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A Brief History of Formal Methods in China

NAIJUN ZHAN, School of Computer Science, Peking University, Beijing, China and Zhongguancun Laboratory,
Beijing, China

JIM WOODCOCK, Southwest University, Chongqing, China, Department of Electrical and Computer Engi-
neering, Aarhus University, Aarhus, Denmark, and Computer Science, University of York, York, United Kingdom
of Great Britain and Northern Ireland

JI WANG, State Key Laboratory for Complex & Critical Software Environment, College Computer Science and
Technology, National University of Defense Technology, Changsha, China

MINGSHUAI CHEN, College of Computer Science and Technology, Zhejiang University, Hangzhou, China

The development of formal methods (FM) in China dates back to the early 1950s, when several logicians shifted their research
focus from mathematics to theoretical computer science and began advocating the application of mathematical logic to
enhance the rigor of computing systems. A significant expansion of FM in China emerged in the 1980s, pioneered by a
new generation of talented computer scientists who had visited, studied, and/or worked in Western countries, such as the
United Kingdom and the United States, closely tied to China’s reform and opening-up policy. A notable milestone was the
establishment of the United Nations University International Institute for Software Technology (UNU/IIST) in Macau in the
early 1990s, which played a crucial role in advancing FM research and collaboration in China. In recent years, the return of an
increasing number of talented young scholars has further strengthened China’s FM community, elevating its influence and
contribution within the global FM landscape.

CCS Concepts: « General and reference — Surveys and overviews; - Software and its engineering — Formal methods;
+ Theory of computation — Logic and verification; Automated reasoning.

Additional Key Words and Phrases: Formal methods, duration calculus, unifying theories of programming, process algebra,
theorem proving, model checking

1 Introduction

Formal methods are mathematically rigorous techniques for specifying, developing, analyzing, and verifying
software and hardware systems [17]. The notion of formal methods—or more precisely, the principle of for-
malization—can be traced back to the renowned Hilbert’s Program [118, 353] of the 1920s, which sought to
establish a complete, consistent, and decidable axiomatic foundation for all mathematics. Hilbert’s Program
left few enduring legacies after Godel’s incompleteness theorems [97], but one that remains is the principle of
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formalization: mathematicians systematically use formal languages to express statements and manipulate them
according to well-defined syntactic rules. Researchers subsequently developed this principle into a foundational
framework that underpins many of the fundamentals of theoretical computer science. A broad spectrum of these
fundamentals—particularly logic calculi, formal languages, automata theory, and program semantics—collectively
forms what is now known as formal methods (FM). Engineers have since extensively employed these methods to
ensure the reliability and effectiveness of safety-critical systems across domains such as aerospace, transportation,
healthcare, and defence.

The early FM development followed two complementary trajectories: The theoretical perspective—as pioneered
by Church [54] and Turing [253] during the 1930s-1940s—aimed to establish a mathematical foundation for
computation and programming, while the engineering perspective—as initiated by the NATO Software Engineering
Conferences in the late 1960s—focused on enforcing rigorous quality assurance in software development. Together,
these two lines of development gave rise to a substantial body of influential contributions, including, but not
limited to, the work of eighteen ACM A. M. Turing Award laureates (see [267]). Amid this global landscape,
formal methods research in China emerged in the early 1950s, when several logicians redirected their focus from
mathematics to theoretical computer science and began promoting the use of mathematical logic to enhance the
rigour of computing systems. Since then, FM research in China has undergone steady evolution and experienced
remarkable growth and innovation. We can broadly categorize its overall development into three major phases:
the infant stage (1950s-1970s), the early development stage (1980s—-1990s), and the expansion and maturity stage
(since 2000s).

In this article, we provide a historical account of the development of formal methods in China. In Sections 2
to 4, we review key contributions and landmark projects across the three major stages mentioned above. In
Section 5, we examine the contributions and applications in industrial contexts. Section 6 identifies several key
challenges and promising future directions in terms of research, application, and talent cultivation. We provide
the concluding remarks in Section 7.

2 Infant Stage (1950s-1970s)

The development of formal methods in China dates back to the early 1950s, pioneered by three mathematicians:
Shihua Hu (28 January 1912 — 11 April 1998), Xianghao Wang (5 May 1915 - 4 May 1993), and Shaokui Mo (13
August 1917 — 14 October 2011).

Shihua Hu studied mathematical logic at the University of Vienna and finally obtained his PhD on mathematical
logic from the University of Miinster [123]. After returning from Europe in 1943, Hu worked at Sun Yat-sen
University, later moved to Central University (renamed Nanjing University in 1952), and subsequently joined
Peking University. In 1950, he joined the Institute of Mathematics of the Chinese Academy of Sciences (IMCAS),
and initiated the division of theoretical computer science there. Notably, since the 1950s, he has established an
annual training school in theoretical computer science and mathematical logic at IMCAS for Chinese scholars,
and many of these trainees have gone on to become academic leaders in the development of FM in China. Later,
he and the whole division moved to the Institute of Computing Technology of the Chinese Academy (ICTCAS),
which the Academy had established at the end of the 1950s after separating it from IMCAS. After joining ICTCAS,
the division strengthened and formed nine research groups that focus on algorithms and complexity, computer
science logic, computational models, formal languages and automata, networking, system software, and other
related areas. This development marks the starting point of theoretical computer science in China. In 1985, the
division separated from ICTCAS and founded the Institute of Software, Chinese Academy of Sciences (ISCAS).
Since then, ISCAS has taken a leading role in developing formal methods in China, particularly in the early stages.
Scholars regard Hu as the founder of mathematical logic and theoretical computer science in China.
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Xianghao Wang obtained his PhD in algebra from Princeton University in 1946. He then returned to China and
became a professor at Peking University. In the 1950s, he joined Jilin University and initiated the Mathematics
Department there. Meanwhile, he shifted his interests to computer science, logic, theorem proving, and artificial
intelligence (AI), and thereby initiated the Computer Science Department at Jilin University in the 1970s.

Shaokui Mo studied mathematical logic in EPFL and at Paris University under the supervision of Paul Bernays
from 1947 to 1950. Then, he joined Nanjing University as a professor of mathematics. His research interests span
a wide range of topics in mathematical logic, with a particular focus on multiple-value logics. Likewise, in the
early 1950s, he realized that mathematical logic plays a foundation for Computer Science, and guided some of his
students to theoretical computer science. In 1978, the Computer Science Department at Nanjing University was
established as a separate entity from the Mathematics Department. Since then, Nanjing University has become
one of the major institutions specializing in formal methods in China.

3 Early Development (1980s—1990s)
3.1 Early Stage of Reform and Opening-up

In the early 1980s, as part of China’s reform and opening-up policy, some talented Chinese computer scientists
were sent to Western countries to learn advanced science and high technologies, including theoretical computer
science. In what follows, we list a few representatives.

Firstly, several pioneering individuals from ISCAS have cultivated the use of formal methods in China. Zhisong
Tang completed his undergraduate and graduate studies in philosophy at Tsinghua University, then joined Renmin
University, and later moved to IMCAS, where he worked in the mathematical logic division headed by Shihua Hu.
From 1979 to 1981, he visited Stanford University, where he proposed executable temporal logic. After returning,
he developed the executable temporal logic language XYZ/E and the corresponding software tools [245], which
can express programs and their specifications in a unified framework. Yunmei Dong earned his Bachelor’s degree
in mathematics from Jilin University, then joined ICTCAS, and later moved to ISCAS when it was founded.
He visited Stanford in 1978. He investigated recursion theory over words and its application to programming
languages [65, 66] since the early 1960s, a line of work closely related to LISP. Chaochen Zhou obtained his
Bachelor’s degree in mathematics from Peking University and became the first graduate student of Shihua Hu in
ICTCAS in 1963. He visited Tony Hoare from 1979 to 1981, and proposed axiomatic semantics for Communicating
Sequential Processes (CSP) during the visit [385]. Later, he established Duration Calculus (DC) jointly with Tony
Hoare and Anders Ravn [390], which provided a novel approach to the formal design of real-time systems. Ren-Ji
Tao is another student of Shihua Hu, who obtained his Bachelor’s degree in mathematics from Peking University.
He proposed a theory of invertible finite state automata over a ring and its application to cryptography [246].
Huimin Lin obtained his PhD from ISCAS in 1986 under the supervision of Zhisong Tang, focusing on algebraic
semantics. Afterwards, he worked as a research fellow at the University of Edinburgh. He proposed the theory of
symbolic bisimulation in process algebra jointly with Mathew Hennessy [116, 180].

Peking University is another institution playing an essential role in the development of FM in China. Xiwen Ma
initially led theoretical computer science at Peking University. He obtained his Bachelor’s in mathematics from
Peking University. He and Chaochen Zhou are classmates during their undergraduate studies at Peking University.
He visited McCarthy at Stanford from 1978 to 1981. He initiated Theoretical Computer Science Institute at Peking
University after he returned from the US. His interests are diverse, spanning mathematics, computer science,
languages, literature, and music. His contributions to FM include a relational approach to formal semantics [203],
the formal semantics of Prolog, and the modal logic of knowledge [302], among others.

