' ~ PDF Download
:.) e DIGITAL Assocation or) 3783996.pdf
ACM LIBRARY @ ompusing Mesinery @m open> j = Jan..afy 2026
Check for o
updates Total Citations: 0

Total Downloads: 459
£ Latest updates: https://dl.acm.org/doi/10.1145/3783996
Accepted: 08 December 2025
Revised: 04 December 2025

RESEARCH-ARTICLE Received: 26 August 2025

A Brief History of Formal Methods in China

Citation in BibTeX format
NAIJUN ZHAN, Peking University, Beijing, China
JIM C P WOODCOCK, Southwest University, Chongging, China
JI WANG, National University of Defense Technology China, Changsha, Hunan, China
MINGSHUAI CHEN, Zhejiang University, Hangzhou, Zhejiang, China

Open Access Support provided by:

Southwest University

National University of Defense Technology China
Peking University

Zhejiang University

Formal Aspects of Computing
https://doi.org/10.1145/3783996
EISSN: 1433-299X

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3783996
https://dl.acm.org/doi/10.1145/3783996
https://dl.acm.org/doi/10.1145/contrib-81100420008
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-81333491841
https://dl.acm.org/doi/10.1145/institution-60122052
https://dl.acm.org/doi/10.1145/contrib-81442606393
https://dl.acm.org/doi/10.1145/institution-60024350
https://dl.acm.org/doi/10.1145/contrib-99659968833
https://dl.acm.org/doi/10.1145/institution-60003970
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60122052
https://dl.acm.org/doi/10.1145/institution-60024350
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/institution-60003970
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3783996&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3783996&domain=pdf&date_stamp=2025-12-18

A Brief History of Formal Methods in China

NAIJUN ZHAN, School of Computer Science, Peking University, Beijing, China and Zhongguancun Laboratory,
Beijing, China

JIM WOODCOCK, Southwest University, Chongqing, China, Department of Electrical and Computer Engi-
neering, Aarhus University, Aarhus, Denmark, and Computer Science, University of York, York, United Kingdom
of Great Britain and Northern Ireland

JI WANG, State Key Laboratory for Complex & Critical Software Environment, College Computer Science and
Technology, National University of Defense Technology, Changsha, China

MINGSHUAI CHEN, College of Computer Science and Technology, Zhejiang University, Hangzhou, China

The development of formal methods (FM) in China dates back to the early 1950s, when several logicians shifted their research
focus from mathematics to theoretical computer science and began advocating the application of mathematical logic to
enhance the rigor of computing systems. A significant expansion of FM in China emerged in the 1980s, pioneered by a
new generation of talented computer scientists who had visited, studied, and/or worked in Western countries, such as the
United Kingdom and the United States, closely tied to China’s reform and opening-up policy. A notable milestone was the
establishment of the United Nations University International Institute for Software Technology (UNU/IIST) in Macau in the
early 1990s, which played a crucial role in advancing FM research and collaboration in China. In recent years, the return of an
increasing number of talented young scholars has further strengthened China’s FM community, elevating its influence and
contribution within the global FM landscape.

CCS Concepts: « General and reference — Surveys and overviews; - Software and its engineering — Formal methods;
+ Theory of computation — Logic and verification; Automated reasoning.

Additional Key Words and Phrases: Formal methods, duration calculus, unifying theories of programming, process algebra,
theorem proving, model checking

1 Introduction

Formal methods are mathematically rigorous techniques for specifying, developing, analyzing, and verifying
software and hardware systems [17]. The notion of formal methods—or more precisely, the principle of for-
malization—can be traced back to the renowned Hilbert’s Program [118, 353] of the 1920s, which sought to
establish a complete, consistent, and decidable axiomatic foundation for all mathematics. Hilbert’s Program
left few enduring legacies after Godel’s incompleteness theorems [97], but one that remains is the principle of

This article reflects the authors” perspectives and primarily focuses on the development of formal methods in Mainland China. We apologize
for any significant results or contributors that may have been unintentionally omitted.

Authors’ Contact Information: Naijun Zhan, School of Computer Science, Peking University, Beijing, Beijing, China and Zhongguancun
Laboratory, Beijing, Beijing, China; e-mail: njzhan@pku.edu.cn; Jim Woodcock, Southwest University, Chongging, Chongqing, China and
Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark and Computer Science, University of York, York,
England, United Kingdom of Great Britain and Northern Ireland; e-mail: jim.woodcock@york.ac.uk; Ji Wang, State Key Laboratory for
Complex & Critical Software Environment, College Computer Science and Technology, National University of Defense Technology, Changsha,
Hunan, China; e-mail: wj@nudt.edu.cn; Mingshuai Chen, College of Computer Science and Technology, Zhejiang University, Hangzhou,
Zhejiang, China; e-mail: m.chen@zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 1433-299X/2025/12-ART

https://doi.org/10.1145/3783996

Form. Asp. Comput.

https://orcid.org/0000-0003-3298-3817
https://orcid.org/0000-0001-7955-2702
https://orcid.org/0000-0003-0637-8744
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0000-0003-3298-3817
https://orcid.org/0000-0001-7955-2702
https://orcid.org/0000-0003-0637-8744
https://orcid.org/0000-0001-9663-7441
https://doi.org/10.1145/3783996

2 « N.Zhanetal.

formalization: mathematicians systematically use formal languages to express statements and manipulate them
according to well-defined syntactic rules. Researchers subsequently developed this principle into a foundational
framework that underpins many of the fundamentals of theoretical computer science. A broad spectrum of these
fundamentals—particularly logic calculi, formal languages, automata theory, and program semantics—collectively
forms what is now known as formal methods (FM). Engineers have since extensively employed these methods to
ensure the reliability and effectiveness of safety-critical systems across domains such as aerospace, transportation,
healthcare, and defence.

The early FM development followed two complementary trajectories: The theoretical perspective—as pioneered
by Church [54] and Turing [253] during the 1930s-1940s—aimed to establish a mathematical foundation for
computation and programming, while the engineering perspective—as initiated by the NATO Software Engineering
Conferences in the late 1960s—focused on enforcing rigorous quality assurance in software development. Together,
these two lines of development gave rise to a substantial body of influential contributions, including, but not
limited to, the work of eighteen ACM A. M. Turing Award laureates (see [267]). Amid this global landscape,
formal methods research in China emerged in the early 1950s, when several logicians redirected their focus from
mathematics to theoretical computer science and began promoting the use of mathematical logic to enhance the
rigour of computing systems. Since then, FM research in China has undergone steady evolution and experienced
remarkable growth and innovation. We can broadly categorize its overall development into three major phases:
the infant stage (1950s-1970s), the early development stage (1980s—-1990s), and the expansion and maturity stage
(since 2000s).

In this article, we provide a historical account of the development of formal methods in China. In Sections 2
to 4, we review key contributions and landmark projects across the three major stages mentioned above. In
Section 5, we examine the contributions and applications in industrial contexts. Section 6 identifies several key
challenges and promising future directions in terms of research, application, and talent cultivation. We provide
the concluding remarks in Section 7.

2 Infant Stage (1950s-1970s)

The development of formal methods in China dates back to the early 1950s, pioneered by three mathematicians:
Shihua Hu (28 January 1912 — 11 April 1998), Xianghao Wang (5 May 1915 - 4 May 1993), and Shaokui Mo (13
August 1917 — 14 October 2011).

Shihua Hu studied mathematical logic at the University of Vienna and finally obtained his PhD on mathematical
logic from the University of Miinster [123]. After returning from Europe in 1943, Hu worked at Sun Yat-sen
University, later moved to Central University (renamed Nanjing University in 1952), and subsequently joined
Peking University. In 1950, he joined the Institute of Mathematics of the Chinese Academy of Sciences (IMCAS),
and initiated the division of theoretical computer science there. Notably, since the 1950s, he has established an
annual training school in theoretical computer science and mathematical logic at IMCAS for Chinese scholars,
and many of these trainees have gone on to become academic leaders in the development of FM in China. Later,
he and the whole division moved to the Institute of Computing Technology of the Chinese Academy (ICTCAS),
which the Academy had established at the end of the 1950s after separating it from IMCAS. After joining ICTCAS,
the division strengthened and formed nine research groups that focus on algorithms and complexity, computer
science logic, computational models, formal languages and automata, networking, system software, and other
related areas. This development marks the starting point of theoretical computer science in China. In 1985, the
division separated from ICTCAS and founded the Institute of Software, Chinese Academy of Sciences (ISCAS).
Since then, ISCAS has taken a leading role in developing formal methods in China, particularly in the early stages.
Scholars regard Hu as the founder of mathematical logic and theoretical computer science in China.

Form. Asp. Comput.

A Brief History of Formal Methods in China « 3

Xianghao Wang obtained his PhD in algebra from Princeton University in 1946. He then returned to China and
became a professor at Peking University. In the 1950s, he joined Jilin University and initiated the Mathematics
Department there. Meanwhile, he shifted his interests to computer science, logic, theorem proving, and artificial
intelligence (AI), and thereby initiated the Computer Science Department at Jilin University in the 1970s.

Shaokui Mo studied mathematical logic in EPFL and at Paris University under the supervision of Paul Bernays
from 1947 to 1950. Then, he joined Nanjing University as a professor of mathematics. His research interests span
a wide range of topics in mathematical logic, with a particular focus on multiple-value logics. Likewise, in the
early 1950s, he realized that mathematical logic plays a foundation for Computer Science, and guided some of his
students to theoretical computer science. In 1978, the Computer Science Department at Nanjing University was
established as a separate entity from the Mathematics Department. Since then, Nanjing University has become
one of the major institutions specializing in formal methods in China.

3 Early Development (1980s—1990s)
3.1 Early Stage of Reform and Opening-up

In the early 1980s, as part of China’s reform and opening-up policy, some talented Chinese computer scientists
were sent to Western countries to learn advanced science and high technologies, including theoretical computer
science. In what follows, we list a few representatives.

Firstly, several pioneering individuals from ISCAS have cultivated the use of formal methods in China. Zhisong
Tang completed his undergraduate and graduate studies in philosophy at Tsinghua University, then joined Renmin
University, and later moved to IMCAS, where he worked in the mathematical logic division headed by Shihua Hu.
From 1979 to 1981, he visited Stanford University, where he proposed executable temporal logic. After returning,
he developed the executable temporal logic language XYZ/E and the corresponding software tools [245], which
can express programs and their specifications in a unified framework. Yunmei Dong earned his Bachelor’s degree
in mathematics from Jilin University, then joined ICTCAS, and later moved to ISCAS when it was founded.
He visited Stanford in 1978. He investigated recursion theory over words and its application to programming
languages [65, 66] since the early 1960s, a line of work closely related to LISP. Chaochen Zhou obtained his
Bachelor’s degree in mathematics from Peking University and became the first graduate student of Shihua Hu in
ICTCAS in 1963. He visited Tony Hoare from 1979 to 1981, and proposed axiomatic semantics for Communicating
Sequential Processes (CSP) during the visit [385]. Later, he established Duration Calculus (DC) jointly with Tony
Hoare and Anders Ravn [390], which provided a novel approach to the formal design of real-time systems. Ren-Ji
Tao is another student of Shihua Hu, who obtained his Bachelor’s degree in mathematics from Peking University.
He proposed a theory of invertible finite state automata over a ring and its application to cryptography [246].
Huimin Lin obtained his PhD from ISCAS in 1986 under the supervision of Zhisong Tang, focusing on algebraic
semantics. Afterwards, he worked as a research fellow at the University of Edinburgh. He proposed the theory of
symbolic bisimulation in process algebra jointly with Mathew Hennessy [116, 180].

Peking University is another institution playing an essential role in the development of FM in China. Xiwen Ma
initially led theoretical computer science at Peking University. He obtained his Bachelor’s in mathematics from
Peking University. He and Chaochen Zhou are classmates during their undergraduate studies at Peking University.
He visited McCarthy at Stanford from 1978 to 1981. He initiated Theoretical Computer Science Institute at Peking
University after he returned from the US. His interests are diverse, spanning mathematics, computer science,
languages, literature, and music. His contributions to FM include a relational approach to formal semantics [203],
the formal semantics of Prolog, and the modal logic of knowledge [302], among others.

As mentioned in the previous section, influenced by Shaokui Mo, Nanjing University also plays a vital role
in the development of FM in China, even in the early stages. Jiafu Xu was considered a pioneer in software,
particularly in programming theories and software synthesis [23]. Jiafu Xu obtained his Bachelor’s degree

Form. Asp. Comput.

4 « N.Zhanetal.

in mathematics from Central University (renamed to Nanjing University in 1952) in 1948. He worked there
afterwards until his passing in 2018. From 1957 to 1959, he visited the Soviet Union for two years and began
working on programming theories during that time. He designed programming languages (XCY etc.), specification
languages (FGSPEC etc.), quantum programming languages (NDQFP etc.), and developed several corresponding
automated systems, such as XCY-compiler, NDADAS, NDSAIL, etc. [305-308]. He also proposed an analogy
calculus and the analogical program derivation method [197, 332]. Zhongxiu Sun is another important person
from Nanjing University. He also obtained his Bachelor’s degree in mathematics from Nanjing University in 1957
and worked there until his passing in 2013. At an early stage of his career, he focused mainly on mathematical
logic under the guidance of Shaokui Mo. From 1965 to 1967, he visited the UK. Afterwards, he shifted his research
interests to computer science, particularly operating systems and algorithms. In 1979, he visited the University of
Wisconsin and began working on the theory and implementation of distributed computing systems. Additionally,
it is worth mentioning that in 1984, Yongsen Xu visited Dines Bjerner at the Technical University of Denmark
and subsequently proposed an executable specification language based on Vienna Development Method (VDM)
and data abstraction [132, 133]; In 1993, Jian Lu visited Cliff Jones at the University of Manchester in the UK and
later introduced data decomposition into VDM [196].

Led by Huowang Chen, the National University of Defense Technology is one of the top software research and
development bases in China. Huowang Chen took three years to obtain his Bachelor’s degree in Mathematics from
Fudan University in 1956. From 1956 to 1959, he studied Mathematical Logic under the chairmanship of Shihua
Hu at Peking University. As one of the early visitors to Europe in computer science, he learned programming at
the UK’s National Physical Laboratory from 1965 to 1967. Huowang Chen led the first design and implementation
of the Fortran compiler for 441B-series computers in China. He is also the chief designer of the software systems
for the YH-1 Supercomputer, the first Petaflops supercomputer in China: His research interests include software
methodology and formal methods, particularly programming languages and their implementation, as well as
systems. Huowang Chen and his students have made significant contributions to formal semantics and formal
verification of software. A notable 1986 work on the formal semantics of CSP proved that the equivalence
between infinite streams and finite observation semantics holds. His group contributed to the formal semantics
of Al Systems [278] [260], formal verification of reactive systems [261] [262] [168], a higher-order unification
algorithm for theorem proving [239] and so on. Huowang Chen has actively promoted the education, research,
and development of formal methods in China. He is also the founding chair of CCF-TCTCS (Technical Committee
on Theoretical Computer Science) of the China Computer Foundation (CCF).

Beihang University is another vital university on FM due to its former rector, Wei Li. Wei Li obtained his PhD
from the University of Edinburgh under the supervision of Gordon Plotkin on structural operational semantics
[153] in 1983. After returning to China, he began lecturing at Beihang University and earned promotion to full
professor in 1986. After returning, he mainly focused on type-theoretic approaches to program development
[154], later shifting to specification logics for knowledge and proposing well-known logics, including Open Logic
[155] and R-Calculus [156].

In the early stage of FM in China, Yongqiang Sun, a professor from Shanghai Jiaotong University, also played a
vital role. Yongqiang Sun earned a Bachelor’s degree in electrical engineering from Shanghai Jiaotong University
and served as a lecturer at Tsinghua University. He later joined Shanghai Jiaotong University as an associate
professor and subsequently advanced to the rank of professor. He primarily focuses on programming-theoretic
results, with an emphasis on functional programming and program synthesis. Influenced by him, a powerful FM
team has been in place since the 1990s.

Form. Asp. Comput.

A Brief History of Formal Methods in China « 5

3.2 Establishment of UNU/IIST

In 1992, with financial support from the Chinese government, the Portuguese government, and the local Macau
government, the United Nations University established the International Institute for Software Technology
(UNU/IIST) in Macau as part of UNESCO. The mission of UNU/IIST is to conduct research on software technologies
and to train IT talent for developing countries. The founding director was Dines Bjerner, and Chaochen Zhou
was the vice director and a principal research fellow. At the beginning, UNU/IIST consisted of two research
teams, one led by Chaochen Zhou on Duration Calculus (DC) [388, 390], and the other led by Dines Bjerner on
formal software engineering, specifically, approaches based on the Rigorous Approach to Industrial Software
Engineering (RAISE) [209]. In 1997, Dines Bjerner left UNU/IIST, and Chaochen Zhou took up the director
position; meanwhile, Chris George joined UNU/IIST and led a group of formal software engineers. Later, in
1998, Jifeng He joined UNU/IIST and led the group of DC, and widened the research topics to the semantic
foundations of programming and software engineering, like the refinement calculus for Component and Object
Systems (rCOS) [113]. Around 2007, Jifeng He left UNU/IIST and joined East China Normal University (ECNU),
and Zhiming Liu assumed leadership of the group. At nearly the same time, Chris George left UNU/IIST, and
Tomasz Janowski assumed leadership of the group, shifting its research focusto e-Government [62]. From 2002
to 2009 (two terms), Jian Lu was on the UNU/IIST board on behalf of the Chinese government. Since 2014, UNU
dismissed the two research teams, restructured UNU/IIST, and renamed it UNU Macau with a new mission to
collaboratively explore how digital technologies can be leveraged for sustainable development, addressing key
issues in the UN 2030 Agenda for Sustainable Development!.

UNU/IIST had a profound impact on FM in China, markedly accelerating the nation’s development in this
domain:

o Firstly, many talented young Chinese scholars have visited UNU/IIST, even completing their PhD theses
there, to receive well-rounded training in FM. In particular, instructors can quickly guide them to the
cutting edge of FM. Many of them took the leading role in the development of FM in China after returning,
for example, Jian Lv (the rector of Nanjing University from 2018 to 2022), Xuandong Li (the director of the
Computer Science Department of Nanjing University from 2006 to 2018) and Jianhua Zhao (the current
vice dean of School of Computer Science of Nanjing University) from Nanjing University, Ji Wang (the
former director of the CCF FM technical committee), Xiaoguang Mao (the previous vice dean of College of
Computer Science and Technology of National University of Defense Technology) and Zhenbang Chen
from National University of Defense Technology, Naijun Zhan (the current director of the CCF FM technical
committee) from ISCAS, Shengchao Qin (the director of the Fermat Labs of Huawei in Hong Kong) and
Geguang Pu (the dean of the School of Software Engineering of ECNU) from Peking University, Huibiao
Zhu from East China Normal University, and so on.

e Secondly, close collaborations between Chinese institutions and UNU/IIST fostered several renowned
research teams in China. For example, because of cooperation with Chaochen Zhou, several strong research
teams on DC at that moment, including Ji Wang’s team in National University of Defence Technology,
Xuandong Li’s team in Nanjing University, Miaomiao Zhang’s team in Tongji University, and Naijun Zhan’s
team in ISCAS, etc.; also, based on the collaboration with Jifeng He, ECNU built a significant group on
formal methods, many of them working on programming theories, specifically UTP. Jifeng He returned to
ECNU and took up the position of dean of the School of Software Engineering after leaving UNU/IIST in
2007.

o Lastly, UNU/IIST opened a window for academic exchange between the Chinese FM community and the FM
international community. UNU/IIST organized various FM schools in China. For example, at the autumn
FM school in Beijing in 1997, the organizers invited leading FM experts to serve as tutors, including John

1See https://unu.edu/macau for details.

Form. Asp. Comput.

https://unu.edu/macau

6 « N.Zhanetal

Rushby, Jim Woodcock, and Jifeng He. In addition, UNU/IIST initiated some international conferences,
like the International Colloquium on Theoretical Aspects of Computing (ICTAC) and the International
Conference on Software Engineering and Formal Methods (SEFM), both by Zhiming Liu. At the same
time, he worked at UNI/IIST, which provides venues for academic exchange and collaboration between the
Chinese FM community and the international FM community.

3.3 Mathematics Mechanization

In China, automated theorem proving is also called mathematics mechanization, a term coined by Wen-tsun
Wu [252]. Wen-tsun Wu is a famous mathematician in topology. During the Cultural Revolution, he shifted
his research interests to theorem proving, specifically solving polynomial equations and inequalities, i.e., semi-
algebraic systems (SAS). He invented the so-called Ritt-Wu methods [251]. Together with Grobner bases methods
[16], Ritt-Wu method has become one of the two primary methods for solving algebraic systems. Following
Wen-tsun Wu’s research line, Chinese mathematicians and computer scientists produced many vital works—for
example, Jiawei Hong developed geometric theorem proving by instance [121]; Jingzhong Zhang, Xiaoshan Gao,
and Shang-Ching Chou worked on point elimination and readable proof generation [52; 365]; Jingzhong Zhang
and Lu Yang advanced numerical parallel theorem proving [364]; and Lu Yang and Bican Xia contributed to real
root isolation and classification of parametric SAS [296, 297, 328].

3.4 Duration Calculus

Duration Calculus is due to Zhou, Hoare and Ravn [390], as one of the significant academic achievements
of the ESPRIT project ProCoS (short for Provably Correct Systems) [12, 112]. DC is an extension of Interval
Temporal Logic (ITL) [207] by introducing the notion of duration, which is the integral of a state function over a
reference interval. DC can effectively specify and reason about qualitative properties and is therefore widely and
successfully applied in the design of real-time systems, e.g., gas burners [220], the European Train Control System
(ETCS) [212], and others. In the early 1990s, an influential research group led by Chaochen Zhou established the
DC research centre at the Technical University of Denmark (DTU). In the early development of DC, many vital
results on DC were obtained there, e.g., a complete proof system for DC due to Michael Hansen and Chaochen
Zhou [103], extended DC due to Chaochen Zhou, Anders Ravn, and Michael Hansen [393], decidability and
undecidability of DC due to Chaochen Zhou, Michael Hansen, and Peter Sestoft [389], a probabilistic extension
of DC due to Zhiming Liu et al. [195], and so on. With Chaochen Zhou’s move to UNU/IIST, the institute evolved
into a new hub for DC research [192], in parallel with efforts in Mainland China. Researchers obtained many
vital results in the later development of DC: e.g., a mean-value calculus due to Xiaoshan Li and Chaochen Zhou
[392], probabilistic DC due to Dang Van Hung and Chaochen Zhou [128], Neighbourhood Logic due to Rana
Barua, Suman Roy, and Chaochen Zhou [7], higher-order DC due to Naijun Zhan, Chaochen Zhou, and Dimitar
Guelev [358, 387], DC with infinite interval due to Xiaoshan Li and Chaochen Zhou [391], model-checking of
DC due to Xuandong Li et al. [4, 157, 386], the design of hybrid systems with DC, as proposed by Ji Wang et al.
[351, 394], and others.

3.5 Unifying Theories of Programming

Inspired by the grand unified theory in physics—which seeks to unify disparate physical theories—Tony Hoare
and Jifeng He developed the Unifying Theories of Programming (UTP) [120]. UTP builds on first-order relational
calculus and interprets different kinds of programs as a specific class of predicates, called (guarded) designs,
which satisfy a set of healthiness conditions. Its semantics interprets program constructs as operators over these
(guarded) designs, while refinement corresponds to logical implication between them. UTP employs Galois
connections [69] to link and translate between different theories.

Form. Asp. Comput.

A Brief History of Formal Methods in China « 7

After Jifeng He moved to UNU/IIST, the institute — along with Mainland China — became a major research
centre for UTP. Based on UTP, Zhiming Liu, Xiaoshan Li, Jifeng He, and other collaborators, mainly from China,
established a semantic foundation for component-based methods, called rCOS [47, 50, 113], as well as a toolkit for
rCOS [138]. Meanwhile, UTP was applied to define formal semantics and verification of different programming
languages, e.g., for the hardware description language Verilog due to Huibiao Zhu and Jifeng He [115], for Circus
(a formal language that combines CSP and the state-based formal method Z [231]) due to Adnan Sherif and
Jifeng He [226], for hardware/software codesign [216, 218], for UML due to Zhiming Liu, Jifeng He, Xiaoshan
Li, and Yifeng Chen [194], and for the combination of CSP and DC based on UTP due to Jifeng He [109]. Jifeng
He also considered extending UTP to a probabilistic setting [111]. Xiong Xu et al. considered extending UTP to
cyber-physical systems and established Higher-order UTP (HUTP) [315]. Researchers have applied HUTP to
define formal semantics for the Architecture Analysis & Design Language (AADL) [313], Simulink/Stateflow
[317], and their combination [316]. They have also used it to demonstrate the correctness of the transformation
from graphical models to formal models in SystemC and ANSI C within MARS [315, 316].

3.6 Concurreny Theories

In the 1990s, in addition to the mechanization of mathematics, DC and programming theories, such as UTP and
process algebra, were also hot topics in the Chinese FM community. Huimin Lin worked with Robin Milner
on process algebra, particularly with Matthew Hennessy, to propose the theory of symbolic bisimulation for
the Calculus of Communicating Systems (CCS) [117], and developed a tool for symbolic bisimulation called
PAM (short for Process Algebra Manipulator) [180, 181]. Later, he extended the notion of symbolic bisimulation
to m-calculus [182]. Mingsheng Ying revisited process algebra from a topological viewpoint [340] and also
investigated it in the probabilistic setting [341]. Yuxi Fu finished his PhD from Manchester University, and then
joined Shanghai Jiaotong University, working in Yonggiang Sun’s group. Later, he became the director of the
Computer Science Department. He proposed y-calculus, which is a variant of z-calculus [84]. Additionally, some
work related to Petri nets, a notable example being that of Chongyi Yuan from Peking University [352].

