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Abstract

Memory is one of the critical resources in model checking. This paper discusses
a strategy for reducing peek memory in model checking by case-based partitioning of
the search space. This strategy combines model checking for verification of different
cases and static analysis or expert judgment for guaranteeing the completeness of
the cases. Description of the static analysis is based on using PROMELA as the
modeling language. The strategy is applicable to a subset of models including models
for verification of certain aspects of protocols.

1 Introduction

A main concern of model checking is the state explosion problem. Much effort has been
put into the research for reducing this problem. Related research topics can for instance
be found in [4, 9, 25, 8, 5, 15, 17]. The topics include abstraction techniques for reduc-
ing models, compositional techniques for splitting verification tasks and techniques for
compactly representing transition relations and system states.

In addition to general techniques which can be used to a wide range of models, it is
also important to develop techniques for special types of models, in order to enhance the
applicability of model checking to these types of models. The motivation of this paper is
verification of models with non-deterministic choice and open-environment. The basic idea,
is to find a method for adequately representing different cases in such models, in order to
reduce peek memory usage in model checking. We propose a strategy to partition a model
checking task into several cases (the verification of which is done by model checking) and
prove that the collection of these cases covers all possible cases. The latter can either be
done by using expert judgment or by static analysis for models satisfying certain criteria.
The static analysis can be implemented as an automatic tool which may be offered as an
option to the user of the model checker. The contents of this paper are as follows:

e The principle of case-based partitioning.

e Anexample that demonstrates the advantage of case-based partitioning, where expert
knowledge is used for ensuring the soundness of the strategy.

e Presentation of a type of models that is feasible for case-based partitioning.

e Conditions for the soundness of using case-based partitioning.



e A description of the static analysis for checking the conditions.

e A discussion on algorithm for searching variables to be used for partitioning and
therefore also for automatically apply this strategy for models of the discussed type.

As mentioned at the beginning of this section, there are many techniques for allevi-
ating the state-explosion problem. Some techniques are implemented as a standard part
in model checking tools, for instance, on-the-fly model checking [12, 1] and partial order
reduction [14, 20, 21] are implemented in the model checking tool SPIN [12, 13]. Other
techniques may be used as pre-processing methods for reducing the complexity of mod-
els, for instance, we may use cone of influence reduction [2] or program slicing [19] for
reducing the complexity of models. On the other hand, the representation of properties
is also important, since a verification task consists of two parts: the model and the prop-
erty. For instance, for the application of SPIN, one usual representation of the property is
propositional linear temporal logic (PLTL) formulas [7] which are to be transformed into
Buchi automata. Therefore, succinct representation of PLTL formulas in Buchi automata
is a means for improving efficiency of model checking [10, 3, 23]. In addition, one may
consider decomposition of properties, i.e. a given property may be decomposed into a set
of sub-properties and verified (with abstraction of the model pertinent to each of the prop-
erties) separately [24]. The proposed strategy can be regarded as such a pre-processing
method and can be used in combination with the aforementioned techniques. Since dif-
ferent techniques may have different advantages and limitations, for a given verification
problem, we may need to consider many techniques and choose a suitable combination of
such techniques in order to successfully solve the problem.

2 Partition Strategy

Let T be a system and 7 be the global variable array of T'. The system is in the state ?,
if the value of 7 at the current moment is v. A trace of T is a sequence of states. The
property of such a trace can be specified by PLTL formulas [7].

e ¢ is a PLTL formula, if ¢ is of the form z = w where z € 7 and w is a value.
e Logical connectives of PLTL include:

= (negation), A (conjunction), V (disjunction) and — (implication).

If p and 9 are PLTL formulas, then so are =, o A1, ¢ V9, and p — 1.
e Temporal operators include:

X (next-time), U (until), & (future) and O (always).

If  and % are PLTL formulas, then so are X ¢, ¢ U 9, & ¢, and O ¢.

Let ¢ be a trace of T. Let HEAD(t) be the first element of ¢+ and TAIL!(t) be the
trace constructed from ¢ by removing the first ¢ elements of {. For convenience, we write
TATL(t) for TAIL!(#). Let ¢ |= ¢ denote the relation “t satisfies ¢”.

