port number connected with the instruc-
tion port of the DPU in PA layer as XPIins, the extra execution
time of the read instruction phase on PA is bounded by:

TPA
INS =N readXPIins

wait · tHP
read (10)

Read/write data phase: The method for computing the
waiting time of the read data phase and the write data phase
is different from the read instructions phase, as each DPU
accesses data via two separated data ports. We denote the port
number of interconnects connected with the two data ports of
the DPU as ICD 0 and ICD 1. In this paper, we take the worst-
case by analyzing the waiting time of each DPU data port
individually and summing them together as the total waiting
time. Similar to equation 8, the waiting time of the read/write
data phase on IC1 and IC2 are bounded by:

TIC
R =N readICD 0

wait · tPS(D 0)
read + N readICD 1

wait · tPS(D 1)
read

TIC
W =N writeICD 0

wait · tPS(D 0)
write + N writeICD 1

wait · tPS(D 1)
write

(11)

We denote the sequence number of the XPI port connected
with the two data ports of the DPU in PA layer as XPID 0 and
XPID 1. To avoid double counting the waiting time, we divide
the analysis into two cases:

• If the two DPU data ports are connected to the same XPI
port, i.e., XPID 0 = XPID 1, the computation is similarly
to that of the waiting time computation for instruction
phase.

• If the two DPU data ports are connected to different
XPI ports, i.e., XPID 0 ̸= XPID 1, the counts of read
transactions they should wait for from other ports (i.e.,

XPIi) can not exceed the counts of read transaction
issued on these ports (i.e.,min{NXPIi

R ,NXPID 0

R +NXPID 1

R }).
So, the total number of read transaction that these two
ports need to wait from other ports is bounded by∑5

i=1 min{NXPIi
R ,NXPID 0

R +NXPID 1

R }−NXPID 0

R −NXPID 1

R . In
addition, the waiting time between these two ports should
also be counted (i.e., 2 ·min(NXPID 0

R ,NXPID 1

R )).
Thus, the waiting time of read/write data phase in PA is:

if XPID 0 = XPID 1 :

TPA
R =N readXPID 0

wait · tHP
read

TPA
W =N writeXPID 0

wait · tHP
write

(12)

if XPID 0 ̸= XPID 1 :

TPA
R =

{ 5∑
i=1

min
{

NXPIi
R ,NXPID 0

R + NXPID 1

R

}
− NXPID 0

R

− NXPID 1

R + 2 ·min(NXPID 0

R ,NXPID 1

R )

}
· tHP

read

TPA
W =

{ 5∑
i=1

min
{

NXPIi
W ,NXPID 0

W + NXPID 1

W

}
− NXPID 0

W

− NXPID 1

W + 2 ·min(NXPID 0

W ,NXPID 1

W )

}
· tHP

write

(13)

2) A fine-grained extra execution time analysis between
CNNs: The above section shows a basic extra execution time
analysis, and we denote the analyzed extra execution time as
Textra

basic. The basic execution time analysis performs the con-
tention analysis at the granularity of CNN tasks, i.e., considers
that a transaction may wait all the transactions from the
parallel executing CNN tasks. However, DPU nodes of CNN
tasks compiled by Vitis AI are generally executed sequentially
[22], and parallel executing CNN tasks exhibits limited node-
level interleaving behavior. Therefore, the contention between
different DPU nodes also follows the node-level interleaving
constraint.

CON. 1. Let us assume DPU nodes ni
A, njA, niB, and nj

B
from two parallel execution CNN tasks A and B, We suppose
that niA is executed before njA, and ni

B is executed before njB.
If transactions from niA contend with transactions from nj

B,
transactions from njA never contend with transactions from niB.
This is because, when njB is visited, ni

B is passed and never be
visited until B is finished.

𝑛1

𝑛2

𝑛4𝑛3

𝑛6

𝑛5

𝑛7

𝑛8

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑠3

𝑠5

Fig. 8: Sequentialized CFG of CNN tasks.



9

Based on the above analysis, we make a further step
to perform a fine-grained extra execution time analysis by
considering the node-level interleaving constraint. Firstly, we
combine parallel DPU nodes into a segment to get a sequen-
tialized CFG that composed by segments as shown in Figure
8. In the example, parallel DPU nodes n3 and n4 are combined
into a segment S3, n6 and n7 are combined into a segment S5,
while other DPU nodes are remained as a segment. For each
pair of segments between parallel executing CNN tasks, we
follow the method presented in section V-C1 to compute the
extra execution time resulted from contentions between them.
Then, we adopt the contention matrix [23] to compute the
worst-case extra execution time between two CNN tasks. In
specific, for two parallel executing CNNs, a contention matrix
(dentoed by Mat[m][n]) is built to model the extra execution
time between each pair of segment as shown in Figure 9. The
worst-case extra execution time can be computed by finding
the longest path that can only go to the right or the downside
from the Mat[0][0] to Mat[m−1][n−1]. The proof is presented
in [23] and is thus is omitted.