4 Expansion and Maturity (2000s—Present)

At the end of the last century and the beginning of the new century, Tony Hoare, Jim Woodcock, and others
began advocating for a Grand Challenge in computing research, specifically in the area of verifying compilers
[119]. Meanwhile, influenced by Tony Hoare, Microsoft invested more attention in formal methods and in its
Chinese branch. Excitingly, Microsoft has achieved numerous remarkable successes in applying FM to ensure the
correctness of its software products, particularly drivers. On the other hand, in China, with the rapid development
of the economy, computing technology has been increasingly used in safety-critical domains, such as high-
speed trains, spacecraft, aircraft, nuclear reaction control, and so on. The Yongwen train crash [83] and other
catastrophic accidents raise concerns about guaranteeing the trustworthiness of these systems, particularly
their software. This national strategy demands more powerful and practical FM techniques and tools. These
stimulated substantial growth in research groups and national-level projects. Since the beginning of this century,
the Chinese government has invested increasing amounts of funding in basic research on the foundations of
software. For example, the National Natural Science Foundation of China (NSFC) launched the Grand Research
Program on Fundamentals of Trustworthy Software [114] from 2007 to 2016, led by Jifeng He; The Ministry of
Science and Technology (MOST) launched key projects on high trustworthy software and library in 2008, and
platform towards cyber-physical systems in 2011, and a key specific theme on advanced computing and novel
software from 2021 to 2025. With this strong support, FM in China has expanded significantly, particularly in the
number of research groups, the successful applications of FM in industry, and the publication of high-quality
papers, all of which have increased dramatically over the past twenty years. The research and application of

Form. Asp. Comput.

8 « N.Zhanetal.

—
System-Level R i Domain-Specific Verif.

)
§4.1.2 Design and Verification of Safety-Critical Systems

Model-Based Design Reachable-Set Computation Deductive Verification ‘ E> 54.vle.:fli—i¢;r;?;are
(& \plzzzzdzizzy

§4.1.1 Theorem Proving and Constraint Solving

E> §4.1.5 Security
Verification
SAT and SMT Solving Nonlinear Constraint Solving and Craig Interpolation Interactive Theorem Proving Y J

[Progrum-Level R i 9|

e 2

Automated Reasoning Engines\'

§4.1.3 Program Verification

Verification of Concurrent Programs Verification of Probabilistic Programs Verification of Quantum Programs

Invariant Generation and Termination Analysis Static Analysis and Automatic Verification

Fig. 1. The hierarchy for categorizing key developments of formal methods in China (2000s—present).

formal methods in China have matured and become a major contributor to the global FM community, as reflected
in the growing number of papers published annually in top-tier journals and conferences in the field.

4.1 Key Developments

In this subsection, we provide a brief overview of key developments of formal methods in China over the past
20 years. We highlight results that have, according to the authors’ perspectives, had a notable international
impact and/or become characteristic of the Chinese FM community, either in theory or practice. These results are
categorized according to the hierarchy depicted in Section 1.

4.1.1 Theorem Proving and Constraint Solving.

SAT and SMT Solving. Constraint solving is an eternal challenge and a hot topic in computer science. In the past
few decades, Chinese computer scientists have also made significant efforts in this area. The Boolean satisfiability
(SAT) problem, the first classical NP problem, has attracted increasing attention as researchers have developed
more efficient and practical algorithms for its wide applications in computer science and other fields. These
algorithms can be classified into Conflict-Driven Clause Learning (CDCL)-based and local search-based, while
the former is complete with low efficiency; in contrast, the latter is more efficient, but incomplete. Xishun Zhao
et al. proposed an improved CDCL-based approaches by reduction based on the structure of DPLL [140, 141, 145].
Mingyu Xiao et al. improved the upper bound of SAT solving by applying parametric complexity analysis [53].
Shaowei Cai and Kaile Su significantly enhanced the efficiency of local search for SAT by examining configurations
[20], a technique widely employed in various local search algorithms for the SAT problem. Meanwhile, Shaowei
Cai et al. also considered applying the local search technique to solving linear integer arithmetic [19]. Also, Bican
Xia investigated combining local search with cylindrical algebra decomposition to improve the efficiency of solving

Form. Asp. Comput.

A Brief History of Formal Methods in China « 9

SAS [150]. Meanwhile, Feifei Ma et al. considered the counting problem of SAT [94] and satisfiability modulo
linear arithmetic (SMT(LA)) [95, 96], as well as optimization modulo nonlinear real arithmetic (OMT(NRA)) [129].

Nonlinear Constraint Solving and Craig Interpolation. Bican Xia, Naijun Zhan et al. considered the decidability
of extensions of Tarski algebra with specific forms of exponential and trigonometric functions, as well as their
combinations, and its application to the reachability analysis of hybrid and dynamical systems [42, 43, 85]. Zhilin
Wu et al. gave decision procedures for several subsets of string constraints [44-46, 289].

Naijun Zhan, Bican Xia et al. provided the first algorithm for synthesizing nonlinear Craig interpolants based
on Stengle’s Positivstellensatz and semidefinite programming [59]. Then, they extended Motzkin’s theorem to
the nonlinear case, yielding an algorithm for synthesizing nonlinear Craig interpolants for quadratic concave
nonlinear theories, which partially addressed the issue of shared variables in prior work [86]. Furthermore, they
developed another algorithm for a nonlinear Craig interpolant for nonlinear theories subject to Archimedean
conditions [87]. Finally, by homogenising unbounded optimizetion to obtain bounded optimizetion, they provided
a complete solution for generating nonlinear Craig interpolants for nonlinear theories [291].

Interactive Theorem Proving. Also, in recent years, some Chinese computer scientists have focused on the
implementation of (interactive) theorem provers, including Bohua Zhan’s AUTO2 [356] for improving the
automation of Isabelle, and HOLPY [357], which is a on-line theorem prover implemented using Python, Qinxiang
Cao’s VST-A for program verification [397], and Bohua Zhan et al’s OSVAUTO [295] for verifying operating
systems, and Mingsheng Ying et al’s interactive provers based on quantum Hoare logic for quatum programs
[188, 395], Shuling Wang et al’s interactive theorem prover HHLProver based on Hybrid Hoare Logic (HHL) for
CPS [277], as well as its automated parts HHLPy [225] and HHLPar [135].

4.1.2 Design and Verification of Safety-Critical Systems. Likewise, designing and verifying safety-critical systems
remains a significant challenge in computer science and control theory.

Model-Based Design. Model-driven design methodologies; rooted in the “divide-and-conquer” principle, are the
primary approach to designing complex safety-critical systems. While the industry broadly advocates for graphical
modeling and simulation, which are intuitive and efficient, these approaches often lack the rigor required for
safety-critical domains. Conversely, academia promotes formal methods, offering strictness but usually proving
difficult to understand and inefficient in practice. Naijun Zhan and his team proposed a MARS framework [37] to
address the seamless integration of graphical and formal development for safety-critical systems. It consists of
a compositional graphical modeling approach by combining AADL with Simulink/Stateflow [316], alongside
a formal modeling method based on Hybrid CSP (HCSP) [359], and their inter-conversion [39, 402, 403], and a
refinement theory for code generation from HCSP to SystemC [325] and ANSI-C [276]. As mentioned before,
researchers developed HUTP [315] to provide a unified mathematical semantic model for safety-critical systems
and to ensure the theoretical correctness of model transformations. Furthermore, to formally model the mobility
of CPS, they extended classic 7-calculus to hybrid systems, called hybrid & calculus [314]. Also, Lei Bu et al.
made another attempt and proposed an approach that provides scenario-based flexible modelling and scalable
falsification for reconfigurable CPSs [264].

Reachable-Set Computation. Designing and verifying complex safety-critical systems relies heavily on com-
puting reachable sets, since control synthesis, path planning, analysis, and verification naturally reduce to
this task. However, researchers face the challenge that this computational problem is, in general, theoretically
undecidable. Consequently, they primarily focus on approximating reachable sets; however, researchers have
long faced constraints in this work due to challenges in computational efficiency, scalability, and applicability
across various domains. In [85], the authors invented a decidability algorithm for an extended Tarski algebra
with specific forms of exponential functions by utilizing pseudo-derivative sequences. Based on this, Gan et al.

Form. Asp. Comput.

10 « N.Zhanetal

proved that the reachability problems for three classes of linear and three classes of nonlinear dynamical systems
are decidable, representing the strongest reachability results to date. Zhikun She et al. first proposed interval
arithmetics-based approaches to approximate reachable sets and implemented a tool called HSolver [219]. Xue
et al. proposed an efficient approximation algorithm for reachable sets based on topological homeomorphism
and boundary propagation [322, 322], and an efficient approximation algorithm for reachable sets based on level
sets and semidefinite programming was introduced [318]. Lei Bu et al. have invented many efficient algorithms
for computing specific forms of linear dynamical and hybrid systems in bounded and unbounded time horizons
[299-301, 330] and the corresponding tool, BACH [15].

Deduction Verification. Compared to model-checking based on reachable-set computation, deductive verification
can perform unbounded-time verification with greater scalability. Hence, deductive verification of safety-critical
systems has increasingly attracted more attention in recent years, with a powerful specification logic as the
cornerstone. To this end, Naijun Zhan and his team extended Hoare logic to hybrid systems, developing Hybrid
Hoare Logic (HHL), which comprises two versions: a DC-based version [187] and a generalised version without
DC [360]. Both versions are mechanically supported by HHLProver [277] together with HHLPar [135] and HHLPy
[225].

As with applying classic Hoare logic to program verification, the most challenging task here remains invariant
generation—particularly differential invariant generation for continuous evolution, which researchers typically
model with ODEs. In this respect, Chinese computer scientists made essential contributions. Currently, template-
based constraint-solving techniques are a significant approach for synthesising invariants for programs and
safety-critical systems. There are three challenges along this line, i.e.,

(1) conditions on a template (a predefined parametric formula) being a (differential) invariant,
(2) efficient methods to derive constraints from the template and solve the resulting constraints,
(3) how to predefine templates.

Regarding 1, Jiang Liu, Naijun Zhan, and Hengjun Zhao in [190] established a necessary and sufficient condition
for parametric SAS to be a differential invariant for the considered polynomial dynamical system. Regarding
point 2, theory shows—based on the necessary and sufficient condition in [190]—that template-based invari-
ant synthesis reduces to quantifier elimination [190] or bilinear programming [48, 331]. However, quantifier
elimination has double exponential complexity, and bilinear programming is NP-hard. As an alternative, Prajna
and Jadbabaie introduced in their seminal work [215] a specific form of invariants called barrier certificates
(BC). To enable efficient synthesis using semidefinite programming, the barrier-certificate condition in [215]
strengthens the general condition encoding inductive invariance. Since then, researchers have devoted significant
efforts to developing more relaxed (i.e., weaker) forms of barrier-certificate conditions that still admit efficient
synthesis, thereby introducing, for example, exponential-type barrier certificates [144], Darboux-type barrier cer-
tificates [354], general barrier certificates [58], and vector barrier certificates [229]. To achieve efficient synthesis,
these barrier-certificate conditions share a common property: convexity. Qiuye Wang et al. filled the gap between
the necessary and sufficient conditions of invariants and all kinds of BC conditions. They proposed an approach
based on difference of convex programming to synthesise the so-called invariant BCs from the necessary and
sufficient conditions [274, 275]. To address point 3, researchers have proposed several DNN-based approaches,
e.g., [375, 376, 379, 380].

Chinese computer scientists have also investigated the verification and design of cyber-physical systems with
complex behaviours, including time delay and stochasticity. Time delays are unavoidable and omnipresent aspects
of modern control systems, often exerting a decisive influence on system control performance and safety. However,
verifying time-delay systems is exceptionally challenging because the solutions of delay differential equations
depend on their execution history, moving beyond simple Markov processes. Historically, system designers have
often dangerously overlooked these delays. Naijun Zhan and his collaborators did a systematic work on the

Form. Asp. Comput.

A Brief History of Formal Methods in China « 11

verification and controller synthesis for delay dynamical and hybrid systems, including: they presented a first
method for simple DDEs, grounded in Taylor models and stability analysis of discrete systems [400]; Later, for
general linear DDEs, they offered a verification method using spectral theory and stability analysis of dynamic
systems, which was then extended to general DDEs via linearization [76]; they also generalized existing Ordinary
Differential Equation (ODE) verification techniques, such as those based on topological homeomorphism and
simulation, to DDEs [36, 321, 323]. Furthermore, they introduced the concept of Time-Delay Hybrid Automata
and proposed a synthesis algorithm for switch control in time-delay hybrid systems [5]. They also made initial
attempts to verify stochastic dynamical and hybrid systems [75, 319, 320].

In addition, Zhenhua Duan, Cong Tian, et al. considered extending ITL with projection and proposed a so-called
propositional projection temporal logic (PPTL) [67, 248]. Based on PPTL, Zhenhua Duan and his collaborators
developed a systematic logical approach called MSVL [201, 327] for the design of safety-critical systems. With
MSVL, developers can first specify a safety-critical system with PPTL and model it in MSVL. They can then check
whether the MSVL model (program) satisfies the PPTL specification through simulation, model checking, or
theorem proving. Finally, they can automatically generate correct ANSI-C code from the verified MSVL model.

4.1.3 Program Verification. Ensuring the correctness of programs is one of the fundamental scientific problems
in computer science, dating back to the advent of the modern computer. As advocated by Tony Hoare [119], it
becomes increasingly critical and challenging as safety-critical applications and software-defined trends emerge.
In this subsection, we will summarize the efforts of Chinese computer scientists in this regard in the past decades.

Invariant Generation and Termination Analysis. The Floyd-Hoare-Naur Inductive Assertion Approach has
become the dominant approach for program verification, in which termination analysis and invariant generation
are the two most challenging problems.

Researchers have proposed numerous approaches to invariant generation in the literature, and they have found
that constraint-solving-based program invariant synthesis is gaining traction. In this approach, they predefine a
parametric invariant template and then encode the (inductive) invariant conditions into constraints. Researchers
face a long-standing challenge in efficiently solving or reducing the encoded constraints, since existing approaches
either require quantifier elimination with double-exponential complexity or reduce to non-convex optimizetion
problems, which are generally NP-hard and lack efficient solvers. To attack the challenge, in [292], Hao Wu et al.
proposed a novel algorithm for synthesizing SAS invariants of polynomial programs by exploiting Lasserre’s SOS
hierarchy to reduce a non-convex program (a bilinear program) to a sequence of convex programs (semidefinite
programs). Furthermore, they proved that their algorithm is sound, convergent, and weakly complete under a
specific robustness assumption on templates. Moreover, in recent years, neural-symbolic computation has become
popular for invariant generation. E.g., Fei He et al. introduced a novel interval sample-based approach for loop
invariant generation [311], and Shiwen Yu et al. proposed an approach to invariant generation by combining
reinforcement learning and SMT solving [350]. Xiaoxing Ma et al. proposed the approaches to leveraging LLMs to
improve the capabilities for invariant generation [21, 286]. As a generalizetion, uninterpreted predicate solving is
a fundamental problem in formal verification, including loop-invariant and Constrained Horn Clauses predicate
solving. Ji Wang, Shiwen Yu et al. proposed a novel discrete neural architecture combined with the Abstract
Gradient Descent (AGD) algorithm to solve uninterpreted predicates in discrete hypothesis spaces directly. AGD
introduces abstract gradients for discrete neurons, with computation rules defined in an abstract domain. Their
tool achieves significant progress on uninterpreted predicate solving tasks [349].

The termination problem of programs is equivalent to the well-known halting problem and, hence, is unde-
cidable in general. A complete method for termination analysis for programs, even for linear or polynomial
programs, is therefore impossible. In [167], Yangjia Li et al. identified a subclass of polynomial programs in which
all expressions are polynomials, and all test conditions are Boolean combinations of polynomial equations, and
proved the decidability of the termination. Fei He et al. developed data-driven algorithms to prove termination

Form. Asp. Comput.

12 « N.Zhanet al.

and disprove non-termination (for recurrent sets) in both classical programs [102, 310] and probabilistic programs
[30]. In addition, Fei He and his team proposed the first regression termination analysis framework for evolving
programs [104] and developed highly efficient regression analysis algorithms for predicate abstraction [348] and
interprocedural verification [108].

Static Analysis and Automatic Verification. Static analysis is essential for understanding and reasoning about
the behaviours and properties of programs without executing them. Yue Li and Tian Tan at Nanjing University
have been dedicated to addressing a series of fundamental and challenging research problems in program analysis,
including pointer analysis (also known as points-to analysis or alias analysis) [159-161, 241-243], as well as
complex language feature analysis such as reflection analysis [162-165] and native code analysis [361]. They have
developed a new program analysis platform for Java called Tai-e [240] on top of which more effective foundational
analysis techniques are built [149, 202]. They have also developed novel analysis methods for various software
frameworks on Tai-e, including data persistence frameworks [179], microservices frameworks [368], and Android
frameworks [40]. These methods have enabled the identification of real security vulnerabilities and quality issues
in practical applications that rely on these frameworks, which previous work failed to detect.

Scaling sophisticated static analyses to large codebases has remained a key challenge in program analysis
research for decades. Zhigiang Zuo and his collaborators at Nanjing University proposed a systematic program
analysis that scales sophisticated, context-sensitive, flow-sensitive, and even path-sensitive analyses to ten million
lines of code. Their key idea is to leverage massive computing resources to accelerate the static analysis tasks.
They proposed a series of studies for various analysis tasks and computing resources, including the disk-based
[268], GPU-accelerated [408], and cluster-based [406] [98] systems for Context-Free-Language (CFL) reachability
analysis, the disk-based [409][279] and cluster-based [237] systems for general dataflow analysis, and the system
[407] for path-sensitive analysis, and have achieved promising results. To address the challenges posed by
frequent code evolution, Yu Wang et al. at Nanjing University introduced an incremental approach to value-flow
analysis [266]. To address the practical utility of static analysis warnings, they proposed a deep learning—based
bug-prediction approach to enhance accuracy [280].

Pursuing the automatic analysis and verification of critical systems, Ji Wang and his collaborators, Wei Dong,
Zhenbang Chen, Ligian Chen, and Liangze Yin, at the National University of Defence Technology, have contributed
to program analysis and verification via various formal methods, including model checking, abstract interpretation,
and symbolic execution. They are the earliest group to work on model checking of software systems over the
model level and program level in China, such as model checking and testing Statecharts [64, 152, 263] as well as C
programs [333, 334]. Following this line of research, Yin et al. presented a scheduling-constraint-based abstraction-
refinement method for bounded model checking of multi-threaded C programs [338]. The notion of Event Order
Graph (EOG) is proposed, along with two graph-based algorithms over EOG for counterexample validation
and refinement generation, aiming to obtain a small yet effective refinement constraint. The implementation
tool YOGAR-CBMC [335] won the first gold medal in the Concurrency Safety category of the International
Competition on Software Verification (SV-COMP) for China in 2017 and continued to win in 2018 and 2019. They
extended the method for weak memory models [336], developed parallel implementations [337], and created
incremental updates [339], all of which researchers have successfully applied.

Abstract Interpretation is a general theory of sound approximation of program behaviors. It provides a powerful
framework for automatically inferring properties over programs by ‘executing’ them on abstract domains. Through
the international exchange program, Ji Wang sent Liqian Chen to ENS, and the research on abstract interpretation
in China began to develop. With the collaboration of Patrick Cousot and Antoine Miné, they devised a sound
floating-point polyhedra abstract domain [32] and a set of efficient yet precise abstract domains [31, 33-35].
They have designed specific abstract domains and successfully applied abstract interpretation to analysis of

Form. Asp. Comput.

A Brief History of Formal Methods in China « 13

interrupt driven programs [293] and programs involving machine integer semantics together with bit-vector
operations[70].

For symbolic verification of software, Ji Wang and Zhenbang Chen et al. have contributed to symbolic execution,
including coupling path exploration with constraint solving and optimising path exploration. First, they propose
to utilize the constraint solver in a white-box manner and explore the reuse possibilities of path exploration
and constraint solving in tightly-coupled symbolic execution [49, 227, 228, 370]. It provides novel perspectives
and approaches for addressing the challenges of constraint-solving technologies within the context of symbolic
execution. Second, they presented a novel guidance method for steering path exploration in symbolic execution
and a path slicing approach, both specifically targeted at regular property verification [347, 371]. By leveraging
symbolic execution, they proposed a symbolic verification method for Message Passing Interface (MPI) programs
[346], which is leading the static analysis tools for MPI programs. To combine abstract interpretation and symbolic
execution, they have presented block-wise abstract interpretation combining abstract domains with SMT [131],
and built a tool called AISE [185] which won the first golden medal for China in the Loop track of the ReachSafety
category of SV-COMP 2025 [10].

Verification of Concurrent Programs. Concurrency is a ubiquitous feature in modern software systems, often
employed to harness the power of multi-core processors and optimize performance. However, ensuring correctness
in concurrent programs is challenging because their execution involves nondeterministic interleavings among
multiple threads. Testing is limited because it often fails to locate and reproduce bugs that may appear only in a
few specific program execution interleavings. Xinyu Feng and his collaborators did a systematic work on the
formal verification of concurrent programs. First, they presented a rely-guarantee-based simulation technique
called RGSim for verifying concurrent program refinement [175, 176]. Later, based on RGSim, they studied several
applications of concurrent program refinement verification. Specifically, they developed a program logic, LiLi, for
verifying the linearizability and progress properties of concurrent objects [171-173, 177, 178]. They also proposed
a practical verification framework for preemptive OS kernels and applied it to verify a commercial preemptive
OS pC/OS-1I [304]. Additionally, they developed a framework for verifying the compilation and optimization of
concurrent programs [130, 355]. They also provided methods for verifying conflict-free replicated data types in
distributed systems [174] and for verifying concurrent randomized programs [72]. In addition, Fei He and his
collaborators developed an ordering-consistency theory together with decision algorithms and further built a
dedicated SMT solver for concurrent program verification [71, 105, 191, 236]. Specifically, they developed the
verification tool Deagle [106], which won the Concurrency Safety category of SV-COMP in 2022, 2023, and 2025.

Verification of Probabilistic Programs. Probabilistic programming is a widely used paradigm for describing
stochastic models as executable computer programs. Static analysis of probabilistic programs aims to algo-
rithmically derive tight, guaranteed outcomes for stochastic properties, e.g., probabilities and expected values.
Hongfei Fu et al. have made contributions in various aspects of static analysis of probabilistic programs. These
contributions include termination analysis (both qualitative and quantitative) [24, 27-29, 126], expected cost
analysis [25, 26, 272], probabilistic assertion analysis [235, 265], sensitivity analysis [271] and Bayesian poste-
rior analysis [273]. Mingshuai Chen and his collaborators have contributed a taxonomy of formal techniques
for reasoning about (quantitative) fixed points that capture the semantics of infinite-state loopy probabilistic
programs [77, 169]. The addressed tasks include the verification (and refutation) of sound upper bounds [9],
lower bounds [74], and exact semantics [38, 142, 143] (for Bayesian inference). A synthesis complements the
verification perspective framework for (semi-)automatically generating quantitative loop invariants [8] as well as
an efficient procedure for deciding (positive) almost-sure termination [210]. Di Wang et al. proposed various type
theory-related techniques for the expected-cost analysis [61, 256, 258], static analysis [255, 259], and inference

Form. Asp. Comput.

14 « N.Zhanet al.

[257] of probabilistic programs. Further contributions in this thread include Yijun Feng et al’s result on synthe-
sizing quantitative polynomial loop invariants [81] and Yuxin Deng et al’s results on assertion-based logic for
local reasoning [290] and termination analysis [309] for probabilistic programs.

Verification of Quantum Programs. Quantum software is indispensable for harnessing the power of quantum
computers; however, program design is notoriously error-prone due to the distinctive quantum features of
no-cloning and entanglement. Effective verification methods are therefore essential. Mingsheng Ying introduced
the first full-fledged quantum Hoare logic, together with a novel proof of relative completeness [342]. Researchers
subsequently extended this framework to cover quantum programs with classical variables [80], parallel composi-
tion [345], nondeterministic choices [79], and distributed quantum programs with classical communication [78].
To improve automation, further work reduced invariant [344] and ranking function generation [166] of quantum
programs to semidefinite programming. Alternative verification approaches include projector-based quantum
Hoare logic [398] and relational Hoare logic [6]. On the implementation side, Naijun Zhan’s group built a
theorem prover for Ying’s original logic in Isabelle/HOL [189]. At the same time, Zhou et al. [396] developed a
general-purpose platform for quantum programming and verification in Coq. Ying provides a comprehensive
introduction to this line of research in his monograph [343].

4.1.4 Hardware Verification. Formal verification of hardware designs refers to a family of techniques that have
rigorous mathematical foundations, such as SAT solvers and model checking, to prove whether the hardware
Register-Transfer Level (RTL) designs conform to their specifications, whether two hardware designs are equiva-
lent, or whether CPU designs conform to the Instruction Set Architecture (ISA) specifications. Compared with
testing and simulation, formal verification offers completeness and thus provides a higher level of safety/security
assurance for hardware designs.