Definition 2.1 ¢ = ¢ is defined as follows:



t=x=v iff the statement z = v is true in HEAD(¢).

t = - iff ¢} .

tEpAy iff tE=@andt =

t=EpVvy iff tlEgportl=1.

t=Ep—1y iff t}= ¢ impliest = 1.

tEXop ifft TAIL(%) E .

tlE U iff Tk such that TATLF(t) = ¢ and TAIL!(t) | ¢ for 0 < i < k.
t = Op iff Ik such that TAILF(t) |= o.

t = Oy iff ¢ = ¢ and TAIL(¢) = Qg

Let T be a set of traces.

Definition 2.2 7 | ¢ if and only if Vt € T.(t = ).
Definition 2.3 7 [~ ¢ if and only if Vt € T.(t [~ ).

Let TOP(T) be the set consisting of HEAD(t) for all ¢ € 7 and SUB(T) be the set
consisting of TAIL(¢) for all ¢ € 7. From the above definitions, we derive the following:

TEz=v iff the statement z =v is true in s for all s € TOP(T).
T E - ifft T .
TEeAy ff TEeand T |= 9.
TEeVvy iff thereare T'and T7": T =T'UT" and T' |= ¢ and T" = 9.
ThEp—y iff thereare 7' and 7" T =7T'UT" and T' j& p and T" k= 1),
TEXe iff SUB(T) k.
TEeUy iff there are 7' and T":

T=T'UT" T' o, T" k= ¢ and SUB(T") = ¢ U .
TECp iff there are 7' and 7":

T=T'UT", T" & ¢ and SUB(T") |E <.
TEDOp  iff T yand SUB(T) = Op.

Let 7 be the set of the traces of T and ¢ be a propositional linear temporal logic
formula. Let T |= ¢ denote the relation “T" satisfies ¢”.

Definition 2.4 T |= ¢ if and only if T | ¢.

Suppose that there is a model M and a formula ¢, and our task is to check whether ¢
holds in M, i.e. we would like to prove:

M = .

The principle of case-based partitioning is to partition the search space of M, so the
formula ¢ can be proved within each portion of the search space. In order to do so, we have
to characterize different portion of the search space. The technique for this characterization
is to attach formulas to ¢, so that in the verification of M = ¢, only paths relevant to
the attached formulas are fully explored (or paths irrelevant to the attached formulas are
discarded at an early phase of model checking).

Theorem 2.1 Let 11, ...,9y, be formulas such that M =11V ---V,. M = ¢ if and only
if M |=1; — @ forallie {1,...,n}.

Proof: It is obvious that M |= ¢ implies M = 9; — ¢. We prove that M | ¢; — ¢
for all i € {1,...,n} implies M |= ¢ as follows.



e Let M be the set of traces of M. Since M |= 11 V --- V 1, there are My,..., M,
such that M = M; U--- UM, and M; |= 9; for all i.

e On the other hand, we have M = 9; — ¢, hence M; = ¢; — ¢ and M; |= ¢ for all
i. Therefore M = ¢. O

For a given model M, in order to be successful with this strategy, we have to be sure
that the proof of M |= v¢; — ¢ is simpler than the proof of M |= ¢ for each i. Therefore
M (the set of traces representing the behavior of M) should have the following properties:
M can be partitioned into M) and M/ such that:

o M £ and M! E o;
o M. |~ 1); can be checked with high efficiency;

e MY is significantly smaller than M.

For the selection of 4; (which determines M/ and M), it would be better to ensure
MY (with ¢ = 1,...,n) be pair-wise disjoint, whenever this is possible. In addition, we
shall discharge M |= 1 V -+ V 4, by one of the following methods:

e Application of static analysis;

e Application of expert knowledge.

The reason for not verifying M = 1 V .-+ V 9, with model checking is that the
verification of this formula is not necessarily simpler than the verification of M = ¢ (cf
the discussion in Section 2.2). In order to be able to discharge M |= 11 V --- V 9, easily
by the proposed methods, we restrict the formula 1); to be of the form O(z = vy V 2 = v;)
where x is a global variable and vy, v; are constants. We call the global variable x for the
case-basis of a partitioning.