𝑆𝐵
1

𝑆𝐵
2

𝑆𝐵
3

𝑆𝐵
4

𝑆𝐵
5

𝑆𝐴
1 𝑆𝐴

3𝑆𝐴
2 𝑆𝐴

5𝑆𝐴
4 𝑆𝐴

6 𝑆𝐴
7

Fig. 9: The transformed sequentialized DPU execution graph.

In case of a CNN task has more than one parallel executing
task, we compute the extra execution time with each of them
individually and sum them up as the total extra execution time
of the task under analysis. We denote the extra execution time
computed by the fine-grained analysis method as Textra

fine . So the
extra execution time can be bound by:

Textra = min{Textra
fine ,Textra

basic}

Finally, the WCET of the CNN task is bounded by

Tbase + Textra + TELAB

VI. EVALUATION

In this section, we present the estimated WCET bounds for
various DPU applications with diverse DPU configurations to
showcase the applicability of the proposed method. Addition-
ally, comparisons with the state-of-the-art method [8] and the
measured results are provided to demonstrate the accuracy and
soundness of the proposed methodology, respectively.

A. Experimental setup

The experiment is conducted with Xilinx ZCU102 evalu-
ation board. We deploy DPUs on the FPGA SoC via Vitis
2021.2 and Vitis AI 2.0. The input images used in the exper-
iments were randomly selected from the Cityscapes dataset

[18] and ImageNet dataset [16]. In the experiment, the clock
domain of the DPU is set as 300MHz, the default value in
Vitis.

Follow the profiling method presented in section V, we
firstly deploy only one DPU to profile the transfer time and
counts of transactions of different CNN tasks in different
phases. In order to precisely profile the transfer time, we make
the following memory port configuration to avoid contentions
on interconnects:

ins =⇒ S_AXI_HP0

data0 =⇒ S_AXI_HP1

data1 =⇒ S_AXI_HP3

The CNN models are selected from the Xilinx Vitis AI
Model Zoo as shown in Table IV. We run different CNNs
10000 times with different input images, and adopt the AXI
Performance Monitors (APM) [24] to measure the counts
of transactions of different DPU phases. To demonstrate the
applicability of the proposed method, we adopt two DPU
architectures, i.e., B4096 and B3136. Experimental results
show that the counts of transactions of different DPU phases
via a specific DPU port are constant, and the counts are shown
in Table IV. For a given CNN task, the accessed data and
instruction words exhibit similarity across different DPU archi-
tectures, but diverge in the duration of the elaboration phase.
Typically, CNN applications experience longer elaboration
phases on smaller DPUs due to the diminished computational
resources, leading to extended computation times.

The proposed method decomposes a CNN task into sequen-
tialized segments to derive a tight estimated WCET bound.
We in this paper firstly get the control flow of different CNN
tasks and follow the method presented in section V-C2 to
partition a CNN network into different segments and measure
the bus activity. For example, OD SSD is partitioned into four
segments, and we run each segment independently to measure
the bus activity as shown in Table V.

We utilized the Xilinx System ILA [28] to measure the
transfer times of data and address requests via the read and
write channels correspondingly. Additionally, we profiled the
transfer time of write responses. The experimental results, as
illustrated in Table VI, demonstrate the consistency in transfer
times across various requests.

We run each CNN task independently 1 million times and
use the AXI Performance Monitors (APM) to profile the
transfer time of transactions via different PL-PS interfaces.
For all the measured time, we adopt the maximum one as the
transfer time of each PL-PS interface. For transactions on HP
interface, the transfer time for read is bounded by 35 clock
cycles, while the transfer time for write is bounded by 25 clock
cycles. For transactions on HPC interface, the transfer time for
read is bounded by 38 clock cycles, while the transfer time for
write is bounded by 28 clock cycles. For LPD interface, we
separately analyze the transfer time of read data transactions
and instruction transactions as there is a huge gap between
them. Experimental results show that, the transfer time of read
data transactions is bounded by 146 clock cycles, the transfer
time of read instruction transactions is bounded by 40 clock
cycles. The transfer time for write transactions is bounded by



10

TABLE IV: Measured bus activity of CNN tasks with different DPU architectures

CNN B4096 B3136
port NR ∆R NW ∆W ELAB(ms) port NR ∆R NW ∆W ELAB(ms)

Yolov4 [21]
ins 67869 271474

0.55
ins 64110 256441

1.11data0 538948 4783468 194863 2071760 data0 289449 2924614 132577 1289706
data1 240981 2277140 195578 2067473 data1 280804 2859145 129431 1266401