Several research groups at ISCAS, ECNU, and HKUST (Guangzhou) have achieved notable results in the formal
verification of hardware designs, including hardware model checking, ISA compatibility checking, equivalence
checking, and assertion-based verification. On hardware model checking, Qiusong Yang et al. proposed several
optimization techniques for the classical IC3 algorithm (short for Incremental Construction of Inductive Clauses
for Indubitable Correctness, aka, Property Directed Reachability (PDR)), including fine-tuning of SAT solvers
[233], lemma prediction [232], and optimization strategies for critical proof obligations [399]. Jianwen Li et al.
proposed the concept of “i-good lemmas” to improve IC3/PDR [298]. Hongce Zhang et al. proposed DeepIC3,
where graph neural networks are integrated to improve the result of local inductive generalization of IC3
[122]. Cong Tian, Zhenhua Duan, and others improved the efficiency of software/hardware model checking by
developing techniques to detect spurious counterexamples and refine abstract models in counterexample-guided
abstraction refinement (CEGAR) [249, 250]. On formal verification of ISA-compatibility of RISC-V CPU designs,
Zhilin Wu et al. developed ChiRVFormal [224], a RISC-V ISA-compliant formal verification tool for RISC-V CPU
Chisel designs, which includes a parameterised Chisel reference model for the RISC-V ISA and novel mechanisms
for synchronising the reference model with RISC-V CPU designs that incorporate complex microarchitecture
features. On equivalence checking and assertion-based verification, Shaowei Cai et al. proposed to integrate exact
simulation into sweeping for datapath combinational equivalence checking and improve the performance of the
open-source equivalence checker ABC [206] for more than two orders of magnitude [51]. Hongce Zhang et al.
proposed AssertLLM, a framework that uses large language models (LLMs) to automatically generate assertions
from natural-language specification files (rather than sentences) [326].

4.1.5 Security Verification. Cryptographic algorithms play a pivotal role in safeguarding sensitive information.
However, their implementations are often vulnerable to various physical attacks, including power-side-channel,
timing-side-channel, and fault-injection attacks. Therefore, verifying the security of cryptographic implementa-
tions against physical attacks is essential but challenging, because security properties are non-functional and

Form. Asp. Comput.

A Brief History of Formal Methods in China « 15

their verification extends beyond traditional correctness verification. Early efforts have proposed verification
techniques targeting some physical attacks, but they are limited in accuracy and scalability.

Fu Song and his collaborators did a systematic work on the security verification of cryptographic implementa-
tions. They proposed a refinement-based approach for verifying first-order power side-channel security, which
synergistically integrates a fast but inaccurate semantic rule-based approach and an accurate but flow constraint
solving-based approach for refining inference rules [92, 363], bringing the best of both worlds. Researchers ex-
tended the refinement-based verification approach to handle arithmetic programs in an assume-guarantee-based
compositional style, thereby further improving verification efficiency and usability [90, 91]. They also generalised
a refinement-based approach and a compositional reasoning approach to verify higher-order power side-channel
security, using a GPU-accelerated parallel algorithm for constraint solving and an algorithm for automatically
inferring assumptions [88, 89, 93]. They propose a refinement-based approach to verify timing-side-channel
security, which synergistically integrates a flow- and context-sensitive lightweight taint analysis with an ac-
curate yet flow-self-composition-based refinement of taints [18, 217]. To verify the security of cryptographic
implementations against fault injection attacks, a novel SAT-encoding approach was proposed that reduces the
verification problem to SAT solving, taking all potential faults into account [238]. Additionally, a first-round-based
composition verification method was introduced to handle entire cryptographic implementations [238]. Moreover,
researchers from Zhejiang University and their collaborators presented a generalised security-preserving refine-
ment technique for verifying information-flow security of concurrent systems [234]. Theoretically, researchers
can represent many security properties as different kinds of opacity, classifying them into state-based and
action-based categories. In the untimed setting, researchers have proven that state-based and action-based opacity
are decidable for finite-state automata. However, in general, both state-based and action-based opacity become
undecidable in the timed setting, e.g., as represented by timed automata [22]. Naijun Zhan and his collaborators
established a hierarchy of state-based and action-based opacity for subclasses of timed automata [3, 270].

4.1.6 Al Verification. With the great success of deep learning-based Al in many application domains, as advocated
by Jifeng He, guaranteeing the trustworthiness of Al is becoming increasingly important and challenging [110].
Over the past decade, Chinese computer scientists have increasingly focused on this issue, primarily on verifying
neural networks, deep learning systems, and black-box systems.

In the context of formal verification of neural networks, Lijun Zhang et al. proposed a symbolic-propagation-
based method to enhance the precision of neural network verification via abstract interpretation [329]. Wang Lin
et al. presented an approach that transforms the robustness verification problem into an equivalent nonlinear
optimizetion problem [184]. Min Zhang et al. proposed provably tightest linear over-approximation techniques
and acceleration methods for efficient and precise neural network verification [100, 374]. Jingyi Wang et al.
established various techniques for repairing deep neural networks with provable guarantees [198, 199]. On the
verification of deep learning programs, most current research focuses on properties or defects at the model
level. Yingfei Xiong et al. applied static analysis based on abstract interpretation to detect numerical defects
in deep learning programs using tailored abstraction techniques, such as tensor partition abstraction, that suit
the characteristics of these programs [373]. On the formal verification of black-box systems, Bai Xue et al.
proposed a probably approximately correct (PAC) model checking method for verifying finite-time continuous
“black-box” dynamical systems [324]. Moreover, Bai Xue et al. presented a practical framework to analyze the
robustness properties of deep neural networks (DNNs) [151], which first abstracts the local behaviour of a DNN
via an affine model with the PAC guarantee based on black-box learning, and then infers the corresponding
PAC-model robustness property. Complementary to neural network verification, Zengyu Liu et al. proposed a
guess-and-check-based framework to automatically synthesise sufficient preconditions for guaranteeing safety
and robustness postconditions [193]. Min Zhang et al. proposed a unified framework for the formal verification of
neural network-controlled systems that combines qualitative and quantitative approaches by defining and training

Form. Asp. Comput.

16 « N.Zhanet al.

multiple barrier certificates [384]. They also introduced CEGAR into the development process of verifiably safe
deep reinforcement learning systems, which involves iteratively training neural network controllers on abstracted
and refined system states guided by counterexamples [134].

4.2 The CCF Formal Methods Technical Committee; Major FM Teams and Venues

With the rise of increasingly safety-critical applications, growing support from the government and industry,
and a steadily expanding research community, the establishment of a formal-methods organizetion became both
timely and necessary. Thanks to the vision of pioneers such as Chaochen Zhou, Wei Li, Jifeng He, and Huimin
Lin, and the dedicated efforts of Ji Wang, Xuandong Li, Zhiming Liu, Zhenhua Duan, Naijun Zhan, and many
others, the CCF Technical Committee on Formal Methods (CCF-TCFM) was formally founded in 2016. The first
edition of CCF-TCFM (2016-2019) comprised approximately 120 members. Huimin Lin was the director, and
Yuxi Fu, Yi Wang, and Ji Wang were the vice directors, with Naijun Zhan as the secretary. The second edition
of CCF-TCFM (2020-2023) consisted of approximately 180 members. Ji Wang served as the director, with Yuxi
Fu, Geguang Pu, and Naijun Zhan as vice-directors, and Wei Dong as secretary. Currently, the third edition of
CCF-TCFM (2024-2026) comprises approximately 240 members. Naijun Zhan is the director, and Wei Dong, Min
Zhang, and Cong Tian are the vice directors, with Zhilin Wu as the secretary.

Currently, major FM teams in China include those at ISCAS, ECNU, Nanjing University, the National University
of Defense Technology, Peking University, Tsinghua University, Beihang University, Xidian University, Shanghai
Jiaotong University, Tongji University, Zhejiang University, and Capital Normal University, along with industrial
groups at Huawei, Ant Group, the China Aerospace Science and Technology Corporation (CASC), and others.

In addition to domestic teams, the development of formal methods in China has long benefited from the
engagement of prominent foreign researchers. A notable example is Jean-Raymond Abrial—the founder of B-
Method [1] and Z notation [231] for developing safety-critical software systems. Abrial served for many years as an
Adjunct Professor at ECNU, where he worked closely with local researchers, including the group led by Jifeng He,
contributing to both foundational advances and industrial-scale applications of formal methods. His collaboration
notably supported the development of safety-critical software for metro-train control systems, including the first
driverless metro in Shanghai. As a leading researcher in the Program of Intelligence Introduction for Innovation
at Chinese Universities, Abrial also played an active role in bringing international academic resources to China.
In recognition of these contributions, he received the International Science and Technology Cooperation Award
of the People’s Republic of China in 2016 [68].

The CCF-TCFM holds its annual conference, FMAC, each year in early winter. Since 2020, FMAC has been
held jointly with NASAC (the National Software and Applications Conference) — the annual joint conference of
CCF-TCSE (CCF Technical Committee on Software Engineering) and CCF-TCSS (CCF Technical Committee on
System Software). This joint conference, known as CCF ChinaSoft, has grown into the most influential academic
venue for software theories, tools, and applications in China, as evidenced by its 2024 attendance of more than
2,500.

Chinese computer scientists also initiated several international conferences to promote academic exchange and
strengthen collaboration between the Chinese and the global FM communities. The first was TASE (International
Symposium on Theoretical Aspects of Software Engineering), launched by Jifeng He in 2006; Another is SETTA
(Symposium on Dependable Software Engineering Theories, Tools, and Applications), which was established
in 2015 through the efforts of Chinese researchers—including Chaochen Zhou, Zhenhua Duan, Zhiming Liu, Ji
Wang, Xuandong Li, Naijun Zhan, and others—together with international colleagues such as Cliff Jones, Deepak
Kapur, Martin Fréinzle, Kim Larsen, Sriram Rajamani, and Kwangkeun Yi.

In addition to the China-initiated conferences, many FM-related international conferences have been held in
China, including CONFESTA (the joint conference comprising CONCUR, FORMATS, QEST, and SETTA) in 2018,

Form. Asp. Comput.

A Brief History of Formal Methods in China « 17

FM (International Symposium on Formal Methods) in 2021, as well as multiple editions of ATVA (International
Symposium on Automated Technology for Verification and Analysis), ICFEM (International Conference on Formal
Engineering Methods), MEMOCODE (ACM-IEEE International Symposium on Formal Methods and Models for
System Design), and ICECCS (International Conference on Engineering of Complex Computer Systems).

5 Industry Contributions and Applications

This section provides a brief overview of the industrial contributions and applications of formal methods in China.
It primarily involves safety-critical domains such as aerospace, transportation, telecommunications, chip design,
operating systems, and finance. In many of these domains, software assurance standards—such as DO-178B/C,
DO-333, CC EAL 1-7, and SIL 1-4—explicitly mandate or encourage the adoption of formal methods as a means
to achieve high assurance levels.

Aerospace. Supported by the NSFC’s Grand Research Program on Fundamentals of Trustworthy Software (2007-
2016), China has established a comprehensive framework of trustworthy assurance techniques for aerospace
embedded software development, leveraging formal methods such as model checking, abstract interpretation,
and deductive verification; see details in [114]. Representative contributions and applications include: (i) A joint
research and engineering effort between the China Academy of Space Technology (CAST) and ISCAS, which
developed the MARS toolchain [37] for modeling, analysis, and verification of hybrid systems. MARS was later
applied to the verification of control programs for the Chang’e-3 lunar lander [378] and the Tianwen-1 Mars
spacecraft; (ii) The work by the research team at the National University of Defense Technology, which proposed
sequentialization-based static analysis for detecting numeric-related runtime errors in interrupt-driven programs
[293]—a characteristic feature in aerospace software systems; (iii) The work by Yongwang Zhao et al. from
Beihang University, which identified multiple errors in the widely adopted avionics embedded software standard
ARINC 653 [362, 383].

Railway. Naijun Zhan’s research group at ISCAS has integrated their interactive theorem prover HHL Prover
[277] with the MARS toolchain [37] and applied it, in collaboration with Beijing Jiaotong University, to certify
the safety of the Chinese Train Control System (CTCS) under combined scenarios [401]. The research team at
Nanjing University developed the BACH toolkit [15] to verify the bounded reachability of linear hybrid automata,
supported it with online compositional verification, and deployed it on the hardware-in-the-loop simulation
platform of the National Engineering Research Center of Train Control Systems. Fei He et al. from Tsinghua
University, developed the VCS tool for model checking component-based systems [107] and created the temporal
verification framework VeRV for vehicle bus systems [367]; researchers have applied both results to analyze and
verify high-speed railway train control software.

System Software. Formal methods have been extensively used in China to establish correctness guarantees for
system software, e.g., operating systems (OS), compilers, and databases. Xinyu Feng et al. developed a practical
verification framework for preemptive OS kernels and applied it to verify key modules in the commercial
embedded real-time OS pC/OS-II [304]. Building on this work, Naijun Zhan et al. incorporated worst-case
execution time (WCET) analysis and verified another real-time OS widely used in Chinese space missions,
thereby achieving the Common Criteria Evaluation Assurance Level (CC-EAL) 5+ certification. Also, an adapted
framework based on the Verified Software Toolchain (VST) [397] was applied to the verification of a variant of the
distributed operating system HarmonyOS, called LiteOS-M (around 8K LoC, which also helped it pass CC-EAL
5+ certification. In parallel, Yongwang Zhao et al. proposed a similar rely-guarantee verification framework
[221, 222, 382], which they used to verify ARINC 653 [362]—the de facto standard of partitioning operating
systems—as well as other microkernels [312]. Yi Li and colleagues at Huawei Inc. applied a broad suite of formal

Form. Asp. Comput.

18 « N.Zhanet al.

methods to verify Harmony-OS kernel, leading to its certification with CC-EAL 6.2 Moreover, Haibo Chen et
al. have applied verification and optimization techniques to certify the correctness of concurrent file systems
[404, 405], weak memory models [211], and database query rewrite rules [284]. Research groups at Shanghai Jiao
Tong University have long pursued deductive verification of system software. For example, Qinxiang Cao et al.
worked on separation-logic-based C program verification [294, 397], and Yuting Wang et al. produced verified C,
Java, and Rust compilers [281, 282, 366, 372].

Beyond the surveyed applications, a substantial body of work explores the use of formal methods in industrial
control systems and robotics, e.g., [60, 269, 381], as well as in the modeling and verification of security/network
protocols, e.g., [99, 170, 204].

We note that the work surveyed in this section is far from being exhaustive, considering especially the
ever-growing application of formal methods in Chinese technology companies—such as Huawei and ZTE in
telecommunications, HiSilicon and Empyrean in chip design, NIO in autonomous driving, as well as Ant Group in
finance—to strengthen their software and/or hardware reliability.

6 Challenges and Future Directions

This section outlines several key challenges and promising future directions in research, application, and talent
cultivation related to formal methods. Notably, many of these considerations extend beyond China and are
relevant to the global FM community.

6.1 Research and Industrial Applications

Automation and Scalability. Fully automated verification of real-world, large-scale software and hardware
systems against highly expressive properties is arguably the holy grail of formal methods. While significant
advancements have been made in specialized domains such as type systems for certifying type safety [213],
symbolic execution for detecting bugs [139], model checking for verifying bounded reachability [11, 55], abstract
interpretation for certifying runtime error-freeness [57], and theorem proving for establishing functional correct-
ness [2], these techniques either provide limited formal guarantee or exhibit poor scalability due to the well-known
state/path-explosion problem or the prerequisites of manual efforts in discovering formal specifications—such
as loop invariants, pre-/post-conditions, and function contracts—that faithfully characterize intended program
behaviors; See [82, Fig. 3] for a taxonomy of formal methods as per their strength of guarantee and scalability.
Over the past decades, various techniques have been proposed to address this challenge, including interpolation
[205], k-induction [223], IC3/PDR [14], CEGAR [56], counterexample-guided inductive synthesis (CEGIS) (8, 230],
and proof-carrying code [208]. However, specification synthesis remains a central bottleneck in achieving full
automation: Many of these methods either rely heavily on user-supplied annotations (e.g., templates) or confine
push-button techniques to semi-decision or approximate procedures.

The emergence of large language models has opened new avenues for addressing the challenge mentioned
above, thanks to their remarkable capabilities for contextual (code-level) understanding and reasoning. Recent
studies [200, 214, 285, 287, 288]—many of which were initiated by the Chinese FM community—have investigated
the use of LLMs for automated specification synthesis, achieving substantial improvements over conventional
approaches. Nevertheless, these methods exhibit significant scalability limitations when applied to large-scale
programs, primarily due to two factors: First, the context-length limitation of LLMs [73] impedes their capacity to
perform holistic reasoning over monolithic codebases within a single inference step; Second, verifying complex
programs typically requires synthesizing a diverse and interdependent set of specifications. We envisage that
a modular, fine-grained framework for generating and refining formal specifications could offer a promising

2See the official announcement at https://www.huawei.com/cn/news/2023/8/cybersecurity-hongmengkernel-cceal6.

Form. Asp. Comput.

A Brief History of Formal Methods in China « 19

direction for the automated verification of large-scale programs; see, e.g., our preliminary research effort in [283],
which enables the almost-fully automated verification of real-world C programs with thousands of lines of code.

Uncertainty. Our universe is inherently stochastic, uncertain, and even chaotic. Real-world computing systems
can hardly, if ever, be deployed in a fixed, closed, and perfectly predictable environment. This limitation is
particularly pronounced in cyber(-human)-physical systems [146, 147], which typically exhibit both (i) exogenous
uncertainty, arising from their operation in open, dynamic environments that are inherently unpredictable,
difficult to characterize fully, and often marked by discrepancies between design-time requirements/assumptions
and runtime realities—in fact, the environment per se can be highly volatile or even (partially) unknown; and (ii)
endogenous uncertainty, induced by the ever-increasing integration of data-driven, learning-enabled components
that exhibit limited predictability and interpretability, such as neural network controllers and language models.
As a consequence, specifying, analyzing, and verifying safety-critical cyber-human-physical systems subject
to substantial uncertainty—thereby ensuring their safety, reliability, and effectiveness—remains a significant
challenge in computer science, necessitating new theoretical foundations and engineering methodologies.

The challenge posed by uncertainty in system design and verification has triggered a surge of interest among
the global FM community. Flagship international conferences in formal methods, programming languages, and
cyber-physical systems—such as FM, CAV, OOPSLA, POPL, PLD], and those in the CPS-IoT (Cyber-Physical
Systems and Internet-of-Things) Week series—have witnessed an increasing number of workshops and sessions
dedicated to uncertainty-centric topics, including probabilistic programming, stochastic systems, and quantitative
verification. Chinese researchers have played a visible and impactful role in advancing this frontier. Notable
contributions include Yuxin Deng’s research on probabilistic process calculi [63], Lijun Zhang’s results on
probabilistic model checking [101], Naijun Zhan’s work on stochastic hybrid systems [75], Hongfei Fu’s research
on quantitative termination [27], Di Wang’s work on cost analysis of probabilistic programs [256], and Mingshuai
Chen’s results on quantitative fixed-point reasoning [169]. Importantly, this line of research also exemplifies
the tight, sustained connection between Chinese FM researchers and the global FM community, as they have
achieved many of these outcomes through international collaborations.

FM Meets AL As Al technologies rapidly encroach on safety-critical infrastructures, the intersection of formal
methods and Al has emerged as a pivotal research frontier, particularly in the context of autonomous systems,
adaptive control, IoT-enabled infrastructures, and smart cities. This frontier encompasses two major branches: (i)
FM for AI (FM4AI), namely the application of formal methods and tools to specify, verify, and assure Al components
or Al-powered systems. As mentioned in Section 4, the Chinese FM community has made substantial contributions
in this thread towards trustworthy AI [148]. In recent years, however, the advent of large language models based on
the transformer architecture [254] has brought new challenges and opportunities. Their unprecedented multimodal
understanding, reasoning, and generative capabilities, along with emerging risks such as hallucinations [125]
and privacy leakage [124], have triggered an intense debate about “whether, how, and to what extent we should
verify LLMs via formal methods” [127]; (ii) AI for FM (AI4FM), namely the use of Al techniques to advance the
scalability, automation, and usability of formal methods. In addition to the aforementioned results on LLM-based
specification synthesis, the Chinese FM community has also contributed various approaches to synthesizing core
FM artifacts such as invariants [311, 350], variants [158, 244], interpolants [41, 183], barrier certificates [377, 379],
and controllers [380], leveraging traditional Al techniques, such as decision trees, support vector machines, neural
networks, and reinforcement learning. Moving forward, researchers expect the synergistic integration of FM and
Al (see, e.g., [369]) to reshape both fields, fostering the (semi-)rigorous assurance of increasingly intelligent
systems while endowing FM with unparalleled levels of automation, adaptability, and real-world applicability.

Emerging Computing Paradigms. As Moore’s Law approaches its physical limits [247], the drive to tran-
scend conventional computational boundaries has given rise to novel paradigms, including quantum, biological,

Form. Asp. Comput.

20 « N.Zhanetal.

neuromorphic, and photonic computing. These advances challenge the foundations of computer science, as
programming languages and development methodologies rooted in the Turing machine and finite automata
theory are no longer directly applicable. New abstractions and toolchains are therefore required, together with
robust approaches to ensuring the correctness and reliability of safety-critical systems. For instance, the intrinsic
uncertainty of quantum computing renders program verification considerably more difficult than in classical set-
tings (cf. the above-mentioned challenge of uncertainty). We believe that the aforementioned rich body of research
results achieved by the Chinese FM community on the analysis and verification of quantum and probabilistic
programs provides important theoretical underpinnings for these emerging paradigms. Furthermore, developing
effective modeling and logical frameworks for reasoning about heterogeneous and hybrid computing across diverse
physical substrates remains a central challenge—one that calls for deep interdisciplinary collaboration among the
communities of theoretical computer science, formal methods, and computer architecture.

6.2 Education and Talent Cultivation

Education plays a pivotal role in the sustained advancement of formal methods. Yet, their steep learning curve—
primarily driven by the heavy reliance on mathematics and logic, as well as the limited usability and scalability
of existing tools—has hindered their adoption in software development. While the ACM and IEEE curricula for
computer science and software engineering both include program correctness [136, 137], surveys on formal
methods education in China further highlight the need to strengthen their presence in specialized training
[186, 303]. Since researchers can regard programs as formal specifications amenable to mechanized processing,
educators find it both natural and essential to embed formal concepts into foundational courses (e.g., programming,
data structures, and compiler construction) and to emphasize their connections to mainstream approaches in
advanced courses (e.g., discrete mathematics, algorithms, software engineering, and artificial intelligence) to
promote adoption and enhance proficiency [267].

A key driver of progress in China has been the cultivation of talent through both domestic and international
training initiatives. Over the past two decades, FM education and training in China have gradually expanded from
a small number of elite research groups to a broader network of universities and research institutes, producing a
growing cohort of scholars with expertise in both theory and practice. In particular, graduate education supported
by, e.g., UNU-IIST and multiple training schools, has had a lasting impact. As documented in contemporaneous
reports [13], UNU-IIST in Macau served for many years as a world-class research and training center in formal
methods, offering year-long fellowships to graduate students and young lecturers from developing countries,
including Mainland China, providing intensive courses in specification, refinement, and mathematically based
software design, followed by supervised research projects. These fellows returned to their home institutions
equipped to introduce FM courses, supervise students, and seed new research groups, thereby strengthening
the domestic educational infrastructure. Complementing this immersive model, Summer School on Trustworthy
Software initiated by Jifeng He in ECNU, Summer School on Formal Methods initiated by Lijun Zhang and
Naijun Zhan in ISCAS, and the International School on Engineering Trustworthy Software Systems (SETSS)
initiated by Zhiming Liu in Southwest University, etc. provided a series of advanced training in rigorous modeling,
verification, and trustworthy systems engineering for graduate students and young scholars, with the help of
international researchers. These training schools educated numerous graduate students nationwide, promoting
the dissemination of state-of-the-art tools and methodologies while fostering early engagement with international
FM research culture.

Notably, the Grand Research Program on Fundamentals of Trustworthy Software, funded by the NSFC from
2007 to 2016, has nurtured a generation of leading scholars at the forefront of global scientific research and a
strong core of mid-career researchers. However, challenges remain: the domestic FM talent pipeline is still limited
in scale, the distribution of high-quality teaching resources is uneven, and opportunities for cross-disciplinary

Form. Asp. Comput.

A Brief History of Formal Methods in China « 21

training—linking FM with areas such as Al, cybersecurity, and emerging computing paradigms—are relatively
scarce. Strengthening international exchange programs, establishing joint training bases between academia and
industry, and integrating FM into interdisciplinary curricula will be critical for developing a new generation of
researchers and practitioners. Such initiatives will not only enhance China’s capacity for original FM research
and accelerate the translation of FM advances into industrial innovation but also promote global collaboration,
enabling China to actively contribute to and benefit from the worldwide FM community and the development of
trustworthy computing technologies.

7 Conclusion

The development of formal methods in China has followed a trajectory that is closely intertwined with, yet
in several respects distinctive from, the broader international evolution of the field. FM in China began with
the early establishment of mathematical logic and theoretical computer science in the 1950s, advanced through
significant international engagement during the 1980s and 1990s, and expanded rapidly in the 2000s in response
to both scientific opportunity and national demand for trustworthy software. Compared with global trends, three
characteristics stand out:

First, the role of international exchange has been central to China’s FM history. The return of scholars trained
abroad in the period of reform and opening-up and the establishment of UNU/IIST in Macau served as major
accelerators, creating channels through which theoretical advances—especially in semantics, refinement, real-time
reasoning, and algebraic approaches—were quickly disseminated and extended. While similar patterns can be
observed elsewhere, UNU/IIST s sustained influence on talent cultivation and research direction gives China’s
FM landscape a distinctive institutional contour.

Second, China has developed characteristic strengths in areas that combine mathematical foundations with
system-level reasoning. Notable examples include the Duration Calculus and its subsequent developments, the
Unifying Theories of Programming and their extensions, the mechanization of mathematics and nonlinear
constraint solving, as well as the modelling and verification of real-time, hybrid systems. In these areas, Chinese
researchers have produced contributions that are now well integrated into the international FM corpus. At the
same time, other directions—such as SAT/SMT solving, concurrent system verification, static analysis, and the
verification of probabilistic, quantum, and Al-based systems—have brought China closer into alignment with
global research priorities, reflecting a worldwide convergence of theoretical and practical challenges.

