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Abstract. MARS is a toolchain, supporting model-based design of
cyber-physical systems (CPS), which integrates informal and formal
design. With MARS, a system under development can be graphically
modeled by the combination of AADL and Simulink/Stateflow, then the
simulation of the graphical model can be conducted. Furthermore, the
graphical model can be automatically transformed to Hybrid Commu-
nicating Sequential Processes (HCSP) for formal verification with HHL-
Prover. Finally, ANSI-C code or SystemC code can be generated from
the verified HCSP formal model with the guarantee of correctness. As a
case study of CPS, in this paper, we apply MARS to design an intelligent
temperature control system, including its modeling, simulation, verifica-
tion and code generation. This case study demonstrates the advantages
of the design of CPS with MARS, including the integration of modeling,
simulation, verification and code generation; the integration of informal
and formal design, thus providing balance between efficiency and rigidity.

Keywords: Simulink/Stateflow · Model-based design · HCSP · Code
Generation · Verification

1 Introduction

The applications of embedded systems (nowadays called Cyber-Physical Sys-
tems (CPS)) are extremely broad encompassing nearly every aspect of modern
life, especially in many safety-critical areas such as autonomous driving, med-
ical devices, aerospace and so on. For such systems, any mistake of them may
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result in catastrophic consequences. However, complex CPS involve closely cou-
pling of discrete control, continuous plants and communications, thus how to
efficiently design reliable CPS is very challenging. Both industrial and academic
communities have paid increasing attention to design safe CPS, which can be
categorized into simulation-based, formal methods based, and their combination.
Simulation-based approaches are advocated by industry, such as Simulink/State-
flow (S/S) [15] and AADL [5]. S/S has become a de facto model-based design tool
in embedded industry, but it is insufficient for the design of safety-critical CPS
because of the inherent incompleteness of simulation. AADL provides architec-
ture modeling and analysis of CPS by simulation, and furthermore supports the
automated code generation from AADL models to C code. However, it cannot
support modeling continuous physical processes as well as their combination
with software. Formal methods based approaches are advocated by academic
community, which can be further classified into model-checking based and the-
orem proving based. In model-checking based approaches, a CPS is modeled
as a hybrid automaton [1,8], and verification is done by computing reachable
states [4,6,10]. In theorem proving based approaches, a CPS is modeled by a
compositional modeling language, and verification is conducted through theorem
proving, e.g. differential dynamic logic (dL) [18,31]. SCADE [2] tried to combine
formal and informal, but failed to bridge the gap between informal graphical
models and formal algorithm models.

In order to bridge the gap between informal and formal model-based design
for CPS, in our previous work, we developed a toolchain called MARS [30], sup-
porting modeling, analysis, verification, and code generation for CPS. MARS
starts to design a graphical model for the system to be developed using the
combination of AADL and S/S, by considering the functionality, physicality and
architecture of the system in a unified framework [27]. Then, formal analysis and
verification of the combined graphical model can be conducted via the transla-
tion of AADL and S/S into Hybrid CSP (HCSP), an extension of CSP for for-
mally modeling hybrid systems [28]. The HCSP models can be simulated using
the HCSP simulator. Additionally, to complement incomplete simulation, they
can be verified using HHLProver (Hybrid Hoare Logic prover) implemented in
Isabelle/HOL [23], as well as a more automated HHLPy prover [20]. Finally,
implementations in SystemC or C can be automatically generated from verified
HCSP models [24,29]. The transformation from the combined AADL and S/S
to HCSP, and the one from HCSP to SystemC or ANSI-C, are both guaranteed
to be correct [24,26]. MARS provides model-based design of safety-critical CPS
by allowing switching between formal and informal seamlessly, depending on the
efficiency, cost and rigidity.
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In this paper, we apply MARS to the design of an intelligent temperature
control system (ITCS), including its modeling, simulation, verification, and code
generation. Specifically, the graphical model of the system is constructed using
S/S, and then it is translated into an HCSP model, based on which simulation
and verification are performed. From the verified HCSP model, we continue to
generate ANSI-C code, which is guaranteed to be reliable given the correctness
of the translation proved. The goal of this paper is to demonstrate the entire pro-
cess of the model-based design approach, by applying MARS for the modeling,
simulation, verification, and code generation of the case study, thereby validating
the applicability of MARS for the design of complex embedded systems.