MobileNetv2 [15]
ins 16867 66465

0.20
ins 15073 60295

1.02data0 33608 378167 10698 167589 data0 17676 201364 2667 41125
data1 17955 204656 8775 136974 data1 17420 198497 2665 41115

SqueezeNet [25]
ins 9992 39969

0.10
ins 5931 23727

0.42data0 37903 403834 4745 31923 data0 8037 89512 5668 37139
data1 16677 184348 4310 27664 data1 7876 87763 5141 32986

Lane Detect ins 14058 56234
0.23

ins 12552 50211
0.87(VpgNet) [26] data0 32987 341890 36624 196182 data0 23071 234938 32518 174841

data1 18736 185130 33349 19600 data1 22939 233901 29715 174175

Object Detect ins 14295 57178
0.59

ins 109206 436827
1.24(YOLOv3) [17] data0 55141 689476 26984 280745 data0 389287 3924561 77050 1083905

data1 28456 365534 27094 282157 data1 390396 3929578 76240 1071641

Pedestrian ins 12060 48239
0.70

ins 12156 48626
1.61Detect (SSD) [27] data0 40090 428144 17696 268108 data0 29188 305487 16860 256068

data1 21058 216557 16693 253262 data1 31625 330589 17181 261103

Object Detect ins 8905 35620
0.34

ins 11646 46587
2.31(SSD) [27] data0 48007 503056 19852 301354 data0 33275 360383 20482 307502

data1 23170 244071 17915 272489 data1 33416 362339 19254 291694

TABLE V: Measured bus activity of partitioned segments of
OD SSD

OD SSD port NR ∆R NW ∆W

segment1
ins 824 3295

data0 2016 21269 5042 78434
data1 1340 15365 5042 78434

segment2
ins 2022 8089

data0 16141 176591 6396 11573
data1 7494 79496 6376 101260

segment3
ins 1635 6540

data0 14075 141210 3570 53820
data1 6825 71075 3577 53858

segment4
ins 4424 17696

data0 15775 163986 4843 67527
data1 7511 78136 2920 38936

TABLE VI: Transfer time of data requests and address requests

request taddr
read tword

read taddr
write tword

write tresp
write

cycles 1 1 1 2 1

74 clock cycles. To sum up, the transfer time of transactions
in PS is shown in Table VII.

TABLE VII: Maximum transfer time of a transaction

request tHP
read tHP

write tHPC
read tHPC

write tLPD D
read tLPD INS

read tLPD
write

cycles 35 25 38 28 146 40 74

B. Evaluation under the single DPU environment

We first evaluate the proposed method by comparing it
with the state-of-the-art method [8]. Since the WCET analysis
method presented in [8] is independent with the memory
port configuration and did not reveal their memory port
configuration, we follow the default memory configuration
recommended by Vitis AI:

ins =⇒ S_AXI_HP0

data0 =⇒ S_AXI_HP1

data1 =⇒ S_AXI_HP3

Using the profiled transfer time (i.e., shown in Table VII)
and bus activity data (i.e., shown in Table IV) from various
CNN tasks, we follow the WCET computation method stated

Yolov4 Mobv2 SqueezeNet Yolov3 VpgNet PD_SSD OD_SSD
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
(N

or
m

al
iz

ed
 to

 M
ea

su
re

d 
W

C
E

T
)

Measured WCET
WCET bound in [8]
Our WCET bound

(a) The comparison of WCET bounds with B4096.

Yolov4 Mobv2 SqueezeNet Yolov3 VpgNet PD_SSD OD_SSD
0.0

0.5

1.0

1.5

2.0

Ti
m

e 
(N

or
m

al
iz

ed
 to

 M
ea

su
re

d 
W

C
E

T
)

Measured WCET
WCET bound in [8]
Our WCET bound

(b) The comparison of WCET bounds with B3136.

Fig. 10: Comparison between the estimated WCET of our
method, the state-of-the-art method, and measured WCET. All
the results are normalized to the measured WCET.

in [8] to calculate the estimated WCET bound of the state-
of-the-art method. The resulting WCET values for both the
proposed method and the state-of-the-art method are depicted
in Figure 101. Similarly, we execute each CNN task one
million times and treat the maximum execution time among
these trials as the measured WCET as shown in Figure 10.

Experimental results show that, in the single DPU environ-
ment, the WCET estimated by the proposed method is smaller
than that of the state-of-the-art method [8]. To sum up, the
WCET bound obtained by our approach is tightened by more
than 27% on average. For the best case, the estimated WCET
bound of our method is only 128% of the measured WCET
bound, which is very close to the measured WCET bound.
Note that, even we have executed each CNN task for one
million times, we may still fail to obtain the actual worst-case

1The detailed procedure for calculating the WCET of each CNN task is
openly available at https://github.com/212SoleYu/WCET-Multi-DPUs.