Third, China has placed strong emphasis on the industrial application of formal methods to safety-critical
domains, including aerospace, rail transportation, operating systems, telecommunications, and finance. The scale
and national centrality of these applications—in particular, verified control software for space missions, certified
train-control components, and high-assurance operating systems—position China among the few countries where
FM has been systematically deployed in large, mission-critical industrial projects. This pragmatic orientation has
further contributed to the growth of domestic research teams and to the formation of coordinated community
structures.

Looking forward, many of the challenges facing the Chinese FM community mirror those of the global
community: enhancing automation and scalability, integrating data-driven and model-based reasoning, extending
verification to increasingly autonomous and stochastic systems, and strengthening interdisciplinary education
and tooling. Nevertheless, the historical trajectory outlined in this article suggests that China is well-positioned
to make significant contributions to the next phase of FM research and application. With a mature academic
ecosystem, growing international engagement, and expanding industrial demand, China’s FM community is likely
to remain an active and increasingly influential participant in shaping the global development of formal methods.
One potential avenue is to increase active participation in international FM standardization efforts and in global FM
communities, such as Formal Methods Europe (FME), thereby contributing to the development of widely accepted

Form. Asp. Comput.

22 « N.Zhanetal.

global FM practices. China could also take the lead in (i) organizing and/or (co-)chairing prominent international
events in formal methods and related areas, as exemplified by its involvement in CONFESTA 2018, LICS 2020, FM
2021, ICFEM 2025, QEST+FORMATS 2026, TACAS 2027, and others; and (ii) spearheading multi-national FM
initiatives, particularly in emerging fields such as Al verification, quantum computing, and cybersecurity. These
efforts will not only elevate China’s influence on the global FM stage but also foster knowledge exchange and
best practices, ensuring the continued growth and relevance of formal methods in addressing complex challenges
across industries.

Acknowledgments

We appreciate Professors Huimin Lin, Jian Lu, Hong Mei, Zhenjiang Hu, Zhiming Liu, Zhenhua Duan, Xuandong
Li, and Xiaoxing Ma for their comments and criticisms on the draft of this paper. We give special thanks to
Professors Shaowei Cai, Hongfei Fu, Xinyu Feng, Yuan Feng, Fei He, Min Zhang, and Zhilin Wu for providing
related materials on their own research. We thank Zhongyi Wang and Tengjie Lin for their assistance in formatting
the extensive list of references. Moreover, we thank the anonymous reviewers for their constructive feedback.

In addition, this work has been partially funded by the National Key R&D Program of China under grant
No. 2022YFA1005100 and 2022YFA1005101, by the NSFC under grant No. 62192732, 62402479, 62032024, and
62572427, by the CAS Project for Young Scientists in Basic Research under grant No. YSBR-040, by the CAS
President’s International Fellowship under grant No. 2024PG0016, and by the ZJNSF Major Program under grant
No. LD24F020013.

References

[1] J-R Abrial, Matthew KO Lee, DS Neilson, PN Scharbach, and Ib Holm Serensen. 1991. The B-method. In International Symposium of
VDM Europe. Springer, 398-405. doi:10.1007/BFb0020001
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hiahnle, Peter H. Schmitt, and Mattias Ulbrich (Eds.). 2016. Deductive
Software Verification - The KeY Book - From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001. Springer. doi:10.1007/978-
3-319-49812-6
[3] Jie An, Qiang Gao, Lingtai Wang, Naijun Zhan, and Ichiro Hasuo. 2024. The Opacity of Timed Automata. In FM 2024 (Lecture Notes in
Computer Science, Vol. 14933). Springer, 620-637. doi:10.1007/978-3-031-71162-6_32
[4] Jie An, Naijun Zhan, Xiaoshan Li, Miaomiao Zhang, and Wang Yi. 2018. Model Checking Bounded Continuous-time Extended Linear
Duration Invariants. In HSCC 2018. ACM, 81-90. doi:10.1145/3178126.3178147
[5] Yunjun Bai, Ting Gan, Li Jiao, Bican Xia, Bai Xue, and Naijun Zhan. 2021. Switching controller synthesis for delay hybrid systems
under perturbations. In HSCC 2021. ACM, 3:1-3:11. doi:10.1145/3447928.3456657
[6] Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2020. Relational proofs for quantum programs. Proc. ACM
Program. Lang. 4, POPL (2020), 21:1-21:29. do0i:10.1145/3371089
[7] Rana Barua, Suman Roy, and Chaochen Zhou. 1999. Completeness of Neighbourhood Logic. In STACS 1999 (Lecture Notes in Computer
Science, Vol. 1563). Springer, 521-530. do0i:10.1007/3-540-49116-3_49
[8] Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2023. Proba-
bilistic Program Verification via Inductive Synthesis of Inductive Invariants. In TACAS 2023 (2) (Lecture Notes in Computer Science,
Vol. 13994). Springer, 410-429. doi:10.1007/978-3-031-30820-8_25
Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schréer. 2021. Latticed
k-Induction with an Application to Probabilistic Programs. In CAV 2021 (2) (Lecture Notes in Computer Science, Vol. 12760). Springer,
524-549. d0i:10.1007/978-3-030-81688-9_25
[10] Dirk Beyer and Jan Strejéek. 2025. Improvements in software verification and witness validation: SV-COMP 2025. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 151-186. doi:10.1007/978-3-031-90660-2_9
[11] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without BDDs. In TACAS
1999 (Lecture Notes in Computer Science, Vol. 1579). Springer, 193-207. do0i:10.1007/3-540-49059-0_14
[12] Dines Bjerner, C.A.R. Hoare, Jonathan P. Bowen, Jifeng He, Hans Langmaack, Ernst-Riidiger Olderog, Ursula H. Martin, Victoria
Stavridou, Fleming Nielson, Hanne Riis Nielson, Howard Barringer, Douglas Edwards, Hans H. Levengreen, Anders P. Ravn, and Hans
Rischel. 1989. A ProCoS Project Description: ESPRIT BRA 3104. Bulletin of the European Association of Theoretical Computer Science 39
(1989), 60-73. https://api.semanticscholar.org/CorpusID:117144235

[2

—

[9

—

Form. Asp. Comput.

https://doi.org/10.1007/BFb0020001
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-031-71162-6_32
https://doi.org/10.1145/3178126.3178147
https://doi.org/10.1145/3447928.3456657
https://doi.org/10.1145/3371089
https://doi.org/10.1007/3-540-49116-3_49
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/3-540-49059-0_14
https://api.semanticscholar.org/CorpusID:117144235

[13]

[14]
[15]
[16]

(17]
(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

(28]

[29]

[30]
[31]
(32]
(33]
[34]
[35]
[36]

(37]

(38]

A Brief History of Formal Methods in China . 23

Jonathan P. Bowen. 1999. Beijing takes the software pearl in Macau’s crown. https://www.timeshighereducation.com/news/beijing-
takes-the-software-pearl-in-macaus-crown/148725.article. The Times Higher Education Supplement 1409, 13. Retrieved November 27,
2025.

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In VMCAI 2011 (Lecture Notes in Computer Science, Vol. 6538).
Springer, 70-87. doi:10.1007/978-3-642-18275-4_7

Lei Bu, You Li, Linzhang Wang, and Xuandong Li. 2008. BACH: Bounded ReAchability CHecker for Linear Hybrid Automata. In
FMCAD 2008. IEEE, 1-4. doi:10.1109/FMCAD.2008.ECP.13

Bruno Buchberger. 1976. Some properties of Grébner-bases for polynomial ideals. SIGSAM Bull. 10, 4 (1976), 19-24. doi:10.1145/
1088222.1088224

Ricky W. Butler. 2001. What is Formal Methods? https://shemesh.larc.nasa.gov/fm/fm-whathtml. Retrieved July 17, 2025.

Luwei Cai, Fu Song, and Taolue Chen. 2024. Towards Efficient Verification of Constant-Time Cryptographic Implementations. Proc.
ACM Softw. Eng. 1, FSE (2024), 1019-1042. doi:10.1145/3643772

Shaowei Cai, Bohan Li, and Xindi Zhang. 2023. Local Search For Satisfiability Modulo Integer Arithmetic Theories. ACM Trans. Comput.
Log. 24, 4 (2023), 32:1-32:26. doi:10.1145/3597495

Shaowei Cai, Kaile Su, and Abdul Sattar. 2011. Local search with edge weighting and configuration checking heuristics for minimum
vertex cover. Artif. Intell. 175, 9-10 (2011), 1672-1696. doi:10.1016/j.artint.2011.03.003

Weining Cao, Guangyuan Wu, Tangzhi Xu, Yuan Yao, Hengfeng Wei, Taolue Chen, and Xiaoxing Ma. 2025. Clause2Inv: A Generate-
Combine-Check Framework for Loop Invariant Inference. Proc. ACM Softw. Eng. 2, ISSTA (2025), 1009~1030. doi:10.1145/3728920
Franck Cassez. 2009. The Dark Side of Timed Opacity. In ISA 2009 (Lecture Notes in Computer Science, Vol. 5576). Springer, 21-30.
doi:10.1007/978-3-642-02617-1_3

CCF. 2011. Introduction to Xu Jiafu. Lifetime Achievement Award. CCF Rewards. China Computer Federation. https://www.ccf.org.cn/
Awards/Awards_Recipients/2011/Lifetime_Contribution/2011-02-16/578028.shtml.

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic Programs Through
Positivstellensatz’s. In CAV 2016 (Lecture Notes in Computer Science, Vol. 9779). Springer, 3=22. doi:10.1007/978-3-319-41528-4_1
Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Nastaran Okati. 2018. Computational Approaches for Stochastic
Shortest Path on Succinct MDPs. In IJCAI 2018. 4700-4707. doi:10.24963/ijcai.2018/653

Krishnendu Chatterjee, Hongfei Fu, and Aniket Murhekar. 2017. Automated Recurrence Analysis for Almost-Linear Expected-Runtime
Bounds. In CAV 2017 (Lecture Notes in Computer Science, Vol. 10426). Springer, 118—139. do0i:10.1007/978-3-319-63387-9_6
Krishnendu Chatterjee, Hongfei Fu, and Petr Novotny. 2020. Termination Analysis of Probabilistic Programs with Martingales. In
Foundations of Probabilistic Programming, Alexandra Silva, Gilles Barthe, and Joost-Pieter Katoen (Eds.). Cambridge University Press,
221-258. d0i:10.1017/9781108770750

Krishnendu Chatterjee, Hongfei Fu, Petr Novotny, and Rouzbeh Hasheminezhad. 2016. Algorithmic analysis of qualitative and
quantitative termination problems for affine probabilistic programs. In POPL 2016. ACM, 327-342. doi:10.1145/3174800

Krishnendu Chatterjee, Hongfei Fu, Petr Novotny, and Rouzbeh Hasheminezhad. 2018. Algorithmic Analysis of Qualitative and
Quantitative Termination Problems for Affine Probabilistic Programs. ACM Trans. Program. Lang. Syst. 40, 2 (2018), 7:1-7:45. doi:10.
1145/3174800

Jianhui Chen and Fei He. 2020. Proving almost-sure termination by omega-regular decomposition. In PLDI 2020. ACM, 869-882.
doi:10.1145/3385412.3386002

Liqian Chen, Jiangchao Liu, Antoine Miné, Deepak Kapur, and Ji Wang. 2014. An Abstract Domain to Infer Octagonal Constraints with
Absolute Value. In SAS 2014 (Lecture Notes in Computer Science, Vol. 8723). Springer, 101-117. doi:10.1007/978-3-319-10936-7_7
Ligian Chen, Antoine Miné, and Patrick Cousot. 2008. A Sound Floating-Point Polyhedra Abstract Domain. In APLAS 2008 (Lecture
Notes in Computer Science, Vol. 5356). Springer, 3-18. doi:10.1007/978-3-540-89330-1_2

Ligian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. 2009. Interval Polyhedra: An Abstract Domain to Infer Interval Linear
Relationships. In SAS 2009 (Lecture Notes in Computer Science, Vol. 5673). Springer, 309-325. doi:10.1007/978-3-642-03237-0_21
Ligian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. 2010. An Abstract Domain to Discover Interval Linear Equalities. In VMCAI
2010 (Lecture Notes in Computer Science, Vol. 5944). Springer, 112-128. doi:10.1007/978-3-642-11319-2_11

Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. 2011. Linear Absolute Value Relation Analysis. In ESOP 2011 (Lecture Notes in
Computer Science, Vol. 6602). Springer, 156—175. doi:10.1007/978-3-642-19718-5_9

Mingshuai Chen, Martin Fréinzle, Yangjia Li, Peter Nazier Mosaad, and Naijun Zhan. 2016. Validated Simulation-Based Verification of
Delayed Differential Dynamics. In FM 2016 (Lecture Notes in Computer Science, Vol. 9995). 137-154. do0i:10.1007/978-3-319-48989-6_9
Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang, Naijun Zhan, Hengjun Zhao, and Liang Zou. 2017. MARS: A
Toolchain for Modelling, Analysis and Verification of Hybrid Systems. In Provably Correct Systems. Springer, 39-58. doi:10.1007/978-3-
319-48628-4_3

Mingshuai Chen, Joost-Pieter Katoen, Lutz Klinkenberg, and Tobias Winkler. 2022. Does a Program Yield the Right Distribution?
Verifying Probabilistic Programs via Generating Functions. In CAV 2022 (Lecture Notes in Computer Science, Vol. 13371). Springer, 79-101.

Form. Asp. Comput.

https://www.timeshighereducation.com/news/beijing-takes-the-software-pearl-in-macaus-crown/148725.article
https://www.timeshighereducation.com/news/beijing-takes-the-software-pearl-in-macaus-crown/148725.article
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1109/FMCAD.2008.ECP.13
https://doi.org/10.1145/1088222.1088224
https://doi.org/10.1145/1088222.1088224
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://doi.org/10.1145/3643772
https://doi.org/10.1145/3597495
https://doi.org/10.1016/j.artint.2011.03.003
https://doi.org/10.1145/3728920
https://doi.org/10.1007/978-3-642-02617-1_3
https://www.ccf.org.cn/Awards/Awards_Recipients/2011/Lifetime_Contribution/2011-02-16/578028.shtml
https://www.ccf.org.cn/Awards/Awards_Recipients/2011/Lifetime_Contribution/2011-02-16/578028.shtml
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.24963/ijcai.2018/653
https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1017/9781108770750
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1007/978-3-642-03237-0_21
https://doi.org/10.1007/978-3-642-11319-2_11
https://doi.org/10.1007/978-3-642-19718-5_9
https://doi.org/10.1007/978-3-319-48989-6_9
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3

24 « N.Zhanet al.

doi:10.1007/978-3-031-13185-1_5

[39] Mingshuai Chen, Anders P. Ravn, Shuling Wang, Mengfei Yang, and Naijun Zhan. 2016. A Two-Way Path Between Formal and Informal
Design of Embedded Systems. In UTP 2016 (Lecture Notes in Computer Science, Vol. 10134). Springer, 65-92. doi:10.1007/978-3-319-
52228-9_4

[40] Menglong Chen, Tian Tan, Minxue Pan, and Yue Li. 2025. PacDroid: A Pointer-Analysis-Centric Framework for Security Vulnerabilities
in Android Apps. In ICSE 2025. IEEE, 2803-2815. doi:10.1109/ICSE55347.2025.00208

[41] Mingshuai Chen, Jian Wang, Jie An, Bohua Zhan, Deepak Kapur, and Naijun Zhan. 2019. NIL: Learning Nonlinear Interpolants. In
CADE 2019 (Lecture Notes in Computer Science, Vol. 11716). Springer, 178-196. doi:10.1007/978-3-030-29436-6_11

[42] Rizeng Chen, Haokun Li, Bican Xia, Tiangi Zhao, and Tao Zheng. 2024. Isolating all the real roots of a mixed trigonometric-polynomial.
J. Symb. Comput. 121 (2024), 102250. doi:10.1016/].jsc.2023.102250

[43] Rizeng Chen and Bican Xia. 2023. Deciding first-order formulas involving univariate mixed trigonometric-polynomials. In ISSAC 2023.
ACM, 145-154. doi:10.1145/3597066.3597104

[44] Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu. 2018. What is decidable about string constraints with the
ReplaceAll function. Proc. ACM Program. Lang. 2, POPL (2018), 3:1-3:29. doi:10.1145/3158091

[45] Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, Anthony W. Lin, Philipp Rimmer,
and Zhilin Wu. 2022. Solving string constraints with Regex-dependent functions through transducers with priorities and variables.
Proc. ACM Program. Lang. 6, POPL (2022), 1-31. doi:10.1145/3498707

[46] Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Riimmer, and Zhilin Wu. 2019. Decision procedures for path feasibility of
string-manipulating programs with complex operations. Proc. ACM Program. Lang. 3, POPL (2019), 49:1-49:30. doi:10.1145/3290362

[47] Xin Chen, Jifeng He, Zhiming Liu, and Naijun Zhan. 2007. A Model of Component-Based Programming. In FSEN 2007 (Lecture Notes in
Computer Science, Vol. 4767). Springer, 191-206. doi:10.1007/978-3-540-75698-9_13

[48] Xin Chen, Chao Peng, Wang Lin, Zhengfeng Yang, Yifang Zhang, and Xuandong Li. 2020. A Novel Approach for Solving the
BMI Problem in Barrier Certificates Generation. In CAV 2020 (Lecture Notes in Computer Science, Vol. 12224). Springer, 582-603.
doi:10.1007/978-3-030-53288-8_29

[49] Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang; and Ji Wang. 2021. Synthesize solving strategy
for symbolic execution. In ISSTA 2021. ACM, 348-360. doi:10.1145/3460319.3464815

[50] Zhenbang Chen, Zhiming Liu, Anders P. Ravn, Volker Stolz, and Naijun Zhan. 2009. Refinement and verification in component-based
model-driven design. Sci. Comput. Program. 74, 4 (2009), 168-196. doi:10.1016/].scico.2008.08.003

[51] Zhihan Chen, Xindi Zhang, Yuhang Qian, Qiang Xu, and Shaowei Cai. 2023. Integrating Exact Simulation into Sweeping for Datapath
Combinational Equivalence Checking. In ICCAD 2023. IEEE, 1-9. doi:10.1109/ICCAD57390.2023.10323876

[52] Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. 1994. Machine Proofs in Geometry: Automated Production of Readable Proofs
for Geometry Theorems. World Scientific. doi:10.1142/2196 Series on Applied Mathematics, Vol 6.

[53] Huairui Chu, Mingyu Xiao, and Zhe Zhang. 2021. An improved upper bound for SAT. Theor. Comput. Sci. 887 (2021), 51-62.
d0i:10.1016/j.tcs.2021.06.045

[54] Alonzo Church. 1936. An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics 58, 2 (1936), 345-363.
doi:10.2307/2371045

[55] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded Model Checking Using Satisfiability Solving. Formal
Methods Syst. Des. 19, 1 (2001), 7-34. doi:10.1023/A:1011276507260

[56] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-Guided Abstraction Refinement.
In CAV 2000 (Lecture Notes in Computer Science, Vol. 1855). Springer, 154-169. doi:10.1007/10722167_15

[57] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In POPL 1977. ACM, 238-252. doi:10.1145/512950.512973

[58] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. 2017. Barrier certificates revisited. 7. Symb. Comput. 80 (2017), 62-86. doi:10.1016/j.
j5¢.2016.07.010

[59] Liyun Dai, Bican Xia, and Naijun Zhan. 2013. Generating Non-linear Interpolants by Semidefinite Programming. In CAV 2013 (Lecture
Notes in Computer Science, Vol. 8044). Springer, 364-380. doi:10.1007/978-3-642-39799-8_25

[60] Wenbin Dai and Valeriy Vyatkin. 2012. Redesign distributed PLC control systems using IEC 61499 function blocks. IEEE Transactions
on Automation Science and Engineering 9, 2 (2012), 390-401. doi:10.1109/TASE.2012.2188794

[61] Ankush Das, Di Wang, and Jan Hoffmann. 2023. Probabilistic Resource-Aware Session Types. Proc. ACM Program. Lang. 7, POPL (2023),
1925-1956. doi:10.1145/3571259

[62] Jim Davies, Tomasz Janowski, Adegboyega K. Ojo, and Aadya Shukla. 2007. Technological foundations of electronic governance. In
ICEGOV 2007 (ACM International Conference Proceeding Series, Vol. 232). ACM, 5-11. doi:10.1145/1328057.1328063

[63] Yuxin Deng. 2015. Semantics of Probabilistic Processes: An Operational Approach. Springer. doi:10.1007/978-3-662-45198-4

[64] Wei Dong, Ji Wang, Xuan Qi, and Zhichang Qi. 2001. Model Checking UML Statecharts. In (APSEC 2001. IEEE Computer Society,
363-370. doi:10.1109/APSEC.2001.991503

Form. Asp. Comput.

https://doi.org/10.1007/978-3-031-13185-1_5
https://doi.org/10.1007/978-3-319-52228-9_4
https://doi.org/10.1007/978-3-319-52228-9_4
https://doi.org/10.1109/ICSE55347.2025.00208
https://doi.org/10.1007/978-3-030-29436-6_11
https://doi.org/10.1016/j.jsc.2023.102250
https://doi.org/10.1145/3597066.3597104
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3290362
https://doi.org/10.1007/978-3-540-75698-9_13
https://doi.org/10.1007/978-3-030-53288-8_29
https://doi.org/10.1145/3460319.3464815
https://doi.org/10.1016/j.scico.2008.08.003
https://doi.org/10.1109/ICCAD57390.2023.10323876
https://doi.org/10.1142/2196
https://doi.org/10.1016/j.tcs.2021.06.045
https://doi.org/10.2307/2371045
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/j.jsc.2016.07.010
https://doi.org/10.1016/j.jsc.2016.07.010
https://doi.org/10.1007/978-3-642-39799-8_25
https://doi.org/10.1109/TASE.2012.2188794
https://doi.org/10.1145/3571259
https://doi.org/10.1145/1328057.1328063
https://doi.org/10.1007/978-3-662-45198-4
https://doi.org/10.1109/APSEC.2001.991503

[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]

(73]

[74]

[75]

[76]

[77]

(78]
[79]
[80]
(81]
(82]
(83]
[84]
(85]

(86]

(87]
(88]

(89]

A Brief History of Formal Methods in China « 25

Yunmei Dong. 2002. Recursive functions of context free languages (I) - The definitions of CFPRF and CFRF. Sci. China Ser. F Inf. Sci. 45,
1 (2002), 25-39. doi:10.1360/02yf9002

Yunmei Dong. 2002. Recursive functions of context free languages (II) - Validity of CFPRF and CFRF definitions. Sci. China Ser. F Inf.
Sci. 45, 2 (2002), 81-102. doi:10.1360/02yf9007

Zhenhua Duan, Nan Zhang, and Maciej Koutny. 2013. A complete proof system for propositional projection temporal logic. Theor.
Comput. Sci. 497 (2013), 84-107. doi:10.1016/j.tcs.2012.01.026

ECNU News. 2017. ECNU foreign expert Jean-Raymond Abrial Won the International Science and Technology Cooperation Award.
https://sei.ecnu.edu.cn/seien/87/2b/c33262a362283/page.htm. Retrieved November 27, 2025.

