
Efficient State Space Reduction for Automata by
Fair Simulation

Jin Yi1,2 and Wenhui Zhang1

1 Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 Graduate University of the Chinese Academy of Sciences, Beijing, China
yijin,zwh@ios.ac.cn

Abstract. State space reduction for automata is important to automata-
theoretic model checking. Optimizing automata by simulation relation is
a practical method. There are several simulation concepts for Büchi au-
tomata, among which fair simulation has the advantage that it allows a
larger number of pairs of states to be related and merged. We propose an
approach to simplify Büchi automata by fair simulation method, which
is based on integrating the method of [GBS02] and conditions of [SB00].
The approach can optimize an automaton without changing the language
of each state and apply the optimization immediately after finding one
pair of states with fair simulation equivalence. The experimental result
shows our approach needs less time and reduces more states and transi-
tions than that of the method [GBS02].

1 Introduction

State space reduction for automata is important to automata-theoretic model
checking. Such model checking approaches are based on checking the language
emptiness for an automaton which is the product of two automata, one for
modeling the system, the other for the negation of the property of the system.

For improving the efficiency of model checking, much research is devoted to
the optimization of automata. For LTL model checking, there are two possi-
bilities, one is to simplify the property automaton transformed from a formula
or provided by an user, the other is to optimize the transformation procedure
from an LTL formula to an automaton [GO01]. Simulation relation is a pre-
order relation of states. It implies language containment and can be computed
in polynomial time, therefore most of these optimizations use the simulation
method.

The general simulation notion for LTS (Label Transition System) in [Mil89]
has been studied thoroughly. If simulation relation considers the automaton’s
accepting condition, we get the following simulation concepts: direct simulation
[DHW91], delayed simulation [EWS05] and fair simulation [HKR97]. These sim-
ulations can be used to reduce state space of generalized Büchi automata [JP06],
Büchi automata [SB00,EWS05,GBS02,Ete02,BG04], and alternating automata
[FW02,Fri03].



Among these concepts, direct simulation is the most restrictive. Given two
states p, q of an automaton A, it requires that p simulates q, and if the i-th state
of a path from q is an accepting state, then the i-th state of p’s matching path is
also an accepting state. So it can be used to reduce states and transitions safely
[EH00,SB00]. That is, if p and q directly simulate each other, merging these two
states does not affect the language of A. Moreover if q is directly simulated by
p and they can be reached by a predecessor s with the same label, then the
transition from s to q can be deleted without changing the language of A.

Delayed simulation relaxes a little restriction on the acceptance condition: if
the i-th state of a path from q is accepting, then there is a j ≥ i such that the
j-th state of p’s matching path is accepting. Therefore we can find more pairs
of states with delayed simulation relation, and merge them safely. However, it
does not guarantee that we can delete transitions without changing the original
language.

Fair simulation has the least restriction on the acceptance condition: if the
path from q has infinitely many states which are accepting, then the match-
ing path from p is also has infinitely many states in accepting set. Although
fair simulation by itself is not a sufficient condition for collapsing two states or
deleting one transition without affecting the original language, the experiment
in [GBS02] shows that given a Büchi automaton, there are more pairs of states
with fair simulation than that of direct or delayed simulation, and according
them, we can reduce states and transitions safely.

There are two approaches to exploit the full power of fair simulation of
Büchi automata. [SB00] provided conditions to delete states and transitions
based on the language containment relation. Since fair simulation implies lan-
guage containment, we can reduce the state space by fair simulation with the ad-
ditionally given conditions. [GBS02] provided an approach to find all pairs with
fair simulation first, then merge states or delete transitions based on these pairs,
and check the correctness of the optimization. That is, it checks whether the new
reduced automaton A′ has the same language as that of the original A. Since
computing language containment is PSPACE-complete problem [DHW91], and
fair simulation implies language containment, [GBS02] checked L(A) = L(A′)
by fair simulation.

In our paper, we also use fair simulation to minimize Büchi automata, the goal
is to efficiently reduce the number of states and transitions by fair simulation. We
propose an approach based on integrating the method of [GBS02] and conditions
of [SB00], such that each state in the reduced automaton has the same language
as that of the corresponding state in the original. Moreover, we can apply the
optimization technique immediately after finding a candidate which is a pair
of states with fair simulation. Since we find each candidate from the reduced
automaton and may find a candidate which belongs to the reduced automaton
but not to the original, thus our approach has less time and better performance
than the method which needs finding all candidates before applying optimization.

Section 2 is the background knowledge. In Section 3, in order not to change
the language of each state after optimizing, we restrict the criteria to judge the



correctness of each optimizing operator. We also prove that using conditions in
[SB00] to reduce the state space of automaton can also preserve the language
of each state. Moreover, we show that based on above two methods, we can
apply the optimization without finding all candidates first. Section 4 describes
the whole optimizing procedure. In Section 5, the experimental result shows the
efficiency of our approach. Concluding remarks are given in Section 6.