11

TABLE VIII: Comparison between our estimated WCET and measured WCET in the 2-DPU environment.

CNN Conf
B4096 B3136

CNN 1 CNN 2 CNN 1 CNN 2
Measured Our Ours/Measured Measured Our Our/Measured Measured Our Our/Measured Measured Our Our/Measured

Mobv2 & PD SSD 4.496 14.138 3.144 10.803 15.744 1.457 7.041 15.982 2.269 11.290 17.958 1.590
OD SSD & Yolov3 9.970 30.416 3.050 71.391 133.080 1.864 11.573 32.049 2.769 98.749 141.428 1.432

Squeezenet & PD SSD 3.000 8.037 2.678 10.616 11.735 1.105 3.708 8.542 2.303 11.111 14.266 1.284
Mobv2 & Yolov3 5.077 16.650 3.279 71.038 126.264 1.777 5.567 17.615 3.164 98.528 181.024 1.837

TABLE IX: Comparison between our estimated WCET and measured WCET in the 3-DPU environment.

CNN Configurations CNN 1 CNN 2 CNN 3
Measured Our Our/Measured Measured Our Our/Measured Measured Our Our/Measured

B4096

OD SSD & PD SSD & Yolov3 11.62 32.17 2.77 13.35 29.73 2.23 83.09 166.56 2.00
VpgNet & Mobv2 & Squeezenet 8.56 23.62 2.76 5.76 18.05 3.13 4.58 9.91 2.16
Mobv2 & Squeeznet & OD SSD 5.30 13.68 2.58 3.58 7.87 2.20 10.65 27.49 2.58

Yolov4 & Yolov4 & Mobv2 57.01 180.67 3.17 56.51 181.34 3.21 11.50 22.95 1.99

B3136

OD SSD & PD SSD & Yolov3 13.31 34.92 2.62 12.91 32.20 2.31 108.26 177.41 1.64
VpgNet & Mobv2 & Squeezenet 8.69 24.85 2.86 6.02 19.51 3.24 4.35 11.64 2.67
Mobv2 & Squeeznet & OD SSD 5.71 15.28 2.67 4.16 9.61 2.31 12.40 30.07 2.42

Yolov4 & Yolov4 & Mobv2 66.18 187.01 2.82 66.80 189.03 2.83 11.10 29.08 2.62

execution time. By utilizing a tighter estimated WCET bound,
computing resources can be saved at the design stage and a
more accurate schedulability test can be produced.

C. Evaluation under the multiple DPU environment

As this is the first study to conduct WCET analysis in the
multi-DPU environment, we evaluate our method in the multi-
DPU environment by comparing the estimated WCET bound
of our method with the measured WCET. The evaluation
is firstly conducted in a dual-DPU environment. Two DPUs
are deployed on the FPGA SoC with the default memory
configuration of Vitis AI:

DPU1 : ins =⇒ S_AXI_HPC0

data0 =⇒ S_AXI_HP0 data1 =⇒ S_AXI_HP1

DPU2 : ins =⇒ S_AXI_HPC1

data0 =⇒ S_AXI_HP2 data1 =⇒ S_AXI_HP3

Also, we execute these two CNNs in parallel for 1 million
times and measure the worst-case execution time. Experimen-
tal results are shown in Table VIII. When executing two DPUs
in parallel, the presence of contentions between them has a
substantial impact on the execution time of CNN tasks. As a
result, the execution time of CNNs exhibits low predictability.
So, in the dual-DPU environment, the estimated WCET bound
of our method tends to be more pessimistic compared to the
single-DPU environment. Nevertheless, in the best-case, the
estimated WCET bound is 1.73x of the measured WCET
bound which is relatively tight.

Furthermore, we deploy 3 DPUs on the FPGA SoC, we
follow the official recommended memory port configuration:

DPU1 : ins =⇒ S_AXI_LPD

data0 =⇒ S_AXI_HP1 data1 =⇒ S_AXI_HP2

DPU2 : ins =⇒ S_AXI_LPD

data0 =⇒ S_AXI_HP3 data1 =⇒ S_AXI_HP3

DPU3 : ins =⇒ S_AXI_LPD

data0 =⇒ S_AXI_HPC0 data1 =⇒ S_AXI_HPC0

Experimental results are shown in Table IX. In the best-case
scenario, the estimated WCET bound is 164% of the mea-
sured WCET bound, indicating a relatively tight estimation.
Conversely, in the worst-case scenario, the estimated WCET
bound rises to 317% of the measured WCET bound, with an
average estimation of 252% of the measured WCET bound.

