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Background

Hybrid systems

Definition
Hybrid systems exhibit combinations of discrete jumps and continuous
evolution.

Examples

High-speed train control systems (ETCS, CTCS), air traffic control
systems, nuclear reaction control systems, aircraft control systems,
spacecraft control systems, ....

Features
Interaction between discrete and continuous evolution;
Safety-critical;
Interdiscipline.
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Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation
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Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .
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Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation
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Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques
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Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation
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Background

A grand challenge
How to design correct safety-critical hybrid-systems is a grand
challenge in computer science and control theory

Our goal
to establish a systematic approach to formal design, analysis and
verification of hybrid systems
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Overview of Our Approach
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Background

Schedule and References
Schedule

Lesson 1: Preliminaries + differential invariant generation
Lesson 2: Controller synthesis
Lesson 3: HCSP+HHL
Lesson 4: HHL Prover + case study + demo

References
N. Zhan, S. Wang and H. Zhao (2013): Formal Modelling, Analysis and Verification of
Hybrid Systems. In the Theories of Programming, LNCS 8050.
J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou and L. Zou (2010): A calculus for
HCSP, in Proc. of APLAS 2010, LNCS 6461.
J. Liu, N. Zhan and H. Zhao (2011): Computing semi-algebraic invariants for
polynomial dynamical systems, in Proc. of EMSOFT’11.
H. Zhao, N. Zhan, D. Kapur, and K.G. Larsen (2012): A “hybrid” approach for
synthesizing optimal controllers of hybrid systems: A case study of the oil pump
industrial example, in Proc. of FM 2012, LNCS 7436.
H. Zhao, N. Zhan and D. Kapur (2013): Synthesizing switching controllers for hybrid
systems by generating invariants, in Proc. of the Jifeng Festschrift, LNCS 8051.
S. Wang, N. Zhan and D. Guelev (2012): An assume/guarantee based compositional
calculus for HCSP, in Proc. of TAMC 2012, LNCS 7287.
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Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x ) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
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Preliminaries Polynomials and Polynomial Ideals

Polynomial ideal

Polynomial ideal

A subset I ⊆ K[x] is called an ideal if the following conditions are
satisfied:

1 0 ∈ I ;
2 If p, g ∈ I , then p + g ∈ I ;
3 If p ∈ I and h ∈ K[x], then hp ∈ I .

Let g1, g2, . . . , gs ∈ K[x], then 〈g1, g2, . . . , gs〉 =̂
{
∑s

i=1 higi : h1, h2, . . . , hs ∈ K[x]} is an ideal generated by
g1, g2, . . . , gs .
If I = 〈g1, g2, . . . , gs〉, then {g1, g2, . . . , gs} is called a basis of I .
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Hilbert Basis Theorem
Every ideal I ⊆ K[x] has a finite basis, that is, I = 〈g1, g2, . . . , gs〉 for
some g1, g2, . . . , gs ∈ K[x].

Ascending Chain Theorem

For any ascending chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · · in K[x], there
exists an N ∈ N such that Ik = IN for any k ≥ N.
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Preliminaries Polynomials and Polynomial Ideals

Gröbner basis

Definitions
lexicographic ording: Suppose x1 � x2 � · · · � xn, then the
lexicographic (lex) order � is a total ordering on the set of
monomials xααα defined by: xααα � xβββ iff there exists 1 ≤ i ≤ n such
that αi > βi , and αj = βj for all 1 ≤ j < i .

The lex is well-ordering.
The lex is preserved by multiplication.

Given a polynomial g ∈ K[x], rearrange the monomials in p by � in
a descending order as g = c1xα1α1α1 + c2xα2α2α2 + · · ·+ ckxαkαkαk , where all
ci ’s are nonzero. Then

the leading term lt(g) of g is c1xααα1 ;
the leading coefficient lc(g) of g is c1;
the leading monomial lm(g) of g is xα1α1α1 .
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Preliminaries Polynomials and Polynomial Ideals

Gröbner Basis (Cont’d)
Reduction

One step reduction: For a polynomial p ∈ K[x], if p has a nonzero
term cβββxβββ and xβββ = xγγγ lm(g) for some γγγ ∈ Nn, then we say p is
reducible modulo g , and call

p′ = p −
cβββ

lc(g)
xγγγg

the one-step reduction of p modulo g .
Given a finite set of polynomials G ( K[x] and a polynomial
p ∈ K[x], we can do a muli-step reduction on p using polynomials in
G , until p is reduced to p∗ which is not further reducible modulo G .
p∗ is called the normal form of p w.r.t.G (nf(p,G )). Note that

the above process of reduction is guaranteed to terminate;
however, the final result nf(p,G ) may vary, depending on the
sequence of polynomials chosen from G during reduction.
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Preliminaries Polynomials and Polynomial Ideals

Gröbner Basis (Cont’d)

Gröbner basis
Given a monomial ordering, then every ideal I ⊆ K[x] other than {0}
has a basis G = {g1, g2, . . . , gs}, such that for any p ∈ K[x],
nf(p,G ) is unique. Such G is called a Gröbner basis of I .
Let G be a Gröbner basis of an ideal I ⊆ K[x]. Then for any
p ∈ K[x], p ∈ I iff nf(p,G ) = 0.
For any ideal I = 〈h1, h2, . . . , hm〉 ⊆ K[x], the Gröbner basis G of I
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Buchberger’s Algorithm for Computing GB

S-polynomial: If lm(f ) = xααα, lm(g) = xβββ , then let γi =̂max(αi , βi ),

S(f , g) =̂
xγγγ

lt(f )
· f − xγγγ

lt(g)
· g

Buchberger’s Algorithm

Input: F = {f1, f2, . . . , fm}
Output: a Gröbner basis G = {g1, g2, . . . , gs} of I =̂ 〈f1, f2, . . . , fm〉
G :=F ;
repeat

G ′ :=G ;
for all p, q ∈ G ′, p 6= q do

s :=S(p, q); r := nf(s,G ′);
if r 6= 0 then

G :=G ∪ {r};
until G = G ′;
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Buchberger’s Algorithm: An Example

p1 =̂ x2y − 1, p2 =̂ xy2 − x , I = 〈p1, p2〉. Use lex order x � y .
G = {p1, p2}

- S(p1, p2) = y · p1 − x · p2 = x2 − y
- nf(x2 − y ,G ) = x2 − y 6= 0

G = {p1, p2, p3 =̂ x2 − y}
- S(p1, p3) = p1 − y · p3 = y2 − 1
- nf(y2 − 1,G ) = y2 − 1 6= 0

G = {p1, p2, p3, p4 =̂ y2 − 1}
- S(p1, p4) = y · p1 − x2 · p4 = x2 − y
- nf(x2 − y ,G ) = 0 (∵ x2 − y

p3−→ 0)
- S(p2, p3) = x · p2 − y2 · p3 = −x2 + y3

- nf(−x2 + y3,G ) = 0 (∵ −x2 + y3 p3−→ y3 − y
p4−→ 0)

- S(p2, p4) = p2 − x · p4 = 0
- nf(0,G ) = 0
- S(p3, p4) = y2 · p3 − x2 · p4 = x2 − y3

- nf(x2 − y3,G ) = 0 (∵ x2 − y3 p3−→ −y3 + y
p4−→ 0)

∴ G = {p1, p2, p3, p4}
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Preliminaries Polynomials and Polynomial Ideals

Application of Gröbner Basis: PIMP

PIMP: Polynomial Ideal Membership Problem
p1 =̂ x2y − 1, p2 =̂ xy2 − x , I = 〈p1, p2〉.
G = {p1, p2, p3, p4}

= {x2y − 1, xy2 − x , x2 − y , y2 − 1}
h1 =̂ x2y + x − 2y2

h1
p1−−→
x2y

x − 2y2 + 1
p4−−−→
−2y2

x − 1 9

so nf(h1,G ) = x − 1, h1 /∈ I
h2 =̂ x3 + xy2 − xy − x

h1
p3−→
x3

xy2 − x
p2−−→
xy2

0

so nf(h2,G ) = 0, h2 ∈ I
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Preliminaries First-order Theory of Reals

First-order Theory T (R) of Reals

Syntax

The language of T (R) consists of
variables: x , y , z , . . . , x1, x2, . . . , which are interpreted over R ;
relational symbols: >,<,≥,≤,=, 6= ;
Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
quantifiers: ∀,∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a
polynomial p ∈ Q[x1, x2, . . . , xn].
An atomic formula of T (R) is of the form p B 0, where B is any
relational symbol.
A quantifier-free formula (QFF) of T (R) is a Boolean combination
of atomic formulas.
A generic formula of T (R) is built up from atomic formulas using
Boolean connectives as well as quantifiers.
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Preliminaries First-order Theory of Reals

Quantifier Elimination
Quantifier Elimination Property

A theory T is said to have quantifier elimination property, if for
any formula ϕ in T , there exists a quantifier-free formula ϕQF which
only contains free variables of ϕ such that ϕ⇔ ϕQF .
T (R) admits quantifier elimination.
The decidability of T (R)

Example

∃x .ax2 + bx + c = 0 ⇔ a = b = c = 0 ∨
(a = 0 ∧ b 6= 0) ∨
(a 6= 0 ∧ b2 − 4ac ≥ 0)
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Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Semi-algrbraic Set

A subset A ⊆ Rn is called a semi-algebraic set (SAS), if there
exists a QFF φ ∈ T (R), such that A = {x ∈ Rn | φ(x) is true}.
SASs are closed under common set operations:

A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
A(φ1)c = A(¬φ1) ;
A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)c = A(φ1 ∧ ¬φ2).

Any SAS can be represented by a QFF in the form of
φ(x) =̂

∨K
k=1

∧Jk
j=1 pkj(x) . 0 , where pkj(x) ∈ Q[x] and . ∈ {≥, >} .

Semi-algebraic Template
A semi-algebraic template with degree d is of the form

φ(u, x) =̂ ∨K
k=1 ∧

Jk
j=1pkj(ukj , x) . 0.
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Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Survey of QE Algorithms

Tarski’s algorithm [Tarski 51]: the first one, but its complexity is
nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].

Collins’ algorithm [Collins 76]: based on cylindrical algebraic
decomposition (CAD), double exponential in the number of variables,
improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine
partial cylindrical algebraic decomposition (PCAD), implemented in
many computer algebra tools, e.g., QEBCAD, REDLOG, ....

Ben-Or, Kozen and Reif’s algorithm [Ben-Or, Kozen&Reif 1986]:
double exponential in the number of variables using sequential
computation, single exponential using parallel computation, based on
Sturm sequence and Sturm Theorem, some mistake.

More efficient algorithms [Grigor’ev & Vorobjov 1988, Grigor’ev 1988],
[Renegar 1989], [Heintz, Roy&Solerno, 1989], [Basu,Pollack&Roy, 1996]:
mainly based on Ben-Or, Kozen and Reif’s work, double exponential in
the number of quantifier alternation, no implementation yet.
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Preliminaries Continuous Dynamical Systems

Continuous Dynamical Systems
A continuous dynamical systems (CDS) is of the form

ẋ = f(x), (1)

where x ∈ Rn and f : Rn → Rn is a vector field.
If f in (1) satisfies local Lipschitz condition, then given x0 ∈ Rn,
there exists a unique solution x(x0; t) : (a, b)→ Rn such that
x(x0; 0) = x0 and ∀t ∈ (a, b). dx(x0;t)

dt = f(x(x0; t)).