Paper Organization. The rest of the paper is organized as follows. Section 2
introduces some preliminary knowledge of this paper. Section 3 introduces the
ITCS case study, and Sect. 4 presents the modeling, simulation, verification, and
code generation of ITCS using MARS. Finally Sect. 6 concludes the paper.

2 Background

In this section, we introduce some preliminary knowledge for this paper, includ-
ing Simulink, HCSP, and the MARS toolchain.

2.1 Simulink

Simulink [15] is a graphical environment for model-based design of dynamical sys-
tems, supporting description of both discrete-time and continuous-time behav-
ior. A Simulink model contains a set of blocks, subsystems, and wires, where
blocks and subsystems cooperate by exchanging data flows through connected
wires. Wires can be considered as variables holding these data values. As basic
units for building Simulink models, each block is defined with input and output
ports, and methods that define how outputs and internal states are changed.
Blocks can be grouped into subsystems to establish hierarchical diagrams. To
ease modeling, Simulink provides an extensive library of pre-defined blocks and
subsystems for building and managing diagrams, and also a rich set of fixed-step
and variable-step solvers for analyzing dynamical systems through simulation.

2.2 HCSP

Hybrid CSP (HCSP) [7] is a formal language for describing HSs, which is an
extension of CSP by introducing ODEs (ordinary differential equations) for mod-
eling continuous evolution. HCSP includes common constructs such as assign-
ment, internal choice, sequential composition and conditional statement. Besides,
it includes more constructs explained as follows:
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– Input ch?x receives a value along the channel ch and assigns it to variable x.
Output ch!e sends the value of e along ch.

– Repetition c∗ executes c for a nondeterministic finite number of times.
– Continuous evolution 〈ẋ = e&B〉 evolves continuously according to the differ-

ential equation ẋ = e as long as the domain B holds, and terminates whenever
B becomes false. Communication interruption 〈ẋ = e&B〉 � �i∈I(chi∗ → ci)
behaves like 〈ẋ = e&B〉, except it is preempted as soon as one of the commu-
nication events chi∗ takes place, and then is followed by the corresponding
ci.

– Parallel composition pc1‖cspc2 behaves as pc1 and pc2 run independently
except that all communications along the set of common channels cs between
pc1 and pc2 are synchronized.

MARS enriches HCSP with constructs on modularity, including module for
encapsulating a sequential process and system for parallel composition of mod-
ules.

2.3 MARS

The architecture of the toolchain MARS [30] is shown in Fig. 1, where AADL and
S/S indicate graphical models that serve as input to the toolchain; HCSP indi-
cates formal models, with their simulation and verification tools; and SystemC
and ANSI C indicate generated code. To design a safety-critical system using
MARS, users can choose to build graphical models from the top layer and do
analysis through simulation by transforming the combined model to C, or build
the formal HCSP models directly, which also have a simulator implemented.
Formal verification of HCSP models is done by HHL Prover, which includes the
interactive verifier implemented in Isabelle [31], the automatic verifier HHLPy
for verifying HCSP sequential subset [20], and differential invariant generator for
reasoning about ODEs [12]. Finally, implementations in SystemC [29] or ANSI-
C [24] are automatically generated from the verified HCSP processes. Both the
transformation from graphical models to HCSP models and the one from HCSP
to SystemC or ANSI-C, can be done automatically and furthermore are guar-
anteed to be correct by proving the consistency between the models in different
layers based on their formal semantics [24,28]. MARS supports the transfor-
mation of subsets of AADL and S/S, which include the main features of CPS
including discrete-time control, continuous evolution, event-based control, etc..
Our approach allows model-based design of safety-critical CPS based on graph-
ical and formal models and proven-correct translation procedures.
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Fig. 1. The Architecture of MARS

3 An Intelligent Temperature Control System (ITCS)

The case study of ITCS is taken from the official website of S/S [15], as shown in
Fig. 2. The system is modelled as an S/S diagram, assembled from a combination
of continuous blocks, discrete blocks and subsystems, mimicking a real-world
scenario wherein the indoor temperature is regulated by automatically toggling
the heater on and off in response to changes in outdoor temperature. In this
section, we introduce the S/S model of the case study from the overall top
structure and the encapsulated subsystems respectively.