As mentioned in the previous section, influenced by Shaokui Mo, Nanjing University also plays a vital role
in the development of FM in China, even in the early stages. Jiafu Xu was considered a pioneer in software,
particularly in programming theories and software synthesis [23]. Jiafu Xu obtained his Bachelor’s degree
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in mathematics from Central University (renamed to Nanjing University in 1952) in 1948. He worked there
afterwards until his passing in 2018. From 1957 to 1959, he visited the Soviet Union for two years and began
working on programming theories during that time. He designed programming languages (XCY etc.), specification
languages (FGSPEC etc.), quantum programming languages (NDQFP etc.), and developed several corresponding
automated systems, such as XCY-compiler, NDADAS, NDSAIL, etc. [305-308]. He also proposed an analogy
calculus and the analogical program derivation method [197, 332]. Zhongxiu Sun is another important person
from Nanjing University. He also obtained his Bachelor’s degree in mathematics from Nanjing University in 1957
and worked there until his passing in 2013. At an early stage of his career, he focused mainly on mathematical
logic under the guidance of Shaokui Mo. From 1965 to 1967, he visited the UK. Afterwards, he shifted his research
interests to computer science, particularly operating systems and algorithms. In 1979, he visited the University of
Wisconsin and began working on the theory and implementation of distributed computing systems. Additionally,
it is worth mentioning that in 1984, Yongsen Xu visited Dines Bjerner at the Technical University of Denmark
and subsequently proposed an executable specification language based on Vienna Development Method (VDM)
and data abstraction [132, 133]; In 1993, Jian Lu visited Cliff Jones at the University of Manchester in the UK and
later introduced data decomposition into VDM [196].

Led by Huowang Chen, the National University of Defense Technology is one of the top software research and
development bases in China. Huowang Chen took three years to obtain his Bachelor’s degree in Mathematics from
Fudan University in 1956. From 1956 to 1959, he studied Mathematical Logic under the chairmanship of Shihua
Hu at Peking University. As one of the early visitors to Europe in computer science, he learned programming at
the UK’s National Physical Laboratory from 1965 to 1967. Huowang Chen led the first design and implementation
of the Fortran compiler for 441B-series computers in China. He is also the chief designer of the software systems
for the YH-1 Supercomputer, the first Petaflops supercomputer in China: His research interests include software
methodology and formal methods, particularly programming languages and their implementation, as well as
systems. Huowang Chen and his students have made significant contributions to formal semantics and formal
verification of software. A notable 1986 work on the formal semantics of CSP proved that the equivalence
between infinite streams and finite observation semantics holds. His group contributed to the formal semantics
of Al Systems [278] [260], formal verification of reactive systems [261] [262] [168], a higher-order unification
algorithm for theorem proving [239] and so on. Huowang Chen has actively promoted the education, research,
and development of formal methods in China. He is also the founding chair of CCF-TCTCS (Technical Committee
on Theoretical Computer Science) of the China Computer Foundation (CCF).

Beihang University is another vital university on FM due to its former rector, Wei Li. Wei Li obtained his PhD
from the University of Edinburgh under the supervision of Gordon Plotkin on structural operational semantics
[153] in 1983. After returning to China, he began lecturing at Beihang University and earned promotion to full
professor in 1986. After returning, he mainly focused on type-theoretic approaches to program development
[154], later shifting to specification logics for knowledge and proposing well-known logics, including Open Logic
[155] and R-Calculus [156].

In the early stage of FM in China, Yongqiang Sun, a professor from Shanghai Jiaotong University, also played a
vital role. Yongqiang Sun earned a Bachelor’s degree in electrical engineering from Shanghai Jiaotong University
and served as a lecturer at Tsinghua University. He later joined Shanghai Jiaotong University as an associate
professor and subsequently advanced to the rank of professor. He primarily focuses on programming-theoretic
results, with an emphasis on functional programming and program synthesis. Influenced by him, a powerful FM
team has been in place since the 1990s.

Form. Asp. Comput.
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3.2 Establishment of UNU/IIST

In 1992, with financial support from the Chinese government, the Portuguese government, and the local Macau
government, the United Nations University established the International Institute for Software Technology
(UNU/IIST) in Macau as part of UNESCO. The mission of UNU/IIST is to conduct research on software technologies
and to train IT talent for developing countries. The founding director was Dines Bjerner, and Chaochen Zhou
was the vice director and a principal research fellow. At the beginning, UNU/IIST consisted of two research
teams, one led by Chaochen Zhou on Duration Calculus (DC) [388, 390], and the other led by Dines Bjerner on
formal software engineering, specifically, approaches based on the Rigorous Approach to Industrial Software
Engineering (RAISE) [209]. In 1997, Dines Bjerner left UNU/IIST, and Chaochen Zhou took up the director
position; meanwhile, Chris George joined UNU/IIST and led a group of formal software engineers. Later, in
1998, Jifeng He joined UNU/IIST and led the group of DC, and widened the research topics to the semantic
foundations of programming and software engineering, like the refinement calculus for Component and Object
Systems (rCOS) [113]. Around 2007, Jifeng He left UNU/IIST and joined East China Normal University (ECNU),
and Zhiming Liu assumed leadership of the group. At nearly the same time, Chris George left UNU/IIST, and
Tomasz Janowski assumed leadership of the group, shifting its research focusto e-Government [62]. From 2002
to 2009 (two terms), Jian Lu was on the UNU/IIST board on behalf of the Chinese government. Since 2014, UNU
dismissed the two research teams, restructured UNU/IIST, and renamed it UNU Macau with a new mission to
collaboratively explore how digital technologies can be leveraged for sustainable development, addressing key
issues in the UN 2030 Agenda for Sustainable Development!.

UNU/IIST had a profound impact on FM in China, markedly accelerating the nation’s development in this
domain:

o Firstly, many talented young Chinese scholars have visited UNU/IIST, even completing their PhD theses
there, to receive well-rounded training in FM. In particular, instructors can quickly guide them to the
cutting edge of FM. Many of them took the leading role in the development of FM in China after returning,
for example, Jian Lv (the rector of Nanjing University from 2018 to 2022), Xuandong Li (the director of the
Computer Science Department of Nanjing University from 2006 to 2018) and Jianhua Zhao (the current
vice dean of School of Computer Science of Nanjing University) from Nanjing University, Ji Wang (the
former director of the CCF FM technical committee), Xiaoguang Mao (the previous vice dean of College of
Computer Science and Technology of National University of Defense Technology) and Zhenbang Chen
from National University of Defense Technology, Naijun Zhan (the current director of the CCF FM technical
committee) from ISCAS, Shengchao Qin (the director of the Fermat Labs of Huawei in Hong Kong) and
Geguang Pu (the dean of the School of Software Engineering of ECNU) from Peking University, Huibiao
Zhu from East China Normal University, and so on.

e Secondly, close collaborations between Chinese institutions and UNU/IIST fostered several renowned
research teams in China. For example, because of cooperation with Chaochen Zhou, several strong research
teams on DC at that moment, including Ji Wang’s team in National University of Defence Technology,
Xuandong Li’s team in Nanjing University, Miaomiao Zhang’s team in Tongji University, and Naijun Zhan’s
team in ISCAS, etc.; also, based on the collaboration with Jifeng He, ECNU built a significant group on
formal methods, many of them working on programming theories, specifically UTP. Jifeng He returned to
ECNU and took up the position of dean of the School of Software Engineering after leaving UNU/IIST in
2007.

o Lastly, UNU/IIST opened a window for academic exchange between the Chinese FM community and the FM
international community. UNU/IIST organized various FM schools in China. For example, at the autumn
FM school in Beijing in 1997, the organizers invited leading FM experts to serve as tutors, including John

1See https://unu.edu/macau for details.
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Rushby, Jim Woodcock, and Jifeng He. In addition, UNU/IIST initiated some international conferences,
like the International Colloquium on Theoretical Aspects of Computing (ICTAC) and the International
Conference on Software Engineering and Formal Methods (SEFM), both by Zhiming Liu. At the same
time, he worked at UNI/IIST, which provides venues for academic exchange and collaboration between the
Chinese FM community and the international FM community.

3.3 Mathematics Mechanization

In China, automated theorem proving is also called mathematics mechanization, a term coined by Wen-tsun
Wu [252]. Wen-tsun Wu is a famous mathematician in topology. During the Cultural Revolution, he shifted
his research interests to theorem proving, specifically solving polynomial equations and inequalities, i.e., semi-
algebraic systems (SAS). He invented the so-called Ritt-Wu methods [251]. Together with Grobner bases methods
[16], Ritt-Wu method has become one of the two primary methods for solving algebraic systems. Following
Wen-tsun Wu’s research line, Chinese mathematicians and computer scientists produced many vital works—for
example, Jiawei Hong developed geometric theorem proving by instance [121]; Jingzhong Zhang, Xiaoshan Gao,
and Shang-Ching Chou worked on point elimination and readable proof generation [52; 365]; Jingzhong Zhang
and Lu Yang advanced numerical parallel theorem proving [364]; and Lu Yang and Bican Xia contributed to real
root isolation and classification of parametric SAS [296, 297, 328].