If f in (1) satisfies global Lipschitz condition, then the existence,
uniqueness and completeness of solutions to (1) can be
guaranteed.
The k-th Lie derivatives Lk

f σ : Rn → R of σ along f is defined by:
L0

f σ(x) = σ(x),

Lk
f σ(x) =

(
∇Lk−1

f σ(x), f(x)
)
, for k > 0,

where ∇%(x) =̂
(
∂%(x)
∂x1

, ∂%(x)
∂x2

, . . . , ∂%(x)
∂xn

)
and (·, ·) is the inner

product of two vectors.
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uniqueness and completeness of solutions to (1) can be
guaranteed.
The k-th Lie derivatives Lk

f σ : Rn → R of σ along f is defined by:
L0

f σ(x) = σ(x),

Lk
f σ(x) =

(
∇Lk−1

f σ(x), f(x)
)
, for k > 0,

where ∇%(x) =̂
(
∂%(x)
∂x1

, ∂%(x)
∂x2

, . . . , ∂%(x)
∂xn

)
and (·, ·) is the inner

product of two vectors.
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Preliminaries Hybrid Automata

Hybrid Automaton

A hybrid automaton (HA) is a system H =̂ (Q,X , f ,D,E ,G ,R,Ξ),
where

• Q = {q1, . . . , qm} is a finite set of modes;
• X = {x1, . . . , xn} is a finite set of continuous state variables, with
x = (x1, . . . , xn) ranging over Rn; Q × Rn is the state space of H;
• f : Q → (Rn → Rn) assigns to each mode q ∈ Q a vector field fq;
• D : Q → 2R

n
assigns to each mode q ∈ Q a domain Dq ⊆ Rn;

• E ⊆ Q × Q is a set of discrete transitions;
• G : E → 2R

n
assigns to each transition e ∈ E a switching guard Ge

⊆ Rn.
R assigns to each transition e ∈ E a reset function Re : Rn → Rn;
Ξ assigns to each q ∈ Q a set of initial states Ξq ⊆ Rn.

31 / 180



Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Time Set)

A hybrid time set is a sequence of time
intervals τ = {Ii}Ni=0 (N can be ∞) s.t.

Ii = [τi , τ
′
i ] with τi ≤ τ ′i = τi+1 for all

i < N;
if N <∞, then IN = [τN , τ

′
N〉 is a

right-closed or right-open nonempty
interval (τ ′N may be ∞);
τ0 = 0 .

-0 t

τ0 τ ′0

τ1 τ ′1

τ2 τ ′2

. . .

α0, β0

α1, β1

α2, β2

...

?

?
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Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA (Cont’d) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β)
is called infinite if

〈τ〉 = N is ∞, or
‖τ‖ =

∑N
i=0(τ ′i − τi )

is ∞.
A hybrid automaton is called
non-blocking if there is an
infinite trajectory starting from
any initial state (q0, x0), and
blocking otherwise.
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Preliminaries Hybrid Automata

Reachable Set of HA

Definition (Reachable Set)

Given an HA H, the reachable set RH of H consists of those (q, x) for
which there exists a finite sequence

(q0, x0), (q1, x1), . . . , (ql , xl )

such that (q0, x0) ∈ ΞH, (ql , xl ) = (q, x), and for any 0 ≤ i ≤ l − 1, one
of the following two conditions holds:

(Discrete Jump): e = (qi , qi+1) ∈ E , xi ∈ Ge and xi+1 = Re(xi );
or
(Continuous Evolution): qi = qi+1, and there exists a δ ≥ 0 s.t.
the solution x(xi ; t) to ẋ = fqi satisfies

x(xi ; t) ∈ Dqi for all t ∈ [0, δ]; and
x(xi ; δ) = xi+1 .
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Computing Invariants for Hybrid Systems

Continuous vs Global Invariants

Note that
Hybrid systems consists of a set of CDSs, a set of transitions
between these CDSs, and a transition may be equipped with a guard
and reset
Invariant plays a key role in analysis, verification, synthesis of hybrid
systems
Global invariant keeps invariant during continuous and discrete
evolutions
Continuous invariant keeps invariant in a mode
Interplay between global and continuous invariant
Both can be reduced to constraint solving
Continuous invariant (differential invariant) generation is more
complicated
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Computing Invariants for Hybrid Systems

Global Invariant

Definition (Global Invariant)

An invariant of an HA H maps to each q ∈ Q a subset Iq ⊆ Rn, such
that for all (q, x) ∈ RH (the reachable set), we have x ∈ Iq.

Definition (Inductive Invariant)

Given an HA H, an inductive invariant maps to each q ∈ Q a subset
Iq ⊆ Rn, such that the following conditions are satisfied:

1 Ξq ⊆ Iq for all q ∈ Q;
2 for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
3 for any q ∈ Q and any x0 ∈ Iq, if there exists a δ ≥ 0 s.t. the

solution x(x0; t) to ẋ = fq satisfies: (i) x(x0; δ) = x′; and (ii)
x(x0; t) ∈ Dq for all t ∈ [0, δ], then x′ ∈ Iq .
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Computing Invariants for Hybrid Systems

Continuous Invariant

Definition (Continuous Invariant see also [Platzer & Clarke 08] )

Given (Dq, fq), we call P ⊆ Rn a continuous invariant of (Dq, fq) if for
all x0 ∈ P and all T ≥ 0,

(∀t ∈ [0,T ]. x(t) ∈ Dq) =⇒ (∀t ∈ [0,T ]. x(t) ∈ P) .

A continuous invariant of a PDS is called a semi-algebraic
invariant (SAI) if it is a semi-algebraic set. 38 / 180



Computing Invariants for Hybrid Systems

Continuous Invariant

Definition (Continuous Invariant see also [Platzer & Clarke 08] )

Given (Dq, fq), we call P ⊆ Rn a continuous invariant of (Dq, fq) if for
all x0 ∈ P and all T ≥ 0,

(∀t ∈ [0,T ]. x(t) ∈ Dq) =⇒ (∀t ∈ [0,T ]. x(t) ∈ P) .

A continuous invariant of a PDS is called a semi-algebraic
invariant (SAI) if it is a semi-algebraic set. 38 / 180



Computing Invariants for Hybrid Systems

Related Work

Barrier-certificate [Prajna&Jadbadbaie 2004, Plazer&Clarke 2008]
Basic idea: Let D = {ẋ = f(x)} and H = {h(x) ≥ 0}. A function
B : Rn → R is a barrier certificate if it is differentiable and satisfying

∀x ∈ H.
∂B
∂x

f(x) ≤ 0.

or
∀x ∈ H(B(x) = 0⇒ ∂B

∂x
f(x) < 0).

Let P := {x | B(x) ≤ 0}. Then P is an invariant of (D,H).
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Computing Invariants for Hybrid Systems

Related Work (Cont’d)
Boundary method [Taly, Gulwani&Tiwari, VMCAI 2009]

Let D = {ẋ = f(x)} and H = {h(x) ≥ 0}. If P := {x | p(x) ≥ 0} has
the following property: For each x s.t. p(x) = 0, there is a δ > 0 s.t.

∀y : (p(y) = 0 ∧ ‖y − x‖ < δ ⇒ Lfp(y) ≥ 0 ∧ ∂p
∂y
6= 0),

then P is an invariant of (D,H).
It imposes a strong assumption on the boundary.

Ideal fixed point method [Sankaranarayanan, HSCC 2010]
Basic idea: If an ideal I ⊆ R[x] has the property:

1 (∀p ∈ I, x ∈ H)p(x) = 0,
2 (∀p ∈ I), Lfp ∈ I;

then P := {x | p(x) = 0,∀p ∈ I} is an invariant of (D,H).
It cannot cope with invariants as general semi-algebraic sets.
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Computing Invariants for Hybrid Systems

Related Work (Cont’d)

Open Problem
Open problem [Sankaranarayanan, HSCC 2010, Taly&Tiwari,
FSTTCS 2009]: Can we find a complete method to generate all
semi-algebraic invariants of a polynomial dynamical system?
We addressed this problem and gave an affirmative answer in [Liu,
Zhan&Zhao 2011].
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Basic Idea

Let (D, f) be a PDS, x(t) is a trajectory of (D, f) from x0, and
P=̂p(x) ≥ 0. Then P be a differential invariant of (D, f) iff

∀x0 ∈ ∂P ∩ D,∃ε > 0,∀t ∈ [0, ε].p(x(t)) ≥ 0 (2)
p(x(t))’s Taylor’s expansion at t = 0

p(x(t)) = L1f p(x0).t + L2f p(x0).
t2

2!
+ · · · Li

fp(x0).
t i

i !
+ · · ·

(2) holds iff
1 either for all i ≥ 0, Li

fp(x0) = 0
2 or there is some k > i ≥ 0, such that Li

fp(x0) = 0 and Lk
f p(x0) > 0.

The pointwise rank of p with respect to f as the function
γp,f : Rn → N ∪ {∞} defined by

γp,f(x) = min{k ∈ N | Lk
f p(x) 6= 0}

if such k exists, and γp,f(x) =∞ otherwise.
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f = (−x , y) and
p(x , y) = x + y2. Then

L0f p(x , y) = x + y2

L1f p(x , y) = −x + 2y2

L2f p(x , y) = x + 4y2

...

Consider point (−1, 1) (see the
picture),

The points on the parabola
p(x , y) = 0 with zero energy,
and the points in the white area
have positive energy, i.e.
p(x , y) > 0.
B denotes the evolution
direction of f at the point.
A is the gradient ∇p|(−1,1) of
p(x , y).
L1f p|(−1,1) = 3 predicts that the
trajectory starting at (−1, 1) will
enter the white area.
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f(x , y) = (−2y , x2) and
h(x , y) = x + y2. Then
L0f h(x , y) = x + y2

L1f h(x , y) = −2y + 2x2y
L2f h(x , y) = −8y2x − (2− 2x2)x2

...

Also consider point (−1, 1) on
h(x , y) = 0 (see the picture),

the gradient of h is (1, 2)
(vector A);
the evolution direction is (−2, 1)
(vector B);
their inner product is zero, i.e.,
L1f h(−1, 1) = 0, thus it is
impossible to predict the
tendency of the trajectory
starting from (−1, 1) via the
1-order Lie derivative;
By a simple computation,
L2f h(−1, 1) = 8. Hence
γh,f(−1, 1) = 2.
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Theoretical Results
Theorem (Rank Theorem)

Given a polynomial p and a PVF f, there is a natural number Np,f such that for
any x ∈ Rn, if γp,f(x) <∞, then γp,f(x) ≤ Np,f .

Theorem (Parametric Rank Theorem)

Given a parametric polynomial p(u, x) and a PVF f, there is an integer Np,f ∈ N
such that γpu0 ,f(x) <∞ implies γpu0 ,f(x) ≤ Np,f for all x ∈ Rn and all u0 ∈ Rw .

Theorem (Criterion Theorem)

Given a polynomial p, p(x) ≥ 0 is an SCI of the PCCDS (h(x) ≥ 0, f) iff
θ(h, p, f, x) =̂

(
p(x) = 0 ∧ π(p, f, x)

)
→ π(h, f, x), (3)

holds for all x ∈ Rn, where

π(i)(p, f, x) =̂

 ∧
0≤j<i

Lj
fp(x) = 0

 ∧ Li
fp(x) < 0 ,

π(p, f, x) =̂
∨

0≤i≤Np,f

π(i)(p, f, x) .
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Theoretical Results
Theorem (Rank Theorem)

Given a polynomial p and a PVF f, there is a natural number Np,f such that for
any x ∈ Rn, if γp,f(x) <∞, then γp,f(x) ≤ Np,f .