Marcel Erné, Jurgen Koslowski, Austin Melton, and George E Strecker. 1993. A primer on Galois connections. Annals of the New York
Academy of Sciences 704, 1 (1993), 103-125. doi:10.1111/j.1749-6632.1993.tb52513.x

Guangsheng Fan, Ligian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang. 2025. Program Analysis Combining Generalized
Bit-Level and Word-Level Abstractions. Proc. ACM Softw. Eng. 2, ISSTA (2025), 663-685. doi:10.1145/3728905

Hongyu Fan, Weiting Liu, and Fei He. 2022. Interference relation-guided SMT solving for multi-threaded program verification. In
PPoPP 2022. ACM, 163-176. doi:10.1145/3503221.3508424

Weijie Fan, Hongjin Liang, Xinyu Feng, and Hanru Jiang. 2025. A Program Logic for Concurrent Randomized Programs in the Oblivious
Adversary Model. In ESOP 2025 (Lecture Notes in Computer Science, Vol. 15694). Springer, 322-348. doi:10.1007/978-3-031-91118-7_13
Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han
Wang, and Houman Homayoun. 2024. Large Language Models for Code Analysis: Do LLMs Really Do Their Job?. In USENIX Security
Symposium 2024. USENIX Association. https://www.usenix.org/system/files/usenixsecurity24-fang.pdf

Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023. Lower Bounds for
Possibly Divergent Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 696-726. d0i:10.1145/3586051

Shenghua Feng, Mingshuai Chen, Bai Xue, Sriram Sankaranarayanan, and Naijun Zhan. 2020. Unbounded-Time Safety Verification of
Stochastic Differential Dynamics. In CAV 2020 (2) (Lecture Notes in Computer Science, Vol. 12225). Springer, 327-348. doi:10.1007/978-3-
030-53291-8_18

Shenghua Feng, Mingshuai Chen, Naijun Zhan, Martin Franzle, and Bai Xue. 2019. Taming Delays in Dynamical Systems - Unbounded
Verification of Delay Differential Equations. In CAV 2019 (Lecture Notes in Computer Science, Vol. 11561). Springer, 650-669. d0i:10.1007/
978-3-030-25540-4_37

Shenghua Feng, Tengshun Yang, Mingshuai Chen, and Naijun Zhan. 2024. A Unified Framework for Quantitative Analysis of
Probabilistic Programs. In Principles of Verification (1) (Lecture Notes in Computer Science, Vol. 15260). Springer, 230-254. doi:10.1007/978-
3-031-75783-9_10

Yuan Feng, Sanjiang Li, and Mingsheng Ying. 2022. Verification of Distributed Quantum Programs. ACM Trans. Comput. Log. 23, 3
(2022), 19:1-19:40. doi:10.1145/3517145

Yuan Feng and Yingte Xu. 2023. Verification of Nondeterministic Quantum Programs. In ASPLOS 2023 (3). ACM, 789-805. doi:10.1145/
3582016.3582039

Yuan Feng and Mingsheng Ying. 2021. Quantum Hoare logic with classical variables. ACM Trans. Quantum Comput. 2, 4 (2021), 1-43.
doi:10.1145/3456877

Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for Probabilistic
Programs. In ATVA 2017 (Lecture Notes in Computer Science, Vol. 10482). Springer, 400-416. doi:10.1007/978-3-319-68167-2_26
Kathleen Fisher, John Launchbury, and Raymond Richards. 2017. The HACMS program: using formal methods to eliminate exploitable
bugs. Philos. Trans. R. Soc. 375, 2104 (2017), 20150401. doi:10.1098/rsta.2015.0401

The State Council Investigation Team for the “7-23" Especially Serious Accident on the Yongwen Railway Line. 2011. Investigation
Report on the Especially Serious “7-23" Accident on the Yongwen Railway Line. Technical Report. State Administration of Work Safety
(China). https://www.chinanews.com/gn/2011/12-28/3567137.shtml

Yuxi Fu. 2003. Bisimulation congruence of chi calculus. Inf. Comput. 184, 1 (2003), 201-226. doi:10.1016/S0890-5401(03)00061-0

Ting Gan, Mingshuai Chen, Yangjia Li, Bican Xia, and Naijun Zhan. 2018. Reachability Analysis for Solvable Dynamical Systems. IEEE
Trans. Autom. Control. 63, 7 (2018), 2003-2018. doi:10.1109/TAC.2017.2763785

Ting Gan, Liyun Dai, Bican Xia, Naijun Zhan, Deepak Kapur, and Mingshuai Chen. 2016. Interpolant Synthesis for Quadratic
Polynomial Inequalities and Combination with EUF. In IJCAR 2016 (Lecture Notes in Computer Science, Vol. 9706). Springer, 195-212.
doi:10.1007/978-3-319-40229-1_14

Ting Gan, Bican Xia, Bai Xue, Naijun Zhan, and Liyun Dai. 2020. Nonlinear Craig Interpolant Generation. In CAV 2020 (Lecture Notes
in Computer Science, Vol. 12224). Springer, 415-438. doi:10.1007/978-3-030-53288-8_20

Pengfei Gao, Fu Song, and Taolue Chen. 2024. Compositional Verification of First-Order Masking Countermeasures against Power
Side-Channel Attacks. ACM Trans. Softw. Eng. Methodol. 33, 3 (2024), 79:1-79:38. do0i:10.1145/3635707

Pengfei Gao, Hongyi Xie, Fu Song, and Taolue Chen. 2021. A Hybrid Approach to Formal Verification of Higher-Order Masked
Arithmetic Programs. ACM Trans. Softw. Eng. Methodol. 30, 3 (2021), 26:1-26:42. doi:10.1145/3428015

Form. Asp. Comput.

https://doi.org/10.1360/02yf9002
https://doi.org/10.1360/02yf9007
https://doi.org/10.1016/j.tcs.2012.01.026
https://sei.ecnu.edu.cn/seien/87/2b/c33262a362283/page.htm
https://doi.org/10.1111/j.1749-6632.1993.tb52513.x
https://doi.org/10.1145/3728905
https://doi.org/10.1145/3503221.3508424
https://doi.org/10.1007/978-3-031-91118-7_13
https://www.usenix.org/system/files/usenixsecurity24-fang.pdf
https://doi.org/10.1145/3586051
https://doi.org/10.1007/978-3-030-53291-8_18
https://doi.org/10.1007/978-3-030-53291-8_18
https://doi.org/10.1007/978-3-030-25540-4_37
https://doi.org/10.1007/978-3-030-25540-4_37
https://doi.org/10.1007/978-3-031-75783-9_10
https://doi.org/10.1007/978-3-031-75783-9_10
https://doi.org/10.1145/3517145
https://doi.org/10.1145/3582016.3582039
https://doi.org/10.1145/3582016.3582039
https://doi.org/10.1145/3456877
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1098/rsta.2015.0401
https://www.chinanews.com/gn/2011/12-28/3567137.shtml
https://doi.org/10.1016/S0890-5401(03)00061-0
https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1007/978-3-319-40229-1_14
https://doi.org/10.1007/978-3-030-53288-8_20
https://doi.org/10.1145/3635707
https://doi.org/10.1145/3428015

26 .

[90]
[o1]
[92]
[93]
[94]
[95]
[96]

[97]

(98]

[99]

[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]

[112]

[113]

[114]

[115]

Form.

N. Zhan et al.

Pengfei Gao, Hongyi Xie, Pu Sun, Jun Zhang, Fu Song, and Taolue Chen. 2022. Formal Verification of Masking Countermeasures for
Arithmetic Programs. IEEE Trans. Software Eng. 48, 3 (2022), 973-1000. doi:10.1109/TSE.2020.3008852

Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. 2019. Quantitative Verification of Masked Arithmetic Programs
Against Side-Channel Attacks. In TACAS 2019, Vol. 11427. Springer, 155-173. d0i:10.1007/978-3-030-17462-0_9

Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. 2019. Verifying and Quantifying Side-channel Resistance of Masked Software
Implementations. ACM Trans. Softw. Eng. Methodol. 28, 3 (2019), 16:1-16:32. doi:10.1145/3330392

Pengfei Gao, Yedi Zhang, Fu Song, Taolue Chen, and Francois-Xavier Standaert. 2023. Compositional Verification of Efficient Masking
Countermeasures against Side-Channel Attacks. Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 1817-1847. doi:10.1145/3622862
Cunjing Ge, Feifei Ma, Tian Liu, Jian Zhang, and Xutong Ma. 2018. A New Probabilistic Algorithm for Approximate Model Counting.
In IJCAR 2018 (Lecture Notes in Computer Science, Vol. 10900). Springer, 312-328. doi:10.1007/978-3-319-94205-6_21

Cunjing Ge, Feifei Ma, Xutong Ma, Fan Zhang, Pei Huang, and Jian Zhang. 2019. Approximating Integer Solution Counting via Space
Quantification for Linear Constraints. In IJCAI 2019. 1697-1703. https://dl.acm.org/doi/abs/10.5555/3367243.3367274

Cunjing Ge, Feifei Ma, Peng Zhang, and Jian Zhang. 2018. Computing and estimating the volume of the solution space of SMT(LA)
constraints. Theor. Comput. Sci. 743 (2018), 110-129. doi:10.1016/].tcs.2016.10.019

Kurt Gédel. 1967. On Formally Undecidable Propositions of Principia Mathematica and Related Systems I. In From Frege to Godel:
A Source Book in Mathematical Logic, 1879-1931. Harvard University Press, Cambridge, MA, 596-616. https://archive.org/details/
fromfregetogodel0025unse/page/664/mode/2up Originally published in Monatshefte fiir Mathematik und Physik, 38:173-198 (1931).
Rong Gu, Zhigiang Zuo, Xi Jiang, Han Yin, Zhaokang Wang, Linzhang Wang, Xuandong Li, and Yihua Huang. 2021. Towards Efficient
Large-Scale Interprocedural Program Static Analysis on Distributed Data-Parallel Computation. IEEE Trans. Parallel Distributed Syst.
32,4 (2021), 867-883. doi:10.1109/IPDPS.2019.00086

Jingjing Guan, Hui Li, XiangDong Li, XiaoLei Wang, Binghan Wang, Qiuye Wang, Shengchao Qin, Mengda He, Md Armanuzzaman, and
Ziming Zhao. 2025. Formally Verifying the State Machine of TLS 1.3 Handshake in OpenSSL. In IEEE INFOCOM 2025-IEEE Conference
on Computer Communications. IEEE, 1-10. doi:10.1109/INFOCOM55648.2025.11044576

Xingwu Guo, Wenjie Wan, Zhaodi Zhang, Min Zhang, Fu Song, and Xuejun Wen. 2021. Eager falsification for accelerating robustness
verification of deep neural networks. In ISSRE 2021. IEEE, 345-356. doi:10.1109/ISSRE52982.2021.00044

Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. 2014. IscasMc: A Web-Based Probabilistic Model Checker. In
FM 2014 (Lecture Notes in Computer Science, Vol. 8442). Springer, 312-317. doi:10.1007/978-3-319-06410-9_22

Zhilei Han and Fei He. 2023. Data-driven Recurrent Set Learning For Non-termination Analysis. In ICSE 2023. IEEE, 1303-1315.
doi:10.1109/ICSE48619.2023.00115

Michael R. Hansen and Chaochen Zhou. 1991. Semantics and Completeness of Duration Calculus. In Real-Time: Theory in Practice, REX
Workshop (Lecture Notes in Computer Science, Vol. 600). Springer, 209-225. doi:10.1007/BFb0031994

Fei He and Jitao Han. 2020. Termination analysis for evolving programs: An incremental approach by reusing certified modules. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 199:1-199:27. do0i:10.1145/3428267

Fei He, Zhihang Sun, and Hongyu Fan. 2021. Satisfiability modulo ordering consistency theory for multi-threaded program verification.
In PLDI 2021. ACM, 1264-1279. doi:10.1145/3453483.3454108

Fei He, Zhihang Sun, and Hongyu Fan. 2022. Deagle: An SMT-based Verifier for Multi-threaded Programs (Competition Contribution).
In TACAS 2022 (Lecture Notes in Computer Science, Vol. 13244). Springer, 424-428. doi:10.1007/978-3-030-99527-0_25

Fei He, Liangze Yin, Bow-Yaw Wang, Lianyi Zhang, Guanyu Mu, and Wenrui Meng. 2013. VCS: A Verifier for Component-Based
Systems. In ATVA 2013 (Lecture Notes in Computer Science, Vol. 8172). Springer, 478-481. doi:10.1007/978-3-319-02444-8_39

Fei He, Qianshan Yu, and Liming Cai. 2022. Efficient Summary Reuse for Software Regression Verification. IEEE Trans. Software Eng.
48, 4 (2022), 1417-1431. doi:10.1109/TSE.2020.3021477

Jifeng He. 2002. Integrating CSP and DC. In ICECCS 2002. IEEE Computer Society, 47. doi:10.1109/ICECCS.2002.1181497

Jifeng He. 2019. Safe and Trustworthy Artificial Intelligence. . Inf. Secur. Commun. Secr. 10 (2019), 4-8.

Jifeng He and C. A. R. Hoare. 1999. Linking Theories in Probabilistic Programming. Inf. Sci. 119, 3-4 (1999), 205-218. d0i:10.1016/S0020-
0255(99)00015-8

Jifeng He, C. A. R. Hoare, Martin Franzle, Markus Miiller-Olm, Ernst-Riidiger Olderog, Michael Schenke, Michael R. Hansen, Anders P.
Ravn, and Hans Rischel. 1994. Provably Correct Systems. In FTRTFT 1994 (Lecture Notes in Computer Science, Vol. 863). Springer, 288-335.
doi:10.1007/3-540-58468-4_171

Jifeng He, Xiaoshan Li, and Zhiming Liu. 2006. rCOS: A refinement calculus of object systems. Theor. Comput. Sci. 365, 1-2 (2006),
109-142. doi:10.1016/].tcs.2006.07.034

Jifeng He, Zhiguang Shan, Ji Wang, Geguang Pu, Yufei Fang, Ke Liu, Ruizhen Zhao, and Zhaotian Zhang. 2018. Review of the
Achievements of Major Research Plan on “Trustworthy Software”. Science Foundation in China 32, 3 (2018), 291-296. (In Chinese),
https://www.nsfc.gov.cn/csc/20345/20348/pdf/2018/201803291.pdf.

Jifeng He and Huibiao Zhu. 2000. Formalising VERILOG. In ICECS 2000. IEEE, 412-415. doi:10.1109/ICECS.2000.911568

Asp. Comput.

https://doi.org/10.1109/TSE.2020.3008852
https://doi.org/10.1007/978-3-030-17462-0_9
https://doi.org/10.1145/3330392
https://doi.org/10.1145/3622862
https://doi.org/10.1007/978-3-319-94205-6_21
https://dl.acm.org/doi/abs/10.5555/3367243.3367274
https://doi.org/10.1016/j.tcs.2016.10.019
https://archive.org/details/fromfregetogodel0025unse/page/664/mode/2up
https://archive.org/details/fromfregetogodel0025unse/page/664/mode/2up
https://doi.org/10.1109/IPDPS.2019.00086
https://doi.org/10.1109/INFOCOM55648.2025.11044576
https://doi.org/10.1109/ISSRE52982.2021.00044
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1109/ICSE48619.2023.00115
https://doi.org/10.1007/BFb0031994
https://doi.org/10.1145/3428267
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1007/978-3-030-99527-0_25
https://doi.org/10.1007/978-3-319-02444-8_39
https://doi.org/10.1109/TSE.2020.3021477
https://doi.org/10.1109/ICECCS.2002.1181497
https://doi.org/10.1016/S0020-0255(99)00015-8
https://doi.org/10.1016/S0020-0255(99)00015-8
https://doi.org/10.1007/3-540-58468-4_171
https://doi.org/10.1016/j.tcs.2006.07.034
https://www.nsfc.gov.cn/csc/20345/20348/pdf/2018/201803291.pdf
https://doi.org/10.1109/ICECS.2000.911568

A Brief History of Formal Methods in China « 27

[116] Matthew Hennessy and Huimin Lin. 1993. Proof Systems for Message-Passing Process Algebras. In CONCUR 1993 (Lecture Notes in
Computer Science, Vol. 715). Springer, 202-216. doi:10.1007/3-540-57208-2_15

[117] Matthew Hennessy and Huimin Lin. 1995. Symbolic Bisimulations. Theor. Comput. Sci. 138, 2 (1995), 353-389. d0i:10.1016/0304-
3975(94)00172-F

[118] David Hilbert. 1998. The Grounding of Elementary Number Theory. In From Brouwer to Hilbert: The Debate on the Foundations of
Mathematics in the 1920s. Oxford University Press, New York, 266-273. https://global.oup.com/ushe/product/from-brouwer-to-hilbert-
9780195096323?cc=cn&lang=en&facet_narrowbypubdate_facet=Older&facet_narrowbypubdate_facet=Older

[119] C. A.R. Hoare. 2003. The verifying compiler: A grand challenge for computing research. J. ACM 50, 1 (2003), 63-69. doi:10.1007/978-3-
540-30579-8_5

[120] C.A.R.Hoare and J. He. 1998. Unifying Theories of Programming. Prentice Hall, Englewood Cliffs. https://www.cs.ox.ac.uk/publications/
publication8324-abstract.html

[121] Jiawei Hong. 1986. Proving by Example and Gap Theorems. In SFCS 1986. IEEE Computer Society, 107-116. doi:10.1109/SFCS.1986.48

[122] Guangyu Hu, Jianheng Tang, Changyuan Yu, Wei Zhang, and Hongce Zhang. 2024. DeepIC3: Guiding IC3 Algorithms by Graph Neural
Network Clause Prediction. In ASPDAC 2024. IEEE, 262-268. doi:10.1109/ASP-DAC58780.2024.10473807

[123] Shihua Hu. 2008. The Collection of Shihua Hu’s Essays. Academic Press.

[124] Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. 2022. Are Large Pre-Trained Language Models Leaking Your Personal
Information?. In EMNLP (Findings) 2022. Association for Computational Linguistics, 2038-2047. https://aclanthology.org/2022.findings-
emnlp.148.pdf

[125] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng,
Bing Qin, and Ting Liu. 2025. A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open
Questions. ACM Trans. Inf. Syst. 43, 2 (2025), 42:1-42:55. doi:10.1145/3703155

[126] Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2019. Modular verification for almost-sure
termination of probabilistic programs. Proc. ACM Program. Lang. 3, OOPSLA (2019), 129:1-129:29. doi:10.1145/3360555

[127] Huawei Workshop on Formal Methods. 2024. Formal Methods in the Age of Intelligence. Chaspark. https://www.chaspark.com/#/live/
1030301090375839744?anchorV=1039354325153751040&multi=zh&lang=en. Retrieved August 13, 2025.

[128] Dang Van Hung and Chaochen Zhou. 1999. Probabilistic Duration Calculus for Continuous Time. Formal Aspects Comput. 11, 1 (1999),
21-44. doi:10.1007/s001650050034

[129] Fuqi Jia, Yuhang Dong, Rui Han, Pei Huang, Minghao Liu, Feifei Ma, and Jian Zhang. 2025. A Complete Algorithm for Optimization
Modulo Nonlinear Real Arithmetic. In AAAI 2025. AAAI Press, 11255-11263. doi:10.1609/aaai.v39i11.33224

[130] Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards certified separate compilation for concurrent
programs. In PLDI 2019. ACM, 111-125. doi:10.1145/3314221.3314595

[131] Jiahong Jiang, Ligian Chen, Xueguang Wu, and Ji Wang. 2017. Block-Wise Abstract Interpretation by Combining Abstract Domains
with SMT. In VMCAI 2017 (Lecture Notes in Computer Science, Vol. 10145). Springer, 310-329. doi:10.1007/978-3-319-52234-0_17

[132] XinJie Jiang and YongSen Xu. 1988. NUSL: An executable specification language based on data abstraction. In Proceedings of the 2nd
VDM-Europe Symposium on VDM—The Way Ahead. Springer-Verlag, Berlin, Heidelberg, 124-138. doi:10.1007/3-540-50214-9_12

[133] Xinjie Jiang and Yongsen Xu. 1990. Diverse executable semantics definitions in NUSL and an implementation of functional types.
SIGPLAN Not. 25, 5 (1990), 39--52. d0i:10.1145/382080.382631

[134] Peng Jin, Jiaxu Tian, Dapeng Zhi, Xuejun Wen, and Min Zhang. 2022. Trainify: A CEGAR-driven training and verification framework
for safe deep reinforcement learning. In CAV 2022. Springer, 193-218. doi:10.1007/978-3-031-13185-1_10

[135] Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan. 2024. HHLPar: Automated Theorem Prover for Parallel Hybrid Communi-
cating Sequential Processes. CoRR abs/2407.08936 (2024). doi:10.48550/arXiv.2407.08936

[136] Joint Task Force on Computing Curricula (ACM and IEEE). 2013. Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. (2013), 27-38. doi:10.1145/2534860

[137] Joint Task Force on Computing Curricula (ACM and IEEE). 2014. Software Engineering 2014: Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering. (2014), 10-19. https://dl.acm.org/doi/book/10.1145/2965631

[138] Wei Ke, Xiaoshan Li, Zhiming Liu, and Volker Stolz. 2012. rCOS: A formal model-driven engineering method for component-based
software. Frontiers Comput. Sci. China 6, 1 (2012), 17-39. d0i:10.1007/s11704-012-2901-5

[139] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385-394. d0i:10.1145/360248.360252

[140] Hans Kleine Biining, K. Subramani, and Xishun Zhao. 2007. Boolean Functions as Models for Quantified Boolean Formulas. J. Autom.
Reason. 39, 1 (2007), 49-75. doi:10.1007/s10817-007-9067-0

[141] Hans Kleine Biining and Xishun Zhao. 2004. Equivalence Models for Quantified Boolean Formulas. In SAT 2004 (Lecture Notes in
Computer Science, Vol. 3542). Springer, 224-234. doi:10.1007/11527695_18

[142] Lutz Klinkenberg, Christian Blumenthal, Mingshuai Chen, Darion Haase, and Joost-Pieter Katoen. 2024. Exact Bayesian Inference for
Loopy Probabilistic Programs using Generating Functions. Proc. ACM Program. Lang. 8, OOPSLA1 (2024), 923-953. doi:10.1145/3649844

Form. Asp. Comput.

https://doi.org/10.1007/3-540-57208-2_15
https://doi.org/10.1016/0304-3975(94)00172-F
https://doi.org/10.1016/0304-3975(94)00172-F
https://global.oup.com/ushe/product/from-brouwer-to-hilbert-9780195096323?cc=cn&lang=en&facet_narrowbypubdate_facet=Older&facet_narrowbypubdate_facet=Older
https://global.oup.com/ushe/product/from-brouwer-to-hilbert-9780195096323?cc=cn&lang=en&facet_narrowbypubdate_facet=Older&facet_narrowbypubdate_facet=Older
https://doi.org/10.1007/978-3-540-30579-8_5
https://doi.org/10.1007/978-3-540-30579-8_5
https://www.cs.ox.ac.uk/publications/publication8324-abstract.html
https://www.cs.ox.ac.uk/publications/publication8324-abstract.html
https://doi.org/10.1109/SFCS.1986.48
https://doi.org/10.1109/ASP-DAC58780.2024.10473807
https://aclanthology.org/2022.findings-emnlp.148.pdf
https://aclanthology.org/2022.findings-emnlp.148.pdf
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3360555
https://www.chaspark.com/#/live/1030301090375839744?anchorV=1039354325153751040&multi=zh&lang=en
https://www.chaspark.com/#/live/1030301090375839744?anchorV=1039354325153751040&multi=zh&lang=en
https://doi.org/10.1007/s001650050034
https://doi.org/10.1609/aaai.v39i11.33224
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1007/978-3-319-52234-0_17
https://doi.org/10.1007/3-540-50214-9_12
https://doi.org/10.1145/382080.382631
https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.48550/arXiv.2407.08936
https://doi.org/10.1145/2534860
https://dl.acm.org/doi/book/10.1145/2965631
https://doi.org/10.1007/s11704-012-2901-5
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/s10817-007-9067-0
https://doi.org/10.1007/11527695_18
https://doi.org/10.1145/3649844

28 .

[143]

[144]

[145]
[146]
(147]
[148]
[149]
[150]
[151]
[152]
[153]

[154]
[155]

[156]
[157]

[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]

[169]

Form.

N. Zhan et al.

Lutz Klinkenberg, Tobias Winkler, Mingshuai Chen, and Joost-Pieter Katoen. 2023. Exact Probabilistic Inference Using Generating
Functions. In LAFI 2023. [Extended Abstract], https://popl23.sigplan.org/details/lafi-2023-papers/5/Exact-Probabilistic-Inference-
Using-Generating-Functions.

Hui Kong, Fei He, Xiaoyu Song, William N. N. Hung, and Ming Gu. 2013. Exponential-condition-based barrier certificate generation
for safety verification of hybrid systems. In CAV 2013 (Lecture Notes in Computer Science, Vol. 8044). Springer, 242-257. doi:10.1007/978-
3-642-39799-8_17

Oliver Kullmann and Xishun Zhao. 2013. On Davis-Putnam reductions for minimally unsatisfiable clause-sets. Theor. Comput. Sci. 492
(2013), 70-87. doi:10.1016/j.tcs.2013.04.020

Edward A. Lee. 2015. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models. Sensors 15, 3 (2015), 4837-4869.
doi:10.3390/5150304837

Edward A. Lee. 2016. Fundamental Limits of Cyber-Physical Systems Modeling. ACM Trans. Cyber Phys. Syst. 1, 1 (2016), 3:1-3:26.
doi:10.1145/2912149

Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou. 2023. Trustworthy Al: From Principles to Practices.
ACM Comput. Surv. 55, 9 (2023), 177:1-177:46. doi:10.1145/3555803

Chenxi Li, Haoran Lin, Tian Tan, and Yue Li. 2025. Two Approaches to Fast Bytecode Frontend for Static Analysis. Proc. ACM Program.
Lang. OOPSLA (2025). doi:10.1145/3763081

Haokun Li, Bican Xia, and Tianqi Zhao. 2023. Local Search for Solving Satisfiability of Polynomial Formulas. In CAV 2023 (Lecture
Notes in Computer Science, Vol. 13965). Springer, 87-109. doi:10.1007/978-3-031-37703-7_5

Renjue Li, Pengfei Yang, Cheng-Chao Huang, Youcheng Sun, Bai Xue, and Lijun Zhang. 2022. Towards Practical Robustness Analysis
for DNNs based on PAC-Model Learning. In ICSE 2022. ACM, 2189-2201. doi:10.1145/3510003.3510143

Shuhao Li, Ji Wang, and Zhi-Chang Qi. 2004. Property-Oriented Test Generation from UML Statecharts. In ASE 2004. IEEE Computer
Society, 122-131. doi:10.1109/ASE.2004.1342730

Wei Li. 1983. An operational approach to semantics and translation for programming languages. Ph.D. Dissertation. University of
Edinburgh, UK. https://era.ed.ac.uk/handle/1842/6636

Wei Li. 1990. A Type-Theoretic Approach to Program Development. J. Comput. Sci. Technol. 5, 3 (1990), 209-224. doi:10.1007/BF02945309
Wei Li. 1993. An open logic system. Science in China Series A - Mathematics, Physics, Astronomy & Technological Science 36, 3 (1993),
362-375.