2.1 Example

We use PROMELA as our modeling language. PROMELA is a language loosely based
on CSP (Communication Sequential Processes) concepts [11] and is the input language
of the model checker SPIN [12, 13]. PROMELA programs consist of processes, message
channels, and variables. Processes are global objects. Message channels and variables can
be declared either globally or locally within a process. Processes specify behavior, channels
and global variables define the environment in which the processes run. Statements for
the transition of states are similar to that of normal programming languages. There
are basic elements (i.e. guards, assignments and communication statements), sequential
composition of statements, case statements (with deterministic or non-deterministic choice
of execution paths) and loops. We illustrate the case-based partitioning strategy with an
example from [26]. Let S; and Sy be two processes specified in PROMELA as follows:

proctype Si() proctype Sa()
{ {
byte i,k,num; byte i,num;
atomic{ c0?num; cOlnum; } atomic{ c0?num; cOlnum; }
do do
k< num — i=i+1; k=k+i; 21X 1< num — i=i+1;
22 k> num — ¢1!0; @1 X 1> num — ¢2!0;
' k == num — cl!l; @1 X 1==num — c2!1;
od; od;
} }




S1 is a process that reads a value from the channel c0 and tests whether it equals
S°¥ (i) for some k. It reports through the channel c1, with 1 meaning that it has found a
k such that num = Zle(z) S is a process that reads a value and tests whether it equals
k? for some k. It reports through the channel ¢2 in a similar manner.

Suppose that we have a procedure which first puts a number in the channel c0 and then
uses S1 or S for performing a test to determine the property of the number. Suppose
further that the choice of using S; or Ss is determined by an input from the environment
modeled by the process E as follows.

proctype P()
{
c0!nl; e0?al;
if
: al==1; do :: cl7?rl; od;
» al==2; do :: ¢27rl; od;
fi;
}
proctype E() {if :: e0!1; :: e0!2; fi; }

The process E puts randomly 1 or 2 into e0. The process P puts the number nl into
0, reads from e0 and gets the reported values through channel cl or ¢2 according to €0.
Assume that we want to verify whether there is no k such that nl = Y%, (i) or nl = k2
and we represent the property by ¢ : O(rl # 1), i.e. we want to verify:

P[E[[S1]152 [= -

We chose al as the case-basis with two cases al # 0 — al =1 and al # 0 — al = 2,
in which, 0 is the initial value of al. Let M = P||E||S1||S2. Instead of verifying the above
formula, we verify:

MEY —pand M E e — ¢

where

1 =0(al #0 — al =1)
P = 0O(al #0 — al = 2)

with the assumption that the following holds (by using expert judgment):
M =11 Vo

The model checker SPIN (version 3.2.4) was used for verification. Table 1 presents the
number of states, the number of transitions, and the peek memory in the verification of
the model with nl = 2. It shows that by using case-based partitioning, we have reduced
a problem to two sub-problems with complexity around 75 percent of the original one.
Because the example is too simple, there is no advantage with respect to the memory
usage in this example.

2.2 Discussion

The formula 11 Vi)s can be verified by model checking as well. For comparison, the number
of states, the number of transitions, and the peek memory for checking M = 1 V 1
are respectively 614, 1038 and 1.493mb. This means that the numbers of states and



Table 1: Verification of the Model with nl = 2

Verification Task | States | Transitions | Memory
© 396 506 1.493mb

Y1 — 299 369 1.493mb

ho — 291 361 1.493mb

transitions for checking M = 1)1 Vb, are larger than that for checking the original problem.
Therefore there is no advantage with case-based partitioning, if we have to verify M |
11 V 19 by model checking. Comparing the proposed strategy to that presented in [26], the
performance of the latter is better with respect to this example. However, these strategies
have different application areas, for instance, the latter is not applicable to the case study
discussed in section 4. In addition, it is based on informal detail knowledge of the model,
while the former is based on formal arguments which can be verified algorithmically and
has therefore better potential for developing tools and for application in larger scale.