Theorem (Parametric Rank Theorem)

Given a parametric polynomial p(u, x) and a PVF f, there is an integer Np,f ∈ N
such that γpu0 ,f(x) <∞ implies γpu0 ,f(x) ≤ Np,f for all x ∈ Rn and all u0 ∈ Rw .
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Algorithm

I. First, set a simple semi-algebraic template P =̂ p(u, x) ≥ 0
using a parametric polynomial p(u, x).

II. Then apply QE to the formula ∀x.θ(h, p, f, x). In practice, QE
may be applied to a formula ∀x.(θ ∧ φ), where φ is a formula
imposing some additional constraint on the SCI P. If the
output of QE is false, then there is no SCI in the form of the
predefined P; otherwise, a constraint on u, denoted by R(u),
will be returned.

III. Now, use an SMT solver like Z3 to pick a u0 ∈ R(u) and then
pu0(x) ≥ 0 is an SCI of (h(x) ≥ 0, f).
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example
Consider a PDS (D = −x − y2 ≥ 0, f(x , y) = (−2y , x2)).
Apply procedure (I-III), we have:

I Set a template P =̂ p(u, x) ≥ 0 with p(u, x) =̂ ay(x − y), where
u =̂ (a). By a simple computation we get Np,f = 2.

II Compute the corresponding formula

θ(h, p, f, x) =̂ p = 0 ∧ (π
(0)
p,f,x ∨ π

(1)
p,f,x ∨ π

(2)
p,f,x) −→

(π
(0)
h,f,x ∨ π

(1)
h,f,x ∨ π

(2)
h,f,x)

where

π
(0)
h,f,x =̂ −x − y2 < 0,

π
(1)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y = 0 ∧ 8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f,x =̂ ay(x − y) < 0,

π
(1)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0

∧ 40axy2 − 16ay3 + 32ax3y − 10ax4 < 0. 48 / 180
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example (Cont’d)
III In addition, we require the two points {(−1, 0.5), (−0.5,−0.6)} to

be contained in P . Then apply QE to the formula

∀x∀y .
(
θ(h, p, f, x) ∧ 0.5a(−1− 0.5) ≥ 0 ∧ −0.6a(−0.5 + 0.6) ≥ 0

)
.

The result is a ≤ 0.
IV Just pick a = −1, and then −xy + y2 ≥ 0 is an SCI of (D, f). The

grey part of Picture III is the intersection of the invariant P and
domain D.
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Outline
1 Background
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

General Case

Problem: Consider a PDS (D, f) with

D =
I∨

i=1

Ji∧
j=1

pij(x) . 0,

and f ∈ Qn[x], where . ∈ {≥, >}, to generate SAIs automatically
with a general template

P =
K∨

k=1

Lk∧
l=1

pkl (ukl , x) . 0 , . ∈ {≥, >}

Basic idea The procedure is essentially same as in the simple case,
but have to sophisticatedly handle the complex combinations due to
the complicated boundaries.
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Theorem (Main Result)

A semi-algebraic template P(u, x) defined by

K∨
k=1

 jk∧
j=1

pkj(ukj , x) ≥ 0 ∧
Jk∧

j=jk+1

pkj(ukj , x) > 0


is a CI of the PCCDS (D, f) with

D =̂
M∨

m=1

 lm∧
l=1

pml (x) ≥ 0 ∧
Lm∧

l=lm+1

pml (x) > 0

 ,

iff u satisfies

∀x.
((

P ∧ D ∧ ΦD → ΦP
)
∧
(
¬P ∧ D ∧ ΦIv

D → ¬ΦIv
P
))
,

where
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Theorem (Main Result (Cont’d))

ΦD =̂
M∨

m=1

 lm∧
l=1

ψ+
0 (pml , f) ∧

Lm∧
l=lm+1

ψ+(pml , f)

 ,

ΦP =̂
K∨

k=1

 jk∧
j=1

ψ+
0 (pkj , f) ∧

Jk∧
j=jk+1

ψ+(pkj , f)

 ,

ΦIv
D =̂

M∨
m=1

 lm∧
l=1

ϕ+
0 (pml , f) ∧

Lm∧
l=lm+1

ϕ+(pml , f)

 ,

ΦIv
P =̂

K∨
k=1

 jk∧
j=1

ϕ+
0 (pkj , f) ∧

Jk∧
j=jk+1

ϕ+(pkj , f)

 ,

ψ+(p, f) =̂
∨

0≤i≤Np,f

ψ(i)(p, f) with ψ(i)(p, f) =̂
( ∧

0≤j<i

Lj
fp = 0

)
∧ Li

fp > 0, and

ψ+
0 (p, f) =̂ψ+(p, f) ∨

( ∧
0≤j≤Np,f

Lj
fp = 0

)
ϕ+(p, f) =̂

∨
0≤i≤Np,f

ϕ(i)(p, f) with ϕ(i)(p, f) =̂
( ∧

0≤j<i

Lj
fp = 0

)
∧ (−1)i · Li

fp > 0, and

ϕ+
0 (p, f) =̂ϕ+(p, f) ∨

( ∧
0≤j≤Np,f

Lj
fp = 0

)
.
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example
Let f(x , y) = (−2y , x2) and D =̂R2.
Take a template: P(u, x) =̂ x − a ≥ 0 ∨ y − b > 0 with u = (a, b).
So, P is an SCI of (D, f) iff a, b satisfy

∀x∀y .(P → ζ) ∧ (¬P → ¬ξ),

where
ζ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y > 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y < 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0)
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Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example (Cont’d)

In addition, we require the set x + y ≥ 0 to be contained in P .
By applying QE, we get a + b ≤ 0 ∧ b ≤ 0.
Let a = −1 and b = −0.5, and we obtain an SCI
P =̂ x + 1 ≥ 0 ∨ y + 0.5 > 0.
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Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants
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Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Algorithm
I. Predefine a familiy of semi-algebraic templates Iq(u, x) with degree bound

d for each q ∈ Q, as the SCI to be generated at mode q.
II. Translate conditions for the family of Iq(u, x) to be a GI of H, i.e.

Ξq ⊆ Iq for all q ∈ Q;
for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.
(1) ∀x.

(
Ξq → Iq(u, x)

)
for all q ∈ Q;

(2) ∀x, x′.
(
Iq(u, x) ∧ Ge ∧ x′ = Re(x)→ Iq′(u, x′)

)
for all q ∈ Q and all

e = (q, q′) ∈ E ;
(3) ∀x.

(
(Iq(u, x) ∧ Dq ∧ ΦDq → ΦIq ) ∧ (¬Iq(u, x) ∧ Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq )
)
,

for each q ∈ Q.
For safety property S, there may be a fourth set of formulas:
(4) ∀x.(Iq(u, x) −→ Sq) for all q ∈ Q.

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3, and
the set of instantiations Iq,u0(x) form a GI of H.
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(2) ∀x, x′.
(
Iq(u, x) ∧ Ge ∧ x′ = Re(x)→ Iq′(u, x′)

)
for all q ∈ Q and all

e = (q, q′) ∈ E ;
(3) ∀x.

(
(Iq(u, x) ∧ Dq ∧ ΦDq → ΦIq ) ∧ (¬Iq(u, x) ∧ Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq )
)
,

for each q ∈ Q.
For safety property S, there may be a fourth set of formulas:
(4) ∀x.(Iq(u, x) −→ Sq) for all q ∈ Q.

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3, and
the set of instantiations Iq,u0(x) form a GI of H.

57 / 180



Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example

The Thermostat can be described by the HA in following figure.

�
�
�
�

�
�
�
�

�
�
�
�

Cool Heat Check

Ṫ=2, ċ=1
T≤10, c≤3

Ṫ=−T , ċ=1
T≥5

Ṫ=−T
2 , ċ=1

c≤1
-

�
�

-

T≤6, c:=0

T≥9

c≥0.5, c:=0

c≥2, c:=0

To verify that under the initial condition ΞH =̂ {qht} × X0 with
X0 =̂ c = 0 ∧ 5 ≤ T ≤ 10, S =̂T ≥ 4.5 is satisfied at all modes.
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Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example (Cont’d)

Firstly, predefine the following set of templates:
Iqht =̂T + a1c + a0 ≥ 0 ∧ c ≥ 0;
Iqcl =̂T + a2 ≥ 0;
Iqck =̂T ≥ a3c2 − 4.5c + 9 ∧ c ≥ 0 ∧ c ≤ 1

By the second step, we get

10a3−9 ≤ 0∧2a3−1 ≥ 0∧a1+2 = 0∧a0+2a1+9 = 0∧a2−a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 = 1
2 , obtain the

following SGI
Iqht =̂T ≥ 2c + 5 ∧ c ≥ 0;
Iqcl =̂T ≥ 5;
Iqck =̂ 2T ≥ c2 − 9c + 18 ∧ c ≥ 0 ∧ c ≤ 1.

The safety property is successfully verified by the SGI.
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Controller Synthesis Controller Synthesis with Safety

Problem Decription

A safety requirement S assigns to each mode q ∈ Q a safe region
Sq ⊆ Rn, i.e. S =

⋃
q∈Q({q} × Sq).

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton H and a safety property S , find a hybrid
automaton H′ = (Q,X , f ,D ′,E ,G ′) such that
(r1) Refinement: for any q ∈ Q, D ′q ⊆ Dq, and for any e ∈ E , G ′e ⊆ Ge ;
(r2) Safety: for any trajectory ω that H′ accepts, if (q, x) is on ω, then

x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.
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Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example

The nuclear reactor system consists of a reactor core and a cooling rod
which is immersed into and removed out of the core periodically to keep
the temperature of the core in a certain range.
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A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed

#
"
 
!
#
"
 
!

#
"
 
!
#
"
 
!

-

�

?

6

q1: no rod q2: being immersed

q4: being removed q3: immersed
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A Nuclear Reactor Example (Cont’d)
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q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0

ẋ = x/10−6p−50
ṗ = 1
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ẋ = x/10−6p−50
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A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed
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#
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!
#
"
 
!

-

�

?

6

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0
D1 =̂ p = 0

ẋ = x/10−6p−50
ṗ = 1
D2 =̂ 0≤p≤1

ẋ = x/10−6p−50
ṗ = 0
D3 =̂ p = 1

ẋ = x/10−6p−50
ṗ =−1
D4 =̂ 0≤p≤1

66 / 180



Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed

#
"
 
!
#
"
 
!

#
"
 
!
#
"
 
!

-

�

?

6

G12

G34

G41 =̂ p=0 G23 =̂ p=1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0
D1 =̂ p = 0

ẋ = x/10−6p−50
ṗ = 1
D2 =̂ 0≤p≤1

ẋ = x/10−6p−50
ṗ = 0
D3 =̂ p = 1

ẋ = x/10−6p−50
ṗ =−1
D4 =̂ 0≤p≤1
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Switching Controller Synthesis for the Reactor

S =̂ 510 ≤ x ≤ 550 for all modes
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ẋ = x/10−6p−50
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ṗ = 0
D1 =̂ p = 0
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Bad Switching Violates Safety Property

Transition from mode q1 to q2
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Solution to the Controller Synthesis Problem

Abstract Solution
Let H be a hybrid system and S be a safety property. If we can find a
family of D ′q ⊆ Rn such that
(c1) for all q ∈ Q, D ′q ⊆ Dq ∩ Sq;
(c2) for all q ∈ Q, D ′q is a continuous invariant of (Hq, fq) with

Hq =̂
( ⋃

e=(q,q′)∈E

G ′e
)c
,

where G ′e =̂Ge ∩ D ′q′ for e = (q, q′), then the family of G ′e form a safe
switching controller.