3.4 Duration Calculus

Duration Calculus is due to Zhou, Hoare and Ravn [390], as one of the significant academic achievements
of the ESPRIT project ProCoS (short for Provably Correct Systems) [12, 112]. DC is an extension of Interval
Temporal Logic (ITL) [207] by introducing the notion of duration, which is the integral of a state function over a
reference interval. DC can effectively specify and reason about qualitative properties and is therefore widely and
successfully applied in the design of real-time systems, e.g., gas burners [220], the European Train Control System
(ETCS) [212], and others. In the early 1990s, an influential research group led by Chaochen Zhou established the
DC research centre at the Technical University of Denmark (DTU). In the early development of DC, many vital
results on DC were obtained there, e.g., a complete proof system for DC due to Michael Hansen and Chaochen
Zhou [103], extended DC due to Chaochen Zhou, Anders Ravn, and Michael Hansen [393], decidability and
undecidability of DC due to Chaochen Zhou, Michael Hansen, and Peter Sestoft [389], a probabilistic extension
of DC due to Zhiming Liu et al. [195], and so on. With Chaochen Zhou’s move to UNU/IIST, the institute evolved
into a new hub for DC research [192], in parallel with efforts in Mainland China. Researchers obtained many
vital results in the later development of DC: e.g., a mean-value calculus due to Xiaoshan Li and Chaochen Zhou
[392], probabilistic DC due to Dang Van Hung and Chaochen Zhou [128], Neighbourhood Logic due to Rana
Barua, Suman Roy, and Chaochen Zhou [7], higher-order DC due to Naijun Zhan, Chaochen Zhou, and Dimitar
Guelev [358, 387], DC with infinite interval due to Xiaoshan Li and Chaochen Zhou [391], model-checking of
DC due to Xuandong Li et al. [4, 157, 386], the design of hybrid systems with DC, as proposed by Ji Wang et al.
[351, 394], and others.

3.5 Unifying Theories of Programming

Inspired by the grand unified theory in physics—which seeks to unify disparate physical theories—Tony Hoare
and Jifeng He developed the Unifying Theories of Programming (UTP) [120]. UTP builds on first-order relational
calculus and interprets different kinds of programs as a specific class of predicates, called (guarded) designs,
which satisfy a set of healthiness conditions. Its semantics interprets program constructs as operators over these
(guarded) designs, while refinement corresponds to logical implication between them. UTP employs Galois
connections [69] to link and translate between different theories.
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After Jifeng He moved to UNU/IIST, the institute — along with Mainland China — became a major research
centre for UTP. Based on UTP, Zhiming Liu, Xiaoshan Li, Jifeng He, and other collaborators, mainly from China,
established a semantic foundation for component-based methods, called rCOS [47, 50, 113], as well as a toolkit for
rCOS [138]. Meanwhile, UTP was applied to define formal semantics and verification of different programming
languages, e.g., for the hardware description language Verilog due to Huibiao Zhu and Jifeng He [115], for Circus
(a formal language that combines CSP and the state-based formal method Z [231]) due to Adnan Sherif and
Jifeng He [226], for hardware/software codesign [216, 218], for UML due to Zhiming Liu, Jifeng He, Xiaoshan
Li, and Yifeng Chen [194], and for the combination of CSP and DC based on UTP due to Jifeng He [109]. Jifeng
He also considered extending UTP to a probabilistic setting [111]. Xiong Xu et al. considered extending UTP to
cyber-physical systems and established Higher-order UTP (HUTP) [315]. Researchers have applied HUTP to
define formal semantics for the Architecture Analysis & Design Language (AADL) [313], Simulink/Stateflow
[317], and their combination [316]. They have also used it to demonstrate the correctness of the transformation
from graphical models to formal models in SystemC and ANSI C within MARS [315, 316].

3.6 Concurreny Theories

In the 1990s, in addition to the mechanization of mathematics, DC and programming theories, such as UTP and
process algebra, were also hot topics in the Chinese FM community. Huimin Lin worked with Robin Milner
on process algebra, particularly with Matthew Hennessy, to propose the theory of symbolic bisimulation for
the Calculus of Communicating Systems (CCS) [117], and developed a tool for symbolic bisimulation called
PAM (short for Process Algebra Manipulator) [180, 181]. Later, he extended the notion of symbolic bisimulation
to m-calculus [182]. Mingsheng Ying revisited process algebra from a topological viewpoint [340] and also
investigated it in the probabilistic setting [341]. Yuxi Fu finished his PhD from Manchester University, and then
joined Shanghai Jiaotong University, working in Yonggiang Sun’s group. Later, he became the director of the
Computer Science Department. He proposed y-calculus, which is a variant of z-calculus [84]. Additionally, some
work related to Petri nets, a notable example being that of Chongyi Yuan from Peking University [352].

4 Expansion and Maturity (2000s—Present)

At the end of the last century and the beginning of the new century, Tony Hoare, Jim Woodcock, and others
began advocating for a Grand Challenge in computing research, specifically in the area of verifying compilers
[119]. Meanwhile, influenced by Tony Hoare, Microsoft invested more attention in formal methods and in its
Chinese branch. Excitingly, Microsoft has achieved numerous remarkable successes in applying FM to ensure the
correctness of its software products, particularly drivers. On the other hand, in China, with the rapid development
of the economy, computing technology has been increasingly used in safety-critical domains, such as high-
speed trains, spacecraft, aircraft, nuclear reaction control, and so on. The Yongwen train crash [83] and other
catastrophic accidents raise concerns about guaranteeing the trustworthiness of these systems, particularly
their software. This national strategy demands more powerful and practical FM techniques and tools. These
stimulated substantial growth in research groups and national-level projects. Since the beginning of this century,
the Chinese government has invested increasing amounts of funding in basic research on the foundations of
software. For example, the National Natural Science Foundation of China (NSFC) launched the Grand Research
Program on Fundamentals of Trustworthy Software [114] from 2007 to 2016, led by Jifeng He; The Ministry of
Science and Technology (MOST) launched key projects on high trustworthy software and library in 2008, and
platform towards cyber-physical systems in 2011, and a key specific theme on advanced computing and novel
software from 2021 to 2025. With this strong support, FM in China has expanded significantly, particularly in the
number of research groups, the successful applications of FM in industry, and the publication of high-quality
papers, all of which have increased dramatically over the past twenty years. The research and application of
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Fig. 1. The hierarchy for categorizing key developments of formal methods in China (2000s—present).

formal methods in China have matured and become a major contributor to the global FM community, as reflected
in the growing number of papers published annually in top-tier journals and conferences in the field.

4.1 Key Developments

In this subsection, we provide a brief overview of key developments of formal methods in China over the past
20 years. We highlight results that have, according to the authors’ perspectives, had a notable international
impact and/or become characteristic of the Chinese FM community, either in theory or practice. These results are
categorized according to the hierarchy depicted in Section 1.

4.1.1 Theorem Proving and Constraint Solving.

SAT and SMT Solving. Constraint solving is an eternal challenge and a hot topic in computer science. In the past
few decades, Chinese computer scientists have also made significant efforts in this area. The Boolean satisfiability
(SAT) problem, the first classical NP problem, has attracted increasing attention as researchers have developed
more efficient and practical algorithms for its wide applications in computer science and other fields. These
algorithms can be classified into Conflict-Driven Clause Learning (CDCL)-based and local search-based, while
the former is complete with low efficiency; in contrast, the latter is more efficient, but incomplete. Xishun Zhao
et al. proposed an improved CDCL-based approaches by reduction based on the structure of DPLL [140, 141, 145].
Mingyu Xiao et al. improved the upper bound of SAT solving by applying parametric complexity analysis [53].
Shaowei Cai and Kaile Su significantly enhanced the efficiency of local search for SAT by examining configurations
[20], a technique widely employed in various local search algorithms for the SAT problem. Meanwhile, Shaowei
Cai et al. also considered applying the local search technique to solving linear integer arithmetic [19]. Also, Bican
Xia investigated combining local search with cylindrical algebra decomposition to improve the efficiency of solving
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SAS [150]. Meanwhile, Feifei Ma et al. considered the counting problem of SAT [94] and satisfiability modulo
linear arithmetic (SMT(LA)) [95, 96], as well as optimization modulo nonlinear real arithmetic (OMT(NRA)) [129].

Nonlinear Constraint Solving and Craig Interpolation. Bican Xia, Naijun Zhan et al. considered the decidability
of extensions of Tarski algebra with specific forms of exponential and trigonometric functions, as well as their
combinations, and its application to the reachability analysis of hybrid and dynamical systems [42, 43, 85]. Zhilin
Wu et al. gave decision procedures for several subsets of string constraints [44-46, 289].

Naijun Zhan, Bican Xia et al. provided the first algorithm for synthesizing nonlinear Craig interpolants based
on Stengle’s Positivstellensatz and semidefinite programming [59]. Then, they extended Motzkin’s theorem to
the nonlinear case, yielding an algorithm for synthesizing nonlinear Craig interpolants for quadratic concave
nonlinear theories, which partially addressed the issue of shared variables in prior work [86]. Furthermore, they
developed another algorithm for a nonlinear Craig interpolant for nonlinear theories subject to Archimedean
conditions [87]. Finally, by homogenising unbounded optimizetion to obtain bounded optimizetion, they provided
a complete solution for generating nonlinear Craig interpolants for nonlinear theories [291].

Interactive Theorem Proving. Also, in recent years, some Chinese computer scientists have focused on the
implementation of (interactive) theorem provers, including Bohua Zhan’s AUTO2 [356] for improving the
automation of Isabelle, and HOLPY [357], which is a on-line theorem prover implemented using Python, Qinxiang
Cao’s VST-A for program verification [397], and Bohua Zhan et al’s OSVAUTO [295] for verifying operating
systems, and Mingsheng Ying et al’s interactive provers based on quantum Hoare logic for quatum programs
[188, 395], Shuling Wang et al’s interactive theorem prover HHLProver based on Hybrid Hoare Logic (HHL) for
CPS [277], as well as its automated parts HHLPy [225] and HHLPar [135].