D. Discussion of Pessimism in the Estimated Results

It is critical to emphasize that in hard real-time systems,
violations of timing constraints may lead to catastrophic
consequences. Given the lack of detailed DPU hardware design
specifications, our methodology makes conservative assump-
tions to ensure a safe upper-bound estimation of inference
time. First, to bound transaction transfer times, we adopt the
longest observed duration across variable-length data transfers,
as transactions may involve different counts of data transfers.
Second, despite the DPU’s dual data ports, we pessimistically
model transactions from these ports as non-overlapping to
account for worst-case scheduling behavior. Third, in con-
tention scenarios between DPUs, we assume all transactions
conflict with concurrent CNN task executions on the shared
interconnect. While these choices result in a pessimistic worst-
case execution time (WCET) bound compared to empirical
measurements especially in the multi-DPU environment, the
derived bound remains provably safe. Furthermore, our method
can be extended to tighten the estimate once comprehensive
hardware design information regarding the DPU becomes
publicly available.

To evaluate the impact of our conservative modeling
choices, we systematically relax two key assumptions in our
methodology. While our method assumes non-overlapping
transactions from a DPU’s dual data ports (due to undisclosed
hardware architecture), we introduce the overlapping ratio Rol,
representing the proportion of temporally overlapping inter-
port transactions. This refines the transfer time estimation as:

Ttrsf
R = (∆D 0

R +∆D 1
R − Rol ∗min(∆D 1

R ,∆D 0
R ) · tword

read +

(ND 0
R + ND 1

R − Rol ∗min(ND 0
R ,ND 1

R )) · (tHP/HPC/LPD
read + taddr

read)

Ttrsf
W = (∆D 0

W +∆D 1
W − Rol ∗min(∆D 1

W ,∆D 0
W ) · tword

read +

(ND 0
W + ND 1

W − Rol ∗min(ND 0
W ,ND 1

W )) · (tHP/HPC/LPD
write + taddr

write)



12

Experiments conducted in a single-DPU environment (to
isolate intra-DPU effects) compare estimated and measured
WCETs across varying Rol. Results shown in Table X demon-
strate that while analyzed bounds remain safe for some CNN
workloads, excessive relaxation (e.g., when Rol is larger than
0.75 for Yolov3) risks unsafe WCET underestimation.

To address pessimism in multi-DPU contention model-
ing, we introduce the contention ratio Rcon, representing the
proportion of transactions competing for shared interconnect
resources. This parameter refines the extra execution time
computations in Equations 8, 9, 10, 11, 12, and 13 by scaling
the count of conflict transactions with Rcon. Table XI compares
analyzed and measured extra execution time in a 2-DPU
setup. Similarly, relaxing the Rcon may underestimate the extra
execution time (e.g., when Rcon equals 0.3 for MobileNetv2).

Above results demonstrate that while the analyzed bounds
remain safe for certain CNN tasks, relaxing the conserva-
tive constraints risks underestimating the WCET. Therefore,
in hard real-time systems where meeting deadlines is non-
negotiable, it is crucial to adhere to conservative assumptions
to prevent potential deadline violations. Conversely, in soft
real-time systems where there is more flexibility, a slight
relaxation of constraints can lead to a refined WCET estimate.

TABLE X: Comparison between the estimated WCET and the
measured WCET with different Rol, where Rol = 1 indicates
full overlap of transactions from two data ports.

CNN Rol (Our/Measured)
0 0.25 0.5 0.75 1

Yolov4 1.54 1.37 1.20 1.02 0.90
MobileNetv2 1.64 1.60 1.59 1.58 1.56
Squeezenet 1.29 1.25 1.22 1.18 1.15

VpgNet 1.54 1.46 1.39 1.32 1.24
Yolov3 1.37 1.21 1.06 0.91 0.76

PD SSD 1.17 1.14 1.10 1.07 1.04
OD SSD 1.33 1.29 1.25 1.21 1.17

TABLE XI: Comparison between the analyzed and measured
extra WCET with different Rcon, where Rcon = 1 indicates that
all transactions are contend with other DPU cores.

CNNs Rcon (Our/Measured)
1 0.8 0.6 0.5 0.3

MobileNetv2 (CNN1) 2.59 2.08 1.56 1.30 0.78
PD SSD (CNN2) 6.26 5.01 3.76 3.13 1.88

E. Some hints for reducing the WCET bound

Based on the proposed method, different memory config-
urations may lead to different contentions on interconnects
and DDR port arbiter, and further leads to different estimated
WCET bound. In this section, we give some hints to configure
the DPUs, aiming to a minimum estimated WCET bound. In
the experiment, we deploy two DPUs, and use four different
memory configurations as shown in Table XII. Among all the
configurations, configuration 1 is the default from the Vitis
AI. However, the estimated WCET bound of CNN1 achieves
the minimum WCET bound under configuration 2. This is
because that, under configuration 2 the two data ports of DPU1

are connected to HP0 and HP3, which means that the data
transactions issued by DPU1 will not contend with any other
transactions in the IC1 and IC2 layers, as illustrated in Figure
4. Moreover, the two data ports of DPU2 are connected to
the HP1 and HP2 interfaces, and therefore all the read data
transactions and the write data transactions are issued to the
same XPI port. Therefore, the data transactions of these two
CNN tasks exhibit relatively small contention in the PA layer,
and the estimated WCET bound of CNN1 under configuration
2 is tighter. Similarly, CNN2 achieves a tighter WCET bound
under configuration 3.