70 / 180



Controller Synthesis Controller Synthesis with Safety

Solution to the Controller Synthesis Problem

Abstract Solution
Let H be a hybrid system and S be a safety property. If we can find a
family of D ′q ⊆ Rn such that
(c1) for all q ∈ Q, D ′q ⊆ Dq ∩ Sq;
(c2) for all q ∈ Q, D ′q is a continuous invariant of (Hq, fq) with

Hq =̂
( ⋃

e=(q,q′)∈E

G ′e
)c
,

where G ′e =̂Ge ∩ D ′q′ for e = (q, q′), then the family of G ′e form a safe
switching controller.

70 / 180



Controller Synthesis Controller Synthesis with Safety

Solution to the Controller Synthesis Problem

Abstract Solution
Let H be a hybrid system and S be a safety property. If we can find a
family of D ′q ⊆ Rn such that
(c1) for all q ∈ Q, D ′q ⊆ Dq ∩ Sq;
(c2) for all q ∈ Q, D ′q is a continuous invariant of (Hq, fq) with

Hq =̂
( ⋃

e=(q,q′)∈E

G ′e
)c
,

where G ′e =̂Ge ∩ D ′q′ for e = (q, q′), then the family of G ′e form a safe
switching controller.

70 / 180



Controller Synthesis Controller Synthesis with Safety

Template-Based Synthesis Framework

(s1) Template assignment: assign to each q ∈ Q a template D ′q as the
continuous invariant to be generated at mode q ;

(s2) Guard refinement: refine the transition guard Ge for each
e = (q, q′) ∈ E by setting G ′e =̂Ge ∩ D ′q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);

(s5) Parameters instantiation: find an appropriate instantiation of D ′q and
G ′e from the possible parameter values obtained at (s4)
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Controller Synthesis Controller Synthesis with Safety

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining
templates

Infer the evolution behavior (increasing or decreasing) of continuous
variables in each mode from the ODEs
Identify modes (called critical) at which the evolution behavior of a
continuous variable changes, and thus the maximal (or minimal)
value of this continuous variable can be achieved
Equate the maximal (or minimal) value to the corresponding safety
upper (or lower) bound to obtain a critical point
Backward propagate the critical point, by backtracking along the
continuous trajectory through the critical point
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Revisiting the Running Example

For the running example,
At Dq2 , temperature x achieves
maximal value when crossing
l1 =̂ x/10− 6p − 50 = 0.
E (5/6, 550) at q2 is obtained by
taking the intersection of l1 and
safety upper bound x = 550
E is backward propagated to
A(0, a), with a a parameter
Compute a parabola
x−550− 36

25(a−550)(p− 5
6)2 = 0

through A and E as part of the
template D ′q2
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Revisiting the Running Example (Cont’d)

The set of parameters: a, b, c , d
D ′1 =̂ p = 0 ∧ 510 ≤ x ≤ a
D ′2 =̂ 0 ≤ p ≤ 1 ∧ x − b ≥ p(d − b) ∧

x − 550− 36
25(a − 550)(p − 5

6)2 ≤ 0
D ′3 =̂ p = 1 ∧ d ≤ x ≤ 550
D ′4 =̂ 0 ≤ p ≤ 1 ∧ x − a ≤ p(c − a) ∧

x − 510− 36
25(d − 510)(p − 1

6)2 ≥ 0

G ′12 =̂ p = 0 ∧ b ≤ x ≤ a
G ′23 =̂ p = 1 ∧ d ≤ x ≤ 550
G ′34 =̂ p = 1 ∧ d ≤ x ≤ c
G ′41 =̂ p = 0 ∧ 510 ≤ x ≤ a
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Revisiting the Running Example (Cont’d)

a = 6575
12 ∧ b = 4135

8 ∧ c = 4345
8 ∧ d = 6145

12 .

From this result we get that the cooling rod should be immersed
before temperature rises to 6575

12 = 547.92, and removed before
temperature drops to 6145

12 = 512.08.

By solving differential equations explicitly, the corresponding exact
bounds are 547.97 and 512.03
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Problem Description

'
&
$
%
'
&
$
%

q1 q2

ẋ = f1(x) ẋ = f2(x)
-

�

h12(x,u)

h21(x,u)

Given a hybrid system H in which transition conditions hij are not
determined but parameterized by u, a vector of control parameters
Our task is to determine u such that H can make discrete jumps at
desired points, thus guaranteeing that

a safety property S is satisfied, i.e. x ∈ S at any time
an optimization goal, e.g. minu g(u), is achieved
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Our Approach – Step 1

Derive constraint D(u) on u from the safety requirements S

Compute
the exact reachable set ReachH(x,u) of H, or
an inductive invariant InvH(x,u)

as polynomial formulas
Suppose S is also modeled by polynomial formulas, then D(u) can
be obtained by applying QE to

∀x.
(
ReachH(x,u) −→ S

)
or

∀x.
(
InvH(x,u) −→ S

)
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Our Approach – Step 2

Encode the optimization problem (suppose the objective function g is a
polynomial) over constraint D(u) into a quantified first-order polynomial
formula Qu.ϕ(u, z) by introducing a fresh variable z

Minimize u2 on [−1, 1]

Introduce a fresh variable z :
u ≥ −1 ∧ u ≤ 1∧ u2 ≤ z
Projection to the z-axis:
∃u.(u ≥ −1 ∧ u ≤ 1 ∧ u2 ≤ z)

After QE: z ≥ 0, which means

min
u∈[−1,1]

u2 = 0
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Encoding Optimization Criteria
Lemma

Suppose g1(u1), g2(u1,u2), g3(u1,u2,u3) are polynomials, and D1(u1),
D2(u1,u2), D3(u1,u2,u3) are nonempty compact semi-algebraic sets.
Then there exist c1, c2, c3 ∈ R s.t.

∃u1.(D1 ∧ g1 ≤ z) ⇔ z ≥ c1 (4)
∀u2.

(
∃u1.D2 ⇒ ∃u1.(D2 ∧ g2 ≤ z)

)
⇔ z ≥ c2 (5)

∃u3.
(
(∃u1u2.D3) ∧ ∀u2.

(
∃u1.D3 ⇒ ∃u1.(D3 ∧ g3 ≤ z)

))
⇔ z B c3 (6)

where B∈ {>,≥}, and c1, c2, c3 satisfy

c1 = min
u1

g1(u1) overD1(u1) , (7)

c2 = supmin
u2 u1

g2(u1,u2) overD2(u1,u2) , (8)

c3 = inf supmin
u3 u2 u1

g3(u1,u2,u3) overD3(u1,u2,u3) . (9)
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Our Approach – Step 3

Eliminate quantifiers in Qu.ϕ(u, z) and from the result we can retrieve
the optimal value and the corresponding optimal controller u

Combine exact QE with numeric computation: (discretization of
existentially quantified variables)

∃x ∈ A. ϕ(x) ≈
∨

y∈FA

ϕ(y) ,

where FA is a finite subset of A
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.:
Automatic Synthesis of Robust and Optimal Controllers — An Industrial
Case Study. HSCC’09

Provided by the HYDAC ELECTRONIC GMBH company within the
European project Quasimodo
An oil pump control problem

safety
robustness
optimality
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The System

The system is composed of a
machine, an accumulator, a
reservoir and a pump

The machine consumes oil out
of the accumulator; the pump
adds oil from the reservoir into
the accumulator
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Consumption Rate

The oil consumption is periodic. The length of one consumption
cycle is 20s (second)
The profile of consumption rate in one cycle is depicted by
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Pump

The power of the pump is 2.2 l/s (liter/second)
2-second latency: if the pump is switched on (t2k+1) or off (t2k+2)
at time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ,

then
ti+1 − ti ≥ 2

for any i ≥ 1
It is obvious that the pump can be turned on at most 5 times in one
cycle
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives

Determine the ti ’s in order to
Rs (safety): maintain

v(t) ∈ [Vmin,Vmax], ∀t ∈ [0,∞)

v(t) denotes the oil volume in the accumulator at time t
Vmin = 4.9l (liter)
Vmax = 25.1l

and considering the energy cost and wear of the system,
Ro (optimality): minimize the average accumulated oil volume in the
limit, i.e. minimize

lim
T→∞

1
T

∫ T

t=0
v(t)dt
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives (Cont’d)

Both objectives should be achieved under constraints:
Rpl (pump latency): ti+1 − ti ≥ 2

Rr (robustness): uncertainties of the system should be taken into
account:

fluctuation of consumption rate (if it is not 0), up to
f = 0.1l/s
imprecision in the measurement of oil volume, up to
ε = 0.06l
imprecision in the measurement of time, up to
δ = 0.015s.
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Localize the Controller

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · ·
Employing the periodicity
Stable interval [L,U]⊆ [Vmin,Vmax]
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Repeated Cycles
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling Oil Consumption

time [2,4] [8,10] [10,12] [14,16] [16,18]
rate 1.2 1.2 2.5 1.7 0.5

fluctuation of consumption rate: f = 0.1
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time [2,4] [8,10] [10,12] [14,16] [16,18]
rate 1.2 1.2 2.5 1.7 0.5

fluctuation of consumption rate: f = 0.1

C1 =̂

(0≤t≤2 −→ Vout=0)

∧ (2≤t≤4 −→ 1.1(t−2)≤Vout≤1.3(t−2))

∧ (4≤t≤8 −→ 2.2≤Vout≤2.6)

∧ (8≤t≤10 −→ 2.2+1.1(t−8)≤Vout≤2.6+1.3(t−8))

∧ (10≤t≤12 −→ 4.4+2.4(t−10)≤Vout≤5.2+2.6(t−10))

∧ (12≤t≤14 −→ 9.2≤Vout≤10.4)

∧ (14≤t≤16 −→ 9.2+1.6(t−14)≤Vout≤10.4+1.8(t−14))

∧ (16≤t≤18 −→ 12.4+0.4(t−16)≤Vout≤14+0.6(t−16))

∧ (18≤t≤20 −→ 13.2≤Vout≤15.2)
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling the Pump

We will first assume that the pump is activated at most twice in one
cycle: t1, t2, t3, t4
ti+1 − ti ≥ 2:

C2 =̂
(t1≥2∧ t2−t1≥2∧ t3−t2≥2∧ t4−t3≥2∧ t4≤20)

∨ (t1≥2∧ t2−t1≥2∧ t2≤20∧ t3=20∧ t4=20)

∨ (t1=20∧ t2=20∧ t3=20∧ t4=20)

.

2.2l/s

C3 =̂

(0≤t≤t1 −→ Vin=0)

∧ (t1≤t≤t2 −→ Vin=2.2(t−t1))

∧ (t2≤t≤t3 −→ Vin=2.2(t2−t1))

∧ (t3≤t≤t4 −→ Vin=2.2(t2−t1)+2.2(t−t3))

∧ (t4≤t≤20 −→ Vin=2.2(t2+t4−t1−t3))

.
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements

Oil volume in the accumulator:

C4 =̂ v = v0 + Vin − Vout .