2 Preliminaries

2.1 Büchi Automaton

A Büchi automaton is a tuple A = 〈Q,Σ, s0,∆, F 〉 where Q is a finite set of
states, Σ is the input alphabet, s0 ∈ Q is the initial state, F ⊆ Q is the set of
accepting states, ∆ ⊆ Q×Σ×Q is the transition relation. We use δ : Q×Σ → 2Q

to denote the transition function defined by: q ∈ δ(q′, a) iff (q, a, q′) ∈ ∆. A run
of A on an infinite word α = α(0)α(1) · · · is a sequence r = r(0)r(1) · · · such
that r(0) = s0, and for every i ≥ 0, r(i + 1) ∈ δ(r(i), α(i)). Let inf(r) be the
set of states that r visits infinitely often. If inf(r)∩ F 6= ∅, then the run r is an
accepting run and α is in the language of A. The language of A is denoted by
L(A). For convenience, we write q ∈ A for q being a reachable state of A. We
write QA, ∆A, FA for respectively the set of states of A, the set of transition
relations of A, and the set of accepting states of A. If A = 〈Q,Σ, s0,∆, F 〉 is an
automaton and q ∈ Q, then A[q] denotes the modified automaton 〈Q,Σ, q, ∆, F 〉.
In our paper, the language of q of A means the language of A[q].

2.2 Fair Simulation and Parity Game

Now we give the definition of fair simulation from the game perspective [EWS05].
Let q0 ∈ A and q′0 ∈ A′, fair simulation game Gf

A,A′(q0, q
′
0) is played by two

players: Spoiler and Duplicator. At the first round, Spoiler puts a red pebble
on q0 while Duplicator puts a blue pebble on q′0. Suppose in the ith round,
Spoiler is in qi, and moves the pebble to qi+1 according to (qi, αi, qi+1) ∈ ∆A,
Duplicator must have a matching transition (q′i, αi, q

′
i+1) ∈ ∆A′ to move the

pebble from q′i to q′i+1. If someone cannot move, then the game halts and the
one who cannot move loses. Otherwise, there are two infinite paths π = q0...qi...
and π′ = q′0...q

′
i..., we call (π, π′) an outcome of the game. Then the outcome is

winning for Duplicator iff there are infinitely many j in π′ such that q′j ∈ FA′ ,
or there are finite many i in π such that qi ∈ FA.

A strategy for Duplicator is a partial function f : Q(Q′ΣQ)∗ → Q′. It
determines the next move of Duplicator according to the history of the play.
That is, f(q0) = q′0 and q′j = f(q0q

′
0a0q1q

′
1a1 · · · aj−1qj) where (qi, ai, qi+1) ∈ ∆A

and (q′i, ai, q
′
i+1) ∈ ∆A′ for i < j. A strategy for Duplicator is a winning strategy

if whenever π = q0a0q1 · · · is a run of A and π′ = q′0a0q
′
1 · · · is a run defined by

q′i+1 = f(q0q
′
0a0q1q

′
1 · · · qi+1), then (π, π′) is winning for Duplicator.



Definition 1. [EWS05] Let q ∈ A and q′ ∈ A′, q′ fair simulates q if there is
a winning strategy for Duplicator in Gf

A,A′(q, q
′). We denote such relation by

q ≤f q′.

For convenience, we use q ∼f q′ to denote q′ ≤f q′ and q′ ≤f q.

Proposition 1. [EWS05] Let q ∈ A, q1 ∈ A1 and q′ ∈ A′

1. if q ≤f q1 and q1 ≤f q′, then q ≤f q′

2. if q ≤f q′, then L(A[q]) ⊆ L(A′[q′])

Definition 2. [GTW02] A parity game graph is a tuple G = 〈V, V0, V1, E, p〉,
where V is the set of vertexes, V0 and V1 are two disjoint sets such that V =
V0 ∪ V1, E ⊆ V × V is the set of edges, and p is a priority function that maps
V to {0, ..., d− 1}, d ∈ N.

A play of G is one of two kinds of paths: (1) An infinite path π = v0v1 · · · ∈ V ω

with (vi, vi+1) ∈ E for all i ∈ ω (infinite play). (2) A finite path π = v0v1 · · · vl ∈
V ∗ for all i < l, (vi, vi+1) ∈ E (finite play).

There are two players: One and Zero in G. At the beginning, Zero puts a
pebble on v0, then the players play the game according to the following rule:
if the pebble is currently on vi, and vi ∈ V0(V1), Zero(One) moves the pebble
to the next position vi+1, where (vi, vi+1) ∈ E. The winning conditions which
judge the winner of a play are: (1) If a player cannot move the pebble, then this
player loses and this is a finitely play in G. (2) Otherwise, there is an infinite
path π = v0v1 · · · in G. We denote by inf(π) the set of vertexes that appear
infinitely in π, and ∀vi ∈ inf(π), p(vi) is the priority of vi. Let kπ be the minimal
number of all p(vi). Then Zero wins the play if kπ is even, whereas One wins if
kπ is odd.

A strategy for Zero is a partial function f : V ∗×V0 → V , given the history of
the game up to a certain point, it determines the next move of Zero. In fact, we
can get a strategy f which is memoryless strategy for Zero [GTW02], f selects
the next move without looking at the history (f : V0 → V ). A play π = v0v1... is
an f -conform play if whenever vi ∈ V0 we have vi+1 = f(v0...vi). The strategy f
is winning on v if every f -conform play that starts in v is winning for Zero, and
we call v a winning state for Zero. The set of winning states for Zero is called
wining region for Zero. The winning region for Zero and One partition the set
of vertexes of the game (Determinacy). So a state is winning for one player iff it
is losing for the other. We can define the above concepts for One analogously.