TABLE XII: Different memory port configurations for predic-
tiable WCET bound under the dual-DPU environment.

conf ins data0 data1

1 DPU1 S_AXI_LPD S_AXI_HP0 S_AXI_HP1
DPU2 S_AXI_LPD S_AXI_HP2 S_AXI_HP3

2 DPU1 S_AXI_LPD S_AXI_HP0 S_AXI_HP3
DPU2 S_AXI_LPD S_AXI_HP1 S_AXI_HP2

3 DPU1 S_AXI_LPD S_AXI_HPC1 S_AXI_HPC1
DPU2 S_AXI_LPD S_AXI_HPC0 S_AXI_HPC0

4 DPU1 S_AXI_HP2 S_AXI_HP1 S_AXI_HP2
DPU2 S_AXI_HP3 S_AXI_HP1 S_AXI_HP3

VII. RELATED WORK

FPGA-based accelerators for DNNs have been studied by
researchers, some of them focus on achieving a balance
between hardware resources and processing speed [10]–[12],
while others focus on maximizing performance [29]–[31].
Xilinx DPU, as one of the most mature FPGA-based DNN
accelerator in industry today, has naturally become a popular
research subject for many researchers. [32] built an energy
prediction model which predicts the energy for any DNN
running on a DPU. Zhu [33] proposed a high performance task
assignment framework for DPU-based DNN acceleration plat-
form. Wu [34] proposed an end-to-end solution to autonomous
driving based on Xilinx DPU.

Timing predictability is an essential issue that must be con-
sidered in real-time systems. Because the WCET analysis for
multi-core processors appears to be more necessary, more and
more studies focus on analyzing the execution predictability of
multi-core systems [23], [35]–[37]. The real-time performance
of FPGA-based systems has also been studied extensively.
Previous study [38] presented timing anomalies in FPGA
due to the interference on the shared resources. Restuccia
[39] provided a fine-grained model of the AXI bus and
AXI interconnects in FPGA SoCs. Mattheeuws proposed a

TABLE XIII: Changing memory configurations to reduce the
estimated WCET bound.

CNN Configurations CNN 1 CNN 2
Measured Our Our/Measured Measured Our Our/Measured

Mobv2 & Yolov3

conf 1 5.16 16.75 3.25 70.69 126.77 1.79
conf 2 4.69 12.90 2.75 70.80 137.66 1.94
conf 3 5.07 15.58 3.08 134.07 146.06 1.08
conf 4 5.30 14.65 2.77 95.93 125.31 1.31

Squeeze & Yolov4

conf 1 3.88 8.07 2.08 50.72 85.27 1.68
conf 2 3.97 5.46 1.38 51.02 96.71 1.90
conf 3 5.33 6.96 1.31 98.73 102.49 1.04
conf 4 3.86 6.54 1.82 74.29 83.89 1.13

PD SSD & VpgNet

conf 1 11.20 16.90 1.51 8.759 20.69 1.68
conf 2 11.88 16.06 1.35 9.22 26.07 2.83
conf 3 11.64 20.52 1.76 14.45 22.61 1.57
conf 4 11.94 21.68 2.10 6.93 10.63 1.53



13

methodology to characterize the interference to multi-core
host processors caused by accelerators implemented in the
FPGA SoCs [40]. Furthermore, Shikha Goel and Rajesh
Kedia introduced machine learning-based frameworks [4], [5]
designed to predict the average execution time for CNN tasks
th multiple DNN accelerators on FPGA. Such capability for
average performance estimation facilitates the design space
exploration of DPU architectures on a resource constraints
target FPGA [41], eliminating the need to exhaustively explore
all possible DPU architectures.

Restuccia and Biondi completed the first work that ad-
dresses time-predictability for FPGA-accelerated DNNs [8].
They presented an execution model for the Xilinx DPU and
a response-time analysis to bound the inference time of DNN
models when executed on the DPU. However, the propose
timing analysis framwork is only applicable to the case where
a single DPU performs a single task. [42] presented a tim-
ing analysis framework for FPGA accelerators, but does not
consider the characteristics of deep learning applications and
dedicated accelerators.