Inductiveness and safety (considering robustness):

C5 =̂ t = 20 −→ L+0.2 ≤ v ≤ U−0.2
C6 =̂ 0 ≤ t ≤ 20 −→ Vmin+0.2 ≤ v ≤ Vmax−0.2 .
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements (Cont’d)

S =̂∀t, v ,Vin,Vout .(C1 ∧ C3 ∧ C4 −→ C5 ∧ C6) .

C1: oil consumed
C3: oil pumped
C4: oil in the accumulator
C5: inductiveness
C6: (local) safety

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
.

C7 =̂ L ≤ v0 ≤ U
C2: 2-second latency
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Deriving Constraints

Applying QE to

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
,

we get

C9 =̂ L ≥ 5.1 ∧ U ≤ 24.9 ∧ U − L ≥ 2.4 .
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Deriving Constraints (Cont’d)

C10 =̂C2 ∧ C7 ∧ C9 ∧ S .

C2: 2-second latency
C7 : L ≤ v0 ≤ U
C9: constraint on L,U
S: safety and inductiveness

After QE:

D(L,U, v0, t1, t2, t3, t4) =̂
92∨
i=1

Di
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 2: Optimization Criterion

Ro (optimality): minimize the average accumulated oil volume in the
limit, i.e. minimize

lim
T→∞

1
T

∫ T

t=0
v(t)dt
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Optimization Criterion (Contd.)

• R′o : min
[L,U]

max
v0∈[L,U]

min
t

1
20

∫ 20

t=0
v(t)dt .

98 / 180



Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 2: Encoding the Optimization Criterion

Cost function:

g(v0, t1, t2, t3, t4) =̂
1
20

∫ 20

t=0
v(t)dt

= 20v0+1.1(t21−t22+t23−t24−40t1+40t2−40t3+40t4)−132.2
20

R′o can be encoded into

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))
,

which is equivalent to z ≥ z∗ or z > z∗

99 / 180



Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 2: Encoding the Optimization Criterion

Cost function:

g(v0, t1, t2, t3, t4) =̂
1
20

∫ 20

t=0
v(t)dt

= 20v0+1.1(t21−t22+t23−t24−40t1+40t2−40t3+40t4)−132.2
20

R′o can be encoded into

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))
,

which is equivalent to z ≥ z∗ or z > z∗

99 / 180



Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 3: Performing QE

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))

the inner ∃: qudratic programming
the outer ∃: discretization

L ≥ 5.1 ∧ U ≤ 24.9 ∧ U − L ≥ 2.4

the middle ∀: divide and conquer
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Optimal Controllers with 2 Activations

In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval
[5.1,8.3]
Using our approach, the optimal value is 7.53 (a 5% improvement)
and the corresponding interval is [5.1, 7.5]
Comparison of local optimal controllers: (the left one comes from
[Cassez et al hscc09])
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Local Optimal Controllers — 2 Activations

t1 =
10v0 − 25

13
∧ t2 =

10v0 + 1
13

∧ t3 =
10v0 + 153

22
∧ t4 =

157
11
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Improvement by Increasing Activations

The pump is allowed to be switched on at most 3 times in one cycle
The optimal average accumulated oil volume 7.35 (a 7.5%
improvement) is obtained at interval [5.2, 8.1]
The local optimal controllers corresponding to v0 ∈ [5.2, 8.1]:
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Local Optimal Controllers — 3 Activations


t1=

10v0−26
13 ∧ t2=

10v0
13 ∧ t3=

5v0+76
11 ∧ t4=12∧ t5=14∧ t6= 359

22 v0∈[5.2,6.8)

t1=
10v0−26

13 ∧ t2=
10v0
13 ∧ t3=

5v0+76
11 ∧ t4=

5v0+98
11 ∧ t5=

5v0+92
9 ∧ t6=

20v0+3095
198 v0∈[6.8,7.5)

t1=
10v0−26

13 ∧ t2=
10v0
13 ∧ t3=

5v0+76
11 ∧ t4=

5v0+98
11 ∧ t5=

5v0+92
9 ∧ t6=

5v0+110
9 v0∈[7.5,7.8)

t1=
10v0+26

13 ∧ t2=
45v0+1300

143 ∧ t3=14∧ t4= 359
22 ∧ t5=20∧ t6=20 v0∈[7.8,8.1]
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Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Three Activations are Enough

Proposition

For each admissible [L,U], each v0 ∈ [L,U], and any local control
strategy s4 with at least 4 activations subject to Rlu, Ri and Rls , there
exists a local control strategy s3 subject to Rlu, Ri and Rls with 3
activations such that

1
20

∫ 20

t=0
vs3(t)dt <

1
20

∫ 20

t=0
vs4(t)dt

where vs3(t) (resp. vs4(t)) is the oil volume in the accumulator at t with
s3 (resp. s4).
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Hybrid CSP

Outline
1 Background

2 Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants

4 Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Hybrid CSP
An Operational Semantics of HCSP

6 Hybrid Hoare Logic
Proof System of HHL

7 HHL Prover
8 Case Study: A Combined Scenario of CTCS-3
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Hybrid CSP

Related Work

Hybrid CSP (HCSP) due to He [He 1994], Zhou et al [Zhou et al, 1995],
is an extension of CSP by introducing differential equation to describe
continuous evolution and three kinds of interruptions to model the
interaction between continuous evolution and discrete jumps.

1 J. He: From CSP to Hybrid Systems: A Classical Mind, Prentice
Hall 1994

2 C. Zhou, J. Wang and A.P. Ravn: Formal Description of Hybrid
Systems, LNCS 1066

3 C. Zhou, A.P. Ravn, M.R. Hansen: Extended Duration Calculus,
LNCS 736

4 J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou and L. Zou: A
calculus for HCSP. LNCS 6461.

5 S. Wang, N. Zhan and D. Guelev: An assume/guarantee based
compositional calculus for HCSP. LNCS 7287.

6 N. Zhan, S. Wang and D. Guelev: Extending Hoare logic to hybrid
systems. Technical Report ISCAS-SKLCS-13-02.
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Hybrid CSP

Interruptions of HCSP

Communication events: message passing ch!m and ch?x
Communication interruption:

P D (ch?x → Q)

initially proceeds like P , and is interrupted by communication along
ch, and then proceeds like Q.
Example: 〈ṡ = v , v̇ = a〉D (chr2t?x → (x = eb → EB))

Timeout events (Timeout interruption) P Dt Q behaves as P for
up to t time units, and it continues with Q after t time units.
Example: 〈ṡ = v , v̇ = a〉DT 〈ṡ = v , v̇ = −b〉
Boolean events (Boundary interruption): 〈F (ṡ, s) = 0&B〉
means that the process behaves like F (ṡ, s) = 0 subject to B holds,
but will be interrupted whenever B is violated.
Example: 〈ṡ = v , v̇ = a&v < vebi 〉;EB
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Hybrid CSP

Syntax of HCSP

Denote by V ranged over x , y , s, . . . the set of variables, and by Σ
ranged over ch, ch1, . . . the set of channels.
The syntax of HCSP:

P ::= skip | x := e | wait d | ch?x | ch!e | P;Q | B → P | P t Q
| P∗ | 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉Dd Q
| 〈F(ṡ, s) = 0&B〉D 8i∈I (chi∗ → Qi )

S ::= P | S‖S

Here ch, chi ∈ Σ, chi∗ stands for a communication event, i.e., either
chi?x or chi !e, x , s ∈ V, B and e are Boolean and arithmetic
expressions, d is a non-negative real constant, P,Q,Qi are sequential
processes, and S stands for a system, i.e., an HCSP process.
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Hybrid CSP

Informal Meaning
〈F (ṡ, s) = 0&B〉 defines a dynamical evolution by the ODE. B is a
first order formula of s, which defines a domain in the sense that, if
s is beyond B , the statement terminates; otherwise it goes forward.
〈F (ṡ, s) = 0&B〉Dd P behaves like 〈F (ṡ, s) = 0&B〉 if it can
terminate within d time units. Otherwise, after d (inclusive) time
units, it will behave like P .
〈F (ṡ, s) = 0&B〉D []i∈I (ioi → Pi ) behaves like 〈F (ṡ, s) = 0&B〉
until a communication in the following context appears. Then it
behaves like Pi immediately after communication ioi occurs.
P t Q is the internal choice of CSP.
P∗ means P can be repeated arbitrarily finitely many times.
P ‖ Q behaves as if P and Q are executed independently except that
all communications along the common channels shared by P and Q
are to be synchronized.
Note that shared variable is not allowed in HCSP, so in P ‖ Q,
P and Q cannot have shared variables, and neither shared input nor
output channels.
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〈F (ṡ, s) = 0&B〉 defines a dynamical evolution by the ODE. B is a
first order formula of s, which defines a domain in the sense that, if
s is beyond B , the statement terminates; otherwise it goes forward.
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Hybrid CSP

Derived Operators

Note that some primitives of CSP, timed CSP and even some of the
constructs of HCSP are derivable, e.g.,

stop: stop def
= t := 0; 〈ṫ = 1&true〉.

wait: wait d def
= t := 0; 〈ṫ = 1&t < d〉.

external choice: 8i∈I (chi∗ → Qi )
def
= stopD 8i∈I (chi∗ → Qi ).

timeout:

〈F(ṡ, s) = 0&B〉Dd Q def
=

t := 0;
〈F (ṡ, s) = 0 ∧ ṫ = 1&t < d ∧ B〉;
t ≥ d → Q

.
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Hybrid CSP

Some Examples

1 Plant Control (PLC)

(〈F (s, ṡ, u) = 0〉D cp2c !s → cc2p?u)∗

‖ (wait d ; cp2c?v ; cc2p!contl(v))∗

2 MA (simplified): A train is moving until it reaches Emergency Brake
condition (Beb), and takes deceleration (−b) to return to safe region
(¬Beb). During moving, it periodically receives from RBC new MA
or emergency brake message, and updates Beb or decelerates with
−b accordingly.(

〈(ṡ = v , v̇ = a)&¬Beb(x)〉
D (cr2t?x → (Beb(x) ∨ x = eb)→ a := −b)

)∗
‖ (wait T ; (cr2t !ma t cr2t !eb))∗

112 / 180



Hybrid CSP

Some Examples

1 Plant Control (PLC)
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Hybrid CSP An Operational Semantics of HCSP

Notations
A timed communication is of the form 〈ch.c , b〉, where ch ∈ Σ,
c ∈ R and b ∈ R+. TΣ denotes the set of all timed communications.
The set of all timed traces is
TΣ∗≤ = {γ ∈ TΣ∗ | if 〈ch1.c1, b1〉 precedes 〈ch2.c2, b2〉, then b1 ≤ b2}.
We introduce a global clock now over R+ as a system variable to
record the time in the execution of a process, and two system
variables, rdy and tr , to represent the ready set of communication
events and the timed communication trace accumulated.
A state σ of P is an assignment to associate a value from the
respective domain to each variable in V+(P), where
V+(P) = V(P) ∪ {rdy , tr , now}.
Given two states σ1 and σ2, we say σ1 and σ2 are parallelable iff
Dom(σ1) ∩ Dom(σ2) = {rdy , tr , now} and σ1(now) = σ2(now).