3 Static Analysis

In the previous example, in order to gain advantage with case-based partitioning, we have
assumed that the correctness of M |= 1)1 V1) is guaranteed by using the expert knowledge.
In this section, we discuss how to guarantee the correctness of M |= 11 V 12 by static
analysis for models that satisfy certain criteria, namely, models in which some variable is
changed at most once during an execution of a model. Let v be a variable and none be
the initial value of v.

Theorem 3.1 Suppose that v is changed at most once during an execution of M. M = ¢
if and only if M |= O(v # none — v = 1) — ¢ for all i # none in the range of variable v.

Proof: Suppose that {none, vy, ...,v,} is the range of v. Since v is changed at most once
during an execution of M, the traces of M can be partitioned into n subsets Mi,...,.M,
such that M; = O(v = none Vv = v;) for i € {1,...,n} and therefore M | O(v =
noneVov=wv1)V---VOW=mnoneVwv=uv,). The rest follows from Theorem 2.1. O

3.1 Models with Non-Deterministic Choice

We first consider models of a particular type with a situation where non-deterministic
choice (from a set of given values) is used (as in the case-study in Section 4). Let the
non-deterministic choice be represented by: choz’ce(x,?) where z is the global variable
used to hold the chosen value and v = {v1,...,u,} is the set of the possible values. We
assume that choice(z, v) is implemented as follows in PROMELA:

if if
A I HERE o atomic{ z =wvy; -+ } -
or

N =vn atomic{ z =wp; -+ } -

fi; fi;

The set of traces of a model of this type has the potential (depending on the successful
analysis explained in the subsequent subsections) to be partitioned into subsets such that
each subset satisfies one of of the following formulas:



O(z # none — . = vy), -+ -, O(z # none = x = vy,)

where none is the initial value of z, before the non-deterministic value has been assigned.

3.2 Conditions

The purpose of the static analysis is to show that the partition of the search space into
these cases is complete, i.e. to show

M = O(z # none — z =v1) V--- VO(z # none — = = vy).

Basically, we analyze the model in order to determine the set of cases and to ensure
that = is changed at most once in an execution of a model (in accordance with Theorem
3.1), i.e. check the following conditions:

e The range of z is {none, vy, ...,v, }.

e The value of z is none before z is assigned a value, and after x is assigned a value
it remains unchanged.

It is easy to determine the initial value of x (i.e. the actual value of none). In order
to develop an algorithm to determine vy, ..., v, and for checking the conditions, we further
restrict the conditions. The details are as follows:

1. There is only one program segment that matches choice(x, U) where z is given and
— .
v is free and may be matched to any set of values.

2. choice(z, v) does not occur in a loop for the given pair (z, v) where the value of v
is obtained in the previous task.

3. The process declaration containing the program segment matching choice(z, 3) is
only instantiated (in a manner similar to procedure calls) once during a run of the
model.

4. The only statements that may update the value of x are those in choice(z, 3), ie.
neither statements of the form “z = v” nor “c?zy, ..., zi—1, 2, %i+1, ..., ¢;" are allowed
outside of the choice-statement.

3.3 Analyzing the Conditions

For simplicity, we assume that the model consists of global variable declarations and a
set of process declarations where the process init is the only process that is active at the
beginning and all other processes must be initiated by using the statement run p(...).

Condition 1. It is easy to check whether there is only one program segment that matches
choice(x, v) in the model.

Condition 2. Loops are supposed to be of the following forms. It is not difficult to
check whether choice(z, 7))) is inside such loops. The details are omitted.

do lab:
or

od; goto lab;




Condition 3. Let insert(p,l) be a function that returns a list extending [ with p. Let
q be a process name and [ a list of process names. Let the function for checking condition
3 be once(q,!) defined as follows.

e if ¢ is the process init or it is not instantiated anywhere, return true;

e if the instantiation of ¢ appears in a loop or in more than one place,

return false;

e if the instantiation of ¢ appears in ¢’ and ¢’ is not in [,

return once(q',insert(q,l));
e if the instantiation of ¢ appears in ¢’ and ¢’ is in [,
i.e. an invalid loop of process instantiations is detected, return true;

Proposition 3.1 Let p be the process containing choice(m,?) and [] be the empty list.
Condition 3 holds if once(p,[]) is true.