3.1 The Overall of ITCS

The system receives inputs from the left two constant blocks, which set the aver-
age outdoor temperature to 50 ◦F and the house temperature to 70 ◦F respec-
tively. The control system is designed to maintain the indoor temperature at
approximately 70 ◦F, with allowance of given up and down fluctuations. The
system uses a sine function to represent the daily outdoor temperature variation
and superimposes it over OutTemp (i.e. 50) to model the changing outdoor tem-
perature. The F2C block converts the temperature from Fahrenheit to Celsius,
then the converted Tout is sent to the House subsystem as one input. Concur-
rently, the constant house temperature 70 ◦F is also converted via F2C block
and then the difference of it with the actual house temperature is calculated (i.e.
Terr), to be input of the Thermostat subsystem, which determines whether the
heater should be activated or not. The Thermostat block then transmits its judg-
ment (i.e. blowercmd) as input to the Heater subsystem. The Heater subsystem
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receives the actual house temperature as another input and calculates the heat
flow, i.e. HeaterOut. The heat flow is sent to the House subsystem as another
input, and moreover, it is integrated via an integrator block and then multiplied
with a constant via a gain block, to obtain the final cost, i.e. HeatCost. At the
same time, the system calculates the real-time indoor temperature HouseTemp
through the House subsystem. The final output graph is a line chart composed
of the indoor and outdoor temperatures in the form of Fahrenheit degree, and
the cost of the heater. The subsystems Thermostat, House and Heater will be
explained subsequently.

3.2 The Subsystems

The model of ITCS consists of three subsystems: Thermostat, House and Heater,
explained in the following parts.

Thermostat Subsystem. The Thermostat subsystem contains only one Relay
block, as shown in Fig. 3a. It maintains an internal state that records the status
of the switch. When the input signal exceeds a certain threshold (rise threshold,
215/9 ◦C here), the switch closes and the output is 0, turning off the heater;
when the input signal is below another threshold (fall threshold, 165/9 ◦C), the
switch opens and the output is 1, turning on the heater; otherwise, when the
input signal is between 165/9 ◦C and 215/9 ◦C, the switch is not changed and
the output keeps the value of the switch state. Due to the control of Thermostat
subsystem, the indoor temperature can be maintained within a certain range.

Fig. 2. The S/S Model of ITCS [15]

Heater Subsystem. The Heater subsystem implements the heater as shown in
Fig. 3b. The input On/Off receives the output command of Thermostat subsys-
tem (1 or 0), Troom is the actual house temperature from the House subsystem,
and Theater is the temperature of the hot air from the heater, which is set to
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constant 50 ◦C here. When the heater is on, the output HeatFlow is calculated
by the following equation:

(
dQ

dt
)heater = (Theater − Troom) ∗ Mdot ∗ C

where,(dQ
dt )heater represents the heat flow from the heater into the room, Mdot

the air mass flow rate through the heater (kg/hr), C the heat capacity of air at
constant pressure, and Theater, Troom correspond to Theater and Troom respec-
tively. The output HeaterFlow will serve as an input to both the integrator block
and the House subsystem, as shown in Fig. 2.