A flow, ranging over H,H1, defined on a time interval, assigns a
state to each point in the interval.
Each transition relation has the form of (P, σ)

α−→ (P ′, σ′,H).
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Transition Rules

(skip, σ)
τ−→ (ε, σ[tr + τ ]) (Skip)

(ε, σ)
d−→ (ε, σ[now 7→ σ(now) + d ],Hd) (Idle)

(x := e, σ)
τ−→ (ε, σ[x 7→ σ(e), tr 7→ σ(tr) · 〈τ, σ(now)〉]) (Ass)

σ(tr).ch? 6∈ σ(rdy)

(ch?x , σ)
τ−→ (ch?x , σ[rdy 7→ σ(rdy) ∪ {σ(tr).ch?}])

(In-1)

σ(tr).ch? ∈ σ(rdy)

(ch?x , σ)
d−→ (ch?x , σ[now 7→ σ(now) + d ],Hd)

(In-2)

σ(tr).ch? ∈ σ(rdy)

(ch?x , σ)
ch?b−−−→

(
ε, σ[x 7→ b, tr + ch.b, rdy 7→ σ(rdy)\{σ(tr).ch?}]

) (In-3)
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Transition Rules (Cont’d)

σ(tr).ch! 6∈ σ(rdy)

(ch!e, σ)
τ−→ (ch!e, σ[rdy 7→ σ(rdy) ∪ {σ(tr).ch!}])

(Out-1)

σ(tr).ch! ∈ σ(rdy)

(ch!e, σ)
d−→ (ch!e, σ[now 7→ σ(now) + d ],Hd)

(Out-2)

σ(tr).ch! ∈ σ(rdy)

(ch!e, σ)
ch!σ(e)−−−−→

(
ε, σ[tr + ch.σ(e), rdy 7→ σ(rdy)\{σ(tr).ch!}]

) (Out-3)

S(t) is a trajectory of F(ṡ, s) = 0 s.t. (S(0) = σ(s)

∧∀t ∈ [0, d ].(F( ˙S(t), S(t)) = 0 ∧ σ(B[s 7→ S(t)]) = true))

(〈F(ṡ, s) = 0&B〉, σ)
d−→
(
〈F(ṡ, s) = 0&B〉,
σ[now 7→ σ(now) + d , s 7→ S(d)],Hd,s

) (Cont-1)

(σ(B) = false) or (S(t) is a trajectory of F(ṡ, s) = 0 s.t.
∃ε > 0.(S(0) = σ(s)

∧∀t ∈ (0, ε].(F( ˙S(t),S(t)) = 0 ∧ σ(B[s 7→ S(t)]) = false)))

(〈F(ṡ, s) = 0&B〉, σ)
τ−→ (ε, σ[s 7→ lim

t→0
S(t), tr 7→ σ(tr) · 〈τ, σ(now)〉])

(Cont-2)
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Transition Rules (Cont’d)

(chi∗;Qi , σ)
d−→ (chi∗;Qi , σ

′
i ,Hi ), ∀i ∈ I

(〈F(ṡ, s) = 0&B〉, σ)
d−→ (〈F(ṡ, s) = 0&B〉, σ′,H)

(〈F(ṡ, s) = 0&B〉D 8i∈I (chi∗ → Qi ), σ)
d−→ 〈F(ṡ, s) = 0&B〉D 8i∈I (chi∗ → Qi ),

σ′[rdy 7→ ∪i∈Iσ
′
i (rdy)],

H[rdy 7→ ∪i∈Iσ
′
i (rdy)]


(IntP-1)

(chj∗;Qj , σ)
chj∗−−→ (Qj , σ

′),∃j ∈ I

(〈F(ṡ, s) = 0&B〉D 8i∈I (chi∗ → Qi ), σ)
chj∗−−→ (Qj , σ

′)
(IntP-2)

(〈F(ṡ, s) = 0&B〉, σ)
τ−→ (ε, σ′))

(〈F(ṡ, s) = 0&B〉D 8i∈I (chi∗ → Qi ), σ)
τ−→ (ε, σ′)

(IntP-3)
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Transition Rules (Cont’d)

(P1, σ1)
d−→ (P ′1, σ

′
1,H1), (P2, σ2)

d−→ (P ′2, σ
′
2,H2),

∀ch ∈ Σ(P1) ∩ Σ(P2).¬((P1, σ1 ] σ2)
ch∗−−→ ∧(P2, σ1 ] σ2)

ch∗−−→)

(P1 ‖ P2, σ1 ] σ2)
d−→ (P ′1 ‖ P ′2, (σ′1 ] σ′2),H1 ] H2)

(Par-1)

(P1, σ1)
β−→ (P ′1, σ

′
1), Σ(β) 6∈ Σ(P1) ∩ Σ(P2)

(P1 ‖ P2, σ1 ] σ2)
β−→ (P ′1 ‖ P2, σ

′
1 ] σ2)

(Par-2)

(P1, σ1)
ch∗−−→ (P ′1, σ

′
1), (P2, σ2)

ch∗−−→ (P ′2, σ
′
2),

(P1 ‖ P2, σ1 ] σ2)
comm(ch∗,ch∗)−−−−−−−−−→ (P ′1 ‖ P ′2, σ′1 ] σ′2)

(Par-3)

(ε ‖ ε, σ1 ] σ2)
τ−→ (ε, σ1 ] σ2) (Par-4)
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Transition Rules (Cont’d)

σ(B) = true

(B → P, σ)
τ−→ (P, σ[tr + τ ])

(Cond-1)
σ(B) = false

(B → P, σ)
τ−→ (ε, σ[tr + τ ])

(Cond-2)

(P, σ)
α−→ (P ′, σ′,H) P ′ 6= ε

(P;Q, σ)
α−→ (P ′;Q, σ′,H)

(Seq-1)
(P, σ)

α−→ (ε, σ′,H)

(P;Q, σ)
α−→ (Q, σ′,H)

(Seq-2)

(P t Q, σ)
τ−→ (P, σ[tr + τ ]) (IntC-1) (P t Q, σ)

τ−→ (Q, σ[tr + τ ]) (IntC-2)

(P, σ)
α−→ (P ′, σ′,H) P ′ 6= ε

(P∗, σ)
α−→ (P ′;P∗, σ′,H)

(Rep-1)
(P, σ)

α−→ (ε, σ′,H)

(P∗, σ)
α−→ (P∗, σ′,H)

(Rep-2)

(P∗, σ)
τ−→ (ε, σ[tr + τ ]) (Rep-3)
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Hybrid CSP An Operational Semantics of HCSP

Definitions
Super-dense computation: two time granularities: macro time for
environment, and micro time for computation, and micro time will be
abstracted to be 0 at abstract level.

Given two flows H1 and H2 defined on [r1, r2] and [r2, r3] respectively, their
concatenation Ha

1 H2 is the flow defined on [r1, r3] such that Ha
1 H2(t) is

equal to H1(t) if t ∈ [r1, r2), and H2(t) if t ∈ [r2, r3).

Given a process P and a state σ0, if there is a sequence of transitions:

(P, σ0)
α0−→ (P1, σ1,H1)

. . .

(Pn−1, σn−1)
αn−1−−−→ (Pn, σn,Hn)

then we define Ha
1 . . .

aHn as a flow from P1 to Pn starting from σ0.

The sequence Ba
1 . . .

aBn as a behavior from P1 to Pn starting from σ0,
where Bi is Hi if Hi is not empty, empty otherwise if Hi is empty but Hi+1
is not, σi otherwise.

When Pn is ε, we will call them complete flow and complete behavior of
P with respect to σ0 respectively.
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Hybrid Hoare Logic

Introduction
Hybrid Hoare Logic (HHL) was first proposed in [Zhou et al 2010],
which is an extension of Hoare logic to hybrid system, used to
specify and reason about hybrid systems modelled by HCSP.
The assertion logic of HHL consists of two parts: the first-order
logic and Duration Calculus (DC).
FOL is used to specify discrete properties, represented by pre- and
post-condition, while DC is used to specify continuous evolution.
In HHL, a hybrid system is modelled by HCSP.
The proof system of HHL consists of the following three parts:

axioms and inference rules for FOL,
axioms and inference rules for DC, and
axioms and inference rules for the constructs of HCSP.

A theorem prover based on Isabelle/HOL has been implemented,
and applied to model and verify CTCS-3 [Zou et al 2013a].
In [Wang, Zhan& Guelev 2012] and [Zhan, Wang & Guelev 2013],
compositional proof system for HHL was investigated.
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Hybrid Hoare Logic

History Formulas
State Expression

Syntax:
S ::= 1 | 0 | R(e1, . . . , en) | ¬S | S1 ∨ S2

where R(e1, . . . , en) is a n-ary predicate over expressions e1, . . . , en,
normally of the form p(x1, . . . , xn) B 0 with B ∈ {≥, >,=, 6=,≤, <}
and p(x1, . . . , xn) are polynomials.
Semantics: Given a state σ, a state expression S is interpreted as

σ(1) = 1
σ(0) = 0

σ(R(e1, . . . , en)) =

{
1, if R(σ(e1), . . . , σ(en));
0, otherwise

σ(¬S) = 1− σ(S)

σ(S1 ∨ S2) = max{σ(S1), σ(S2)}

123 / 180



Hybrid Hoare Logic

History Formulas
State Expression

Syntax:
S ::= 1 | 0 | R(e1, . . . , en) | ¬S | S1 ∨ S2

where R(e1, . . . , en) is a n-ary predicate over expressions e1, . . . , en,
normally of the form p(x1, . . . , xn) B 0 with B ∈ {≥, >,=, 6=,≤, <}
and p(x1, . . . , xn) are polynomials.
Semantics: Given a state σ, a state expression S is interpreted as

σ(1) = 1
σ(0) = 0

σ(R(e1, . . . , en)) =

{
1, if R(σ(e1), . . . , σ(en));
0, otherwise

σ(¬S) = 1− σ(S)

σ(S1 ∨ S2) = max{σ(S1), σ(S2)}

123 / 180



Hybrid Hoare Logic

History Formulas (Cont’d)

History Formulas
Syntax:
HF ::= ` < T | ` = T | ` > T | dSe0 | ¬HF | HFa

1HF 2 | HF 2 ∨ HF 2

Semantics: Given a flow H and a reference interval [a, b] with
a, b ∈ Dom(H), and a ≤ b, the meaning of HF is defined as:

H, [b, e] |= `B T iff e − b B T , where B ∈ {≤, >,=, 6=,≤, <};

H, [b, e] |= dSe0 iff b = e, and H(b)(S) = 1;

H, [b, e] |= ¬HF iff H, [b, e] 6|= HF ;

H, [b, e] |= HF 1 ∧ HF 2 iff H, [b, e] |= HF 1 and H, [b, e] |= HF 2;

H, [b, e] |= HF 1 ∨ HF 2 iff H, [b, e] |= HF 1 or H, [b, e] |= HF 2;

H, [b, e] |= HFa
1HF 2 iff there is m ∈ [b, e] s.t. H, [b,m] |= HF 1 and

H, [m, e] |= HF 2.
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Hybrid Hoare Logic

History Formulas (Cont’d)

Internal of History Formula

HF< means that HF holds on the interval derived from the referred
interval by excluding its endpoint, defined by:

(` < T )<
def
= (` < T )

(` = T )<
def
= (` = T )

(` > T )<
def
= ` > T

(dSe0)<
def
= ` = 0

dSe< def
= dSe

(HFa
1HF 2)<

def
= (HF 1)<a(HF 2)<

(HF 1 ∧ HF 2)<
def
= (HF 1)< ∧ (HF 2)<

(HF 1 ∨ HF 2)<
def
= (HF 1)< ∨ (HF 2)<
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Hybrid Hoare Logic

Hoare Assertion

Hoare Assertion
A Hoare assertion of HHL is of the form

{A}P{R;HF}
P is a HCSP process;
Precondition A specifies values of V(P) before an execution of P ;
Postcondition R specifies values of V(P) when P terminates;
HF is a history formula to describe the execution history of P .