Wei Li and Yuefei Sui. 2022. R-Calculus, II: Many-Valued Logics. Springer. doi:10.1007/978-981-16-9294-9

Xuandong Li and Dang Van Hung. 1996. Checking Linear Duration Invariants by Linear Programming. In ASIAN 1996 (Lecture Notes in
Computer Science, Vol. 1179). Springer, 321-332. doi:10.1007/BFb0027804

Yi Li, Xuechao Sun, Yong Li, Andrea Turrini, and Lijun Zhang. 2019. Synthesizing Nested Ranking Functions for Loop Programs via
SVM. In ICFEM 2019 (Lecture Notes in Computer Science, Vol. 11852). Springer, 438-454. doi:10.1007/978-3-030-32409-4_27

Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Precision-guided context sensitivity for pointer analysis. Proc. ACM
Program. Lang. 2, OOPSLA (2018), 141:1-141:29. do0i:10.1145/3276511

Yue Li, Tian Tan, Anders Meller, and Yannis Smaragdakis. 2018. Scalability-first pointer analysis with self-tuning context-sensitivity. In
FSE 2018. ACM, 129-140. doi:10.1145/3236024.3236041

Yue Li, Tian Tan, Anders Mgller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context Sensitivity for Pointer
Analysis. ACM Trans. Program. Lang. Syst. 42, 2 (2020), 10:1-10:40. doi:10.1145/3381915

Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing Reflection Resolution for Java. In ECOOP 2014 (Lecture Notes in
Computer Science, Vol. 8586). Springer, 27-53. do0i:10.1007/978-3-662-44202-9_2

Yue Li, Tian Tan, and Jingling Xue. 2015. Effective Soundness-Guided Reflection Analysis. In SAS 2015 (Lecture Notes in Computer
Science, Vol. 9291). Springer, 162-180. doi:10.1007/978-3-662-48288-9_10

Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and Analyzing Java Reflection. ACM Trans. Softw. Eng. Methodol. 28, 2 (2019),
7:1-7:50. doi:10.1145/3295739

Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In ECOOP 2016 (LIPIcs, Vol. 56).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 15:1-15:27. doi:10.4230/LIPIcs.ECOOP.2016.15

Yangjia Li and Mingsheng Ying. 2018. Algorithmic analysis of termination problems for quantum programs. Proc. ACM Program. Lang.
2, POPL (2018), 35:1-35:29. doi:10.1145/3158123

Yangjia Li, Naijun Zhan, Mingshuai Chen, Hui Lu, Guohua Wu, and Joost-Pieter Katoen. 2015. On Termination of Polynomial Programs
with Equality Conditions. CoRR abs/1510.05201 (2015). doi:10.48550/arXiv.1510.05201

Zhoujun Li and Huowang Chen. 1998. Checking Strong/Weak Bisimulation Equivalences and Observation Congruence for the
pi-Calculus. In ICALP 1998 (Lecture Notes in Computer Science, Vol. 1443). Springer, 707-718. doi:10.1007/BFb0055095

Zhiyang Li, Mingqi Yang, Shenghua Feng, and Mingshuai Chen. 2025. Fixed-Point Reasoning for Stochastic Systems: A Survey of
Recent Advancements and Open Challenges. In Design and Verification of Cyber-Physical Systems: From Theory to Applications. Springer.
[To appear].

Asp. Comput.

https://popl23.sigplan.org/details/lafi-2023-papers/5/Exact-Probabilistic-Inference-Using-Generating-Functions
https://popl23.sigplan.org/details/lafi-2023-papers/5/Exact-Probabilistic-Inference-Using-Generating-Functions
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1016/j.tcs.2013.04.020
https://doi.org/10.3390/s150304837
https://doi.org/10.1145/2912149
https://doi.org/10.1145/3555803
https://doi.org/10.1145/3763081
https://doi.org/10.1007/978-3-031-37703-7_5
https://doi.org/10.1145/3510003.3510143
https://doi.org/10.1109/ASE.2004.1342730
https://era.ed.ac.uk/handle/1842/6636
https://doi.org/10.1007/BF02945309
https://doi.org/10.1007/978-981-16-9294-9
https://doi.org/10.1007/BFb0027804
https://doi.org/10.1007/978-3-030-32409-4_27
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3381915
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.1145/3295739
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/3158123
https://doi.org/10.48550/arXiv.1510.05201
https://doi.org/10.1007/BFb0055095

[170]

[171]
[172]
[173]
[174]
[175]
[176]
[177]

[178]

[179]
[180]

[181]
[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]
[191]
[192]
[193]

[194]

A Brief History of Formal Methods in China « 29

Zechun Li, Peng Zhang, Yichi Zhang, and Hongkun Yang. 2025. NDD: A Decision Diagram for Network Verification. In 22nd
USENIX Symposium on Networked Systems Design and Implementation (NSDI 25). 237-258. https://www.usenix.org/conference/nsdi25/
presentation/li-zechun

Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points. In PLDI 2013. ACM,
459-470. doi:10.1145/2491956.2462189

Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL 2016. ACM, 385-399.
doi:10.1145/2837614.2837635

Hongjin Liang and Xinyu Feng. 2018. Progress of concurrent objects with partial methods. Proc. ACM Program. Lang. 2, POPL 2018
(2018), 20:1-20:31. doi:10.1145/3158108

Hongjin Liang and Xinyu Feng. 2021. Abstraction for conflict-free replicated data types. In PLDI 2021. ACM, 636-650. doi:10.1145/
3453483.3454067

Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation for verifying concurrent program transformations.
In POPL 2012. ACM, 455-468. doi:10.1145/2103656.2103711

Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of Concurrent
Program Transformations. ACM Trans. Program. Lang. Syst. 36, 1 (2014), 3:1-3:55. doi:10.1145/2576235

Hongjin Liang, Xinyu Feng, and Zhong Shao. 2014. Compositional verification of termination-preserving refinement of concurrent
programs. In CSL-LICS 2014. ACM, 65:1-65:10. doi:10.1145/2603088.2603123

Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. 2013. Characterizing Progress Properties of Concurrent Objects via
Contextual Refinements. In CONCUR 2013 (Lecture Notes in Computer Science, Vol. 8052). Springer, 227-241. doi:10.1007/978-3-642-
40184-8_17

Yufei Liang, Teng Zhang, Ganlin Li, Tian Tan, Chang Xu, Chun Cao, Xiaoxing Ma, and Yue Li. 2025. Pointer Analysis for Database-Backed
Applications. Proc. ACM Program. Lang. 9, PLDI (2025), 1417-1441. doi:10.1145/3729307

Huimin Lin. 1991. PAM: A Process Algebra Manipulator. In CAV 1991 (Lecture Notes in Computer Science, Vol. 575). Springer, 136-146.
doi:10.1007/3-540-55179-4_14

Huimin Lin. 1995. PAM: A Process Algebra Manipulator. Formal Methods Syst. Des. 7, 3 (1995), 243-259. do0i:10.1007/bf01384078
Huimin Lin. 1998. Complete Proof Systems for Observation Congruences in Finite-Control pi-Calculus. In ICALP 1998 (Lecture Notes in
Computer Science, Vol. 1443). Springer, 443-454. doi:10.1007/BFb0055074

Wang Lin, Mi Ding, Kaipeng Lin, and Zuohua Ding. 2023. Formal synthesis of neural Craig interpolant via counterexample guided
deep learning. Inf. Softw. Technol. 163 (2023), 107298. do0i:10.1016/j.infsof.2023.107298

Wang Lin, Zhengfeng Yang, Xin Chen, Qingye Zhao, Xiangkun Li, Zhiming Liu, and Jifeng He. 2019. Robustness Verification of
Classification Deep Neural Networks via Linear Programming. In CVPR 2019. Computer Vision Foundation / IEEE, 11418-11427.
doi:10.1109/CVPR.2019.01168

Yao Lin, Zhenbang Chen, and Ji Wang. 2025. AISE v2.0: Combining Loop Transformations - (Competition Contribution). In TACAS
2025 (Lecture Notes in Computer Science, Vol. 15698). Springer, 199-204. doi:10.1007/978-3-031-90660-2_12

Bo Liu, Zhiming Liu, Zongyan Qiu, and Xiao Qin. 2018. On computer science education of undergraduate students to improve their
understanding of program correctness and to develop their skills in developing correct programs. Computer Education (2018). (in
Chinese).

Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen Zhou, and Liang Zou. 2010. A Calculus for Hybrid CSP. In
APLAS 2010 (Lecture Notes in Computer Science, Vol. 6461). Springer, 1-15. doi:10.1007/978-3-642-17164-2_1

Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan. 2019. Formal Verification
of Quantum Algorithms Using Quantum Hoare Logic. In CAV 2019 (Lecture Notes in Computer Science, Vol. 11562). Springer, 187-207.
doi:10.1007/978-3-030-25543-5_12

Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan. 2019. Formal Verification
of Quantum Algorithms Using Quantum Hoare Logic. In CAV 2019 (2) (Lecture Notes in Computer Science, Vol. 11562). Springer, 187-207.
doi:10.1007/978-3-030-25543-5_12

Jiang Liu, Naijun Zhan, and Hengjun Zhao. 2011. Computing semi-algebraic invariants for polynomial dynamical systems. In EMSOFT
2011. ACM, 97-106. doi:10.1145/2038642.2038659

Jiangyi Liu, Fengmin Zhu, and Fei He. 2023. Automated Ambiguity Detection in Layout-Sensitive Grammars. Proc. ACM Program.
Lang. 7, OOPSLA2 (2023), 1150-1175. doi:10.1145/3622838

Zhiming Liu. 2025. The ProCoS project and Duration Calculus: A personal memoir. FACS FACTS 2025, 2 (2025), 13-27. https:
//www.bcs.org/media/yd4ocehl/facs-jul25.pdf

Zengyu Liu, Ligian Chen, Wanwei Liu, and Ji Wang. 2024. Synthesizing Boxes Preconditions for Deep Neural Networks. In ISSTA 2024.
ACM, 1708-1719. doi:10.1145/3650212.3680393

Zhiming Liu, Jifeng He, Xiaoshan Li, and Yifeng Chen. 2003. A Relational Model for Formal Object-Oriented Requirement Analysis in
UML. In ICFEM 2003 (Lecture Notes in Computer Science, Vol. 2885). Springer, 641-664. doi:10.1007/978-3-540-39893-6_36

Form. Asp. Comput.

https://www.usenix.org/conference/nsdi25/presentation/li-zechun
https://www.usenix.org/conference/nsdi25/presentation/li-zechun
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3158108
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1145/2603088.2603123
https://doi.org/10.1007/978-3-642-40184-8_17
https://doi.org/10.1007/978-3-642-40184-8_17
https://doi.org/10.1145/3729307
https://doi.org/10.1007/3-540-55179-4_14
https://doi.org/10.1007/bf01384078
https://doi.org/10.1007/BFb0055074
https://doi.org/10.1016/j.infsof.2023.107298
https://doi.org/10.1109/CVPR.2019.01168
https://doi.org/10.1007/978-3-031-90660-2_12
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1145/3622838
https://www.bcs.org/media/yd4ocehl/facs-jul25.pdf
https://www.bcs.org/media/yd4ocehl/facs-jul25.pdf
https://doi.org/10.1145/3650212.3680393
https://doi.org/10.1007/978-3-540-39893-6_36

30 -

[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]

[208]
[209]

[210]

[211]

[212]

[213]
[214]

[215]
[216]
[217]
[218]
[219]
[220]

[221]

Form.

N. Zhan et al.

Zhiming Liu, Anders P. Ravn, Erling V. Serensen, and Chaochen Zhou. 1993. A Probabilistic Duration Calculus. In Responsive Computer
Systems. Springer Vienna, Vienna, 29-52. doi:10.1007/978-3-7091-9288-7_3

Jian Lu. 1995. Introducing data decomposition into VDM for tractable development of programs. SIGPLAN Not. 30, 9 (1995), 41-50.
doi:10.1145/214448.214460

Jianguo Lu and Jiafu Xu. 1993. Analogical Program Derivation Based on Type Theory. Theor. Comput. Sci. 113, 2 (1993), 259-272.
doi:10.1016/0304-3975(93)90004-D

Jianan Ma, Jingyi Wang, Qi Xuan, and Zhen Wang. 2025. Provable Fairness Repair for Deep Neural Networks. In ASE 2025. doi:10.
48550/arXiv.2104.04413 [To appear].

Jianan Ma, Jingyi Wang, Qi Xuan, and Zhen Wang. 2025. Provable Repair of Deep Neural Network Defects by Preimage Synthesis and
Property Refinement. In CCS 2025. https://arxiv.org/abs/2511.07741 [To appear].

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. 2025. SpecGen: Automated Generation of Formal Program Specifications via
Large Language Models. (2025), 16-28. doi:10.1109/ICSE55347.2025.00129

Qian Ma, Zhenhua Duan, Nan Zhang, and Xiaobing Wang. 2015. Verification of distributed systems with the axiomatic system of
MSVL. Formal Aspects Comput. 27, 1 (2015), 103-131. doi:10.1007/s00165-014-0303-1

Wenjie Ma, Shengyuan Yang, Tian Tan, Xiaoxing Ma, Chang Xu, and Yue Li. 2023. Context Sensitivity without Contexts: A Cut-Shortcut
Approach to Fast and Precise Pointer Analysis. Proc. ACM Program. Lang. 7, PLDI (2023), 539-564. d0i:10.1145/3591242

Xiwen Ma. 1982. Relational approach to formal semantics. J. Comput. 5, 1 (1982), 1-10.

Ziyu Mao, Jingyi Wang, Jun Sun, Shengchao Qin, and Jiawen Xiong. 2025. LLM-aided Automatic Modelling for Security Protocol
Verification. In 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE). IEEE Computer Society, 734-734. doi:10.
1109/ICSE55347.2025.00197

Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In CAV 2003 (Lecture Notes in Computer Science, Vol. 2725).
Springer, 1-13. doi:10.1007/978-3-540-45069-6_1

Alan Mishchenko et al. 2012. ABC: A system for sequential synthesis and verification. http://www-cad.eecs.berkeley.edu/~alanmi/abc/.
Retrieved December 1, 2025.

Ben C. Moszkowski and Zohar Manna. 1983. Reasoning in Interval Temporal Logic. In Logics of Programs (Lecture Notes in Computer
Science, Vol. 164). Springer, 371-382. doi:10.1007/3-540-12896-4_374

George C. Necula. 1997. Proof-Carrying Code. In POPL 1997. ACM Press, 106-119. doi:10.1145/263699.263712

Mogens Nielsen, Klaus Havelund, Kim Ritter Wagner, and Chris George. 1989. The RAISE Language, Method and Tools. Formal Aspects
Comput. 1,1 (1989), 85-114. doi:10.1007/BF01887199

Sergei Novozhilov, Mingqi Yang, Mingshuai Chen, Zhiyang Li, and Jianwei Yin. 2025. On the Almost-Sure Termination of Probabilistic
Counter Programs. In CAV 2025 (Lecture Notes in Computer Science, Vol. 15932). Springer, 82-104. doi:10.1007/978-3-031-98679-6_4
Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat,
Yuzhong Wen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-button verification and optimization for synchronization
primitives on weak memory models. In ASPLOS 2021. ACM, 530-545. doi:10.1145/3445814.3446748

Ernst-Rudiger Olderog and Henning Dierks. 2008. Real-time systems - formal specification and automatic verification. Cambridge
University Press. https://www.amazon.com/Real-Time-Systems-Specification- Automatic- Verification-ebook/dp/B01DM27W8A
Benjamin C. Pierce. 2002. Types and programming languages. MIT Press. https://www.cis.upenn.edu/~bcpierce/tapl/

Muhammad A. A. Pirzada, Giles Reger, Ahmed Bhayat, and Lucas C. Cordeiro. 2024. LLM-Generated Invariants for Bounded Model
Checking Without Loop Unrolling. In ASE 2024. ACM, 1395-1407. doi:10.1145/3691620.3695512

Stephen Prajna and Ali Jadbabaie. 2004. Safety verification of hybrid systems using barrier certificates. In HSCC 2004 (Lecture Notes in
Computer Science, Vol. 2993). Springer, 477-492. doi:10.1007/978-3-540-24743-2_32

Geguang Pu, Dang Van Hung, Jifeng He, and Wang Yi. 2004. An Optimal Approach to Hardware/Software Partitioning for Synchronous
Model. In IFM 2004 (Lecture Notes in Computer Science, Vol. 2999). Springer, 363-381. doi:10.1007/978-3-540-24756-2_20

Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. 2022. DeJITLeak: eliminating JIT-induced timing side-channel
leaks. In ESEC/FSE 2022. ACM, 872-884. d0i:10.1145/3540250.3549150

Shengchao Qin and Jifeng He. 2000. An algebraic approach to hardware/software partitioning. In ICECS 2000. IEEE, 273-276.
doi:10.1109/ICECS.2000.911535

Stefan Ratschan and Zhikun She. 2007. Safety verification of hybrid systems by constraint propagation-based abstraction refinement.
ACM Trans. Embed. Comput. Syst. 6, 1 (2007), 8. doi:10.1145/1210268.1210276

Anders P. Ravn. 1995. Design of embedded real-time computing systems. Ph. D. Dissertation. TU Lyngby. https://www.researchgate.net/
publication/220689974_Design_of_embedded_real-time_computing_systems

David Sanan, Yongwang Zhao, Zhe Hou, Fuyuan Zhang, Alwen Tiu, and Yang Liu. 2017. CSimpl: A Rely-Guarantee-Based Framework
for Verifying Concurrent Programs. In TACAS 2017 (Lecture Notes in Computer Science, Vol. 10205). 481-498. doi:10.1007/978-3-662-
54577-5_28

Asp. Comput.

https://doi.org/10.1007/978-3-7091-9288-7_3
https://doi.org/10.1145/214448.214460
https://doi.org/10.1016/0304-3975(93)90004-D
https://doi.org/10.48550/arXiv.2104.04413
https://doi.org/10.48550/arXiv.2104.04413
https://arxiv.org/abs/2511.07741
https://doi.org/10.1109/ICSE55347.2025.00129
https://doi.org/10.1007/s00165-014-0303-1
https://doi.org/10.1145/3591242
https://doi.org/10.1109/ICSE55347.2025.00197
https://doi.org/10.1109/ICSE55347.2025.00197
https://doi.org/10.1007/978-3-540-45069-6_1
http://www-cad.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1007/3-540-12896-4_374
https://doi.org/10.1145/263699.263712
https://doi.org/10.1007/BF01887199
https://doi.org/10.1007/978-3-031-98679-6_4
https://doi.org/10.1145/3445814.3446748
https://www.amazon.com/Real-Time-Systems-Specification-Automatic-Verification-ebook/dp/B01DM27W8A
https://www.cis.upenn.edu/~bcpierce/tapl/
https://doi.org/10.1145/3691620.3695512
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-540-24756-2_20
https://doi.org/10.1145/3540250.3549150
https://doi.org/10.1109/ICECS.2000.911535
https://doi.org/10.1145/1210268.1210276
https://www.researchgate.net/publication/220689974_Design_of_embedded_real-time_computing_systems
https://www.researchgate.net/publication/220689974_Design_of_embedded_real-time_computing_systems
https://doi.org/10.1007/978-3-662-54577-5_28
https://doi.org/10.1007/978-3-662-54577-5_28

[222]
[223]
[224]
[225]
[226]
[227]
[228]
[229]
[230]
[231]
[232]
[233]
[234]
[235]
[236]

[237]

[238]
[239]
[240]
[241]
[242]
[243]
[244]

[245]
[246]

[247]

[248]

A Brief History of Formal Methods in China « 31

David Sanan, Yongwang Zhao, Shang-Wei Lin, and Yang Liu. 2021. CSim?: Compositional Top-down Verification of Concurrent
Systems using Rely-Guarantee. ACM Trans. Program. Lang. Syst. 43, 1 (2021), 2:1-2:46. doi:10.1145/3436808

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. 2000. Checking Safety Properties Using Induction and a SAT-Solver. In FMCAD
2000 (Lecture Notes in Computer Science, Vol. 1954). Springer, 127-144. doi:10.1007/3-540-40922-X_8

Shidong Shen, Yicheng Liu, Lijun Zhang, Fu Song, and Zhilin Wu. 2024. Formal Verification of RISC-V Processor Chisel Designs. In
SETTA 2024 (Lecture Notes in Computer Science, Vol. 15469). Springer, 142-160. doi:10.1007/978-981-96-0602-3_8

Huanhuan Sheng, Alexander Bentkamp, and Bohua Zhan. 2023. HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic.
In FM 2023 (Lecture Notes in Computer Science, Vol. 14000). Springer, 160-178. doi:10.1007/978-3-031-27481-7_11

Adnan Sherif and Jifeng He. 2002. Towards a Time Model for Circus. In ICFEM 2002 (Lecture Notes in Computer Science, Vol. 2495).
Springer, 613-624. doi:10.1007/3-540-36103-0_62

Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang. 2024. Partial Solution Based Constraint Solving
Cache in Symbolic Execution. Proc. ACM Softw. Eng. 1, FSE 2024 (2024), 2493-2514. doi:10.1145/3660817

Zigi Shuai, Zhenbang Chen, Yufeng Zhang, Jun Sun, and Ji Wang. 2021. Type and interval aware array constraint solving for symbolic
execution. In ISSTA 2021. ACM, 361-373. doi:10.1145/3460319.3464826

Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer. 2018. Vector barrier certificates and comparison systems. In FM
2018 (Lecture Notes in Computer Science, Vol. 10951). Springer, 418-437. doi:10.1007/978-3-319-95582-7.25

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial sketching for
finite programs. In ASPLOS 2006. ACM, 404-415. doi:10.1145/1168857.1168907

J Michael Spivey and Jean-Raymond Abrial. 1992. The Z notation. Vol. 29. Prentice Hall Hemel Hempstead. https://dl.acm.org/doi/
book/10.5555/129612

Yuheng Su, Qiusong Yang, and Yiwei Ci. 2024. Predicting Lemmas in Generalization of IC3. In DAC 2024. ACM, 208:1-208:6. doi:10.
1145/3649329.3655970

Yuheng Su, Qiusong Yang, Yiwei Ci, Yingcheng Li, Tianjun Bu, and Ziyu Huang. 2025. Deeply Optimizing the SAT Solver for the IC3
Algorithm. In CAV 2025 (Lecture Notes in Computer Science, Vol. 15931). Springer, 237-257. doi:10.1007/978-3-031-98668-0_12

Huan Sun, David Sanan, Jingyi Wang, Yongwang Zhao, Jun Sun, and Wenhai Wang. 2025. Generalized Security-Preserving Refinement
for Concurrent Systems. In CCS 2025. https://arxiv.org/abs/2511.06862 [To appear].

Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2023. Automated Tail Bound Analysis for Probabilistic
Recurrence Relations. In CAV 2023 (Lecture Notes in Computer Science, Vol. 13966). Springer, 16-39. doi:10.1007/978-3-031-37709-9_2
Zhihang Sun, Hongyu Fan, and Fei He. 2022. Consistency-preserving propagation for SMT solving of concurrent program verification.
Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 929-956. doi:10.1145/3563321

Zewen Sun, Duanchen Xu, Yiyu Zhang, Yun Qi, Yueyang Wang, Zhigiang Zuo, Zhaokang Wang, Yue Li, Xuandong Li, Qingda Lu,
Wenwen Peng, and Shengjian Guo. 2023. BigDataflow: A Distributed Interprocedural Dataflow Analysis Framework. In ESEC/FSE 2023.
ACM, 1431-1443. doi:10.1145/3611643.3616348

Huiyu Tan, Pengfei Gao, Fu Song, Taolue Chen, and Zhilin Wu. 2024. SAT-based Formal Verification of Fault Injection Countermeasures
for Cryptographic Circuits. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024, 4 (2024), 1-39. doi:10.46586/tches.v2024.i4.1-39
Qingping Tan. 1997. A higher-order unification algorithm for inductive types and dependent types. J. Comput. Sci. Technol. 12, 3 (1997),
231-243. do0i:10.1007/BF02948973

Tian Tan and Yue Li. 2023. Tai-e: A Developer-Friendly Static Analysis Framework for Java by Harnessing the Good Designs of Classics.
In ISSTA 2023. ACM, 1093-1105. do0i:10.1145/3597926.3598120

Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making pointer analysis more precise by unleashing the
power of selective context sensitivity. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1-27. doi:10.1145/3485524

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In SAS 2016
(Lecture Notes in Computer Science, Vol. 9837). Springer, 489-510. doi:10.1007/978-3-662-53413-7_24

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata.
In PLDI 2017. ACM, 278-291. doi:10.1145/3062341.3062360

Wang Tan and Yi Li. 2021. Synthesis of ranking functions via DNN. Neural Comput. Appl. 33, 16 (2021), 9939-9959. d0i:10.1007/s00521-
021-05763-8

Zhisong Tang. 2002. Programming Based on Temproal Logic and Applications to Software Engineering. Academic Press.

Ren-ji Tao. 1988. Invertibility of Linear Finite Automata Over a Ring. In ICALP 1988 (Lecture Notes in Computer Science, Vol. 317).
Springer, 489-501. doi:10.1007/3-540-19488-6_136

Thomas N. Theis and H.-S. Philip Wong. 2017. The End of Moore’s Law: A New Beginning for Information Technology. Comput. Sci.
Eng. 19, 2 (2017), 41-50. doi:10.1109/MCSE.2017.29

Cong Tian and Zhenhua Duan. 2011. Expressiveness of propositional projection temporal logic with star. Theor. Comput. Sci. 412, 18
(2011), 1729-1744. doi:10.1016/].tcs.2010.12.047

Form. Asp. Comput.

https://doi.org/10.1145/3436808
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-981-96-0602-3_8
https://doi.org/10.1007/978-3-031-27481-7_11
https://doi.org/10.1007/3-540-36103-0_62
https://doi.org/10.1145/3660817
https://doi.org/10.1145/3460319.3464826
https://doi.org/10.1007/978-3-319-95582-7_25
https://doi.org/10.1145/1168857.1168907
https://dl.acm.org/doi/book/10.5555/129612
https://dl.acm.org/doi/book/10.5555/129612
https://doi.org/10.1145/3649329.3655970
https://doi.org/10.1145/3649329.3655970
https://doi.org/10.1007/978-3-031-98668-0_12
https://arxiv.org/abs/2511.06862
https://doi.org/10.1007/978-3-031-37709-9_2
https://doi.org/10.1145/3563321
https://doi.org/10.1145/3611643.3616348
https://doi.org/10.46586/tches.v2024.i4.1-39
https://doi.org/10.1007/BF02948973
https://doi.org/10.1145/3597926.3598120
https://doi.org/10.1145/3485524
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1007/s00521-021-05763-8
https://doi.org/10.1007/s00521-021-05763-8
https://doi.org/10.1007/3-540-19488-6_136
https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1016/j.tcs.2010.12.047

32 « N.Zhanetal

[249] Cong Tian and Zhenhua Duan. 2013. Detecting spurious counterexamples efficiently in abstract model checking. In ICSE. IEEE
Computer Society, 202-211. doi:10.1109/ICSE.2013.6606566

[250] Cong Tian, Zhenhua Duan, and Zhao Duan. 2014. Making CEGAR More Efficient in Software Model Checking. IEEE Trans. Software
Eng. 40, 12 (2014), 1206-1223. doi:10.1109/TSE.2014.2357442

[251] Wen tsun Wu. 184. Basic principles of mechanical theorem-proving in elementary geometries. J.Sys.Sci.& Math.Scis. (184), 207-235.
doi:10.1142/9789812791085_0012 Re-published in J. Automated Reasoning, 2, 221-252, 1986, https://link.springer.com/article/10.1007/
BF02328447.