House Subsystem. The House subsystem controls the indoor temperature of
the house, as depicted in Fig. 3c. The input In receives the heat flow generated
by the Heater, and Tout inputs the outdoor temperature. It calculates the final
indoor temperature based on the inputs using the following equations:

(
dQ

dt
)losses =

Troom − Toutdoor

Req

Ṫroom =
1

M ∗ C
∗ ((

dQ

dt
)heater − (

dQ

dt
)losses)

where, Toutdoor represents the outdoor temperature Tout, Troom and C defined
as above, Req the equivalent thermal resistance of the house, M the mass of air
inside the house. As shown in the equations, (dQ

dt )losses represents the loss rate of
the heat in the environment, which is determined by the difference between the
actual room temperature and the outdoor temperature, divided by the house
thermal resistance. Ṫroom, the final gained heat rate of the room, also the deriva-
tive of the room temperature with respect to time, is the difference between the
heat flow rate and the loss rate, divided by M ∗C. A loop is formed as the room
temperature is also taken as an input of the Lossin block to calculate the loss
rate of the heat. In S/S, the diagrams with algebraic loops are considered invalid,
while the blocks which maintain internal states such as Integrator or Unit Delay
blocks can break the loop. So with existence of the integrator block for Troom in
House subsystem, the loop in this subsystem and also the main loop in the top
diagram (due to the backward transition from House to previous parts) are both
valid. Notice that different from Ṫroom, both (dQ

dt )losses and (dQ
dt )heater are named

in the form of differential equations for ease of understanding their meanings
and the relations between each other, without actual differential operations.
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Fig. 3. The Subsystems

4 Formal Design of ITCS

In this section, we show how to conduct formal design of ITCS starting from
the built graphical model, including constructing its formal model represented
by HCSP, its simulation based on the HCSP model, verification of the HCSP
model, and code generation from the verified HCSP model.

4.1 Translation to HCSP Model

We first apply the toolchain MARS to transform the S/S model of ITCS to
HCSP formal model. Taking the S/S model presented in Fig. 2 in .xml format
as input, the tool generates the HCSP model as shown in Fig. 4, which is to be
served as the foundation for subsequent simulation and verification of ITCS. The
generated HCSP model is a system from the overall structure, which contains
one module transformed from the S/S model.

Before introducing the HCSP model, we briefly explain the strategy of MARS
for transforming a S/S model. It first determines the sample times of all blocks,
including the ones inside subsystems, based on which each block is classified as
either discrete or continuous; then separates the whole diagram into discrete and
continuous parts; finally, transforms the discrete and continuous parts individ-
ually first and then put them together in correct execution order to form the
whole HCSP model of the S/S diagram. The complexity of the transformation is
O(n2) where n denotes the number of blocks in source models due to the sorting
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procedure in correct execution order. The generated HCSP model for a given
S/S diagram D has the following structure:

HCSP(D) =̂ Output; Init;
(

Discrete; 〈ṫ = 1, ẏ = Γ (x)&t < period〉;TimeUpdate;
)∗ (1)

It starts from Output, which is a sequence of assignments to the outputs of D by
their respective values, followed by the initialisation of variables and then a repe-
tition process. Init initializes some variables including internal state variables, the
outputs of integrators and discrete constant blocks, and the auxiliary time vari-
ables introduced for managing the execution time of the whole model. Discrete
represents the transformed process of discrete blocks of D, and ẏ = Γ (x) is the
combined vector of the ODEs for all integrator blocks after variable substitution
corresponding to other non-integrator continuous blocks; TimeUpdate defines the
update of the auxiliary time variables after each loop. The loop period period,
constraining the domain of the ODEs, is the great common divisor of sample
times of all discrete blocks of D.

Fig. 4. The HCSP Model of ITCS

As presented in Fig. 4, the output list (Line 1) includes HeatCost representing
the cost of heat, and the joint Temperatures for the indoor and outdoor temper-
atures, that correspond to the outputs of the S/S model. Each of the outputs is
assigned to their respective values. The main body (Lines 4–20) implements the
whole S/S diagram. It starts from the initialisation of a sequence of variables,
among which Costin and HouseTemp are the outputs of two integrator blocks,
F2Cin the output of a discrete constant block, Thermostat_sub_Relay1_state
the internal state of Relay block, and tt, t, _tick the auxiliary time variables,
then followed by a repetition process. At each round of the repetition, first the
discrete blocks of the case study are executed in a correct order, then the two
ODEs defining the derivatives of Costin and HouseTemp, plus the one with tt
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recording the execution time of each round, are put together to constitute the
transformed process of the continuous part. Notice that variable substitution is
performed on the right hand sides of each ODE, by replacing recursively the
outputs of each non-integrator continuous block as functions of its inputs, till
the equations only contain ODE variables and variables from the separate dis-
crete part, e.g. blowercmd and HouseTemp occurring in the ODEs. Here 0.001
is the period of the whole diagram, and variables t and _tick represent the
accumulated execution time and the number of execution loops respectively.