We represent fair simulation by a parity game with three priorities.

Definition 3. [EWS05] Given Büchi automata

A1 = 〈Q1, Σ, s0
1,∆1, F1〉 and A2 = 〈Q2, Σ, s0

2,∆2, F2〉

we define a parity game graph GA1,A2 = 〈V, V0, V1, E, p〉, where

– V0 = {v(q1,q2,a) | q1 ∈ Q1, q2 ∈ Q2, a ∈ Σ ∧ ∃q′′1 (q′′1 , a, q1) ∈ ∆1}



– V1 = {v(q1,q2) | q1 ∈ Q1, q2 ∈ Q2}
– E = {(v(q1,q2), v(q′1,q2,a)) | (q1, a, q′1) ∈ ∆1}

∪ {(v(q1,q2,a), v(q1,q′2)) | (q2, a, q′2) ∈ ∆2}

– p(v) =





0, if v = v(q1,q2) and q2 ∈ F2

1, if v = v(q1,q2), q1 ∈ F1 and q2 6∈ F2

2, otherwise

According to Definition 3, we see that the game between One and Zero on
GA1,A2 represents the fair simulation game play between Spoiler and Duplicator
on Gf

A,A′ . Therefore One represents Spoiler, and Zero represents Duplicator.
Jurdzinski’s lifting algorithm [Jur00] can be used to solve the parity game on

GA1,A2 . In the algorithm, each vertex is assigned a progress measure ρ(v) where
ρ : V → D and D = {0, ..., n1} ∪ {∞}(n1 is the number of vertex v such that
v ∈ V1 and p(v) = 1). At the beginning of the algorithm, each vertex’s measure
is 0, then a “lift” operator will change vertex’s measure until reaching a fixed
point. Therefore, if ρ(v) 6= ∞, v has a winning strategy for Zero. [EWS05] has
implemented the algorithm with complexity being O(m · (n1 + 1)) where m is
the number of edges in GA1,A2 .

3 Reduction of States and Transitions

3.1 Motivation

[GBS02] provided an approach to reduce state space of Büchi automata by fair
simulation. First it finds all pairs of states with fair simulation, which are can-
didates for merging states and deleting transitions. Second according to each
candidate, it optimizes the automaton and checks whether the optimization is
correct, i.e. whether there exists a fair simulation equivalence between the initial
state of the reduced automata A′ and that of the original automata A. One of
important contributions of this approach is that it does not create a parity game
graph GA,A′ or GA′A for each candidate when checking the correctness of the
optimization, GA,A′ or GA′A is implemented by adding or deleting the edges
from the game graph GA,A. Therefore it is an efficient approach.

However, there exist two problems in this approach. The first one is that
after merging two states or deleting one transition, it only guarantees that the
language of the initial state of A′ is the same as that of A, the language of other
states of A′ may not be the same as that of the states of A. Then we can’t
use this method to reduce the state space of a Büchi automaton as a model of
some system, because we may need to verify the system from any given state,
therefore we must preserve the langauge of every state after optimization.

The second is that it must find all candidates in advance. However, the
method that simplifies the automaton as soon as a candidate is detected is more
efficient, because if merging or deleting successes at this time, then at the next
time, we can find a candidate from a new Büchi automaton with fewer states or
transitions. Moreover, we even find more candidates than that of [GBS02], since
there may exist some candidates only belonging to the new reduced automaton.

In the rest part of this section, we will resolve these two problems respectively.



3.2 Merging and Deleting States

Given a pair of states with fair simulation equivalence, we may merge them after
that correctness checking is successful [GBS02] or delete one state according to
the condition in [SB00]. In this subsection, we first introduce a new criterion to
judge the correctness of merging two states, base on this criterion, we can easily
to prove the language of each state in the reduced automaton keeps unchanged.
Then we prove that deleting one state directly by the condition in [SB00] also has
this property. Additionally, the new reduced automaton constructed by above
two methods preserves the fair simulation relation of the original automaton.

Merging Two States For convenience, we use [s1, s2] to denote a new state
in Am which is an automaton created by merging s1 and s2, where (s1, s2) is a
pair in the fair simulation equivalence relation of A. The following is the formal
definition of Am for merging two states.