Condition 4. Let p be a process name, x a variable name and [ a list of process names.
Let the function for checking condition 4 be nochange(p,x,l) defined as follows.

e if (p in [), return true;

e if (1 is the name of a formal parameter or a local variable of p),
let {p1,...,pn} be the set of process instantiations inside of p,
return nochange(py, x, insert(p,l)) A --- A nochange(py, z,insert(p,l));
e if (2 is not the name of any formal parameter or local variable of p),
for each basic statement s of p
— if s is of the form c?zy,...,zi—1, T, Tit1, ..., T, return false;
— if s is of the form x = w and s & choice(z, 3), return false;
let {p1,...,pn} be the set of process instantiations inside of p,
return nochange(pi, x,insert(p,l)) A --- A nochange(py, ¢, insert(p,l));
The list / and the first line in this definition is used to break recursion. Details may
be added to the above definition in order to make the function nochange(p,x,l) more

accurate, for instance, we may add special treatment for assignment statements of the
form z = z.

Proposition 3.2 Let = be the case-basis. Condition 4 holds if nochange(init,z,|[]) is
true.
3.4 Summary and Discussion

By summarizing the above discussions, we refine the steps of case-based partitioning as
follows:

e Check the initial value of x in the global variable declaration and denote the value
by none.



e Determine whether choice(z, 3) has a unique match to a program segment.

e Find the unique match for choice(m,?) and denote the potential values (except
none) of x by vy, ...,v, and the process containing choice(z, 3) by gq.

e Check whether choice(z, U) is within the scope of a loop.
e Calculate once(q, []) to determine whether ¢ is called no more than once.

e Calculate nochange(init, z,[]) to determine that no other statements than choice(z, v)
may change the value of .

e For each i € {1,...,n}, construct p; = O(z # none — x = v;) — ¢ as a subgoal for
verification.

e Use the model checker SPIN to check whether M = ¢; holds for i =1, ..., n.

Automated detection of case-bases. In the previous analysis, the user has to provide
a variable as the case-basis for partitioning. For the models of the discussed type, the case-
basis can be detected automatically. After detecting potential case-bases, we may apply
this strategy automatically.

e For each global variable z in the model, determine whether there is a unique match
for choice(z, v).

e If several variables satisfy the condition, order these variables according to some
heuristics.

e For each variable in the list created in the previous step, perform the static analysis,
until success or the list is empty.

e If success, perform case-based partitioning and model checking.

The first task is not difficult for simple variables. However it is more complicated,
if variables are composed (such as arrays). For developing an algorithm, we may only
implement those strategies that are feasible for implementation and give advice about the
limitation of the algorithm.

The heuristics could be a function estimating the placing of choice(z, 7))) in the process
definition. The few actions before choice(z, v), the better should z be as the candidate of
the bases for case-based partitioning. In addition, we may consider the number of potential
cases for a variable as a parameter for such a heuristic function.

Parallel computation. It is easy to take advantage of parallel and networked com-
puting power when the problem can be decomposed in independent sub-problems. One
problem is how to fully exploit the available computing resources. It may not be possible
(with the proposed strategy) to divide a problem in such a way that all sub-problems
require approximately the same amount of time for model checking. It could be better
with respect to the utilization of the available computing power, if there are more sub-
problems than available computing units. In such cases, we may estimate the difficulty of
the sub-problems and make a schedule for the sub-problems.



Models with open-environment. The static analysis is also feasible for models with
open environment (such as input from a sensor). Let ¢ represent the channel for the
purpose of communicating the value of the environment variable to the main process. We
may model the open environment with a process that sends a value (one of vy,...,v,)
through the communication channel as follows:

if if
woclogg - i atomic{ clvg; -+ } -
or

i oclog; - i atomic{ clvp; -+ } -+
fi; fi;

On the other side, we may model the receipt of the value in the main process as follows:
clx.

Similar to the previous discussion on non-deterministic choice, we can calculate a set
of formulas that represents the set of cases for a given variable. For proving that the set
of cases are complete, we can provide similar conditions and check whether the model
complies with these conditions by algorithmic means. The details are omitted.