Notice that the equation of HouseTemp depends on the value of blowercmd,
which is either 0 or 1, the output of Thermostat subsystem. We will consider
the two different cases separately in the verification of ITCS.

4.2 Simulation

Fig. 5. Simulator interface after importing the HCSP model

MARS guarantees that the generated HCSP model and the corresponding source
S/S diagram are consistent by formally defining their semantics and building the
equivalence between them [28]. But for visualizing the behavior of the generated
HCSP model, we also utilize HCSP simulator integrated in MARS to analyze the
generated HCSP model, which reflects the behavior of the source S/S model as
expected. HCSP simulator is designed to calculate the execution paths of HCSP
processes and visualize them in the graphical interface. As shown in Fig. 5, the
left “Read HCSP file” button is used to load the input HCSP models, and on the
right, the number of simulation steps, starting position, and ending position can
be set. On the left side of the interface, the loaded HCSP process is displayed,
with the current executed statement highlighted, and below it, the values of
process variables changing over time are displayed; On the right, the trace of all
events produced during the execution is shown, including discrete steps, time
progress or communication events.
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Figure 5 shows the simulation result of the HCSP model of ITCS, by setting
the step size to 0.001 s and number of steps to 200,000 respectively. Through the
result, we can check whether its behavior aligns with expectation. On the left
bottom of Fig. 5, the lines from top to bottom represent the indoor temperature
change, the outdoor temperature change, and the cost incurred after the heater is
turned on, respectively. The changes and fluctuations of the three curves conform
to the design requirement, especially, the house temperature is always within a
safe range, to be given in detail in the following verification part.

4.3 Verification

To remedy incomplete simulation, the verification of the HCSP model is needed
to guarantee the design requirement strictly. In MARS, this is achieved by HHL
Prover through a Hoare-logic style deductive verification method [11,31]. HHL
Prover contains three parts: HHLPy [20] for deductive verification of sequential
HCSP processes covering ODEs, achieving automation of verification through
the annotation of differential and loop invariants and the integration with SMT
solvers for solving logical formulas; the interactive Isabelle prover, that is imple-
mented for the whole HCSP with concurrency and communication, conducting
proof of HCSP specifications with pre-/post-conditions by manually choosing
corresponding inference rules; and the invariant generation, which synthesizes
differential invariants for reasoning about ODEs through template-based meth-
ods [12,19], to be employed for the former two provers if necessary.

This case study demonstrates the procedure for verifying a safety specifica-
tion: “if the initial house temperature is within the range of 165/9 ◦C to 215/9 ◦C,
it will always remain between 145/9 ◦C and 235/9 ◦C (i.e. the safe range)”. For
simplicity, the initial system state is defined by the region 165/9 ≤ T ≤ 215/9,
while the unsafe region is T ≤ 145/9∨235/9 ≤ T , where T stands for HouseTemp.
Our objective is to verify that all system trajectories originating from the initial
region will never enter the unsafe region.

For continuous-time systems, the most challenging part of Hoare-style rea-
soning is the synthesis of differential invariants. A differential invariant is a set
of states Ω satisfying the following three conditions: (1) the initial region is
contained in Ω (Initial Condition); (2) the unsafe region and Ω are disjoint
(Saturation Condition); (3) Ω keeps continuous (differential) inductiveness, i.e.,
all trajectories starting from Ω remain within Ω (Differential Inductive Con-
dition). In the following, we adopt a template-based approach for synthesizing
a desired differential invariant. Please refer to [12,19,22,25] for more detailed
introduction.