Definition 4. Given a Büchi automaton A = 〈Σ, Q, s0,∆, F 〉, if ∃s1, s2 such
that s1 ∼f s2. Then Am = 〈Σ, Q′, s′0,∆

′, F ′〉 with

– Q′ = Q \ {s1, s2} ∪ {[s1, s2]};
– s′0 = [s1, s2] if s1 = s0 or s2 = s0, otherwise s′0 = s0;
– ∆′ = {(s, a, s′) | (s, a, s′) ∈ ∆ ∧ s, s′ 6= si}

∪ {([s1, s2], a, s′) | (si, a, s′) ∈ ∆ ∧ s′ 6= si}
∪ {(s, a, [s1, s2]) | (s, a, si) ∈ ∆ ∧ s 6= si}
∪ {([s1, s2], a, [s1, s2]) | (si, a, si) ∈ ∆} where i = 1, 2;

– F ′ = F if none of s1 and s2 is in F , otherwise F ′ = F \ {s1, s2}∪ {[s1, s2]}.
The above definition means that [s1, s2] replaces s1 and s2, and all transitions
that point to s1 and s2 are redirected to [s1, s2], and all outgoing transitions
of these two stats are also outgoing transitions of [s1, s2]. Therefore it may
form some new cycles in Am when s1 reaches s2 or s2 reaches s1 in A. So if
there exists an accepting state in these new cycles, then L(A[s2]) = L(A[s1]) ⊆
L(Am[[s1, s2]]) and the inclusion may be a proper one. Thus the other state’s
language in Am which can reach [s1, s2] may be changed even L(Am) = L(A).
Therefore, in order to keep the language of remaining state unchanged, we need
compute whether [s1, s2] is fair simulated by s1 (or s2). Since a state s may
belong to A, Am and Ad (built by deleting states or transitions from A) at the
same time, for convenience, we use sA, sAm

and sAd
to denote s ∈ A, s ∈ Am

and s ∈ Ad respectively.

Proposition 2. If [s1, s2]Am
is fair simulated by s1 of A, then sAm

∼f sA.

Proof. By the definition of Am, sA ≤f sAm
is obvious. Now we prove sAm

≤f sA.
We construct a strategy f for Duplicator on Gf

Am,A(s, s). Let f(s) = s and if si 6=
[s1, s2] then f(ssα0 · · · si) = si, which means that if sAm

does not reach [s1, s2],
then the state chosen by Duplicator is identical with the state chosen by Spoiler.
Otherwise, if sAm

reaches [s1, s2], then sA reaches s1 or s2. Since [s1, s2]Am
≤f



s1 and s1 ∼f s2, thus there exists a winning strategy f ′ for Duplicator on
Gf

Am,A([s1, s2], s1) or Gf
Am,A([s1, s2], s2), then f(ssα0 · · · [s1, s2]s1 · · ·αi−1si) =

f ′([s1, s2]s1 · · ·αi−1si), or f(ssα0 · · · [s1, s2]s2 · · ·αi−1si) = f ′([s1, s2]s2 · · ·αi−1si)
which means the next step of Duplicator is decided by f ′, which needs the history
started from [s1, s2]. Moreover, since the state chosen by Duplicator is identical
with the state chosen by Spoiler or is decided by the winning strategy f ′, so f
is a winning strategy for Duplicator. ThereforesAm

≤f sA. ut

Therefore, whether [s1, s2]Am is fair simulated by s1 of A decides the correct-
ness to merge s1 and s2. While [GBS02] decide the correctness by whether the
initial state of Am is fair simulated by that of A. Since there may be a situation
that two states is merged in [GBS02] but not in our approach, so we restrict the
condition to merge states.

Now we introduce an important property of Am, it shows that Am preserves
the fair simulation relation of A.

Proposition 3. If [s1, s2]Am
is fair simulated by s1 of A, then sA ≤f qA iff

sAm ≤f qAm .

Proof. We first prove if sA ≤f qA then sAm
≤f qAm

. By Proposition 2, we know
sAm

≤f sA , then since sA ≤f qA, by the transitivity of fair simulation, sAm
≤f

qA. By Proposition 2, qA ≤f qAm
, then by the transitivity again, sAm

≤f qAm
.

The other direction can be proved by the same way. ut

Deleting One State Given two states with the same language, if they do not
reach each other, then we can get a reduced automaton Ad by deleting one state
and it’s transitions [SB00]. Since fair simulation equivalence implies language
equivalence, thus given a candidate with fair simulation equivalence, we may
delete one state and it’ transitions. It is easy to see the method is efficient for
it does not check the correctness and deletes states and transitions at the same
time, so after finding a candidate, we first try to use this method to delete one
state directly, only when it fails, we use the method described above to merge
two states.

Note that [SB00] just proved that L(Ad) = L(A). Now we show that if two
states with the same language is judged by fair simulation equivalence, then Ad

has two important properties: (1) sAd
and sA fair simulate each other, therefore

any state of Ad has the same language as that of the corresponding state in A.
(2) Ad preserves the fair simulation relation of A.

Definition 5. Given a Büchi automaton A = 〈Σ, Q, s0,∆, F 〉 with s1, s2 ∈ Q
such that s1 ∼f s2 and s1 can not reach s2. Then Ad = 〈Σ, Q′, s′0,∆

′, F 〉 with

– Q′ = Q \ {s2};
– s′0 = s1 if s2 = s0,otherwise s′0 = s0;
– ∆′ = {(s, a, s′) | (s, a, s′) ∈ ∆ ∧ s, s′ 6= s2}

∪ {(s, a, s1) | (s, a, s2) ∈ ∆ ∧ s 6= s2}.



Ad is constructed by deleting s2 and it’s transitions from A, and all transitions
that point to s2 are redirected to s1.