Semantics
We say a Hoare assertion {A}P{R;HF} is valid, denoted by
|= {A}P{R;HF}, iff for any initial state σ1, if (P, σ1)

α∗−→ (ε, σ2,H) then
σ1 |= A implies σ2 |= R and H, [σ1(now), σ2(now)] |= HF .
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α∗−→ (ε, σ2,H) then
σ1 |= A implies σ2 |= R and H, [σ1(now), σ2(now)] |= HF .
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Hybrid Hoare Logic

Hoare Assertion (Cont’d)

Remarks
For a parallel process P1 ‖ ... ‖ Pn, the assertion becomes

{A1, ...,An}P1 ‖ ... ‖ Pn{R1, ...,Rn;HF 1, ...,HF n}

where Ai ,Ri ,HF i are (first order or DC) formulas of V(Pi )
(i = 1, ..., n) separately. The validity can be defined similarly.
Note that we can essentially put A and R as parts of history formula
HF like the form dAe0aHFadRe0.

Example
In PLC, we can specify the system as:

{s = s0 ∧ u = u0 ∧ Ctrl(u0, s0),A2} PLC
{R1,R2; (l = T )ad| s − starg |≤ εe,HF 2}

where Ctrl(u, s) may express a controllable property, and the other
formulas are not elaborated here.
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Hybrid Hoare Logic Proof System of HHL

General Rules

Monotonicity

If {A1,A2}P1 ‖ P2{R1,R2;HF 1,HF 2},
and A′i ⇒ Ai ,Ri ⇒ R ′i ,HF i ⇒ HF ′i (i = 1, 2),

then {A′1,A′2}P1 ‖ P2{R ′1,R ′2;HF ′1,HF
′
2}

Case Analysis

If {A1i ,A2}P1 ‖ P2{R1,R2;HF 1,HF 2} (i = 1, 2),

then {A11 ∨ A12,A2}P1 ‖ P2{R1,R2;HF 1,HF 2}

If {A1,A2i}P1 ‖ P2{R1,R2;HF 1,HF 2} (i = 1, 2),

then {A1,A21 ∨ A22}P1 ‖ P2{R1,R2;HF 1,HF 2}
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Hybrid Hoare Logic Proof System of HHL

General Rules (Cont’d)

Parallel vs Sequential

If {A1,A2}P1 ‖ P2{R1,R2;HF 1,HF 2}
then {Ai}Pi{Ri ;HF i} (i = 1, 2)

If {Ai}Pi{Ri ;HF i} (i = 1, 2),
and Pi (i = 1, 2) do not contain communication,
then {A1,A2}P1 ‖ P2{R1,R2;HF 1,HF 2}

Skip

{A}skip{A; l = 0},

Assignment

{A[e/x ]}x := e{A, dx = ee0}
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Hybrid Hoare Logic Proof System of HHL

Communication

If {A1,A2}P1 ‖ P2{R1,R2;HF 1,HF 2},
R1 ⇒ G (e),HF 1 ⇒ ` = c1, and HF 2 ⇒ ` = c2

then {A1,A2}(P1; ch!e) ‖ (P2; ch?x)

{R1,G (x) ∧ ∃x .R2;HF 1
a(dR1e ∧ const(V(P1)) ∧ ` = c − c1),

(HF 2
a(dR2e ∧ const(V(P2)) ∧ ` = c − c2))<

adx = ee0}
where c = max{c1, c2}.

A rule for the general case of communication

(P1; []i∈I chi∗ → Q1i ) ‖ (P2; []j∈Jchj∗ → Q2j),

where chi∗ = chj∗ for some i ∈ I , j ∈ J, can be defined similarly.
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Hybrid Hoare Logic Proof System of HHL

Communication (cont’d)

Example
If

{A1,A2}P1 ‖ P2
{y = 3, x = 1; (dy = 0e ∧ (l = 3))ady = 3e0, dx = 0e ∧ (l = 5)adx = ee0},

we want to deduce through this rule

{A1,A2}P1; ch!y ‖ P2; ch?x{R3,R4;HF 3,HF 4}.

Since (y = 3)⇒ (3 = 3), (dy = 0e ∧ (l = 3))ady = 3e0 ⇒ ` = 3, and
(dx = 0e ∧ ` = 5)adx = 1e0 ⇒ ` = 5, we can conclude that R3 is y = 3,
R4 is x = 3, HF 3 is
((dy = 0e ∧ (l = 3))ady = 3e0a(dy = 3e ∧ const(V(P1) ∪ {y}) ∧ ` = 2),
and HF 4 is (` = 5adx = 1e0)<

adx = 3e0, which is equivalent to
` = 5adx = 3e0 by the definition of HF<.
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Hybrid Hoare Logic Proof System of HHL

Continuous

If Init ⇒ Inv,
then {Init ∧ A}〈F (ṡ, s) = 0&B〉{A ∧ Cl(Inv) ∧ Cl(¬B);

dInv ∧ A ∧ Be}

If {A}〈F (ṡ, s) = 0&B〉{R;HF}
and {A ∧ t = 0}〈(F (ṡ, s) = 0, ṫ = 1)&B〉{t = t0 ∧ Rg(t0),HF ′},
then {A}〈F (ṡ, s) = 0&B〉{R;HF ∧ Rg(`)}
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Hybrid Hoare Logic Proof System of HHL

Continuous (cont’d)

Example

In MA, it is easy to see that v ≤ vebi is an invariant of
〈(ṡ = v , v̇ = a) ∧ v < vebi 〉. Thus, by the continuous rule

{(v = v0 ≤ vebi )}〈(ṡ = v , v̇ = a)&v < vebi 〉
{(v ≤ vebi ) ∧ (v ≥ vebi ); d(v ≤ vebi ) ∧ (v < vebi )e}

In addition, assume p ≥ a ≥ w , then
((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ (v ≤ vebi )

is an invariant of 〈(ṡ = v , v̇ = a, ṫ = 1)&v < vebi 〉. So,
{(v = v0 ≤ vebi ) ∧ (t = 0)}〈(ṡ = v , v̇ = a, ṫ = 1)&v < vebi 〉
{(v = vebi ) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ vebi−v0

w ≥ t ≥ vebi−v0
p ;

d(v < vebi ) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt))e}
Therefore, assuming (p ≥ a ≥ w) we can have

{(v = v0 ≤ vebi )}〈(ṡ = v , v̇ = a)&v < vebi 〉
{(v = vebi ); d(v < vebi )e ∧ ( vebi−v0

w ≥ l ≥ vebi−v0
p )}
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Hybrid Hoare Logic Proof System of HHL

Communication Interruption
Rule1: If

1 {A,AR} 〈F (ṡ, s) = 0&B〉 ‖ R{R,RR ;HF ,HFR},
2 for all i ∈ I , {A,AR} chi∗ ‖ R{Ri ,R i

R ;HF i ,HF i
R},

3 HF ⇒ ` = x , ∧i∈I (HF i ⇒ ` = xi ) ∧ x < xi ,
then

{A,AR} 〈F (ṡ, s) = 0&B〉D []i∈I (chi∗ → Qi ) ‖ R
{R,RR ;HF ,HFR}

Rule 2: Assume j ∈ I . If
1 {A,AR} 〈F (ṡ, s) = 0&B〉 ‖ R1; chj∗ →

R2{R,RR ;HF ,HFR},
2 for all i ∈ I , {A,AR} chi∗ ‖ R1; chj∗ {Ri ,R i

R ;HF i ,HF i
R},

3 HF ⇒ ` = x , ∧i∈IHF i ⇒ ` = xi , and xj ≤ x ∧ ∧i 6=jxj ≤ xi ,
4 HF ⇒ (` = xj ∧ HF s)adG (s0)e0,
5 {Rj ∧ G (s0),R j

R}Qj ‖ R2{R f ,R f
R ;HF f ,HF f

R},
then
{A,AR} 〈F (ṡ, s) = 0&B〉D []i∈I (chi∗ → Qi ) ‖ R1; chj∗ → R2

{R f ,R f
R ; ((HF s

adG (s0)e0) ∧ HF j)
aHF f ,HF j

R
a
HF f

R}
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Hybrid Hoare Logic Proof System of HHL

Sequential, Internal Choice, Repetition

Sequential

If {A1}P1{R1;HF 1}, and {R1}P2{R2;HF 2}
then {A1}P1;P2{R2;HF<1

aHF 2}.

Internal Choice
If {A}P1{R1;HF 1} and {A}P2{R2;HF 2},
then {A}P1 t P2{R1 ∨ R2;HF 1 ∨ HF 2}.

Repetition

If {A1,A2}P1 ‖ P2{A1,A2;HF 1,HF 2},
HF i ⇒ (Di ∧ (l = T )) (i = 1, 2, T ≥ 0),

and Da
i Di ⇒ Di ,

then {A1,A2}P∗1 ‖ P∗2{A1,A2; ` = 0 ∨ D1, ` = 0 ∨ D2}
where T is the time consumed by both P1 and P2 that can guarantee
the synchronisation of the starting point of each repetition.
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HHL Prover
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HHL Prover

Verification Architecture of HHL Prover

AnnotatedAnnotated
 

HCSP programs

A Verification Condition
Generator

Interactive prover
Isabelle/HOL

Automatic provers
(SMT solver)

Logical formulas

Differential 
Invariant 
Generator
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HHL Prover

Theorem Proving

The implementation of a theorem prover for verifying annotated HCSP
processes in a proof assistant can be divided into the following steps:

Encode HCSP language (syntax and semantics);
Encode assertion languages (syntax, semantics and proof system);
Encode Hybrid Hoare Logic (syntax, inference rules and validity),
and based on this, design a verification generator.

The VCG reduces an annotated HCSP process to a logical formula
written by the assertion languages, whose validity is equivalent to the
validity of the original annotated process.

Discharge the validity of the logical formulas by interactive or
automatic theorem proving.

Integration with SMT solvers (for solving formulas).
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HHL Prover

Sketch of Our Implementation in Deep Encoding

Main

Pure

LSyntax

DSequent

DLK0

ILSequent

DCSequent

HCSP_Com

HHL

Case Study

Sound

Op

Main, Pure: Isabelle theories, for all the
basic predefined theories like arithmetic,
lists, sets, etc; and the meta-logic HOL.

LSyntax: Syntax for expressions and FOL.

DSequent, DLK0: Sequent calculus based
proof system for FOL.

ILSequent, DCSequent: Syntax and proof
systems for IL and DC.

HCSP_Com, Op: Syntax and semantics
for HCSP language.

HHL, Sound: Proof system for hybrid
Hoare Logic, and soundness.

Case Study: Case studies, always
including HHL theory as a parent.
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HHL Prover

Syntax for Expressions and FOL

Expression

datatype exp = RVar string | SVar string | BVar string | Real real
| String string | Bool bool | exp + exp | exp − exp | exp ∗ exp

FOL
datatype fform = True | False | exp = exp | exp < exp

| ¬ fform | fform ∨ fform | ∀ string fform

The other constructs of FOL can be derived from the above ones.