[252] Wen tsun Wu. 2001. Mathematics mechanization. Springer Dordrecht. https://link.springer.com/book/9780792358350

[253] Alan M. Turing. 1949. Checking a Large Routine. Cambridge University Mathematical Laboratory, Cambridge, UK, 67-69. https:
//dl.acm.org/doi/10.5555/94938.94952

[254] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All You Need. In NIPS 2017. 5998-6008. https://dl.acm.org/doi/10.5555/3295222.3295349

[255] Di Wang, Jan Hoffmann, and Thomas W. Reps. 2018. PMAF: An algebraic framework for static analysis of probabilistic programs. In
PLDI 2018. ACM, 513-528. d0i:10.1145/3192366.3192408

[256] Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Central moment analysis for cost accumulators in probabilistic programs. In PLDI
2021. ACM, 559-573. doi:10.1145/3453483.3454062

[257] Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Sound probabilistic inference via guide types. In PLDI 2021. ACM, 788-803.
doi:10.1145/3453483.3454077

[258] Di Wang, David M. Kahn, and Jan Hoffmann. 2020. Raising expectations: Automating expected cost analysis with types. Proc. ACM
Program. Lang. 4, ICFP 2020 (2020), 110:1-110:31. doi:10.1145/3408992

[259] Di Wang and Thomas W. Reps. 2024. Newtonian Program Analysis of Probabilistic Programs. Proc. ACM Program. Lang. 8, OOPSLA1
(2024), 305-333. doi:10.1145/3649822

[260] Huaimin Wang and Huowang Chen. 1995. A constructor-based EI-model semantics of EI-CTRS. . Comput. Sci. Technol. 10, 1 (1995),
85-96. doi:10.1007/BF02939525

[261] Ji Wang and Huowang Chen. 1992. Temporal Reasoning About Real Time Reactive Systems. In Automated Reasoning, Proceedings of the
IFIP TC12/WG12.3 International Workshop on Automated Reasoning, Beijing, P.R. China, 13—-16 July 1992 (IFIP Transactions, Vol. A-19).
North-Holland, 249-256. https://dl.acm.org/doi/10.5555/645641.664037

[262] Ji Wang and Huowang Chen. 1993. A formal technique to analyze real-time systems. In COMPSAC 1993. IEEE, 180-185. doi:10.1109/
CMPSAC.1993.404194

[263] Ji Wang, Wei Dong, and Zhichang Qi. 2002. Slicing Hierarchical Automata for Model Checking UML Statecharts. In ICFEM 2002
(Lecture Notes in Computer Science, Vol. 2495). Springer, 435-446. doi:10.1007/3-540-36103-0_45

[264] Jiawan Wang, Wenxia Liu, Muzimiao Zhang, Jiaqi Wei, Yuhui Shi, Lei Bu, and Xuandong Li. 2024. Scenario-Based Flexible Modeling
and Scalable Falsification for Reconfigurable CPSs. In CAV 2024 (Lecture Notes in Computer Science, Vol. 14683). Springer, 329-355.
doi:10.1007/978-3-031-65633-0_15

[265] Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021. Quantitative analysis of assertion
violations in probabilistic programs. In PLDI 2021. ACM, 1171-1186. doi:10.1145/3453483.3454102

[266] Jiayi Wang, Yu Wang, Ke Wang, and Linzhang Wang. 2025. SILVA: A Scalable Incremental Layered Sparse Value-Flow Analysis. ACM
Trans. Softw. Eng. Methodol. (2025). d0i:10.1145/3725214 https://doi.org/10.1145/3725214.

[267] Ji Wang, Naijun Zhan, Xinyu Feng, and Zhiming Liu. 2019. Overview of Formal Methods. Ruan Jian Xue Bao / Journal of Software 30, 1
(2019), 33-61. http://www.jos.org.cn/1000-9825/5652.htm (In Chinese).

[268] Kai Wang, Aftab Hussain, Zhigiang Zuo, Guoging Xu, and Ardalan Amiri Sani. 2017. Graspan: A Single-machine Disk-based Graph
System for Interprocedural Static Analyses of Large-scale Systems Code. In ASPLOS 2017. ACM, 389-404. doi:10.1145/3093336.3037744

[269] Kun Wang, Jingyi Wang, Christopher M Poskitt, Xiangxiang Chen, Jun Sun, and Peng Cheng. 2023. K-ST: A formal executable semantics
of the structured text language for PLCs. IEEE Transactions on Software Engineering 49, 10 (2023), 4796-4813. doi:10.1109/TSE.2023.
3315292

[270] Lingtai Wang, Naijun Zhan, and Jie An. 2018. The Opacity of Real-Time Automata. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37, 11 (2018), 2845-2856. doi:10.1109/TCAD.2018.2857363

[271] Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. 2020. Proving expected sensitivity of probabilistic programs
with randomized variable-dependent termination time. Proc. ACM Program. Lang. 4, POPL (2020), 25:1-25:30. doi:10.1145/3371093

[272] Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019. Cost analysis of
nondeterministic probabilistic programs. In PLDI 2019. ACM, 204-220. doi:10.1145/3314221.3314581

[273] Peixin Wang, Tengshun Yang, Hongfei Fu, Guanyan Li, and C.-H. Luke Ong. 2024. Static Posterior Inference of Bayesian Probabilistic
Programming via Polynomial Solving. Proc. ACM Program. Lang. 8, PLDI (2024), 1361-1386. doi:10.1145/3656432

[274] Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, and Joost-Pieter Katoen. 2022. Encoding inductive invariants as barrier certificates:
Synthesis via difference-of-convex programming. Inf. Comput. 289, Part (2022), 104965. doi:10.1016/j.ic.2022.104965

Form. Asp. Comput.

https://doi.org/10.1109/ICSE.2013.6606566
https://doi.org/10.1109/TSE.2014.2357442
https://doi.org/10.1142/9789812791085_0012
https://link.springer.com/article/10.1007/BF02328447
https://link.springer.com/article/10.1007/BF02328447
https://link.springer.com/book/9780792358350
https://dl.acm.org/doi/10.5555/94938.94952
https://dl.acm.org/doi/10.5555/94938.94952
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.1145/3192366.3192408
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3453483.3454077
https://doi.org/10.1145/3408992
https://doi.org/10.1145/3649822
https://doi.org/10.1007/BF02939525
https://dl.acm.org/doi/10.5555/645641.664037
https://doi.org/10.1109/CMPSAC.1993.404194
https://doi.org/10.1109/CMPSAC.1993.404194
https://doi.org/10.1007/3-540-36103-0_45
https://doi.org/10.1007/978-3-031-65633-0_15
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3725214
http://www.jos.org.cn/1000-9825/5652.htm
https://doi.org/10.1145/3093336.3037744
https://doi.org/10.1109/TSE.2023.3315292
https://doi.org/10.1109/TSE.2023.3315292
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3656432
https://doi.org/10.1016/j.ic.2022.104965

[275]

[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]

[285]

[286]

[287]
[288]
[289]
[290]

[291]

[292]
[293]

[294]

[295]
[296]
[297]

[298]

A Brief History of Formal Methods in China « 33

Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, and Joost-Pieter Katoen. 2021. Synthesizing invariant barrier certificates via
difference-of-convex programming. In CAV 2021 (1) (Lecture Notes in Computer Science, Vol. 12759). Springer, 443-466. doi:10.1007/978-
3-030-81685-8_21

Shuling Wang, Zekun Ji, Xiong Xu, Bohua Zhan, Qiang Gao, and Naijun Zhan. 2024. Formally Verified C Code Generation from Hybrid
Communicating Sequential Processes. In ICCPS 2024. IEEE, 123-134. doi:10.1109/ICCPS61052.2024.00018

Shuling Wang, Naijun Zhan, and Liang Zou. 2015. An Improved HHL Prover: An Interactive Theorem Prover for Hybrid Systems. In
ICFEM 2015 (Lecture Notes in Computer Science, Vol. 9407). Springer, 382-399. do0i:10.1007/978-3-319-25423-4_25

Xianchang Wang and Huowang Chen. 1991. On Semantics of TMS. In IJCAI 1991. Morgan Kaufmann. https://dlacm.org/doi/10.5555/
1631171.1631217

Xizao Wang, Zhigiang Zuo, Lei Bu, and Jianhua Zhao. 2023. DStream: A Streaming-Based Highly Parallel IFDS Framework. In ICSE
2023. IEEE, 2488-2500. doi:10.1109/ICSE48619.2023.00208

Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning semantic program embeddings with graph interval neural
network. Proc. ACM Program. Lang. 4, OOPSLA (2020), 137:1-137:27. doi:10.1145/3428205

Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF: verified separate compilation of C programs into ELF
object files. Proc. ACM Program. Lang. 4, OOPSLA (2020), 197:1-197:28. doi:10.1145/3428265

Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig. 2022. Verified compilation of C programs with a nominal memory model.
Proc. ACM Program. Lang. 6, POPL (2022), 1-31. doi:10.1145/3498686

Zhongyi Wang, Tengjie Lin, Mingshuai Chen, Minggqi Yang, Haokun Li, Xiao Yi, Shengchao Qin, and Jianwei Yin. 2025. PREGUSS: It
Analyzes, It Specifies, It Verifies. In LMPL 2025. ACM, 118-123. doi:10.1145/3759425.3763394

Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding, Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022.
WeTune: Automatic Discovery and Verification of Query Rewrite Rules. In SIGMOD 2022. ACM, 94-107. doi:10.1145/3514221.3526125
Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi Cheung, and Cong Tian. 2024. Enchanting
Program Specification Synthesis by Large Language Models Using Static Analysis and Program Verification. In CAV 2024 (2) (Lecture
Notes in Computer Science, Vol. 14682). Springer, 302-328. doi:10.1007/978-3-031-65630-9_16

Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen, and Xiaoxing Ma. 2024. LLM Meets Bounded Model Checking:
Neuro-symbolic Loop Invariant Inference. In ASE 2024, Vladimir Filkov, Baishakhi Ray, and Minghui Zhou (Eds.). ACM, 406-417.
doi:10.1145/3691620.3695014

Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen, and Xiaoxing Ma. 2024. LLM Meets Bounded Model Checking:
Neuro-Symbolic Loop Invariant Inference. In ASE 2024. ACM, 406-417. d0i:10.1145/3691620.3695014

Haoze Wu, Clark W. Barrett, and Nina Narodytska. 2024. Lemur: Integrating Large Language Models in Automated Program Verification.
In ICLR 2024. https://openreview.net/forum?id=Q3YaCghZNt

Hao Wu, Yu-Fang Chen, Zhilin Wu, Bican Xia, and Naijun Zhan. 2024. A decision procedure for string constraints with string/integer
conversion and flat regular constraints. Acta Informatica 61, 1 (2024), 23-52. doi:10.1007/s00236-023-00446-4

Huiling Wu, Anran Cui, and Yuxin Deng. 2024. An Assertion-Based Logic for Local Reasoning about Probabilistic Programs. In SETTA
2024 (Lecture Notes in Computer Science, Vol. 15469). Springer, 25-45. do0i:10.1007/978-981-96-0602-3_2

Hao Wu, Jie Wang, Bican Xia, Xiakun Li, Naijun Zhan, and Ting Gan. 2024. Nonlinear Craig Interpolant Generation Over Unbounded
Domains by Separating Semialgebraic Sets. In FM 2024 (Lecture Notes in Computer Science, Vol. 14933). Springer, 92-110. doi:10.1007/978-
3-031-71162-6_5

Hao Wu, Qiuye Wang, Bai Xue, Naijun Zhan, Lihong Zhi, and Zhi-Hong Yang. 2025. Synthesizing Invariants for Polynomial Programs
by Semidefinite Programming. ACM Trans. Program. Lang. Syst. 47, 1 (2025), 1:1-1:35. do0i:10.1145/3708559

Xueguang Wu, Ligian Chen, Antoine Miné, Wei Dong, and Ji Wang. 2016. Static Analysis of Runtime Errors in Interrupt-Driven
Programs via Sequentialization. ACM Trans. Embed. Comput. Syst. 15, 4 (2016), 70:1-70:26. doi:10.1145/2914789

Xiwei Wu, Yueyang Feng, Xiaoyang Lu, Tianchuan Lin, Kan Liu, Zhiyi Wang, Shushu Wu, Lihan Xie, Chengxi Yang, Hongyi Zhong,
Naijun Zhan, Zhenjiang Hu, and Qinxiang Cao. 2025. QCP: A Practical Separation Logic-based C Program Verification Tool. CoRR
abs/2505.12878 (2025). doi:10.48550/arXiv.2505.12878

Yulun Wu, Bohua Zhan, and Bican Xia. 2024. OSVAuto: Semi-automatic verifier for functional specifications of operating systems.
CoRR abs/2403.13457 (2024). doi:10.48550/arXiv.2403.13457

Bican Xia. 2007. DISCOVERER: A tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 41, 3 (2007), 102-103.
doi:10.1145/1358190.1358197

Bican Xia and Lu Yang. 2002. An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems. J. Symb. Comput. 34, 5 (2002),
461-477. doi:10.1006/jsc0.2002.0572

Yechuan Xia, Anna Becchi, Alessandro Cimatti, Alberto Griggio, Jianwen Li, and Geguang Pu. 2023. Searching for i-Good Lemmas to
Accelerate Safety Model Checking. In CAV 2023 (Lecture Notes in Computer Science, Vol. 13965). Springer, 288-308. doi:10.1007/978-3-
031-37703-7_14

Form. Asp. Comput.

https://doi.org/10.1007/978-3-030-81685-8_21
https://doi.org/10.1007/978-3-030-81685-8_21
https://doi.org/10.1109/ICCPS61052.2024.00018
https://doi.org/10.1007/978-3-319-25423-4_25
https://dl.acm.org/doi/10.5555/1631171.1631217
https://dl.acm.org/doi/10.5555/1631171.1631217
https://doi.org/10.1109/ICSE48619.2023.00208
https://doi.org/10.1145/3428205
https://doi.org/10.1145/3428265
https://doi.org/10.1145/3498686
https://doi.org/10.1145/3759425.3763394
https://doi.org/10.1145/3514221.3526125
https://doi.org/10.1007/978-3-031-65630-9_16
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://openreview.net/forum?id=Q3YaCghZNt
https://doi.org/10.1007/s00236-023-00446-4
https://doi.org/10.1007/978-981-96-0602-3_2
https://doi.org/10.1007/978-3-031-71162-6_5
https://doi.org/10.1007/978-3-031-71162-6_5
https://doi.org/10.1145/3708559
https://doi.org/10.1145/2914789
https://doi.org/10.48550/arXiv.2505.12878
https://doi.org/10.48550/arXiv.2403.13457
https://doi.org/10.1145/1358190.1358197
https://doi.org/10.1006/jsco.2002.0572
https://doi.org/10.1007/978-3-031-37703-7_14
https://doi.org/10.1007/978-3-031-37703-7_14

34 .

[299]
[300]
[301]
[302]
[303]
[304]
[305]
[306]

[307]

[308]
[309]

[310]
[311]

[312]

[313]
[314]
[315]

[316]

[317]
[318]
[319]
[320]

[321]

[322]
[323]
[324]

[325]

Form.

N. Zhan et al.

Dingbao Xie, Lei Bu, and Xuandong Li. 2014. Deriving Unbounded Proof of Linear Hybrid Automata from Bounded Verification. In
RTSS 2014. IEEE Computer Society, 128-137. doi:10.1109/RTSS.2014.22

Dingbao Xie, Lei Bu, Jianhua Zhao, and Xuandong Li. 2014. SAT-LP-IIS joint-directed path-oriented bounded reachability analysis of
linear hybrid automata. Formal Methods Syst. Des. 45, 1 (2014), 42-62. doi:10.1007/s10703-014-0210-3

Dingbao Xie, Wen Xiong, Lei Bu, and Xuandong Li. 2017. Deriving Unbounded Reachability Proof of Linear Hybrid Automata during
Bounded Checking Procedure. IEEE Trans. Computers 66, 3 (2017), 416—-430. doi:10.1109/TC.2016.2604308

Ma Xiwen and Guo Weide. 1983. W-JS: A Modal Logic of Knowledge. In IJCAI 1983. 398-401. https://www.ijcai.org/Proceedings/83-
1/Papers/094.pdf

Baowen Xu, Yingzhou Zhang, and Yanhui Li. 2004. Retrospect and Prospect of Formal Methods Education in China. In TFM 2004
(Lecture Notes in Computer Science, Vol. 3294). Springer, 225-234. doi:10.1007/978-3-540-30472-2_15

Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. 2016. A Practical Verification Framework for Preemptive
OS Kernels. In CAV 2016 (Lecture Notes in Computer Science, Vol. 9780). Springer, 59-79. doi:10.1007/978-3-319-41540-6_4

Jiafu Xu (Ed.). 1983. Programming Languages for System Software. China Science Publishing & Media Ltd. in Chinese.

Jiafu Xu, Daoxu Chen, Jian Lu, and Zhijian Wang (Eds.). 1994. Software Automation. Tsinghua University Press. in Chinese.

Jiafu Xu and Jian Lu (Eds.). 2000. Software Programming Languages and Implementations. China Science Publishing & Media Ltd. in
Chinese.

Jiafu Xu and Fangming Song (Eds.). 2013. Quantum Programming Languages. China Science Publishing & Media Ltd. in Chinese.
Ming Xu and Yuxin Deng. 2020. Time-bounded termination analysis for probabilistic programs with delays. Inf. Comput. 275 (2020),
104634. doi:10.1016/].ic.2020.104634

Rongchen Xu, Jianhui Chen, and Fei He. 2022. Data-Driven Loop Bound Learning for Termination Analysis. In ICSE 2022. ACM,
499-510. doi:10.1145/3510003.3510220

Rongchen Xu, Fei He, and Bow-Yaw Wang. 2020. Interval counterexamples for loop invariant learning. In ESEC/SIGSOFT FSE 2020.
ACM, 111-122. doi:10.1145/3368089.3409752

Wenjing Xu, Yongwang Zhao, Chengtao Cao, Jean Raphael Ngnie Sighom, Lei Wang, Zhe Jiang, and Shihong Zou. 2021. Apply Formal
Methods in Certifying the SyberX High-Assurance Kernel. In FM 2021 (Lecture Notes in Computer Science, Vol. 13047). Springer, 788-798.
doi:10.1007/978-3-030-90870-6_46

Xiong Xu, Ehsan Ahmad, Shuling Wang, Xiangyu Jin, Bohua Zhan, and Naijun Zhan. 2025. Modeling and Verification of Hybrid
Systems by Extending AADL. ACM Trans. Softw. Eng. Methodol. (2025). doi:10.1145/3737698

Xiong Xu, Jean-Pierre Talpin, Shuling Wang, Hao Wu, Bohua Zhan, Xinxin Liu, and Naijun Zhan. 2025. HpC: A Calculus for Hybrid
and Mobile Systems. Proc. ACM Program. Lang. 9, OOPSLA1 (2025), 1158-1183. doi:10.1145/3720478

Xiong Xu, Jean-Pierre Talpin, Shuling Wang, Bohua Zhan, and Naijun Zhan. 2023. Semantics Foundation for Cyber-physical Systems
Using Higher-order UTP. ACM Trans. Softw. Eng. Methodol. 32, 1 (2023), 9:1-9:48. d0i:10.1145/3517192

Xiong Xu, Shuling Wang, Bohua Zhan, Xiangyu Jin, Jean-Pierre Talpin, and Naijun Zhan. 2022. Unified graphical co-modeling,
analysis and verification of cyber-physical systems by combining AADL and Simulink/Stateflow. Theor. Comput. Sci. 903 (2022), 1-25.
doi:10.1016/j.tcs.2021.11.008

Xiong Xu, Bohua Zhan, Shuling Wang, Jean-Pierre Talpin, and Naijun Zhan. 2023. A denotational semantics of Simulink with
higher-order UTP. J. Log. Algebraic Methods Program. 130 (2023), 100809. doi:10.1016/j.jlamp.2022.100809

Bai Xue, Martin Franzle, and Naijun Zhan. 2018. Under-Approximating Reach Sets for Polynomial Continuous Systems. In HSCC 2018.
ACM, 51-60. doi:10.1145/3178126.3178133

Bai Xue, Martin Franzle, and Naijun Zhan. 2020. Inner-Approximating Reachable Sets for Polynomial Systems With Time-Varying
Uncertainties. IEEE Trans. Autom. Control. 65, 4 (2020), 1468-1483. d0i:10.1109/TAC.2019.2923049

Bai Xue, Martin Franzle, Naijun Zhan, Sergiy Bogomolov, and Bican Xia. 2020. Safety Verification for Random Ordinary Differential
Equations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 11 (2020), 4090-4101. doi:10.1109/TCAD.2020.3013135

Bai Xue, Peter Nazier Mosaad, Martin Frinzle, Mingshuai Chen, Yangjia Li, and Naijun Zhan. 2017. Safe Over- and Under-Approximation
of Reachable Sets for Delay Differential Equations. In FORMATS 2017 (Lecture Notes in Computer Science, Vol. 10419). Springer, 281-299.
doi:10.1007/978-3-319-65765-3_16

Bai Xue, Zhikun She, and Arvind Easwaran. 2016. Under-Approximating Backward Reachable Sets by Polytopes. In CAV 2016 (Lecture
Notes in Computer Science, Vol. 9779). Springer, 457-476. doi:10.1007/978-3-319-41528-4_25

Bai Xue, Qiuye Wang, Shenghua Feng, and Naijun Zhan. 2021. Over- and Underapproximating Reach Sets for Perturbed Delay
Differential Equations. IEEE Trans. Autom. Control. 66, 1 (2021), 283-290. do0i:10.1109/TAC.2020.2977993

Bai Xue, Miaomiao Zhang, Arvind Easwaran, and Qin Li. 2020. PAC Model Checking of Black-Box Continuous-Time Dynamical
Systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 11 (2020), 3944-3955. doi:10.1109/TCAD.2020.3012251

Gaogao Yan, Li Jiao, Shuling Wang, Lingtai Wang, and Naijun Zhan. 2020. Automatically Generating SystemC Code from HCSP Formal
Models. ACM Trans. Softw. Eng. Methodol. 29, 1 (2020), 4:1-4:39. doi:10.1145/3360002

Asp. Comput.

https://doi.org/10.1109/RTSS.2014.22
https://doi.org/10.1007/s10703-014-0210-3
https://doi.org/10.1109/TC.2016.2604308
https://www.ijcai.org/Proceedings/83-1/Papers/094.pdf
https://www.ijcai.org/Proceedings/83-1/Papers/094.pdf
https://doi.org/10.1007/978-3-540-30472-2_15
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1016/j.ic.2020.104634
https://doi.org/10.1145/3510003.3510220
https://doi.org/10.1145/3368089.3409752
https://doi.org/10.1007/978-3-030-90870-6_46
https://doi.org/10.1145/3737698
https://doi.org/10.1145/3720478
https://doi.org/10.1145/3517192
https://doi.org/10.1016/j.tcs.2021.11.008
https://doi.org/10.1016/j.jlamp.2022.100809
https://doi.org/10.1145/3178126.3178133
https://doi.org/10.1109/TAC.2019.2923049
https://doi.org/10.1109/TCAD.2020.3013135
https://doi.org/10.1007/978-3-319-65765-3_16
https://doi.org/10.1007/978-3-319-41528-4_25
https://doi.org/10.1109/TAC.2020.2977993
https://doi.org/10.1109/TCAD.2020.3012251
https://doi.org/10.1145/3360002

[326]
[327]
[328]

[329]

[330]
[331]

[332]
[333]

[334]

[335]

[336]
[337]
[338]
[339]
[340]
[341]
[342]
[343]
[344]
[345]
[346]
[347]
[348]
[349]
[350]
[351]

[352]

A Brief History of Formal Methods in China « 35

Zhiyuan Yan, Wenji Fang, Mengming Li, Min Li, Shang Liu, Zhiyao Xie, and Hongce Zhang. 2025. AssertLLM: Generating Hardware
Verification Assertions from Design Specifications via Multi-LLMs. In ASPDAC 2025. ACM, 614-621. doi:10.1145/3658617.3697756
Kai Yang, Zhenhua Duan, Cong Tian, and Nan Zhang. 2018. A compiler for MSVL and its applications. Theor. Comput. Sci. 749 (2018),
2-16. doi:10.1016/j.tcs.2017.07.032

Lu Yang. 1999. Recent Advances on Determining the Number of Real Roots of Parametric Polynomials. . Symb. Comput. 28, 1-2 (1999),
225-242. d0i:10.1006/jsc0.1998.0274

Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Ligian Chen, Xiaowei Huang, and Lijun Zhang. 2021. Enhancing
Robustness Verification for Deep Neural Networks via Symbolic Propagation. Formal Aspects Comput. 33, 3 (2021), 407-435. doi:10.
1007/500165-021-00548-1