Step 1: Simplifying System. From the HCSP model, we see that the system
consists of two modes, depending on whether blowercmd is 1 or 0, where the
dynamics of the temperature are described by

Ṫ = −3.334 · T + 10.916 · sin(0.262t) + 114.315, (mode 1)
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and

Ṫ = −1.310 · T + 10.916 · sin(0.262t) + 13.099, (mode 2)

respectively. The system will switch to mode 1 when T < 165/9, and switch to
mode 2 when T > 215/9.

Note that the above expressions contain a trigonometric function, which will
be difficult to reason about. To address this issue, inspired by [13], two fresh vari-
ables v and u are introduced to represent sin(0.262t) and cos(0.262t). Then, both
mode 1 and mode 2 can be transformed to a 3-dimensional system in variables
(T, v, u) with polynomial dynamics as follows:

⎛

⎝

Ṫ
v̇
u̇

⎞

⎠ =

⎛

⎝

−3.334 · T + 10.916 · v + 114.315
0.262 · u

−0.262 · v

⎞

⎠ , (mode 1’)

and
⎛

⎝

Ṫ
v̇
u̇

⎞

⎠ =

⎛

⎝

−1.310 · T + 10.916 · v + 13.099
0.262 · u

−0.262 · v

⎞

⎠ . (mode 2’)

Note that the derivative v̇ is obtained by v̇ = d sin(0.262t)
dt = 0.262 cos(0.262t) =

0.262u. The computation of u̇ is similar. Moreover, we add a new constraint
u2 + v2 = 1 as a state space constraint because sin2(x) + cos2(x) = 1.

Step 2: Setting Templates. Template-based synthesis leverages parameterization.
A parameterized template for the target differential invariant is predefined, and
constraints are formulated based on the definition of differential invariants. Sat-
isfying these constraints yields the desired differential invariant.

For continuous-time systems, barrier certificates [19] are commonly employed
for synthesizing differential invariants more efficiently. A barrier certificate is
a continuously differentiable function Φ in system variables such that Φ ≤ 0
constitutes a differential invariant. For computability, barrier certificates are
typically set to be polynomial functions.

Given our system’s two polynomial subsystems, mode 1’ and mode 2’, we
introduce two polynomial barrier certificates, Φ1 and Φ2, respectively. Each Φi

is a parameterized polynomial of a user-specified degree d in variable T, v, u of
the following form

Φi =
∑

α1+α2+α3≤d

ci,α1,α2,α3T
α1vα2uα3 for i = 1, 2, (2)

where α1, α2, α3 ∈ N are exponents and ci,α1,α2,α3 are unknown real coefficients.
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Step 3: Solving Constraints. Similar to [9, Theorem 2], the constraints for Φ1

and Φ2 are given as follows, for i = 1, 2,

∀(T, v, u). 165/9 ≤ T ≤ 215/9 ∧ u2 + v2 = 1 =⇒ Φi(T, v, u) ≤ 0, (3)

∀(T, v, u). (T < 145/9 ∨ T > 235/9) ∧ u2 + v2 = 1 =⇒ Φi(T, v, u) > 0, (4)

∀(T, v, u). u2 + v2 = 1 =⇒ Lfi
Φi(T, v, u) ≤ λiΦi(T, v, u), (5)

∀(T, v, u). u2 + v2 = 1 =⇒ Φ3−i(T, v, u) ≤ μiΦi(T, v, u), (6)

where λi is any real number, μi is any non-negative real number, and Lfi
(Φi) =

〈∇Φi, fi〉 is the Lie derivative of function Φi w.r.t. fi (here, ∇ is the gradient
notation and 〈·, ·〉 is the dot product). Intuitively, constraint (3) ensures the
initial region is contained within the region defined by Φi(T, v, u) ≤ 0, while
(4) guarantees exclusion of the unsafe region from this region. Constraint (5)
establishes that Φi(T, v, u) ≤ 0 is a differential invariant, ensuring mode i’s
safety. Finally, (6) maintains safety during mode switches. In our experiments,
we set λ1 = λ2 = −1, μ1 = μ2 = 10, and the degree of barrier certificate
templates to be 2.