4.1.2  Design and Verification of Safety-Critical Systems. Likewise, designing and verifying safety-critical systems
remains a significant challenge in computer science and control theory.

Model-Based Design. Model-driven design methodologies; rooted in the “divide-and-conquer” principle, are the
primary approach to designing complex safety-critical systems. While the industry broadly advocates for graphical
modeling and simulation, which are intuitive and efficient, these approaches often lack the rigor required for
safety-critical domains. Conversely, academia promotes formal methods, offering strictness but usually proving
difficult to understand and inefficient in practice. Naijun Zhan and his team proposed a MARS framework [37] to
address the seamless integration of graphical and formal development for safety-critical systems. It consists of
a compositional graphical modeling approach by combining AADL with Simulink/Stateflow [316], alongside
a formal modeling method based on Hybrid CSP (HCSP) [359], and their inter-conversion [39, 402, 403], and a
refinement theory for code generation from HCSP to SystemC [325] and ANSI-C [276]. As mentioned before,
researchers developed HUTP [315] to provide a unified mathematical semantic model for safety-critical systems
and to ensure the theoretical correctness of model transformations. Furthermore, to formally model the mobility
of CPS, they extended classic 7-calculus to hybrid systems, called hybrid & calculus [314]. Also, Lei Bu et al.
made another attempt and proposed an approach that provides scenario-based flexible modelling and scalable
falsification for reconfigurable CPSs [264].

Reachable-Set Computation. Designing and verifying complex safety-critical systems relies heavily on com-
puting reachable sets, since control synthesis, path planning, analysis, and verification naturally reduce to
this task. However, researchers face the challenge that this computational problem is, in general, theoretically
undecidable. Consequently, they primarily focus on approximating reachable sets; however, researchers have
long faced constraints in this work due to challenges in computational efficiency, scalability, and applicability
across various domains. In [85], the authors invented a decidability algorithm for an extended Tarski algebra
with specific forms of exponential functions by utilizing pseudo-derivative sequences. Based on this, Gan et al.
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proved that the reachability problems for three classes of linear and three classes of nonlinear dynamical systems
are decidable, representing the strongest reachability results to date. Zhikun She et al. first proposed interval
arithmetics-based approaches to approximate reachable sets and implemented a tool called HSolver [219]. Xue
et al. proposed an efficient approximation algorithm for reachable sets based on topological homeomorphism
and boundary propagation [322, 322], and an efficient approximation algorithm for reachable sets based on level
sets and semidefinite programming was introduced [318]. Lei Bu et al. have invented many efficient algorithms
for computing specific forms of linear dynamical and hybrid systems in bounded and unbounded time horizons
[299-301, 330] and the corresponding tool, BACH [15].

Deduction Verification. Compared to model-checking based on reachable-set computation, deductive verification
can perform unbounded-time verification with greater scalability. Hence, deductive verification of safety-critical
systems has increasingly attracted more attention in recent years, with a powerful specification logic as the
cornerstone. To this end, Naijun Zhan and his team extended Hoare logic to hybrid systems, developing Hybrid
Hoare Logic (HHL), which comprises two versions: a DC-based version [187] and a generalised version without
DC [360]. Both versions are mechanically supported by HHLProver [277] together with HHLPar [135] and HHLPy
[225].

As with applying classic Hoare logic to program verification, the most challenging task here remains invariant
generation—particularly differential invariant generation for continuous evolution, which researchers typically
model with ODEs. In this respect, Chinese computer scientists made essential contributions. Currently, template-
based constraint-solving techniques are a significant approach for synthesising invariants for programs and
safety-critical systems. There are three challenges along this line, i.e.,

(1) conditions on a template (a predefined parametric formula) being a (differential) invariant,
(2) efficient methods to derive constraints from the template and solve the resulting constraints,
(3) how to predefine templates.

Regarding 1, Jiang Liu, Naijun Zhan, and Hengjun Zhao in [190] established a necessary and sufficient condition
for parametric SAS to be a differential invariant for the considered polynomial dynamical system. Regarding
point 2, theory shows—based on the necessary and sufficient condition in [190]—that template-based invari-
ant synthesis reduces to quantifier elimination [190] or bilinear programming [48, 331]. However, quantifier
elimination has double exponential complexity, and bilinear programming is NP-hard. As an alternative, Prajna
and Jadbabaie introduced in their seminal work [215] a specific form of invariants called barrier certificates
(BC). To enable efficient synthesis using semidefinite programming, the barrier-certificate condition in [215]
strengthens the general condition encoding inductive invariance. Since then, researchers have devoted significant
efforts to developing more relaxed (i.e., weaker) forms of barrier-certificate conditions that still admit efficient
synthesis, thereby introducing, for example, exponential-type barrier certificates [144], Darboux-type barrier cer-
tificates [354], general barrier certificates [58], and vector barrier certificates [229]. To achieve efficient synthesis,
these barrier-certificate conditions share a common property: convexity. Qiuye Wang et al. filled the gap between
the necessary and sufficient conditions of invariants and all kinds of BC conditions. They proposed an approach
based on difference of convex programming to synthesise the so-called invariant BCs from the necessary and
sufficient conditions [274, 275]. To address point 3, researchers have proposed several DNN-based approaches,
e.g., [375, 376, 379, 380].

Chinese computer scientists have also investigated the verification and design of cyber-physical systems with
complex behaviours, including time delay and stochasticity. Time delays are unavoidable and omnipresent aspects
of modern control systems, often exerting a decisive influence on system control performance and safety. However,
verifying time-delay systems is exceptionally challenging because the solutions of delay differential equations
depend on their execution history, moving beyond simple Markov processes. Historically, system designers have
often dangerously overlooked these delays. Naijun Zhan and his collaborators did a systematic work on the
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verification and controller synthesis for delay dynamical and hybrid systems, including: they presented a first
method for simple DDEs, grounded in Taylor models and stability analysis of discrete systems [400]; Later, for
general linear DDEs, they offered a verification method using spectral theory and stability analysis of dynamic
systems, which was then extended to general DDEs via linearization [76]; they also generalized existing Ordinary
Differential Equation (ODE) verification techniques, such as those based on topological homeomorphism and
simulation, to DDEs [36, 321, 323]. Furthermore, they introduced the concept of Time-Delay Hybrid Automata
and proposed a synthesis algorithm for switch control in time-delay hybrid systems [5]. They also made initial
attempts to verify stochastic dynamical and hybrid systems [75, 319, 320].

In addition, Zhenhua Duan, Cong Tian, et al. considered extending ITL with projection and proposed a so-called
propositional projection temporal logic (PPTL) [67, 248]. Based on PPTL, Zhenhua Duan and his collaborators
developed a systematic logical approach called MSVL [201, 327] for the design of safety-critical systems. With
MSVL, developers can first specify a safety-critical system with PPTL and model it in MSVL. They can then check
whether the MSVL model (program) satisfies the PPTL specification through simulation, model checking, or
theorem proving. Finally, they can automatically generate correct ANSI-C code from the verified MSVL model.

4.1.3  Program Verification. Ensuring the correctness of programs is one of the fundamental scientific problems
in computer science, dating back to the advent of the modern computer. As advocated by Tony Hoare [119], it
becomes increasingly critical and challenging as safety-critical applications and software-defined trends emerge.
In this subsection, we will summarize the efforts of Chinese computer scientists in this regard in the past decades.

Invariant Generation and Termination Analysis. The Floyd-Hoare-Naur Inductive Assertion Approach has
become the dominant approach for program verification, in which termination analysis and invariant generation
are the two most challenging problems.

Researchers have proposed numerous approaches to invariant generation in the literature, and they have found
that constraint-solving-based program invariant synthesis is gaining traction. In this approach, they predefine a
parametric invariant template and then encode the (inductive) invariant conditions into constraints. Researchers
face a long-standing challenge in efficiently solving or reducing the encoded constraints, since existing approaches
either require quantifier elimination with double-exponential complexity or reduce to non-convex optimizetion
problems, which are generally NP-hard and lack efficient solvers. To attack the challenge, in [292], Hao Wu et al.
proposed a novel algorithm for synthesizing SAS invariants of polynomial programs by exploiting Lasserre’s SOS
hierarchy to reduce a non-convex program (a bilinear program) to a sequence of convex programs (semidefinite
programs). Furthermore, they proved that their algorithm is sound, convergent, and weakly complete under a
specific robustness assumption on templates. Moreover, in recent years, neural-symbolic computation has become
popular for invariant generation. E.g., Fei He et al. introduced a novel interval sample-based approach for loop
invariant generation [311], and Shiwen Yu et al. proposed an approach to invariant generation by combining
reinforcement learning and SMT solving [350]. Xiaoxing Ma et al. proposed the approaches to leveraging LLMs to
improve the capabilities for invariant generation [21, 286]. As a generalizetion, uninterpreted predicate solving is
a fundamental problem in formal verification, including loop-invariant and Constrained Horn Clauses predicate
solving. Ji Wang, Shiwen Yu et al. proposed a novel discrete neural architecture combined with the Abstract
Gradient Descent (AGD) algorithm to solve uninterpreted predicates in discrete hypothesis spaces directly. AGD
introduces abstract gradients for discrete neurons, with computation rules defined in an abstract domain. Their
tool achieves significant progress on uninterpreted predicate solving tasks [349].