Proposition 4. sAd
∼f sA

Proof. We first prove sA ≤f sAd
. We construct a strategy f for Duplicator on

Gf
A,Ad

(s, s). Let f(s) = s and if si 6= s2 then f(ssα0 · · · si) = si, which means
that if sA does not reach s2, then the state chosen by Duplicator is identical
with the state chosen by Spoiler. Otherwise, if sA reaches s2, by the definition
of Ad, sAd

must reach s1. Since s2 ≤f s1 in A, there exists a winning strategy
f ′ for Duplicator on Gf

A,A(s2, s1). Moreover, since s1 can not reach s2, thus
any path started from s1 of A and confirmed with f ′ is also a path of Ad. So
we can define f(ssα0 · · · s2s1 · · ·αi−1si) = f ′(s2s1 · · ·αi−1si), which means if sA

reaches s2, then the next step of Duplicator is decided by f ′. Since the state
chosen by Duplicator is identical with the state chosen by Spoiler or is decided
by the winning strategy f ′, so f is a winning strategy for Duplicator. Therefore
sA ≤f sAd

.
Then we prove sAd

≤f sA. We construct a strategy f for Duplicator on
Gf

Ad,A(s, s). Let f(s) = s and if sAd
does not reach s1 by (si−1, αi−1, s1) 6∈ ∆A,

then f(ssα0 · · · si) = si, which means that the state chosen by Duplicator is
identical with the state chosen by Spoiler. Otherwise, if sAd

reaches s1 by
(si−1, αi−1, si) 6∈ ∆A where si = s1. By the definition of Ad, sA reaches s2

by (si−1, αi−1, s
′
i) ∈ ∆A where s′i = s2. Since s1 ≤f s2 in A, then there

exists a winning strategy f ′ for Duplicator on Gf
A,A(s1, s2). Thus We define

f(ssα0 · · · s1s2 · · ·αj−1sj) = f ′(s1s2 · · ·αj−1sj).
Now we show the correctness of defining f according to f ′. Since any path

of Ad started from si(= s1) has no such transition that points to s1 and belongs
to ∆Ad but not ∆A, this is because if we assume (sk, αk, s1)(k > i) is the first
such transition, then by the definition of Ad, there exists (s′k, αk, s2) ∈ ∆A,
then we get a path from si(= s1) to s2 in A, which contradicts with s1 cannot
reach s2. Therefore, any path of Ad started from si(= s1) is also the path of
A and has a corresponding path of A with respect to f ′. Thus we can define
f(ssα0 · · · s1s2 · · ·αj−1sj) = f ′(s1s2 · · ·αj−1sj), which means the next step of
Duplicator is decided by f ′.

Since the state chosen by Duplicator is identical with the state chosen by
Spoiler or is decided by the winning strategy f ′, so f is a winning strategy for
Duplicator. Therefore sAd

≤f sA. ut

By the transitivity of fair simulation, we have the following property of Ad.

Proposition 5. sA ≤f qA iff sAd
≤f qAd

.

3.3 Deleting Transitions

In this subsection, we provide a method to delete one transition like the section
3.2, i.e. it combines the method of [GBS02] with the condition in [SB00].



Given A and a pair of states (s, s′) with s ≤f s′(which implies L(A[s]) ⊆
L(A[s′])), we first find a state p ∈ A such that (p, a, s), (p, a, s′) ∈ ∆A, a ∈
ΣA. Then if s′ cannot reach p, we can construct Ad by deleting the transition
(p, a, s) directly according to the condition of [SB00]. Since we judge language
containment by fair simulation, so we strengthen the conclusion L(Ad) = L(A)
in [SB00] by the the following proposition, it shows that each state of Ad has
the same language as that of A.

Proposition 6. Given A and s ≤f s′, let p be a state such that (p, a, s), (p, a, s′) ∈
∆A, if s′ cannot reach p, then tAd

∼f tA, where Ad is constructed by deleting
(p, a, s) from A.

Proof. By the definition of Ad, it is easy to prove that tAd
≤f tA. Now we prove

tA ≤f tAd
. We construct a strategy f for Duplicator on Gf

A,Ad
(t, t). Let f(t) = t

and if tA does not reach s by the transition (p, a, s) ∈ ∆A, then f(ttα0 · · · ti) = ti,
which means the state chosen by Duplicator is identical with the state chosen by
Spoiler. Otherwise, if tA reaches s by (p, a, s), according to the definition of Ad,
tAd

reaches s′ by (p, a, s′). Since s ≤f s′ in A, so there exists a winning strategy
f ′ for Duplicator on Gf

A,A(s, s′). Moreover, since s′ cannot reach p, any path of A
that started from s′ and confirmed with f ′ is also a path of Ad, therefore, we can
define f(ttα0 · · · ss′ · · ·αi−1ti) = f ′(ss′ · · ·αi−1ti), which means the next step of
Duplicator is decided by f ′. Since the state chosen by Duplicator is identical
with the state chosen by Spoiler or is decided by the winning strategy f ′, so f
is a winning strategy for Duplicator. Therefore tA ≤f tAd

. ut
However, if s′ can reach p, we must check the correctness before deleting one

transition. In order to make the reduced automaton preserve the language of
each state of A, the following proposition shows that we need a more restricted
criterion than that in [GBS02]. That is, our approach requires pAd

fair simulates
pA, while [GBS02] require the initial state of Ad fair simulates the initial state
of A.