To solve these constraints, we employ sum-of-squares optimization techniques
to transform them into a hierarchy of semidefinite programming (SDP) relax-
ations, as detailed in [9,22,25]. In our experiments, we formulate the SDP con-
straints using Julia package TSSOS [21] and solve them using the Mosek
solver [16]. We obtain the following solutions for Φ1 and Φ2:

Φ1 =0.00553 · T 2 − 0.00536 · T · v + 0.00014 · T · u + 0.69343 · v2 − 0.00037 · v · u
+ 0.68972 · u2 − 0.22240 · T + 0.11975 · v − 0.00345 · u + 1.38315,

Φ2 =− 0.00278 · T 2 − 0.00949 · T · v − 0.15400 · v2 − 0.00242 · v · u
− 0.15705 · u2 + 0.07491 · T + 0.15363 · v − 0.00146 · u − 0.31105.

The above synthesized invariants ensure the design requirement.
Currently, the differential invariant generation procedure for HCSP is not

fully automated, as it often requires manual template refinement. Once a suitable
differential invariant is found, it can be used in HHLPy or Isabelle provers of
HCSP for further verification. But for this case study, the synthesized invariants
ensure the design requirement directly, thus no further verification is needed.

4.4 Code Generation

The MARS toolchain supports the automatic code generation from HCSP model
to C, with correctness guarantee, i.e. the generated C code and the source HCSP
model are proved to satisfy the approximate bisimulation relation between their
reachable states with given precision allowed in ODE discretization [24]. As a
result, the safety properties (that can be considered as sets of system states)
proved for the HCSP model are preserved for the generated code with tolerance
of given precision. No more verification needs to be re-done at the code level.
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For this case study, given any precision ε > 0 allowed by the house temperature,
our tool can generate the C code that is guaranteed to be approximate bisimilar
with the HCSP model thus the original S/S model satisfies the given design
requirement that the house temperature is always within the safe range with ε
tolerance, i.e. (145/9 ◦C-ε, 235/9 ◦C+ε).

By using MARS, the C code for ITCS is generated, part of which is pre-
sented in Fig. 6. The whole C implementation of ITCS consists of 97 lines, that
is significantly less than the code automatically generated from S/S (to be shown
later). Figure 6 presents the discretization code corresponding to the ODE part
(Line 16 of Fig. 4), where h is the discretized step with respect to given precision.
The ODEs of tt,Costin,HouseTemp are discretized using Runge-Kutta method,
implemented by a while loop: a sequence of discrete assignments on calculat-
ing the approximate values of continuous variables is performed in each loop,
and when the boundary of the ODEs is reached, the loop breaks. The system’s
running results can be observed by executing the generated C code. Among the
results in Fig. 8, we can see that the execution results of the generated C code
from HCSP are almost identical to the ones of the HCSP model.

Fig. 6. Part of the C code generated from MARS

Fig. 7. Part of the C code generated from Simulink
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We also use S/S to generate the C code of ITCS, which amounts to 382 lines
in total and is partly shown in Fig. 7. It includes the functions for updating con-
tinuous states with the specified solver for ODEs, the step function for executing
the whole model, and the main function that initializes, steps in a while loop,
and terminates the execution in sequence. The reason for the lengthy code from
S/S includes: on one hand, the HCSP model transformed from the S/S diagram
combines all the blocks of each connected part of the diagram with integrator
blocks into one ODE vector, through variable substitution by hiding all outputs
of intermediate non-integrator blocks, and as a result, the C code generated
from the HCSP model will not include the local assignments corresponding to
these blocks; On the other hand, S/S Coder needs to do settings related to ODE
solver types, data logging, etc. for each S/S instance, while in our tool, all these
settings are determined, which indeed lacks feasibility for some extreme cases,
but promotes efficiency for normal cases that can be handled using the general
ODE solver based on Runge-Kutta method. We will give a more comparison in
next section. Figure 8 presents the comparison of execution results of the C code
generated from HCSP model and S/S, the HCSP model and the original S/S
model respectively. We can see that all of them are mostly consistent, except for
some small fluctuations.