The termination problem of programs is equivalent to the well-known halting problem and, hence, is unde-
cidable in general. A complete method for termination analysis for programs, even for linear or polynomial
programs, is therefore impossible. In [167], Yangjia Li et al. identified a subclass of polynomial programs in which
all expressions are polynomials, and all test conditions are Boolean combinations of polynomial equations, and
proved the decidability of the termination. Fei He et al. developed data-driven algorithms to prove termination
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and disprove non-termination (for recurrent sets) in both classical programs [102, 310] and probabilistic programs
[30]. In addition, Fei He and his team proposed the first regression termination analysis framework for evolving
programs [104] and developed highly efficient regression analysis algorithms for predicate abstraction [348] and
interprocedural verification [108].

Static Analysis and Automatic Verification. Static analysis is essential for understanding and reasoning about
the behaviours and properties of programs without executing them. Yue Li and Tian Tan at Nanjing University
have been dedicated to addressing a series of fundamental and challenging research problems in program analysis,
including pointer analysis (also known as points-to analysis or alias analysis) [159-161, 241-243], as well as
complex language feature analysis such as reflection analysis [162-165] and native code analysis [361]. They have
developed a new program analysis platform for Java called Tai-e [240] on top of which more effective foundational
analysis techniques are built [149, 202]. They have also developed novel analysis methods for various software
frameworks on Tai-e, including data persistence frameworks [179], microservices frameworks [368], and Android
frameworks [40]. These methods have enabled the identification of real security vulnerabilities and quality issues
in practical applications that rely on these frameworks, which previous work failed to detect.

Scaling sophisticated static analyses to large codebases has remained a key challenge in program analysis
research for decades. Zhigiang Zuo and his collaborators at Nanjing University proposed a systematic program
analysis that scales sophisticated, context-sensitive, flow-sensitive, and even path-sensitive analyses to ten million
lines of code. Their key idea is to leverage massive computing resources to accelerate the static analysis tasks.
They proposed a series of studies for various analysis tasks and computing resources, including the disk-based
[268], GPU-accelerated [408], and cluster-based [406] [98] systems for Context-Free-Language (CFL) reachability
analysis, the disk-based [409][279] and cluster-based [237] systems for general dataflow analysis, and the system
[407] for path-sensitive analysis, and have achieved promising results. To address the challenges posed by
frequent code evolution, Yu Wang et al. at Nanjing University introduced an incremental approach to value-flow
analysis [266]. To address the practical utility of static analysis warnings, they proposed a deep learning—based
bug-prediction approach to enhance accuracy [280].

Pursuing the automatic analysis and verification of critical systems, Ji Wang and his collaborators, Wei Dong,
Zhenbang Chen, Ligian Chen, and Liangze Yin, at the National University of Defence Technology, have contributed
to program analysis and verification via various formal methods, including model checking, abstract interpretation,
and symbolic execution. They are the earliest group to work on model checking of software systems over the
model level and program level in China, such as model checking and testing Statecharts [64, 152, 263] as well as C
programs [333, 334]. Following this line of research, Yin et al. presented a scheduling-constraint-based abstraction-
refinement method for bounded model checking of multi-threaded C programs [338]. The notion of Event Order
Graph (EOG) is proposed, along with two graph-based algorithms over EOG for counterexample validation
and refinement generation, aiming to obtain a small yet effective refinement constraint. The implementation
tool YOGAR-CBMC [335] won the first gold medal in the Concurrency Safety category of the International
Competition on Software Verification (SV-COMP) for China in 2017 and continued to win in 2018 and 2019. They
extended the method for weak memory models [336], developed parallel implementations [337], and created
incremental updates [339], all of which researchers have successfully applied.

Abstract Interpretation is a general theory of sound approximation of program behaviors. It provides a powerful
framework for automatically inferring properties over programs by ‘executing’ them on abstract domains. Through
the international exchange program, Ji Wang sent Liqian Chen to ENS, and the research on abstract interpretation
in China began to develop. With the collaboration of Patrick Cousot and Antoine Miné, they devised a sound
floating-point polyhedra abstract domain [32] and a set of efficient yet precise abstract domains [31, 33-35].
They have designed specific abstract domains and successfully applied abstract interpretation to analysis of
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interrupt driven programs [293] and programs involving machine integer semantics together with bit-vector
operations[70].

For symbolic verification of software, Ji Wang and Zhenbang Chen et al. have contributed to symbolic execution,
including coupling path exploration with constraint solving and optimising path exploration. First, they propose
to utilize the constraint solver in a white-box manner and explore the reuse possibilities of path exploration
and constraint solving in tightly-coupled symbolic execution [49, 227, 228, 370]. It provides novel perspectives
and approaches for addressing the challenges of constraint-solving technologies within the context of symbolic
execution. Second, they presented a novel guidance method for steering path exploration in symbolic execution
and a path slicing approach, both specifically targeted at regular property verification [347, 371]. By leveraging
symbolic execution, they proposed a symbolic verification method for Message Passing Interface (MPI) programs
[346], which is leading the static analysis tools for MPI programs. To combine abstract interpretation and symbolic
execution, they have presented block-wise abstract interpretation combining abstract domains with SMT [131],
and built a tool called AISE [185] which won the first golden medal for China in the Loop track of the ReachSafety
category of SV-COMP 2025 [10].

Verification of Concurrent Programs. Concurrency is a ubiquitous feature in modern software systems, often
employed to harness the power of multi-core processors and optimize performance. However, ensuring correctness
in concurrent programs is challenging because their execution involves nondeterministic interleavings among
multiple threads. Testing is limited because it often fails to locate and reproduce bugs that may appear only in a
few specific program execution interleavings. Xinyu Feng and his collaborators did a systematic work on the
formal verification of concurrent programs. First, they presented a rely-guarantee-based simulation technique
called RGSim for verifying concurrent program refinement [175, 176]. Later, based on RGSim, they studied several
applications of concurrent program refinement verification. Specifically, they developed a program logic, LiLi, for
verifying the linearizability and progress properties of concurrent objects [171-173, 177, 178]. They also proposed
a practical verification framework for preemptive OS kernels and applied it to verify a commercial preemptive
OS pC/OS-1I [304]. Additionally, they developed a framework for verifying the compilation and optimization of
concurrent programs [130, 355]. They also provided methods for verifying conflict-free replicated data types in
distributed systems [174] and for verifying concurrent randomized programs [72]. In addition, Fei He and his
collaborators developed an ordering-consistency theory together with decision algorithms and further built a
dedicated SMT solver for concurrent program verification [71, 105, 191, 236]. Specifically, they developed the
verification tool Deagle [106], which won the Concurrency Safety category of SV-COMP in 2022, 2023, and 2025.

Verification of Probabilistic Programs. Probabilistic programming is a widely used paradigm for describing
stochastic models as executable computer programs. Static analysis of probabilistic programs aims to algo-
rithmically derive tight, guaranteed outcomes for stochastic properties, e.g., probabilities and expected values.
Hongfei Fu et al. have made contributions in various aspects of static analysis of probabilistic programs. These
contributions include termination analysis (both qualitative and quantitative) [24, 27-29, 126], expected cost
analysis [25, 26, 272], probabilistic assertion analysis [235, 265], sensitivity analysis [271] and Bayesian poste-
rior analysis [273]. Mingshuai Chen and his collaborators have contributed a taxonomy of formal techniques
for reasoning about (quantitative) fixed points that capture the semantics of infinite-state loopy probabilistic
programs [77, 169]. The addressed tasks include the verification (and refutation) of sound upper bounds [9],
lower bounds [74], and exact semantics [38, 142, 143] (for Bayesian inference). A synthesis complements the
verification perspective framework for (semi-)automatically generating quantitative loop invariants [8] as well as
an efficient procedure for deciding (positive) almost-sure termination [210]. Di Wang et al. proposed various type
theory-related techniques for the expected-cost analysis [61, 256, 258], static analysis [255, 259], and inference
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[257] of probabilistic programs. Further contributions in this thread include Yijun Feng et al’s result on synthe-
sizing quantitative polynomial loop invariants [81] and Yuxin Deng et al’s results on assertion-based logic for
local reasoning [290] and termination analysis [309] for probabilistic programs.

Verification of Quantum Programs. Quantum software is indispensable for harnessing the power of quantum
computers; however, program design is notoriously error-prone due to the distinctive quantum features of
no-cloning and entanglement. Effective verification methods are therefore essential. Mingsheng Ying introduced
the first full-fledged quantum Hoare logic, together with a novel proof of relative completeness [342]. Researchers
subsequently extended this framework to cover quantum programs with classical variables [80], parallel composi-
tion [345], nondeterministic choices [79], and distributed quantum programs with classical communication [78].
To improve automation, further work reduced invariant [344] and ranking function generation [166] of quantum
programs to semidefinite programming. Alternative verification approaches include projector-based quantum
Hoare logic [398] and relational Hoare logic [6]. On the implementation side, Naijun Zhan’s group built a
theorem prover for Ying’s original logic in Isabelle/HOL [189]. At the same time, Zhou et al. [396] developed a
general-purpose platform for quantum programming and verification in Coq. Ying provides a comprehensive
introduction to this line of research in his monograph [343].

4.1.4 Hardware Verification. Formal verification of hardware designs refers to a family of techniques that have
rigorous mathematical foundations, such as SAT solvers and model checking, to prove whether the hardware
Register-Transfer Level (RTL) designs conform to their specifications, whether two hardware designs are equiva-
lent, or whether CPU designs conform to the Instruction Set Architecture (ISA) specifications. Compared with
testing and simulation, formal verification offers completeness and thus provides a higher level of safety/security
assurance for hardware designs.