Yang Yang, Lei Bu, and Xuandong Li. 2012. Forward and backward: Bounded model checking of linear hybrid automata from two
directions. In FMCAD 2012. IEEE, 204-208. https://ieeexplore.ieee.org/document/6462575

Zhengfeng Yang, Wang Lin, and Min Wu. 2015. Exact Safety Verification of Hybrid Systems Based on Bilinear SOS Representation.
ACM Trans. Embed. Comput. Syst. 14, 1 (2015), 16:1-16:19. doi:10.1145/2629424

Bo Yi and Jiafu Xu. 1993. Analogy Calculus. Theor. Comput. Sci. 113, 2 (1993), 211-230. doi:10.1016/0304-3975(93)90002-B

Xiaodong Yi, Ji Wang, and Xuejun Yang. 2005. Verification of C Programs using Slicing Execution. In QSIC 2005. IEEE Computer
Society, 109-116. doi:10.1109/QSIC.2005.72

Xiaodong Yi, Ji Wang, and Xuejun Yang. 2006. Stateful Dynamic Partial-Order Reduction. In ICFEM 2006 (Lecture Notes in Computer
Science, Vol. 4260). Springer, 149-167. doi:10.1007/11901433_9

Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018. YOGAR-CBMC: CBMC with Scheduling Constraint Based
Abstraction Refinement - (Competition Contribution). In TACAS 2018 (Lecture Notes in Computer Science, Vol. 10806). Springer, 422-426.
d0i:10.1007/978-3-319-89963-3_25

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018. Scheduling constraint based abstraction refinement for weak memory models.
In ASE 2018. ACM, 645-655. doi:10.1145/3238147.3238223

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2019. Parallel refinement for multi-threaded program verification. In ICSE 2019.
IEEE / ACM, 643-653. doi:10.1109/ICSE.2019.00074

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2020. On Scheduling Constraint Abstraction for Multi-Threaded Program Verification.
IEEE Trans. Software Eng. 46, 5 (2020), 549-565. doi:10.1109/TSE.2018.2864122

Liangze Yin, Yiwei Li, Kun Chen, Wei Dong, and Ji Wang. 2025. Incremental Verification of Concurrent Programs through Refinement
Constraint Adaptation. Proc. ACM Softw. Eng. 2, ISSTA (2025), 2251-2272: doi:10.1145/3728976

Mingsheng Ying. 2001. Topology in process calculus - approximate correctness and infinite evolution of concurrent programs. Springer.
doi:10.1007/978-1-4613-0123-3

Mingsheng Ying. 2002. Additive models of probabilistic processes. Theor. Comput. Sci. 275, 1-2 (2002), 481-519. d0i:10.1016/S0304-
3975(01)00294-8

Mingsheng Ying. 2011. Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33, 6 (2011), 19:1-19:49. doi:10.1145/
2049706.2049708

Mingsheng Ying. 2024. Foundations of quantum programming, 2nd Edition. Elsevier. https://www.sciencedirect.com/book/monograph/
9780443159428/foundations- of-quantum-programming

Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of quantum programs: characterisations and generation. (2017),
818-832. doi:10.1145/3009837.3009840

Mingsheng Ying, Li Zhou, Yangjia Li, and Yuan Feng. 2022. A proof system for disjoint parallel quantum programs. Theor. Comput. Sci.
897 (2022), 164-184. d0i:10.1016/].tcs.2021.10.025

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong. 2020. Symbolic verification of
message passing interface programs. In ICSE 2020. ACM, 1248-1260. doi:10.1145/3377811.3380419

Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong. 2018. Symbolic verification of regular properties. In ICSE 2018.
ACM, 871-881. doi:10.1145/3180155.3180227

Qianshan Yu, Fei He, and Bow-Yaw Wang. 2020. Incremental predicate analysis for regression verification. Proc. ACM Program. Lang. 4,
OOPSLA (2020), 184:1-184:25. doi:10.1145/3428252

Shiwen Yu, Zengyu Liu, Ting Wang, and Ji Wang. 2024. Neural Solving Uninterpreted Predicates with Abstract Gradient Descent.
ACM Trans. Softw. Eng. Methodol. 33, 8 (2024), 215:1-215:47. doi:10.1145/3675394

Shiwen Yu, Ting Wang, and Ji Wang. 2023. Loop Invariant Inference through SMT Solving Enhanced Reinforcement Learning. In
ISSTA 2023. ACM, 175-187. d0i:10.1145/3597926.3598047

Xinyao Yu, Ji Wang, Chaochen Zhou, and Paritosh K. Pandya. 1994. Formal Design of Hybrid Systems. In FTRTFT 1994 (Lecture Notes
in Computer Science, Vol. 863). Springer, 738-755. doi:10.1007/3-540-58468-4_193

Chongyi Yuan. 2025. Principle of Petri Nets. Springer. doi:10.1007/978-981-97-7336-7

Form. Asp. Comput.

https://doi.org/10.1145/3658617.3697756
https://doi.org/10.1016/j.tcs.2017.07.032
https://doi.org/10.1006/jsco.1998.0274
https://doi.org/10.1007/s00165-021-00548-1
https://doi.org/10.1007/s00165-021-00548-1
https://ieeexplore.ieee.org/document/6462575
https://doi.org/10.1145/2629424
https://doi.org/10.1016/0304-3975(93)90002-B
https://doi.org/10.1109/QSIC.2005.72
https://doi.org/10.1007/11901433_9
https://doi.org/10.1007/978-3-319-89963-3_25
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1109/ICSE.2019.00074
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1145/3728976
https://doi.org/10.1007/978-1-4613-0123-3
https://doi.org/10.1016/S0304-3975(01)00294-8
https://doi.org/10.1016/S0304-3975(01)00294-8
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://www.sciencedirect.com/book/monograph/9780443159428/foundations-of-quantum-programming
https://www.sciencedirect.com/book/monograph/9780443159428/foundations-of-quantum-programming
https://doi.org/10.1145/3009837.3009840
https://doi.org/10.1016/j.tcs.2021.10.025
https://doi.org/10.1145/3377811.3380419
https://doi.org/10.1145/3180155.3180227
https://doi.org/10.1145/3428252
https://doi.org/10.1145/3675394
https://doi.org/10.1145/3597926.3598047
https://doi.org/10.1007/3-540-58468-4_193
https://doi.org/10.1007/978-981-97-7336-7

36 .

[353]
[354]
[355]
[356]
[357]
[358]
[359]
[360]
[361]
[362]
[363]
[364]
[365]
[366]
[367]
[368]

[369]

[370]
[371]
[372]
[373]
[374]

[375]

[376]

[377]

Form.

N. Zhan et al.

Richard Zach. 2023. Hilbert’s Program. In The Stanford Encyclopedia of Philosophy (Winter 2023 ed.). Metaphysics Research Lab,
Stanford University. https://plato.stanford.edu/archives/win2023/entries/hilbert-program/

Xia Zeng, Wang Lin, Zhengfeng Yang, Xin Chen, and Lilei Wang. 2016. Darboux-type barrier certificates for safety verification of
nonlinear hybrid systems. In EMSOFT 2016. ACM, 1-10. doi:10.1145/2968478.2968484

Junpeng Zha, Hongjin Liang, and Xinyu Feng. 2022. Verifying optimizations of concurrent programs in the promising semantics. In
PLDI 2022. ACM, 903-917. d0i:10.1145/3519939.3523734

Bohua Zhan. 2016. AUTO2, A Saturation-Based Heuristic Prover for Higher-Order Logic. In ITP 2016 (Lecture Notes in Computer Science,
Vol. 9807). Springer, 441-456. doi:10.1007/978-3-319-43144-4_27

Bohua Zhan. 2022. User Interface Design in the HolPy Theorem Prover (Invited Talk). In ITP 2022 (LIPIcs, Vol. 237). Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2:1-2:1. doi:10.4230/LIPIcs.ITP.2022.2

Naijun Zhan. 2000. A higher-order duration calculus and its completeness. Science in China 46, 6 (2000), 625-640. https://www.
sciengine.com/cfs/files/pdfs/view/1006-9321/RJeu53fZxmiRvSWXA.pdf

Naijun Zhan, Shuling Wang, and Hengjun Zhao (Eds.). 2017. Formal Verification of Simulink/Stateflow Diagrams, A Deductive Approach.
Springer. doi:10.1007/978-3-319-47016-0

Naijun Zhan, Bohua Zhan, Shuling Wang, Dimitar P. Guelev, and Xiangyu Jin. 2023. A Generalized Hybrid Hoare Logic. CoRR
abs/2303.15020 (2023). doi:10.48550/arXiv.2303.15020

Chenxi Zhang, Yufei Liang, Tian Tan, Chang Xu, Shuangxiang Kan, Yulei Sui, and Yue Li. 2025. Interactive Cross-Language Pointer
Analysis for Resolving Native Code in Java Programs. In ICSE 2025. IEEE, 1089-1100. doi:10.1109/ICSE55347.2025.00075

Feng Zhang, Leping Zhang, Yongwang Zhao, Yang Liu, and Jun Sun. 2023. Refinement-based Specification and Analysis of Multi-core
ARINC 653 Using Event-B. Formal Aspects Comput. 35, 4 (2023), 24:1-24:29. doi:10.1145/3617183

Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-Based Verification of Software Countermeasures Against
Side-Channel Attacks. In CAV 2018, Vol. 10982. Springer, 157-177. doi:10.1007/978-3-319-96142-2_12

Jingzhong Zhang, Lu Yang, and Mike Deng. 1990. The Parallel Numerical Method of Mechanical Theorem Proving. Theor. Comput. Sci.
74, 3 (1990), 253-271. do0i:10.1016/0304-3975(90)90077-U

Jing-Zhong Zhang, Shang-Ching Chou, and Xiao-Shan Gao. 1995. Automated production of traditional proofs for theorems in Euclidean
geometry I. The Hilbert intersection point theorems. Ann Math Artif Intell 13 (1995), 109-137. doi:10.1007/BF01531326

Ling Zhang, Yuting Wang, Yalun Liang, and Zhong Shao. 2025. CompCertOC: Verified Compositional Compilation of Multi-threaded
Programs with Shared Stacks. Proc. ACM Program. Lang. 9, PLDI (2025), 651-674. doi:10.1145/3729276

Shuo Zhang, Fei He, and Ming Gu. 2015. VeRV: A temporal and data-concerned verification framework for the vehicle bus systems. In
INFOCOM 2015. IEEE, 1167-1175. doi:10.1109/INFOCOM.2015.7218491

Teng Zhang, Yufei Liang, Ganlin Li, Tian Tan, Chang Xu, and Yue Li. 2025. Bridge the Islands: Pointer Analysis for Microservice
Systems. Proc. ACM Softw. Eng. 2, ISSTA (2025), 504-526. doi:10.1145/3728896

Yedi Zhang, Yufan Cai, Xinyue Zuo, Xiaokun Luan, Kailong Wang, Zhe Hou, Yifan Zhang, Zhiyuan Wei, Meng Sun, Jun Sun, et al.
2025. Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods. In ICML 2025.
https://icml.cc/virtual/2025/poster/40101 [To appear].

Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Tianqi Zhang, Kenli Li, and Ji Wang. 2020. Multiplex Symbolic Execution: Exploring
Multiple Paths by Solving Once. In ASE 2020. IEEE, 846-857. doi:10.1145/3324884.3416645

Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. 2015. Regular Property Guided Dynamic Symbolic Execution. In
ICSE 2015. IEEE Computer Society, 643-653. doi:10.1109/ICSE.2015.80

Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang. 2025. Unifying Compositional Verification and Certified Compilation with a
Three-Dimensional Refinement Algebra. Proc. ACM Program. Lang. 9, POPL (2025), 1903-1933. doi:10.1145/3704900

Yuhao Zhang, Luyao Ren, Ligian Chen, Yingfei Xiong, Shing-Chi Cheung, and Tao Xie. 2020. Detecting numerical bugs in neural
network architectures. In ESEC/FSE 2020. ACM, 826-837. d0i:10.1145/3368089.3409720

Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang. 2022. Provably tightest linear approximation for robustness verification of
sigmoid-like neural networks. In ASE 2022. 1-13. doi:10.1145/3551349.3556907

Hanrui Zhao, Banglong Liu, Lydia Dehbi, Huijiao Xie, Zhengfeng Yang, and Haifeng Qian. 2024. Polynomial Neural Barrier Certificate
Synthesis of Hybrid Systems via Counterexample Guidance. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 43, 11 (2024), 3756-3767.
doi:10.1109/TCAD.2024.3447226

Hanrui Zhao, Niuniu Qi, Lydia Dehbi, Xia Zeng, and Zhengfeng Yang. 2023. Formal Synthesis of Neural Barrier Certificates for
Continuous Systems via Counterexample Guided Learning. ACM Trans. Embed. Comput. Syst. 22, 5s (2023), 146:1-146:21. doi:10.1145/
3609125

Hanrui Zhao, Niuniu Qi, Lydia Dehbi, Xia Zeng, and Zhengfeng Yang. 2023. Formal Synthesis of Neural Barrier Certificates for
Continuous Systems via Counterexample Guided Learning. ACM Trans. Embed. Comput. Syst. 22, 5s (2023), 146:1-146:21. doi:10.1145/
3609125

Asp. Comput.

https://plato.stanford.edu/archives/win2023/entries/hilbert-program/
https://doi.org/10.1145/2968478.2968484
https://doi.org/10.1145/3519939.3523734
https://doi.org/10.1007/978-3-319-43144-4_27
https://doi.org/10.4230/LIPIcs.ITP.2022.2
https://www.sciengine.com/cfs/files/pdfs/view/1006-9321/RJeu53fZxmiRvSWXA.pdf
https://www.sciengine.com/cfs/files/pdfs/view/1006-9321/RJeu53fZxmiRvSWXA.pdf
https://doi.org/10.1007/978-3-319-47016-0
https://doi.org/10.48550/arXiv.2303.15020
https://doi.org/10.1109/ICSE55347.2025.00075
https://doi.org/10.1145/3617183
https://doi.org/10.1007/978-3-319-96142-2_12
https://doi.org/10.1016/0304-3975(90)90077-U
https://doi.org/10.1007/BF01531326
https://doi.org/10.1145/3729276
https://doi.org/10.1109/INFOCOM.2015.7218491
https://doi.org/10.1145/3728896
https://icml.cc/virtual/2025/poster/40101
https://doi.org/10.1145/3324884.3416645
https://doi.org/10.1109/ICSE.2015.80
https://doi.org/10.1145/3704900
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3551349.3556907
https://doi.org/10.1109/TCAD.2024.3447226
https://doi.org/10.1145/3609125
https://doi.org/10.1145/3609125
https://doi.org/10.1145/3609125
https://doi.org/10.1145/3609125

[378]

[379]
[380]
[381]
[382]
[383]
[384]

[385]

[386]

[387]

[388]
[389]
[390]
[391]
[392]
[393]
[394]
[395]
[396]
[397]
[398]
[399]
[400]

[401]

[402]

A Brief History of Formal Methods in China « 37

Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, and Yao Chen. 2014. Formal Verification of a Descent Guidance Control
Program of a Lunar Lander. In FM 2014 (Lecture Notes in Computer Science, Vol. 8442). Springer, 733-748. doi:10.1007/978-3-319-06410-
9_49

Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. 2020. Synthesizing barrier certificates using neural networks. In HSCC 2020.
ACM, 25:1-25:11. doi:10.1145/3365365.3382222

Hengjun Zhao, Xia Zeng, Taolue Chen, Zhiming Liu, and Jim Woodcock. 2021. Learning safe neural network controllers with barrier
certificates. Formal Aspects Comput. 33, 3 (2021), 437-455. doi:10.1007/978-3-030-62822-2_11

Jianing Zhao, Shaoyuan Li, and Xiang Yin. 2024. A unified framework for verification of observational properties for partially-observed
discrete-event systems. IEEE Trans. Automat. Control 69, 7 (2024), 4710-4717. doi:10.1109/TAC.2024.3355378

Yongwang Zhao and David Sanan. 2019. Rely-Guarantee Reasoning About Concurrent Memory Management in Zephyr RTOS. In CAV
2019 (Lecture Notes in Computer Science, Vol. 11562). Springer, 515-533. doi:10.1007/978-3-030-25543-5_29

Yongwang Zhao, Zhibin Yang, David Sanan, and Yang Liu. 2015. Event-based formalization of safety-critical operating system standards:
An experience report on ARINC 653 using Event-B. In ISSRE 2015. IEEE Computer Society, 281-292. doi:10.1109/ISSRE.2015.7381821
Dapeng Zhi, Peixin Wang, Si Liu, C-H Luke Ong, and Min Zhang. 2024. Unifying qualitative and quantitative safety verification of
DNN-controlled systems. In CAV 2024. Springer, 401-426. doi:10.1007/978-3-031-65630-9_20

Chaochen Zhou. 1982. Weakest environment of communicating processes. In American Federation of Information Processing Societies:
1982 National Computer Conference, 7-10 June, 1982, Houston, Texas, USA (AFIPS Conference Proceedings, Vol. 51). AFIPS Press, 679-690.
doi:10.1145/1500774.1500860

Chaochen Zhou. 1994. Linear Duration Invariants. In FTRTFT 1994 (Lecture Notes in Computer Science, Vol. 863). Springer, 86—-109.
doi:10.1007/3-540-58468-4_161

Chaochen Zhou, Dimitar P. Guelev, and Naijun Zhan. 1999. A higher-order duration calculus. In The Symposium in Celebration
of the Work of C. A. R. Hoare. Prentice Hall International (UK) Ltd. https://www.researchgate.net/publication/2298859_A_Higher-
Order_Duration_Calculus

Chaochen Zhou and Michael R. Hansen. 2004. Duration Calculus - A Formal Approach to Real-Time Systems. Springer. doi:10.1007/978-
3-662-06784-0

Chaochen Zhou, Michael R. Hansen, and Peter Sestoft. 1993. Decidability and Undecidability Results for Duration Calculus. In STACS
1993 (Lecture Notes in Computer Science, Vol. 665). Springer, 58—68. doi:10.1007/3-540-56503-5_8

Chaochen Zhou, C. A. R. Hoare, and Anders P. Ravn. 1991. A Calculus of Durations. Inf. Process. Lett. 40, 5 (1991), 269-276.
d0i:10.1016/0020-0190(91)90122-X

Chaochen Zhou, Dang Van Hung, and Xiaoshan Li. 1995. A Duration Calculus with Infinite Intervals. In FCT 1995 (Lecture Notes in
Computer Science, Vol. 965). Springer, 16—41. d0i:10.1007/3-540-60249-6_39

Chaochen Zhou and Xiaoshan Li. 1994. A mean value calculus of durations. Prentice Hall International (UK) Ltd., GBR, 431-451.
https://dl.acm.org/doi/10.5555/197600.197633

Chaochen Zhou, Anders P. Ravn, and Michael R. Hansen. 1992. An Extended Duration Calculus for Hybrid Real-Time Systems. In
Hybrid Systems (Lecture Notes.in Computer Science, Vol. 736). Springer, 36—59. doi:10.1007/3-540-57318-6_23

Chaochen Zhou, Ji Wang, and Anders P. Ravn. 1995. A Formal Description of Hybrid Systems. In Hybrid Systems III: Verification and
Control (Lecture Notes in Computer Science, Vol. 1066). Springer, 511-530. doi:10.1007/BFb0020972

Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. CoqQ: Foundational Verification of Quantum Programs.
Proc. ACM Program. Lang. 7, POPL (2023), 833-865. doi:10.1145/3571222

Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. CoqQ: Foundational Verification of Quantum Programs.
Proc. ACM Program. Lang. 7, POPL (2023), 833-865. doi:10.1145/3571222

Litao Zhou, Jianxing Qin, Qinshi Wang, Andrew W. Appel, and Qinxiang Cao. 2024. VST-A: A Foundationally Sound Annotation
Verifier. Proc. ACM Program. Lang. 8, POPL (2024), 2069-2098. doi:10.1145/3632911

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An applied quantum Hoare logic. In PLDI 2019. ACM, 1149-1162. doi:10.1145/
3314221.3314584

Lingfeng Zhu, Xindi Zhang, Yongjian Li, and Shaowei Cai. 2025. Leveraging Critical Proof Obligations for Efficient IC3 Verification. In
DAC 2025. TEEE, 1-7. d0i:10.1109/DAC63849.2025.11132734

Liang Zou, Martin Franzle, Naijun Zhan, and Peter Nazier Mosaad. 2015. Automatic Verification of Stability and Safety for Delay
Differential Equations. In CAV 2015 (Lecture Notes in Computer Science, Vol. 9207). Springer, 338-355. do0i:10.1007/978-3-319-21668-3_20
Liang Zou, Jidong Lv, Shuling Wang, Naijun Zhan, Tao Tang, Lei Yuan, and Yu Liu. 2013. Verifying Chinese Train Control System
under a Combined Scenario by Theorem Proving. In VSTTE 2013 (Lecture Notes in Computer Science, Vol. 8164). Springer, 262—-280.
doi:10.1007/978-3-642-54108-7_14

Liang Zou, Naijun Zhan, Shuling Wang, and Martin Franzle. 2015. Formal Verification of Simulink/Stateflow Diagrams. In ATVA 2015
(Lecture Notes in Computer Science, Vol. 9364). Springer, 464-481. do0i:10.1007/978-3-319-47016-0

Form. Asp. Comput.

https://doi.org/10.1007/978-3-319-06410-9_49
https://doi.org/10.1007/978-3-319-06410-9_49
https://doi.org/10.1145/3365365.3382222
https://doi.org/10.1007/978-3-030-62822-2_11
https://doi.org/10.1109/TAC.2024.3355378
https://doi.org/10.1007/978-3-030-25543-5_29
https://doi.org/10.1109/ISSRE.2015.7381821
https://doi.org/10.1007/978-3-031-65630-9_20
https://doi.org/10.1145/1500774.1500860
https://doi.org/10.1007/3-540-58468-4_161
https://www.researchgate.net/publication/2298859_A_Higher-Order_Duration_Calculus
https://www.researchgate.net/publication/2298859_A_Higher-Order_Duration_Calculus
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1007/3-540-56503-5_8
https://doi.org/10.1016/0020-0190(91)90122-X
https://doi.org/10.1007/3-540-60249-6_39
https://dl.acm.org/doi/10.5555/197600.197633
https://doi.org/10.1007/3-540-57318-6_23
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3632911
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1109/DAC63849.2025.11132734
https://doi.org/10.1007/978-3-319-21668-3_20
https://doi.org/10.1007/978-3-642-54108-7_14
https://doi.org/10.1007/978-3-319-47016-0

38 « N.Zhanetal

[403] Liang Zou, Naijun Zhan, Shuling Wang, Martin Franzle, and Shengchao Qin. 2013. Verifying Simulink diagrams via a Hybrid Hoare
Logic Prover. In EMSOFT 2013. IEEE, 9:1-9:10. doi:10.1109/EMSOFT.2013.6658587

[404] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo Chen. 2019. Using concurrent relational logic with helpers for
verifying the AtomFS file system. In SOSP 2019. ACM, 259-274. doi:10.1145/3341301.3359644

[405] Mo Zou, Dong Du, Mingkai Dong, and Haibo Chen. 2024. Using Dynamically Layered Definite Releases for Verifying the RefFS File
System. In OSDI 2024. USENIX Association, 629-648. https://www.usenix.org/conference/osdi24/presentation/zou

[406] Zhigiang Zuo, Rong Gu, Xi Jiang, Zhaokang Wang, Yihua Huang, Linzhang Wang, and Xuandong Li. 2019. BigSpa: An Efficient
Interprocedural Static Analysis Engine in the Cloud. In IPDPS 2019. IEEE, 771-780. doi:10.1109/IPDPS.2019.00086

[407] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang, Guoqing Harry Xu, Linzhang Wang, and Xuandong
Li. 2019. Grapple: A Graph System for Static Finite-State Property Checking of Large-Scale Systems Code. In EuroSys 2019. ACM,
38:1-38:17. doi:10.1145/3302424.3303972

[408] Zhiqiang Zuo, Kai Wang, Aftab Hussain, Ardalan Amiri Sani, Yiyu Zhang, Shenming Lu, Wensheng Dou, Linzhang Wang, Xuandong
Li, Chenxi Wang, and Guoging Harry Xu. 2020. Systemizing Interprocedural Static Analysis of Large-scale Systems Code with Graspan.
ACM Trans. Comput. Syst. 38, 1-2 (2020), 4:1-4:39. doi:10.1145/3466820

[409] Zhigiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang, Xuandong Li, and Guoqing Harry Xu. 2021. Chianina:
An evolving graph system for flow- and context-sensitive analyses of million lines of C code. In PLDI 2021. ACM, 914-929. doi:10.1145/
3453483.3454085

Received 26 August 2025; revised 4 December 2025; accepted 8 December 2025

Form. Asp. Comput.

https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1145/3341301.3359644
https://www.usenix.org/conference/osdi24/presentation/zou
https://doi.org/10.1109/IPDPS.2019.00086
https://doi.org/10.1145/3302424.3303972
https://doi.org/10.1145/3466820
https://doi.org/10.1145/3453483.3454085
https://doi.org/10.1145/3453483.3454085

	Abstract
	1 Introduction
	2 Infant Stage (1950s–1970s)
	3 Early Development (1980s–1990s)
	3.1 Early Stage of Reform and Opening-up
	3.2 Establishment of UNU/IIST
	3.3 Mathematics Mechanization
	3.4 Duration Calculus
	3.5 Unifying Theories of Programming
	3.6 Concurreny Theories

	4 Expansion and Maturity (2000s–Present)
	4.1 Key Developments
	4.2 The CCF Formal Methods Technical Committee; Major FM Teams and Venues

	5 Industry Contributions and Applications
	6 Challenges and Future Directions
	6.1 Research and Industrial Applications
	6.2 Education and Talent Cultivation

	7 Conclusion
	References