Fig. 8. Comparison of the execution results

5 Comparison with S/S

We compare our approach with S/S from three aspects throughout model-based
development of systems: modeling and analysis, verification, code generation.

Modeling and Analysis. Based on a rich set of individually simple blocks and
their hierarchical composition, S/S offers a powerful graphical modeling language
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for building embedded systems. Especially, it is capable of modeling dynamic sys-
tems involved with continuous physical plants and complex control logics. S/S
does not have an official formal semantics, and instead, system analysis and
design validation within S/S are based on numerical simulation, which provides
a variety of ODE solvers especially the varying-step ones for solving ODEs with
both efficiency and accuracy. MARS reuses S/S for the graphical modeling of
software functionality and continuous plants of systems, and to remedy S/S,
it further integrates AADL for the modeling of architectures [27]. MARS also
provides HCSP language for the formal modeling of hybrid systems, with for-
mal semantics defined, and supports the transformation from S/S diagrams to
HCSP formal models. The transformation covers a subset of S/S graphical syn-
tax related to the design of hybrid systems, which is also the focus of HCSP, and
the correctness of the transformation is guaranteed by defining both the formal
semantics of S/S and HCSP and proving their bisimulation between each other.
MARS implements a HCSP simulator that invokes Python’s Scipy package to
have fixed-step solvers for solving ODEs.

Verification. Formal verification is necessary in the development process of
safety-critical systems. S/S has a well integrated commercial verification toolset
called Simulink Design Verifier (SLDV) [14], which offers static analysis and
discrete-time verification of S/S models with a high degree of automation. How-
ever, same as Simulink, the verifier does not have a formal specification language
with formal semantics, and instead, it represents the property to be proved also
as a S/S model. As a result, the result of SLDV cannot guarantee soundness.
In [17], the authors use SLDV to formally verify an automotive Simulink con-
troller model and detect some bugs of SLDV. MARS reduces the verification of
S/S models to the verification of the transformed HCSP formal model, due to
the consistency guarantee of the transformation from S/S to HCSP. As shown in
Fig. 1, MARS integrates HCSP verification tools based on a sound hybrid Hoare
logic for reasoning about HCSP, implemented via interactive and automated the-
orem proving. Furthermore, it is able to reason about continuous time behavior
of HCSP models involved with ODEs based on differential invariant generation.
Due to the complexity of hybrid systems, the verification of HCSP related to
invariant synthesis, communications and parallel composition, needs to be done
manually, but its soundness and capability of handling these behaviors are very
important for designing safety-critical control systems.

Code Generatation. In the previous section, we have already made some com-
parison between S/S and our approach for code generation of the case study. S/S
has an integrated code generator, which is well developed and applied to many
scalable practical embedded systems. However, the auto-generated C code may
differ from the behavior of the original S/S model due to the lack of formal
semantics, or potential bugs in the translation procedure from S/S to C. Thus,
the code generated from S/S needs further verification for the safety. In [3], the
authors perform formal verification of C code that is automatically generated
from S/S controller models and find errors that are not inconsistent with the
design requirement. Although these errors are found to exist as well for the orig-
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inal S/S model, it does not mean that the translation is correct, and in contrary,
it shows the consequence of the original S/S lacking formal semantics and verifi-
cation. In our tool, we implement a formally verified code generator from HCSP
to C, which solves the above problem, but honestly, it is challenging for our
tool to be applied for the development of large scale systems (mostly due to the
verification intrinsic difficulty of complex systems).

6 Conclusion

In this paper, we show how to design an intelligent temperature control system
with MARS. It consists of a S/S graphical model, a HCSP formal model trans-
formed from the graphical model, the simulation and verification of the HCSP
model, and the C code automatically generated from the verified HCSP formal
model. Compared with the development of the system with S/S, the advantages
of the design of CPS with MARS include: i) the correctness and reliability of the
generated C code; ii) integration of modeling, simulation, verification and code
generation, as well as integration of formal and informal design for CPS.
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