Several research groups at ISCAS, ECNU, and HKUST (Guangzhou) have achieved notable results in the formal
verification of hardware designs, including hardware model checking, ISA compatibility checking, equivalence
checking, and assertion-based verification. On hardware model checking, Qiusong Yang et al. proposed several
optimization techniques for the classical IC3 algorithm (short for Incremental Construction of Inductive Clauses
for Indubitable Correctness, aka, Property Directed Reachability (PDR)), including fine-tuning of SAT solvers
[233], lemma prediction [232], and optimization strategies for critical proof obligations [399]. Jianwen Li et al.
proposed the concept of “i-good lemmas” to improve IC3/PDR [298]. Hongce Zhang et al. proposed DeepIC3,
where graph neural networks are integrated to improve the result of local inductive generalization of IC3
[122]. Cong Tian, Zhenhua Duan, and others improved the efficiency of software/hardware model checking by
developing techniques to detect spurious counterexamples and refine abstract models in counterexample-guided
abstraction refinement (CEGAR) [249, 250]. On formal verification of ISA-compatibility of RISC-V CPU designs,
Zhilin Wu et al. developed ChiRVFormal [224], a RISC-V ISA-compliant formal verification tool for RISC-V CPU
Chisel designs, which includes a parameterised Chisel reference model for the RISC-V ISA and novel mechanisms
for synchronising the reference model with RISC-V CPU designs that incorporate complex microarchitecture
features. On equivalence checking and assertion-based verification, Shaowei Cai et al. proposed to integrate exact
simulation into sweeping for datapath combinational equivalence checking and improve the performance of the
open-source equivalence checker ABC [206] for more than two orders of magnitude [51]. Hongce Zhang et al.
proposed AssertLLM, a framework that uses large language models (LLMs) to automatically generate assertions
from natural-language specification files (rather than sentences) [326].

4.1.5 Security Verification. Cryptographic algorithms play a pivotal role in safeguarding sensitive information.
However, their implementations are often vulnerable to various physical attacks, including power-side-channel,
timing-side-channel, and fault-injection attacks. Therefore, verifying the security of cryptographic implementa-
tions against physical attacks is essential but challenging, because security properties are non-functional and
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their verification extends beyond traditional correctness verification. Early efforts have proposed verification
techniques targeting some physical attacks, but they are limited in accuracy and scalability.

Fu Song and his collaborators did a systematic work on the security verification of cryptographic implementa-
tions. They proposed a refinement-based approach for verifying first-order power side-channel security, which
synergistically integrates a fast but inaccurate semantic rule-based approach and an accurate but flow constraint
solving-based approach for refining inference rules [92, 363], bringing the best of both worlds. Researchers ex-
tended the refinement-based verification approach to handle arithmetic programs in an assume-guarantee-based
compositional style, thereby further improving verification efficiency and usability [90, 91]. They also generalised
a refinement-based approach and a compositional reasoning approach to verify higher-order power side-channel
security, using a GPU-accelerated parallel algorithm for constraint solving and an algorithm for automatically
inferring assumptions [88, 89, 93]. They propose a refinement-based approach to verify timing-side-channel
security, which synergistically integrates a flow- and context-sensitive lightweight taint analysis with an ac-
curate yet flow-self-composition-based refinement of taints [18, 217]. To verify the security of cryptographic
implementations against fault injection attacks, a novel SAT-encoding approach was proposed that reduces the
verification problem to SAT solving, taking all potential faults into account [238]. Additionally, a first-round-based
composition verification method was introduced to handle entire cryptographic implementations [238]. Moreover,
researchers from Zhejiang University and their collaborators presented a generalised security-preserving refine-
ment technique for verifying information-flow security of concurrent systems [234]. Theoretically, researchers
can represent many security properties as different kinds of opacity, classifying them into state-based and
action-based categories. In the untimed setting, researchers have proven that state-based and action-based opacity
are decidable for finite-state automata. However, in general, both state-based and action-based opacity become
undecidable in the timed setting, e.g., as represented by timed automata [22]. Naijun Zhan and his collaborators
established a hierarchy of state-based and action-based opacity for subclasses of timed automata [3, 270].

4.1.6 Al Verification. With the great success of deep learning-based Al in many application domains, as advocated
by Jifeng He, guaranteeing the trustworthiness of Al is becoming increasingly important and challenging [110].
Over the past decade, Chinese computer scientists have increasingly focused on this issue, primarily on verifying
neural networks, deep learning systems, and black-box systems.

In the context of formal verification of neural networks, Lijun Zhang et al. proposed a symbolic-propagation-
based method to enhance the precision of neural network verification via abstract interpretation [329]. Wang Lin
et al. presented an approach that transforms the robustness verification problem into an equivalent nonlinear
optimizetion problem [184]. Min Zhang et al. proposed provably tightest linear over-approximation techniques
and acceleration methods for efficient and precise neural network verification [100, 374]. Jingyi Wang et al.
established various techniques for repairing deep neural networks with provable guarantees [198, 199]. On the
verification of deep learning programs, most current research focuses on properties or defects at the model
level. Yingfei Xiong et al. applied static analysis based on abstract interpretation to detect numerical defects
in deep learning programs using tailored abstraction techniques, such as tensor partition abstraction, that suit
the characteristics of these programs [373]. On the formal verification of black-box systems, Bai Xue et al.
proposed a probably approximately correct (PAC) model checking method for verifying finite-time continuous
“black-box” dynamical systems [324]. Moreover, Bai Xue et al. presented a practical framework to analyze the
robustness properties of deep neural networks (DNNs) [151], which first abstracts the local behaviour of a DNN
via an affine model with the PAC guarantee based on black-box learning, and then infers the corresponding
PAC-model robustness property. Complementary to neural network verification, Zengyu Liu et al. proposed a
guess-and-check-based framework to automatically synthesise sufficient preconditions for guaranteeing safety
and robustness postconditions [193]. Min Zhang et al. proposed a unified framework for the formal verification of
neural network-controlled systems that combines qualitative and quantitative approaches by defining and training
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multiple barrier certificates [384]. They also introduced CEGAR into the development process of verifiably safe
deep reinforcement learning systems, which involves iteratively training neural network controllers on abstracted
and refined system states guided by counterexamples [134].

4.2 The CCF Formal Methods Technical Committee; Major FM Teams and Venues

With the rise of increasingly safety-critical applications, growing support from the government and industry,
and a steadily expanding research community, the establishment of a formal-methods organizetion became both
timely and necessary. Thanks to the vision of pioneers such as Chaochen Zhou, Wei Li, Jifeng He, and Huimin
Lin, and the dedicated efforts of Ji Wang, Xuandong Li, Zhiming Liu, Zhenhua Duan, Naijun Zhan, and many
others, the CCF Technical Committee on Formal Methods (CCF-TCFM) was formally founded in 2016. The first
edition of CCF-TCFM (2016-2019) comprised approximately 120 members. Huimin Lin was the director, and
Yuxi Fu, Yi Wang, and Ji Wang were the vice directors, with Naijun Zhan as the secretary. The second edition
of CCF-TCFM (2020-2023) consisted of approximately 180 members. Ji Wang served as the director, with Yuxi
Fu, Geguang Pu, and Naijun Zhan as vice-directors, and Wei Dong as secretary. Currently, the third edition of
CCF-TCFM (2024-2026) comprises approximately 240 members. Naijun Zhan is the director, and Wei Dong, Min
Zhang, and Cong Tian are the vice directors, with Zhilin Wu as the secretary.

Currently, major FM teams in China include those at ISCAS, ECNU, Nanjing University, the National University
of Defense Technology, Peking University, Tsinghua University, Beihang University, Xidian University, Shanghai
Jiaotong University, Tongji University, Zhejiang University, and Capital Normal University, along with industrial
groups at Huawei, Ant Group, the China Aerospace Science and Technology Corporation (CASC), and others.

In addition to domestic teams, the development of formal methods in China has long benefited from the
engagement of prominent foreign researchers. A notable example is Jean-Raymond Abrial—the founder of B-
Method [1] and Z notation [231] for developing safety-critical software systems. Abrial served for many years as an
Adjunct Professor at ECNU, where he worked closely with local researchers, including the group led by Jifeng He,
contributing to both foundational advances and industrial-scale applications of formal methods. His collaboration
notably supported the development of safety-critical software for metro-train control systems, including the first
driverless metro in Shanghai. As a leading researcher in the Program of Intelligence Introduction for Innovation
at Chinese Universities, Abrial also played an active role in bringing international academic resources to China.
In recognition of these contributions, he received the International Science and Technology Cooperation Award
of the People’s Republic of China in 2016 [68].

The CCF-TCFM holds its annual conference, FMAC, each year in early winter. Since 2020, FMAC has been
held jointly with NASAC (the National Software and Applications Conference) — the annual joint conference of
CCF-TCSE (CCF Technical Committee on Software Engineering) and CCF-TCSS (CCF Technical Committee on
System Software). This joint conference, known as CCF ChinaSoft, has grown into the most influential academic
venue for software theories, tools, and applications in China, as evidenced by its 2024 attendance of more than
2,500.