VIII. CONCLUSION

The paper for the first time proposes a generalized WCET
analysis framework for CNN tasks under themulti-DPU envi-
ronment regardless memory port configurations, and produces
a relatively tight estimated bound. Our approach can also
be applied to the simpler special case of the single-DPU
environment. Compared with the existing work for single-DPU
environment, the WCET bound obtained by our approach is
tightened by more than 27% on average. Moreover, some hint
for how to configure memory port to reduce the estimated
WCET bound is proposed. Benefited from the tight estimated
WCET bound, a large resource over-provisioning in practical
real-time system design can be avoided.

ACKNOWLEDGMENTS

This work is supported by National Natural Science
Foundation of China (Grant No.62432005, 62302270),
Shandong Provincial Natural Science Foundation (Grant
No.ZR20220F003, ZR2024MF099), Department of Science &
Technology of Shandong Province (Grant No. SYS202201),
Quan Cheng Laboratory (Grant No. QCLZD202302), Taishan
Scholars Program (No. tsqn202211281).

REFERENCES

[1] Z. Peng, J. Yang, T.-H. Chen, and L. Ma, “A first look at the integration
of machine learning models in complex autonomous driving systems: A
case study on apollo,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 1240–1250.

[2] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga-
based neural network inference accelerator (2018),” arXiv preprint
arXiv:1712.08934.

[3] Vitis AI User Guide (UG1414 v2.0). AMD Xilinx, 2022.
[4] S. Goel, R. Kedia, M. Balakrishnan, and R. Sen, “Infer: Interference-

aware estimation of runtime for concurrent cnn execution on dpus,”
in 2020 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2020, pp. 66–71.

[5] S. Goel, R. Kedia, R. Sen, and M. Balakrishnan, “Express: Cnn
execution time prediction for dpu design space exploration,” in 2022
International Conference on Field-Programmable Technology (ICFPT).
IEEE, 2022, pp. 1–2.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, pp. 1–53, 2008.

[7] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A survey of timing verification techniques for multi-core real-
time systems,” ACM Computing Surveys (CSUR), vol. 52, no. 3, pp.
1–38, 2019.

[8] F. Restuccia and A. Biondi, “Time-predictable acceleration of deep
neural networks on fpga soc platforms,” in 2021 IEEE Real-Time
Systems Symposium (RTSS), 2021, pp. 441–454.

[9] G. Lacey, G. Taylor, and S. Areibi, “Deep learning on fpgas: Past,
present, and future,” 02 2016.

[10] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2015.

[11] L. Bai, Y. Zhao, and X. Huang, “A cnn accelerator on fpga using
depthwise separable convolution,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 65, pp. 1415–1419, 2018.

[12] T. Wang, T. Geng, A. Li, X. Jin, and M. C. Herbordt, “Fpdeep: Scalable
acceleration of cnn training on deeply-pipelined fpga clusters,” IEEE
Transactions on Computers, vol. 69, pp. 1143–1158, 2020.

[13] M. E. Louise Crockett, Ross Elliot, The ZYNQ Book. University of
Strathclyde Glasgow, 2015.

[14] AMBA AXI and ACE Protocol Specification (Version H.c). ARM.
[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4510–4520.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[17] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 04
2018.

[18] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3213–
3223.

[19] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella Ferrer, and
F. J. Cazorla, “Generating and exploiting deep learning variants to
increase heterogeneous resource utilization in the Nvidia Xavier,” in
31st Euromicro Conference on Real-Time Systems, vol. 23, 2019.

[20] DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide (PG338
v3.4). AMD Xilinx, 2022.

[21] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

[22] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y. Shan,
and Y. Wang, “Dnnvm: End-to-end compiler leveraging heterogeneous
optimizations on fpga-based cnn accelerators,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 10, pp. 2668–2681, 2019.

[23] W. Zhang, M. Lv, W. Chang, and L. Ju, “Precise and scalable shared
cache contention analysis for wcet estimation,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022, pp. 1267–1272.

[24] AXI Performance Monitor v5.0 LogiCORE IP Product Guide (PG037
v5.0). AMD Xilinx, 2017.

[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡0.5mb model size,” 2016.

[26] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee,
H. Seok Hong, S.-H. Han, and I. So Kweon, “Vpgnet: Vanishing point
guided network for lane and road marking detection and recognition,”
in Proceedings of the IEEE ICCV, 2017, pp. 1947–1955.

[27] L. Wei, A. Dragomir, E. Dumitru, S. Christian, R. Scott, F. Cheng-
Yang, and A. C. Berg, “Ssd: Single shot multibox detector,” in European
Conference on Computer Vision, 2016.

[28] System Integrated Logic Analyzer v1.1 LogiCORE IP Product
Guide(PG261 v1.1). AMD Xilinx, 2022.



14

[29] D. Wu, Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie, and Y. Shan,
“A high-performance cnn processor based on fpga for mobilenets,”
2019 29th International Conference on Field Programmable Logic and
Applications (FPL), pp. 136–143, 2019.