Proposition 7. Given A and s ≤f s′, let p be a state such that (p, a, s), (p, a, s′) ∈
∆A, if pA ≤f pAd

, then tAd
∼f tA, where Ad is constructed by deleting (p, a, s)

from A.

Therefore, when deleting transitions, Proposition 6 and 7 guarantee that our
approach can resolve the first problem mentioned in Section 3.1.

3.4 Efficiently Finding Candidates

In [GBS02], we have to find all candidates before applying any optimization.
That is, according to Definition 3, we first create a parity game GA,A, where
each vertex v ∈ V1 corresponds to each pair of states in A, then after resolving
the game by Jurdzinski’s algorithm, we find all pairs with fair simulation.

Our approach aims at reducing states without finding all candidates in ad-
vance. As soon as we find one candidate, we try to delete one state or merging



two states by the method in Section 3.1. Thus in case this successes, in the next
time, we find new candidates on the reduced automaton Ad or Am, which needs
less time than that on A. Moreover, we may find new candidates from Am or Ad

which only belong to the reduced automaton but not to A, thus we have more
opportunities to reduce states and transitions than that in [GBS02].

Since we do not find all candidates from one parity game GA,A, we have
to build and resolve the parity game each time to find new candidates on the
reduced automaton. In order to improve the efficiency of the whole optimization
procedure, we reuse the information according to the property of parity game
and Proposition 3 and 5.

Given a parity game G, if there exist some vertexes in G such that we know
they are winning states for Zero or not, then we can delete edges of these vertexes
and get a new parity game G′, which has the same wining region for Zero as
that of G. Since G′ has fewer edges than that of G, thus computing G′ needs
less time than that of G. See the formal definition of G′ and it’s property in
Appendix.

Now we describe how to reuse information in detail. Given a pair (s1, s2) and
a Büchi automaton Ai which is built from Ai−1 by merging states or deleting
states according to the method in the section 3.2 (let A0 = A). In order to check
whether s1 ≤f s2(i.e., whether (s1, s2) is a new candidate to be reduced), we
create game G. By Propositions 1, 3 and 5, for any 0 ≤ j < i, Ai preserves the
fair simulation relation of Aj . So if s ≤f s′ is true in Aj , then s ≤f s′ is true in
Ai. Therefore, if v = v(s,s′) is one of vertexes of G, then v is the winning state for
One in G. Thus we need not compute v’s measure when resolving G, for we can
reuse the information from some game which computes s ≤f s′ before building
Ai. Therefore we save the time to computing fair simulation on G when we check
the pair (s1, s2) on Ai. Moreover, by Propositions 3 and 5, we can also see that
there may exist some pairs which are in the fair simulation relation of Ai but
are not in the fair simulation relation of A, then we may reduce more states and
transitions than that of the method [GBS02].

4 Algorithm

In this section, we describe the whole optimization procedure in detail. The
procedure has two phases: first it tries to delete and merge the pair of stats with
fair simulation equivalence, and then it tries to remove the transitions based on
fair simulation.

In first stage, we check all pairs of states in A. Suppose the current pair is
(s1, s2). If we do not know whether s1 ∼f s2, we need construct two parity game
graphs GA[s1],A[s2] and GA[s2],A[s1] and compute the progress measure using the
Jurdzinski’s algorithm, for any v = v(q,q′) ∈ V1, if ρ(v) 6= ∞, then q ≤f q′,
otherwise q 6≤f q′. Therefore, if s1 ∼f s2, we first check whether s1 and s2 can
reach each other, if it is not, then we delete one of states and its transitions
from A directly. Otherwise, we construct Am from A by merging s1 and s2, and
build a parity game GAm[[s1,s2]],A[s1] to check whether [s1, s2] is fair simulated



by s1. If the candidate (s1, s2) is safe, replace A by Am. So in this stage, we do
optimization after finding one suitable candidate. After finishing this stage, we
find all pairs of stats in the fair simulation relation of the current A, which is
the basis of the next stage.

Before beginning the second stage, we construct a parity game GA,A. Then
for each pair of A with fair simulation, we do the following work. Suppose the
current pair is (s, s′). If ∃p ∈ A such that (p, a, s) ∈ ∆A and (p, a, s′) ∈ ∆A,
then we first check whether s′ can reach p, if it is not, we delete the transition
(p, a, s) from A directly. Otherwise, we delete some edges (v, v′) from GA,A where
v = v(t,p,a) ∈ V0, v

′ = v(t,s) ∈ V1, t ∈ A . In fact, now GA,A becomes GA,Ad
.

Therefore, if the vertex v = v(p,p) of the new GA,A is a winning state for Zero
which means tA ≤f tAd

, then we delete (p, a, s) from A. Otherwise, we must
restore the game GA,A.

Although our algorithm has the same worst time complexity as that of
[GBS02], since we use the conditions [SB00] which delete states and transitions
without any checking, and we find candidates on the reduced automaton which
has fewer and fewer states and transitions in the optimizing procedure, thus
our algorithm needs less time than that of [GBS02]. Moreover, since we may
find more candidates, we can reduce more states and transitions than that of
[GBS02], we will show these in the next section.