Chinese computer scientists also initiated several international conferences to promote academic exchange and
strengthen collaboration between the Chinese and the global FM communities. The first was TASE (International
Symposium on Theoretical Aspects of Software Engineering), launched by Jifeng He in 2006; Another is SETTA
(Symposium on Dependable Software Engineering Theories, Tools, and Applications), which was established
in 2015 through the efforts of Chinese researchers—including Chaochen Zhou, Zhenhua Duan, Zhiming Liu, Ji
Wang, Xuandong Li, Naijun Zhan, and others—together with international colleagues such as Cliff Jones, Deepak
Kapur, Martin Fréinzle, Kim Larsen, Sriram Rajamani, and Kwangkeun Yi.

In addition to the China-initiated conferences, many FM-related international conferences have been held in
China, including CONFESTA (the joint conference comprising CONCUR, FORMATS, QEST, and SETTA) in 2018,
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FM (International Symposium on Formal Methods) in 2021, as well as multiple editions of ATVA (International
Symposium on Automated Technology for Verification and Analysis), ICFEM (International Conference on Formal
Engineering Methods), MEMOCODE (ACM-IEEE International Symposium on Formal Methods and Models for
System Design), and ICECCS (International Conference on Engineering of Complex Computer Systems).

5 Industry Contributions and Applications

This section provides a brief overview of the industrial contributions and applications of formal methods in China.
It primarily involves safety-critical domains such as aerospace, transportation, telecommunications, chip design,
operating systems, and finance. In many of these domains, software assurance standards—such as DO-178B/C,
DO-333, CC EAL 1-7, and SIL 1-4—explicitly mandate or encourage the adoption of formal methods as a means
to achieve high assurance levels.

Aerospace. Supported by the NSFC’s Grand Research Program on Fundamentals of Trustworthy Software (2007-
2016), China has established a comprehensive framework of trustworthy assurance techniques for aerospace
embedded software development, leveraging formal methods such as model checking, abstract interpretation,
and deductive verification; see details in [114]. Representative contributions and applications include: (i) A joint
research and engineering effort between the China Academy of Space Technology (CAST) and ISCAS, which
developed the MARS toolchain [37] for modeling, analysis, and verification of hybrid systems. MARS was later
applied to the verification of control programs for the Chang’e-3 lunar lander [378] and the Tianwen-1 Mars
spacecraft; (ii) The work by the research team at the National University of Defense Technology, which proposed
sequentialization-based static analysis for detecting numeric-related runtime errors in interrupt-driven programs
[293]—a characteristic feature in aerospace software systems; (iii) The work by Yongwang Zhao et al. from
Beihang University, which identified multiple errors in the widely adopted avionics embedded software standard
ARINC 653 [362, 383].

Railway. Naijun Zhan’s research group at ISCAS has integrated their interactive theorem prover HHL Prover
[277] with the MARS toolchain [37] and applied it, in collaboration with Beijing Jiaotong University, to certify
the safety of the Chinese Train Control System (CTCS) under combined scenarios [401]. The research team at
Nanjing University developed the BACH toolkit [15] to verify the bounded reachability of linear hybrid automata,
supported it with online compositional verification, and deployed it on the hardware-in-the-loop simulation
platform of the National Engineering Research Center of Train Control Systems. Fei He et al. from Tsinghua
University, developed the VCS tool for model checking component-based systems [107] and created the temporal
verification framework VeRV for vehicle bus systems [367]; researchers have applied both results to analyze and
verify high-speed railway train control software.

System Software. Formal methods have been extensively used in China to establish correctness guarantees for
system software, e.g., operating systems (OS), compilers, and databases. Xinyu Feng et al. developed a practical
verification framework for preemptive OS kernels and applied it to verify key modules in the commercial
embedded real-time OS pC/OS-II [304]. Building on this work, Naijun Zhan et al. incorporated worst-case
execution time (WCET) analysis and verified another real-time OS widely used in Chinese space missions,
thereby achieving the Common Criteria Evaluation Assurance Level (CC-EAL) 5+ certification. Also, an adapted
framework based on the Verified Software Toolchain (VST) [397] was applied to the verification of a variant of the
distributed operating system HarmonyOS, called LiteOS-M (around 8K LoC, which also helped it pass CC-EAL
5+ certification. In parallel, Yongwang Zhao et al. proposed a similar rely-guarantee verification framework
[221, 222, 382], which they used to verify ARINC 653 [362]—the de facto standard of partitioning operating
systems—as well as other microkernels [312]. Yi Li and colleagues at Huawei Inc. applied a broad suite of formal
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methods to verify Harmony-OS kernel, leading to its certification with CC-EAL 6.2 Moreover, Haibo Chen et
al. have applied verification and optimization techniques to certify the correctness of concurrent file systems
[404, 405], weak memory models [211], and database query rewrite rules [284]. Research groups at Shanghai Jiao
Tong University have long pursued deductive verification of system software. For example, Qinxiang Cao et al.
worked on separation-logic-based C program verification [294, 397], and Yuting Wang et al. produced verified C,
Java, and Rust compilers [281, 282, 366, 372].

Beyond the surveyed applications, a substantial body of work explores the use of formal methods in industrial
control systems and robotics, e.g., [60, 269, 381], as well as in the modeling and verification of security/network
protocols, e.g., [99, 170, 204].

We note that the work surveyed in this section is far from being exhaustive, considering especially the
ever-growing application of formal methods in Chinese technology companies—such as Huawei and ZTE in
telecommunications, HiSilicon and Empyrean in chip design, NIO in autonomous driving, as well as Ant Group in
finance—to strengthen their software and/or hardware reliability.

6 Challenges and Future Directions

This section outlines several key challenges and promising future directions in research, application, and talent
cultivation related to formal methods. Notably, many of these considerations extend beyond China and are
relevant to the global FM community.

6.1 Research and Industrial Applications

Automation and Scalability. Fully automated verification of real-world, large-scale software and hardware
systems against highly expressive properties is arguably the holy grail of formal methods. While significant
advancements have been made in specialized domains such as type systems for certifying type safety [213],
symbolic execution for detecting bugs [139], model checking for verifying bounded reachability [11, 55], abstract
interpretation for certifying runtime error-freeness [57], and theorem proving for establishing functional correct-
ness [2], these techniques either provide limited formal guarantee or exhibit poor scalability due to the well-known
state/path-explosion problem or the prerequisites of manual efforts in discovering formal specifications—such
as loop invariants, pre-/post-conditions, and function contracts—that faithfully characterize intended program
behaviors; See [82, Fig. 3] for a taxonomy of formal methods as per their strength of guarantee and scalability.
Over the past decades, various techniques have been proposed to address this challenge, including interpolation
[205], k-induction [223], IC3/PDR [14], CEGAR [56], counterexample-guided inductive synthesis (CEGIS) (8, 230],
and proof-carrying code [208]. However, specification synthesis remains a central bottleneck in achieving full
automation: Many of these methods either rely heavily on user-supplied annotations (e.g., templates) or confine
push-button techniques to semi-decision or approximate procedures.

The emergence of large language models has opened new avenues for addressing the challenge mentioned
above, thanks to their remarkable capabilities for contextual (code-level) understanding and reasoning. Recent
studies [200, 214, 285, 287, 288]—many of which were initiated by the Chinese FM community—have investigated
the use of LLMs for automated specification synthesis, achieving substantial improvements over conventional
approaches. Nevertheless, these methods exhibit significant scalability limitations when applied to large-scale
programs, primarily due to two factors: First, the context-length limitation of LLMs [73] impedes their capacity to
perform holistic reasoning over monolithic codebases within a single inference step; Second, verifying complex
programs typically requires synthesizing a diverse and interdependent set of specifications. We envisage that
a modular, fine-grained framework for generating and refining formal specifications could offer a promising

2See the official announcement at https://www.huawei.com/cn/news/2023/8/cybersecurity-hongmengkernel-cceal6.
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direction for the automated verification of large-scale programs; see, e.g., our preliminary research effort in [283],
which enables the almost-fully automated verification of real-world C programs with thousands of lines of code.

Uncertainty. Our universe is inherently stochastic, uncertain, and even chaotic. Real-world computing systems
can hardly, if ever, be deployed in a fixed, closed, and perfectly predictable environment. This limitation is
particularly pronounced in cyber(-human)-physical systems [146, 147], which typically exhibit both (i) exogenous
uncertainty, arising from their operation in open, dynamic environments that are inherently unpredictable,
difficult to characterize fully, and often marked by discrepancies between design-time requirements/assumptions
and runtime realities—in fact, the environment per se can be highly volatile or even (partially) unknown; and (ii)
endogenous uncertainty, induced by the ever-increasing integration of data-driven, learning-enabled components
that exhibit limited predictability and interpretability, such as neural network controllers and language models.
As a consequence, specifying, analyzing, and verifying safety-critical cyber-human-physical systems subject
to substantial uncertainty—thereby ensuring their safety, reliability, and effectiveness—remains a significant
challenge in computer science, necessitating new theoretical foundations and engineering methodologies.

The challenge posed by uncertainty in system design and verification has triggered a surge of interest among
the global FM community. Flagship international conferences in formal methods, programming languages, and
cyber-physical systems—such as FM, CAV, OOPSLA, POPL, PLD], and those in the CPS-IoT (Cyber-Physical
Systems and Internet-of-Things) Week series—have witnessed an increasing number of workshops and sessions
dedicated to uncertainty-centric topics, including probabilistic programming, stochastic systems, and quantitative
verification. Chinese researchers have played a visible and impactful role in advancing this frontier. Notable
contributions include Yuxin Deng’s research on probabilistic process calculi [63], Lijun Zhang’s results on
probabilistic model checking [101], Naijun Zhan’s work on stochastic hybrid systems [75], Hongfei Fu’s research
on quantitative termination [27], Di Wang’s work on cost analysis of probabilistic programs [256], and Mingshuai
Chen’s results on quantitative fixed-point reasoning [169]. Importantly, this line of research also exemplifies
the tight, sustained connection between Chinese FM researchers and the global FM community, as they have
achieved many of these outcomes through international collaborations.