4 A Case Study

The case study is verification of Needham-Schroeder-Lowe Protocol [16]. For analyzing
protocols, models of these must be created; and for modeling protocols, different modeling
languages can be used. For instance, CSP [11] was used in [16] and Petri Nets [22] was
used in [6]. We shall use PROMELA for modeling and SPIN for verification. We first
consider the protocol and then consider a simpler version (i.e. the Needham-Schroeder
Protocol) of the protocol.

Needham-Schroeder-Lowe Protocol. The following is a description of this protocol.

A—B: {ne Alpr(B)
B— A: {na,n,B}pr(a
A—B: {n}pr(s)

Here A is an initiator who seeks to establish a session with responder B. A selects a
nonce n,4, and sends it along with its identity to B encrypted using B’s public key. When
B receives this message, it decrypts the message to obtain the nonce n,. It then returns
the nonce n, along with a new nonce n; and its identity to A, encrypted using A’s public
key. When A receives this message, he should be assured that he is talking to B, since
only B should be able to decrypt the first message to obtain n,. A then returns the nonce
ny to B, encrypted using B’s public key. Then B should be assured that he is talking to
A.

The property to be checked is as follows: whenever the responder think that he is
talking to the initiator, the initiator must have requested to establish a session with the
responder at beforehand. Formally the property ¢ is specified as follow:

O(talkto[responder| = initiator — request[initiator] = responder)

10



Table 2: Verification of the Model with and without the Strategy

Verification Task | Time | States | Transitions | Memory
% 28.9 | 879613 | 1.69402m | 100.00mb

P — @ 25.0 | 748951 | 1.44152m | 85.35mb

o — @ 4.0 | 136143 | 0.25813m | 16.64mb

where the formula request[initiator] = responder is true from the time the first message
is sent by the initiator and talkto[responder] = initiator is true from the time the last
message is received by the responder.

In order to check this property, we have created a model M of a communication system
using this protocol with different actors. The modeling follows the strategy specified in
[16], however, we use PROMELA instead of CSP. There are three actors: an initiator, a
responder and an intruder. The behaviors of these actors are as follows.

e The initiator starts with sending a message to the responder or the intruder, then
acts according to the protocol. The choice of the responder or the intruder as the
communication partner is non-deterministic.

e The responder waits for an incoming message and acts according to the protocol.

e The intruder may engage in any action which is possible (in principle) for him to
perform at any time.

The goal of the verification is
M = .

Let send_to be a variable that is assigned a value randomly chosen from intruder and
responder at the beginning of the behavior of the model. Instead of proving

Mg

we prove

MEY, wpand M =1 — ¢

where

1 = O(send_to # none — send_to = intruder)
1o = O(send_to # none — send_to = responder)

with the assumption that the following holds (by the proposed static analysis):
M E 1V

Table 2 presents the model checking time (in seconds), the number of states, the number
of transitions, and the peek memory in the verification of respectively ¢, ¥1 — ¢ and
19 — . Comparing the first line with the last two lines of Table 2, the benefit does not
seem to be very big. This is because that the second case is too small and does not take
away much of the burden of the other case.

If we had a more complicated model, for instance, a model where the initiator may
seek to establish a session with the intruder, the responder and another responder, there
would be a better result with the strategy. Table 3 presents the model checking time, the

11



Table 3: Verification of the Extended Model

Verification Task | Time | States | Transitions | Memory
® 34.3 | 997839 | 1.92084m | 125.29mb

Y1 — @ 25.8 | 750778 | 1.44335m | 94.67mb

P2 = @ 4.3 | 137970 | 0.25996m | 18.59mb

3 — @ 3.9 | 123707 | 0.23244m | 16.75mb

Table 4: Error Detection of the Simpler Protocol

Verification Task | Time | States | Transitions | Memory | Error
@ 20.9 | 634140 | 1.22466m | 72.45mb | yes
Y1 — @ 18.2 | 748951 | 1.44152m | 63.13mb | yes
2 — @ 3.9 | 136143 | 0.25813m | 16.64mb | no

number of states, the number of transitions, and the peek memory in the verification of
such an extended model.