5 Experiment

We have implemented our algorithm in C which runs on a PC with 3.2 GHz
Intel Pentium 4 and 1G RAM. Büchi automata to be optimized are transformed
from LTL formulae based on lbtt [TH02] and LTL2BA [GO01]. lbtt is a tool
that provides an automated testing environment for LTL-to-Büchi translators.
We use it to create random LTL formulae. LTL2BA is a fast and efficient tool
to transform a LTL formula to a transition-labeled Büchi automaton.

In our algorithm(ERSS Efficiently Reduce State Space), we first use the
method described in Section 3.2 to delete or merge states, moreover, we delete
one state or merge two states as long as find out one candidate, which is described
in Section 3.4. Then after find all candidates out and finish reducing states, we
can delete transitions using the method in Section 3.3. For convenience, we use
ERSS− to denote the algorithm such that it is same as ERSS except it can not
delete states and transitions directly according to the conditions in [SB00].

We also have implemented the algorithm [GBS02], because the original im-
plementation is based on Wring [SB00] by Perl, which translates a random LTL
formula to a generalized state-labeled Büchi automaton, but the algorithm in
[GBS02] can only optimize Büchi automata but not the generalized Büchi au-
tomata.

We have tested three group automata, each group has 200 Büchi automata.
In the following tables, the column marked by state and transition shows the
average number of states and transitions respectively and the column marked by



time is the computing time for the algorithm. The column Original is the data
obtained using the original Büchi automaton without any optimization.

Table 1 shows the comparison between our algorithm and GBS02. We find
ERSS can reduce more states and transitions and need less computing time than
GBS02, moreover, these advantages become more obvious when increasing the
automaton’s states and transitions. Table 2 is the comparison between ERSS−
and GBS02. It also shows the efficiency of our algorithm.

Table 1 and Table 2 both show that using conditions in [SB00] to reduce the
state space is very efficient, which can delete more transitions and save more
computing time.

Table 1. Comparison between ERSS and GBS02

Original ERSS GBS02
state transition state transition time state transition time

69.865 652.33 51.39 456.11 53.143 52.43 465.65 94.012
140.115 1897.35 96.11 1280.115 611.763 100.31 1329.94 1034.329
241.84 3849.315 146.195 2321.605 1637.018 158.7 2482.325 8872.937

Table 2. Comparison between ERSS− and GBS02

Original ERSS− GBS02
state transition state transition time state transition time

69.865 652.33 51.455 457.15 66.389 52.43 465.65 94.012
140.115 1897.35 96.71 1290.375 817.312 100.31 1329.94 1034.329
241.84 3849.315 147.955 2360.01 3816.767 158.7 2482.325 8872.937

6 Conclusion and Future Work

We have presented an algorithm that can efficiently reduce state space of Büchi au-
tomata. This approach is based on fair simulation relation of Büchi automata
like the method in [GBS02], i.e. we use fair simulation to find candidates and
check the correctness of optimization.

In our paper, based on [GBS02], we provide the restricted criteria to check the
correctness of the optimization. At the same time, we use the conditions in [SB00]
to delete states and transitions without any checking. In the whole optimization
procedure, the language of each state of the reduced automaton is same as that of
the corresponding state of the original one. According to this property, we reduce
states without waiting for finding all candidates, thus we find each candidate in



a new reduced automaton with fewer states and transitions, furthermore, in the
whole procedure, we may find more candidates from the reduced automaton than
that from the original automaton. We have implemented our algorithm (ERSS)
described in Section 3. The experimental result shows that ERSS needs less time
and reduces more states and transitions than that of [GBS02].

Although we can resolve the fair simulation game in polynomial time, with
the number of states and transitions increasing, the time to find candidates
increases rapidly and even becomes intolerant. The further work is to research
on methods for efficiently optimizing Büchi automata with large state spaces by
fair simulation.

Acknowledgments

The Authors would like to thank Zhilin Wu and Xiang Zhou for their useful
discussions about this work.

References

[BG04] D. Bustan, O. Grumberg: Applicability of fair simulation. Information and
computation, Vol. 194(1), pp. 1-18, 2004.

[DHW91] D. L. Dill, A. J. Hu, and H.Wong-Toi. Checking for language inclusion using
simulation preorders. CAV’91, vol. 575 of LNCS, pp. 255-265, 1991.

[EH00] K.Etessami and G. Holzmann. Optimizing Büchi automata. CONCUR’00,
vol. 1877 of LNCS, pp. 153-167, 2000.

[Ete02] K. Etessami. A Hierarchy of Polynomial-Time Computable Simulations for
Automata. CONCUR’02, vol. 2421 of LNCS, pp. 131-144, 2002.

[EWS05] K. Etessami, Th. Wilke, and R. Schuller. Fair simulation relations, parity
games, and state space reduction for Büchi automata. SIAM Journal of
Computing, 34(5): 1159–1175, 2005.

[Fri03] C.Fritz. Constructing Büchi Automata from Linear Temporal Logic Using
Simulation Relations for Alternating Büchi Automata. CIAA’03, vol. 2759
of LNCS, pp. 35-48, 2003.