FM Meets AL As Al technologies rapidly encroach on safety-critical infrastructures, the intersection of formal
methods and Al has emerged as a pivotal research frontier, particularly in the context of autonomous systems,
adaptive control, IoT-enabled infrastructures, and smart cities. This frontier encompasses two major branches: (i)
FM for AI (FM4AI), namely the application of formal methods and tools to specify, verify, and assure Al components
or Al-powered systems. As mentioned in Section 4, the Chinese FM community has made substantial contributions
in this thread towards trustworthy AI [148]. In recent years, however, the advent of large language models based on
the transformer architecture [254] has brought new challenges and opportunities. Their unprecedented multimodal
understanding, reasoning, and generative capabilities, along with emerging risks such as hallucinations [125]
and privacy leakage [124], have triggered an intense debate about “whether, how, and to what extent we should
verify LLMs via formal methods” [127]; (ii) AI for FM (AI4FM), namely the use of Al techniques to advance the
scalability, automation, and usability of formal methods. In addition to the aforementioned results on LLM-based
specification synthesis, the Chinese FM community has also contributed various approaches to synthesizing core
FM artifacts such as invariants [311, 350], variants [158, 244], interpolants [41, 183], barrier certificates [377, 379],
and controllers [380], leveraging traditional Al techniques, such as decision trees, support vector machines, neural
networks, and reinforcement learning. Moving forward, researchers expect the synergistic integration of FM and
Al (see, e.g., [369]) to reshape both fields, fostering the (semi-)rigorous assurance of increasingly intelligent
systems while endowing FM with unparalleled levels of automation, adaptability, and real-world applicability.

Emerging Computing Paradigms. As Moore’s Law approaches its physical limits [247], the drive to tran-
scend conventional computational boundaries has given rise to novel paradigms, including quantum, biological,
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neuromorphic, and photonic computing. These advances challenge the foundations of computer science, as
programming languages and development methodologies rooted in the Turing machine and finite automata
theory are no longer directly applicable. New abstractions and toolchains are therefore required, together with
robust approaches to ensuring the correctness and reliability of safety-critical systems. For instance, the intrinsic
uncertainty of quantum computing renders program verification considerably more difficult than in classical set-
tings (cf. the above-mentioned challenge of uncertainty). We believe that the aforementioned rich body of research
results achieved by the Chinese FM community on the analysis and verification of quantum and probabilistic
programs provides important theoretical underpinnings for these emerging paradigms. Furthermore, developing
effective modeling and logical frameworks for reasoning about heterogeneous and hybrid computing across diverse
physical substrates remains a central challenge—one that calls for deep interdisciplinary collaboration among the
communities of theoretical computer science, formal methods, and computer architecture.

6.2 Education and Talent Cultivation

Education plays a pivotal role in the sustained advancement of formal methods. Yet, their steep learning curve—
primarily driven by the heavy reliance on mathematics and logic, as well as the limited usability and scalability
of existing tools—has hindered their adoption in software development. While the ACM and IEEE curricula for
computer science and software engineering both include program correctness [136, 137], surveys on formal
methods education in China further highlight the need to strengthen their presence in specialized training
[186, 303]. Since researchers can regard programs as formal specifications amenable to mechanized processing,
educators find it both natural and essential to embed formal concepts into foundational courses (e.g., programming,
data structures, and compiler construction) and to emphasize their connections to mainstream approaches in
advanced courses (e.g., discrete mathematics, algorithms, software engineering, and artificial intelligence) to
promote adoption and enhance proficiency [267].

A key driver of progress in China has been the cultivation of talent through both domestic and international
training initiatives. Over the past two decades, FM education and training in China have gradually expanded from
a small number of elite research groups to a broader network of universities and research institutes, producing a
growing cohort of scholars with expertise in both theory and practice. In particular, graduate education supported
by, e.g., UNU-IIST and multiple training schools, has had a lasting impact. As documented in contemporaneous
reports [13], UNU-IIST in Macau served for many years as a world-class research and training center in formal
methods, offering year-long fellowships to graduate students and young lecturers from developing countries,
including Mainland China, providing intensive courses in specification, refinement, and mathematically based
software design, followed by supervised research projects. These fellows returned to their home institutions
equipped to introduce FM courses, supervise students, and seed new research groups, thereby strengthening
the domestic educational infrastructure. Complementing this immersive model, Summer School on Trustworthy
Software initiated by Jifeng He in ECNU, Summer School on Formal Methods initiated by Lijun Zhang and
Naijun Zhan in ISCAS, and the International School on Engineering Trustworthy Software Systems (SETSS)
initiated by Zhiming Liu in Southwest University, etc. provided a series of advanced training in rigorous modeling,
verification, and trustworthy systems engineering for graduate students and young scholars, with the help of
international researchers. These training schools educated numerous graduate students nationwide, promoting
the dissemination of state-of-the-art tools and methodologies while fostering early engagement with international
FM research culture.

Notably, the Grand Research Program on Fundamentals of Trustworthy Software, funded by the NSFC from
2007 to 2016, has nurtured a generation of leading scholars at the forefront of global scientific research and a
strong core of mid-career researchers. However, challenges remain: the domestic FM talent pipeline is still limited
in scale, the distribution of high-quality teaching resources is uneven, and opportunities for cross-disciplinary
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training—linking FM with areas such as Al, cybersecurity, and emerging computing paradigms—are relatively
scarce. Strengthening international exchange programs, establishing joint training bases between academia and
industry, and integrating FM into interdisciplinary curricula will be critical for developing a new generation of
researchers and practitioners. Such initiatives will not only enhance China’s capacity for original FM research
and accelerate the translation of FM advances into industrial innovation but also promote global collaboration,
enabling China to actively contribute to and benefit from the worldwide FM community and the development of
trustworthy computing technologies.

7 Conclusion

The development of formal methods in China has followed a trajectory that is closely intertwined with, yet
in several respects distinctive from, the broader international evolution of the field. FM in China began with
the early establishment of mathematical logic and theoretical computer science in the 1950s, advanced through
significant international engagement during the 1980s and 1990s, and expanded rapidly in the 2000s in response
to both scientific opportunity and national demand for trustworthy software. Compared with global trends, three
characteristics stand out:

First, the role of international exchange has been central to China’s FM history. The return of scholars trained
abroad in the period of reform and opening-up and the establishment of UNU/IIST in Macau served as major
accelerators, creating channels through which theoretical advances—especially in semantics, refinement, real-time
reasoning, and algebraic approaches—were quickly disseminated and extended. While similar patterns can be
observed elsewhere, UNU/IIST s sustained influence on talent cultivation and research direction gives China’s
FM landscape a distinctive institutional contour.

Second, China has developed characteristic strengths in areas that combine mathematical foundations with
system-level reasoning. Notable examples include the Duration Calculus and its subsequent developments, the
Unifying Theories of Programming and their extensions, the mechanization of mathematics and nonlinear
constraint solving, as well as the modelling and verification of real-time, hybrid systems. In these areas, Chinese
researchers have produced contributions that are now well integrated into the international FM corpus. At the
same time, other directions—such as SAT/SMT solving, concurrent system verification, static analysis, and the
verification of probabilistic, quantum, and Al-based systems—have brought China closer into alignment with
global research priorities, reflecting a worldwide convergence of theoretical and practical challenges.

Third, China has placed strong emphasis on the industrial application of formal methods to safety-critical
domains, including aerospace, rail transportation, operating systems, telecommunications, and finance. The scale
and national centrality of these applications—in particular, verified control software for space missions, certified
train-control components, and high-assurance operating systems—position China among the few countries where
FM has been systematically deployed in large, mission-critical industrial projects. This pragmatic orientation has
further contributed to the growth of domestic research teams and to the formation of coordinated community
structures.

Looking forward, many of the challenges facing the Chinese FM community mirror those of the global
community: enhancing automation and scalability, integrating data-driven and model-based reasoning, extending
verification to increasingly autonomous and stochastic systems, and strengthening interdisciplinary education
and tooling. Nevertheless, the historical trajectory outlined in this article suggests that China is well-positioned
to make significant contributions to the next phase of FM research and application. With a mature academic
ecosystem, growing international engagement, and expanding industrial demand, China’s FM community is likely
to remain an active and increasingly influential participant in shaping the global development of formal methods.
One potential avenue is to increase active participation in international FM standardization efforts and in global FM
communities, such as Formal Methods Europe (FME), thereby contributing to the development of widely accepted

Form. Asp. Comput.



22 « N.Zhanetal.

global FM practices. China could also take the lead in (i) organizing and/or (co-)chairing prominent international
events in formal methods and related areas, as exemplified by its involvement in CONFESTA 2018, LICS 2020, FM
2021, ICFEM 2025, QEST+FORMATS 2026, TACAS 2027, and others; and (ii) spearheading multi-national FM
initiatives, particularly in emerging fields such as Al verification, quantum computing, and cybersecurity. These
efforts will not only elevate China’s influence on the global FM stage but also foster knowledge exchange and
best practices, ensuring the continued growth and relevance of formal methods in addressing complex challenges
across industries.
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