In Table 3, 93 is O(send_to # none — send_to = responder_new) where responder _new
is the identifier of the new responder. This table clearly shows the advantage of case-based
partitioning with respect to the peek memory. It is surprising that the total model check-
ing time is also better (although not significant) with this strategy. One explanation is
that in the case of checking M |= ¢, the model checker is less efficient with respect to
“time per transition”, because of the bigger memory usage.

A Simpler Protocol. The following is a description of this protocol. This protocol is
not necessarily incorrect, however, due to the absence of certain assumptions on the usage
and the environment, some problem may occur.

A= B: {ne,Alpg(B)
B— A: {na,mp}pi(a)
A—=B: {m}prs)

The difference between this and the previous one is that B is missing in the second
message. We have created a similar model and tried to verify the same properties.

Table 4 presents the model checking time, the number of states, the number of tran-
sitions, the peek memory for model checking, and whether errors were detected in the
verification attempt. The first line of Table 4 is the verification without using case-based
partitioning. When using the strategy, the error was detected in line 2 which is the case
where the initiator tries to establish a session with the intruder.

5 Discussion

The proposed strategy looks similar to a strategy proposed in [18]. A theorem in [18] is
as follows:

If, for all 7 in the range of variable v, | O(v =i — ¢), then = Ogp.

12



Table 5: Error Detection using a Related Strategy

Verification Task | Time | States | Transitions | Memory | Error
©1 32.5 | 985613 | 1.89852m | 111.88mb | no
0 20.9 | 634140 | 1.22466m | 72.45mb yes
©3 32.5 | 985613 | 1.89852m | 111.88mb | no

The basic idea here is to break the proof of temporal property Oy into cases based on
the value of a given variable v. Suppose that the value of v refers to the location in some
large data structure (or array), to prove any given case v = i, it is only necessary to refer
to element ¢ of the array and the other elements of the array can be eliminated from the
model by replacing them with an “unknown ”value [18].

This theorem is much simpler than Theorem 3.1 when restricted to formulas of the form
Op. However, when the strategy is used alone, it does not work well with the example
in Section 2 and the case study in Section 4 in the experimental study using the model
checker SPIN (version 3.2.4), The experiment with the case study is reported as follows.

Let ¢’ be

(talkto[responder] = initiator — request[initiator] = responder).

Recall that the property we wanted to prove in the case study was O¢'. Instead of
verifying this property, we may try to verify the following three properties (according to
the above strategy):

p1: O(send_to = none — ')
po: O(send_to = intruder — ¢')
p3: O(send_to = responder — ¢')

However, the model checking of each of the above 4 formulas (i.e. O¢', p1, @2, ¢3)
takes exactly the same amount of resource. This means that no advantage can be gained
by verifying the three properties instead of the original property in this case study.

The same strategy can be applied to the simper version of the protocol. Table 5
presents the data for the verification of the three properties with the above strategy. Line
2 of Table 5 is the same as the first line of Table 4 except an insignificant difference on
the model checking time. This also means that no advantage can be gained by using the
above strategy for error detection in this case.

6 Concluding Remarks

A strategy for reducing the peek memory for model checking was proposed. The strategy
uses case-based partitioning of search space in model checking. Completeness of the cases
may be established by using expert judgment or by static analysis. The latter can be done
automatically for certain types of models. A framework for developing a tool for static
analysis has been described.

For the use of case-based partitioning with automated static analysis, the types of
problems have to be restricted. Two types of problems were described in the previous
sections. One is models with non-deterministic choice and the other is models with open-
environment (only the first type was discussed in detail). The process of applying case-
based partitioning is as follows:
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Auto-Detected Case-Basis or User Provided Case-Basis
\ /
Find the Set of Cases

Check whether the Case-Basis Satisfies the Conditions

Apply the Strategy

The case study has illustrated the usefulness of the strategy. For instance, if we had a
computer with only 96mb memory, we would not be able to finish the verification of M |= ¢
without using case-based partitioning (cf Table 2), unless techniques for compression of
memory or other techniques are used. For the first, the use of compression techniques
increases model checking time, and for the second, there is always cases where memory is
critical, even with the use of compression techniques.

The strategy can also be used as the basis for utilizing parallel and networked com-
puting power for model checking system models of the discussed types, although the the
complexity of the sub-tasks with respect to model checking may be very different.
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