141 / 180



HHL Prover

Syntax for Temporal Expressions and DC

Temporal Expression

datatype dexp = ` | Real real

DC
datatype dform = True | False | dexp = dexp | dexp < dexp

| ¬ dform | dform ∨ dform | ∀ string dform
| pf fform | dform a dform

Derived Operators of DC
consts high :: fform ⇒ dform
high S == ¬ (True a pf (¬ S) a ` > Real 0)
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HHL Prover

Sequent Calculus Proof System of Assertion Languages

A sequent is a pair written as Γ ` ∆, where Γ and ∆ are sequences
of formulas. Usually, P,Q are used to represent a logical formula,
$H, $E arbitrary sequences of logical formulas.
The axiom and proof system of FOL and DC can be defined by a set
of sequent rules, each of which is a relation between a (possibly
empty) sequence of sequents and a single sequent

For example, the right introducing rule for conjunction in FOL:

Γ ` P,∆ Γ ` Q,∆
Γ ` P ∧ Q,∆

For sequent calculus based proof system,
Backward proof search is applied.
Be widely used in mechanized deductive reasoning (via pattern
matching of goals).
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HHL Prover

Sequent Calculus Proof System of FOL

Isabelle Library includes the Sequent Calculus Proof System for
Classical FOL with Equation, in theory LK . Our encoding of FOL
proof system is built from it directly.
We need to add extra lemmas for reasoning about explicit arithmetic
formulas.
To reuse the solvers for bool, the built-in type of Isabelle logical
formulas, we define an equivalent relation between the validity of
formulas of fform and of bool:

formT (f :: fform)⇔ ` f

where formT :: fform ⇒ bool
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HHL Prover

Sequent Calculus Proof System of DC

First, define the deductive system for the first-order constructs of
dform, which can be taken directly from the one built for fform;
Second, define the deductive system related to the new temporal
modalities for DC, including `, pf , and a.

For the second step, we transform the proof system in Hilbert style
defined in [Zhou& Hansen 2004] to sequent calculus style.

Not a direct translation.
Related work [Heilmann99, Rasmussen02].

For instance,

LI : $H, P ` $E ⇒ $H, Pa(` = Real 0) ` $E
RI : $H ` P, $E ⇒ $H ` Pa(` = Real 0), $E
encodes the axiom: P → Pa(` = 0).
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HHL Prover

HCSP Language

We define HCSP constructs as a datatype proc . Each construct of HCSP
is encoded correspondingly, except for the two special cases:

The differential equation 〈F(ṡ, s) = 0&B〉 is encoded as
<Inv&B> : Rg, where Inv represents the differential invariant, B the
domain constraint, and Rg the range of execution time, of the
continuous respectively.
The sequential composition P;Q is encoded as P; mid; Q, where P
and Q represent the encodings of P and Q respectively, and mid is
added to represent the intermediate assertions between P and Q.

mid is added for reducing proof of sequential composition to the ones
of its components; and we can remove mid and instead deduce it
directly based on HHL proof system.

Semantics
Encoding of states, configurations, and transition rules, that are defined
in previous sections
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HHL Prover

Hybrid Hoare Logic

Specification
The specification for process P is represented as {Pre} P {Post;HF}, where
Pre and Post are implemented as formulas of type fform, and HF of type
dform, P as process of type proc, and it corresponds to a truth proposition.

Inference Rules
All the inference rules are encoded as theorems. A verification condition
generator (VCG) can be formed by structural composition of these
theorems (to be shown in detail).

Validity
All the inference rules are sound with respect to the semantics of HCSP,
thus the correctness of the VCG is guaranteed.
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HHL Prover

Verification Condition Generator

A common approach for proving {p}P{q; HF}:
to calculate weakest precondition ( Dijkstra’s) backwards from q,
denoted by WP(P, q), or to calculate strongest postcondition
forwards from p, denoted by SP(P, p);
to calculate strongest history formula forwards from p, denoted by
SH(P, p).

Then, {p}P{q; HF} iff one of the following conditions holds:
p ⇒WP(P, q) and SH(P, p)⇒ HF
SP(P, p)⇒ q and SH(P, p)⇒ HF

Our proof system of HCSP provides rules for designing the verification
condition generator for HCSP, by combining the two methods.
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HHL Prover

Verification Condition Generator : Assignment

According to HHL proof system,

{A[e/x ]}x := e{A; dx = ee0}

The weakest precondition of x := e with respect to postcondition A is
A[e/x ], and the strongest history formula is dx = ee0.

Thus, to prove {p}x := e{q; HF}, we can prove

p ⇒ q[e/x ] ∧ (dx = ee0 ⇒ HF )

instead. The validity of them is equivalent.
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HHL Prover

Verification Condition Generator : Sequential Composition

According to HHL proof system, to prove

{p}P; (m,H);Q{q;HaG}

we can prove {p} P {m;H} and {m} Q {q;G} instead.

Notice that the intermediate assertions are annotated (i.e., (m, H) above)
to refer to the postcondition and the history formula of the first
component.

As an alternative approach,
deduce m as weakest precondition WP(Q, q) or strongest
postcondition SP(P, p), and H as strongest history formula SH(P, p).
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HHL Prover

Verification Condition Generator : Continuous

According to HHL proof system,

{Init ∧ A} 〈F(ṡ, s) = 0&B : Inv〉 {A ∧ Cl(Inv) ∧ Cl(¬B);
(l = 0) ∨ dInv ∧ A ∧ Be}

To prove {p1 ∧ p2}〈F(ṡ, s) = 0&B : Inv〉{q; HF}, we can prove
p2 ⇒ Inv
p1 ∧ close(Inv) ∧ close(¬B)⇒ q
(l = 0) ∨ dInv ∧ Pre ∧ Be ⇒ HF

instead.

Inv is assumed and annotated.
We are considering to integrate the VCG with the differential
invariant generator. The above formulas will then be the constraints
for calculating the differential invariant.
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HHL Prover

Verification Condition Generator

The cases for other constructs, including communication, communication
interrupt, repetition, etc, are also implemented.

The soundness of the verification condition generator is proved in
Isabelle/HOL.

Finally, an annotated HCSP process is transformed into logical formulas
(including FOL and DC formulas), with equivalent validity.

Interactive theorem proving, by applying axioms corresponding to
proof systems of FOL and DC manually.
Integration with SMT solvers, especially for deciding FOL formulas.
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Case Study: A Combined Scenario of CTCS-3
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Case Study: A Combined Scenario of CTCS-3

Chinese Train Control System Level 3

The Chinese Train Control System (CTCS) at level 3 (CTCS-3)
is an informal specification of Chinese high speed train that ensures
safety and high throughput of trains.
For historical reasons, CTCS currently contains two levels: level 2
and level 3.
14 scenarios

Movement authority
Level transition (upgrade, degrade)
Mode transition (FS to CO)
· · ·
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Case Study: A Combined Scenario of CTC-3
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Case Study: A Combined Scenario of CTCS-3

Movement Authority Scenario

The train applies for MA from RBC in CTCS-3 or TCC in
CTCS-2. It is only permitted to move within the MA it owns.
Each MA is modelled as a sequence of tuples of form
〈(s, v1, v2,mode), · · · , (s, v1, v2,mode)〉
Static profile and dynamic profile

-
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Movement Authority Scenario

 

Movement Authority Scenario 

• The protocol 

RBC 

Track 
<s’=v, v’=a, t’=1> 

Interruption Feedback 
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Level upgrade suc 
when s>x2; 
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Combined ScenarioCombined Scenario 
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<s’=v, v’=a, 
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Decide an acc; 
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Level upgrade suc 

when s>x2; 
RBC 
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Problem of the Combined ScenarioProblem with the Protocol 

Driver’s 
Confirma-

tion 

Level-3 s>x2 
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Case Study: A Combined Scenario of CTCS-3

Formal Model of the Scenario

The overall train control system:

System =̂Train∗ ‖ Driver∗mc ‖ RBC∗lu ‖ RBC∗ma ‖ TCC∗
Train =̂〈ṡ = v , v̇ = a, ṫ = 1& B0 ∧ B1 ∧ B2 ∧ B3 ∧ B4 ∧ B5 ∧ B6 ∧ B7〉;Ptrain
Ptrain =̂Q1comp;Q2comp;Q3comp;Q4comp;Q5comp

Movement authority scenario:

B0 =̂(v ≥ 0 ∨ a ≥ 0 ∨ t < Temp + Tdelay )
B1 =̂(∀seg : MA . v < seg .v2) ∨ a < 0 ∨ t < Temp′ + Tdelay
B2 =̂(∀seg : MA . v < seg .v1 ∧ v2 + 2b s < next(seg).v2

1 + 2b seg .e)
∨a = −b

B7 =̂(s <= hd(MA).e)
Q1comp =̂¬B0 → (Temp := t;t{0<=c<=A}a := c);

¬B1 → (Temp′ := t;t{−b<=c<0}a := c);
¬B2 → a := −b;CHb2!¬B7;CHb3!¬B7;
¬B7 → (CHeoa2!getEoA(rMA2); chma2?rMA2;

CHeoa3!getEoA(rMA3); chma3?rMA3;
MA := comb(rMA2, rMA3))
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Formal Model of the Scenario (Cont’d)

Level transition scenario:

B3 =̂level 6= 2 ∨ s 6= n ∗ δ
B4 =̂level 6= 2.5 ∨ s ≤ LU.x2
Q2comp =̂¬B3 → (CHLUA!;CHLU?LU; LU.b → level = 2.5; n = n + 1);
Q3comp =̂¬B4 → level := 3
RBClu =̂CHLUA?;tbLU∈{true,false}CHLU !(b, x1, x2)

Mode transition scenario:

B5 =̂mode = hd(MA).mode
Q4comp =̂¬B5 → mode := hd(MA).mode
B6 =̂level 6= 3 ∨ CO 6= hd(tl(MA)).mode ∨ hd(MA).e − s > 300

∨t < Temp + Tdelay
Q5comp =̂CHwin!¬B6;¬B6 → Temp := t;CHDC ?brConf; brConf → coma(MA)
Drivermc =̂CHwin?bwin; bwin → tbsConf∈{true,false}CHDC !bsConf
TCC =̂CHb2?b2; b2→ (CHeoa2?eoa2; chma2!setMA2(eoa2))
RBCma =̂CHb3?b3; b3→ (CHeoa3?eoa3; chma3!setMA3(eoa3))
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Case Study: A Combined Scenario of CTCS-3

Specification and Verification of the Scenario

The specification for train to be verified:

{Pre}Train{Post; HF}

where

Pre def
= (x2 − s > Real 300) ∧ (level = Real 2.5)

∧(fst(snd(snd(hd(MA)))) = x2)
∧(snd(snd(snd(hd(MA)))) = String “FS ′′)
∧(snd(snd(snd(hd(tl(MA))))) = String “CO ′′)
∧(fst(hd(MA)) = Real 0) ∧ (fst(snd(hd(MA))) = Real 0)

Post def
= s <= x2

HF def
= (` = Real 0) ∨ (high(Pre ∧ s <= x2))

The specification has been proved in HHL prover. This shows that
the train will never exceed x2.
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Remarks
An implementation of HHL in Isabelle/HOL

Can be found at https://github.com/iscas/HHL_prover
In progress

Application to modelling and verification of Chinese Train Control
Systems

Formal model with HCSP
Justification of formal model: from Simulink graphical model to
HCSP model [Zou et al 2013b]; from HCSP model to Simulink model
(on-going)
Simulation by Simulink
Verification by HHL Prover
The bug reported here is first found by the testing group of Beijing
Jiaotong University, analyzed and proved by us [Zou et al 2013a]
More than 6 bugs are found in CTCS-3 in other similar combined
scenarios first by us

Application to modelling and verification of Spacecraft Control
Systems

→ Demo
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