[FW02] C. Fritz, T. Wilke, State Space Reductions for Alternating Büchi Automata.
FSTTCS 2002, vol. 2556 of LNCS, pp.157-168, 2002.

[GBS02] S. Gurumurthy, R. Bloem, F. Somenzi. Fair Simulation Minimization.
CAV’02, vol. 2404 of LNCS, pp. 610-624, 2002.

[GTW02] E. Grädel, W. Thomas, and Th. Wilke, eds., Automata, Logics, and Infinite
Games: A Guide to Current Research, vol. 2500 of LNCS, Springer-Verlag,
New York, 2002.

[GKSV03] S.Gurumurthy, O.Kupferman, F.Somenzi, M.Y. Vardi. On Complementing
Nondeterministic Büchi Automata. CHARME’03:96-110.

[GO01] P.Gastin and D.Oddoux, Fast LTL to Büchi Automata Translation CAV’01,
vol. 2102 of LNCS, pp. 53-65, 2001.

[HKR97] T.A.Henzinger, O.Kupferman, and S.K. Rajamani. Fair simulation. CON-
CUR’97, vol. 1243 of LNCS, pp. 273-287, 1997.

[JP06] S.Juvekar, N. Piterman, Minimizing Generalized Buchi Automata CAV’06,
vol. 2102 of LNCS, pp. 53-65, 2001.



[Jur00] M. Jurdzinski. Small progress measures for solving parity games. STACS’00,
vol. 1770 of LNCS, pp. 290-301, 2000.

[Mil89] R.Milner. Communication and Concurrency. Prentice-Hall, 1989.
[SB00] F. Somenzi and R.Bloem. Efficient Büchi automata from LTL formulae.

CAV’00, vol. 1855 of LNCS, pp. 248-263, 2000.
[TH02] H. Tauriainen and K. Heljanko, Testing LTL formula translation into

Büchi automata, International Journal on Software Tools for Technology
Transfer (STTT) 4(1):57-70, 2002.

A Property of Parity Game for Reusing Information

Definition 6. Given a parity game graph G = 〈V, V0, V1, E, p〉, Let W = W0 ∪
W1 where W0 is the set of vertexes such that each vertex v ∈ W0 is the wining
state for Zero on G, and W1 is the set of vertexes such that each vertex v ∈ W1

is the wining state for One on G. Then G′ = 〈V, V ′
0 , V ′

1 , E′, p〉 is a parity game
graph, with

– V ′
0 = V0 \W ∪W1;

– V ′
1 = V1 \W ∪W0;

– E′ = {(v, v′) | (v, v′) ∈ E ∧ v ∈ V \W}.
Since we delete the edges of v ∈ W , by the definition of a play in parity game,
there are some new finite plays in G′ ended with v ∈ W . Let π be such play.
If v ∈ W1, which means v is the wining state for One on G, since v ∈ V ′

0 , thus
Zero can not move on v of π and Zero loses. Similarly, If v ∈ W0, which means
v is the wining state for Zero on G, since v ∈ V ′

1 , thus One can not move on v
in π and One loses. Then v is also a winning state for Zero(One) on G′ as same
as on G.

Now we establish the relation between G and G′. Let [vG]Zero denote v of G
that is the wining state for Zero, [vG]One denote v of G that is the wining state
for One.

Proposition 8. [vG′ ]Zero iff [vG]Zero

Proof. If v ∈ W , by Definition 6, it is easy to see that [vG′ ]Zero iff [vG]Zero.
Otherwise, we first prove if [vG′ ]Zero then [vG]Zero. We first construct a strategy
f ′′ for Zero on v of G. Since [vG′ ]Zero, there exists a winning strategy f on v
of G′, if a play from v does not meet vi ∈ W , then we define f ′′(vv1 · · · vi) =
f(vv1 · · · vi)(i ≥ 1). If the play meets vi ∈ W , since [vG′ ]Zero, thus [vG′

i ]Zero,
that is [vG

i ]Zero. Therefore, there exists a winning strategy f ′ on vi of G. So we
define f ′′(vv1 · · · vi · · · vj) = f ′(vi · · · vj) which means after meeting vi, the next
move of Zero is decided by f ′. Since f and f ′ are winning strategies for Zero, so
it is easy to see that f ′′ is also a winning strategy for Zero on v of G.

Now we prove if [vG]Zero then [vG′ ]Zero. We first construct a strategy f ′′ for
Zero on v of G′. Since [vG]Zero, there exists a winning strategy f for Zero on v of
G, if the play on v of G′ does not meet vi ∈ W , then we define f ′′(vv1 · · · vi) =
f(vv1 · · · vi). Otherwise, if vi ∈ W , since [vG]Zero, so [vG

i ]Zero, that is [vG′
i ]Zero.



Therefore, since f is a winning strategy, thus for any f ′′-conform play from v
which does not meet vi ∈ W , Zero wins. Moreover, since [vG

i ]Zero thus vi ∈ V ′
1 ,

then for any f ′′-conform finite play whose end is vi, One cannot move and Zero
wins. Therefore, f ′′ is a winning strategy for Zero on v of G′. ut

Since parity game is determined, so we can easily get the following corollary
according to Proposition 8.

Corollary 1. [vG′ ]One iff [vG]One