[30] S. Kala, B. R. Jose, J. Mathew, and S. Nalesh, “High-performance cnn
accelerator on fpga using unified winograd-gemm architecture,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
pp. 2816–2828, 2019.

[31] D.-T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-throughput
and power-efficient fpga implementation of yolo cnn for object de-
tection,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, pp. 1861–1873, 2019.

[32] S. Goel, M. Balakrishnan, and R. Sen, “Energynn: Energy estimation
for neural network inference tasks on dpu,” 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), pp.
64–68, 2021.

[33] J. Zhu, L. Wang, H. Liu, S. Tian, Q. Deng, and J. Li, “An efficient
task assignment framework to accelerate dpu-based convolutional neural
network inference on fpgas,” IEEE Access, vol. 8, pp. 83 224–83 237,
2020.

[34] T. Wu, W. Liu, and Y. Jin, “An end-to-end solution to autonomous
driving based on xilinx fpga,” 2019 International Conference on Field-
Programmable Technology (ICFPT), pp. 427–430, 2019.

[35] W. Zhang and J. Yan, “Accurately estimating worst-case execution time
for multi-core processors with shared direct-mapped instruction caches,”
2009 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 455–463, 2009.

[36] S. Wegener, “Towards multicore wcet analysis,” in WCET, 2017.
[37] P. Benedicte, C. Hernández, J. Abella, and F. J. Cazorla, “Hwp:

Hardware support to reconcile cache energy, complexity, performance
and wcet estimates in multicore real-time systems,” in ECRTS, 2018.

[38] H. Shah, K. Huang, and A. Knoll, “Timing anomalies in multi-core
architectures due to the interference on the shared resources,” 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
708–713, 2014.

[39] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni and G. C. Buttazzo,
“Modeling and analysis of bus contention for hardware accelerators in
fpga socs,” in ECRTS, 2020.

[40] M. Mattheeuws, B. Forsberg, A. Kurth, and L. Benini, “Analyzing
memory interference of fpga accelerators on multicore hosts in heteroge-
neous reconfigurable socs,” 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1152–1155, 2021.

[41] R. Kedia, S. Goel, M. Balakrishnan, K. Paul, and R. Sen, “Design space
exploration of fpga-based system with multiple dnn accelerators,” IEEE
Embedded Systems Letters, vol. 13, no. 3, pp. 114–117, 2020.

[42] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Bounding memory access times in multi-accelerator architectures on
fpga socs,” IEEE Transactions on Computers, vol. 72, no. 1, pp. 154–
167, 2022.

Wei Zhang is currently an associate professor at the
School of Cyber Science and Technology, Shandong
University, Qingdao, China. He received his Ph.D.
degree from The Hong Kong Polytechnic Univer-
sity, in 2021. His research interests include design,
analysis and optimization of real-time systems and
intermittent computing systems.

Yunlong Yu received his B.Sc. degree from Shan-
dong University, Jinan, China in 2023. He is cur-
rently pursuing Ph.D. degree at Shandong Univer-
sity. His research interests include real-time system,
embedded system, and High Level Synthesis.

Xiao Jiang received his M.Sc. degree from Shan-
dong University, Jinan, China in 2023. He is cur-
rently working at Ant Group. His research interests
include real-time system, embedded system, and
High Level Synthesis.

Nan Guan is currently an associate professor at the
Department of Computer Science, City University
of Hong Kong. He received his BE and MS from
Northeastern University, China in 2003 and 2006,
respectively, and PhD from Uppsala University,
Sweden in 2013. His research interests include real-
time embedded systems and cyber-physical systems.
Recently, he is working on cutting-edge research on
embedded systems and IoT.

Naijun Zhan received the B.Sc. degree in math-
ematics and the M.Sc. degree in computer science
from Nanjing University, Nanjing, China, in 1993
and 1996, respectively, and the Ph.D. degree in
computer science from the Institute of Software,
Chinese Academy of Sciences, Beijing, China, in
2000. He was with the Faculty of Mathematics and
Information, University of Mannheim, Mannheim,
Germany, as a research fellow, from 2001 to 2004.
Since then, he joined the Institute of Software,
Chinese Academy of Sciences, Beijing, China, as an

Associate Research Professor, and later was promoted to be a Full Research
Professor in 2008, and a Distinguished Professor in 2015. Currently, he is a
full professor at the Department of Computer Science, Peking University. His
research interests include real-time, embedded and hybrid systems, program
verification, concurrent computation models, and modal and temporal logics.

Lei Ju Dr Ju received his Ph.D. in 2010 from School
of Computing, National University of Singapore. In
2011, he started working as an associate professor
in School of Computer Science and Technology,
Shandong University. His research interests focus
on design, analysis and optimization of real-time
systems and embedded networks. He has authored
a number of referred publications (including DAC,
RTAS, DATE), and served as the technical program
committee of several international conferences.


