
Weak Bounded Semantics and
Bounded Verification of LTL Formulas ?

Wenhui Zhang

Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

zwh@ios.ac.cn

Abstract. Bounded model checking based on SAT has been introduced
as a complementary method to binary decision diagram based symbolic
model checking in 1999 [2, 3]. Since then, there has been a lot of research
on the improvement, extension and application along this direction. For
general LTL formulas, bounded model checking has traditionally aimed
at error detection, taking the advantage that error detection may only
need to explore a small portion of the whole state space. The problem of
verification is that it looks difficult to reason about all involved paths of a
model, since the number of such paths is necessarily big. An approach to
verification of LTL formulas based on bounded model checking principles
has been reported in [15]. This paper presents a weak bounded semantics
as a theoretical basis for the verification approach and as a theoretical
consideration, we define a canonical representation for LTL formulas, and
proves for a subset of LTL that the verification approach is complete.

1 Introduction

Model checking [7, 9, 8] has been successfully used in the last decades for the
verification of finite state systems, and it is considered as one of the most practi-
cal applications of theoretical research in the verification of concurrent systems.
The practical applicability of model checking is however limited by the state
explosion problem which could be caused by for instance, the representation of
currency of operations by their interleaving. Then much effort has been put into
the combating of this problem and many techniques have been developed, e.g.,
[5, 6].

One of the techniques developed for combating the state explosion problem
is bounded model checking (BMC) based on satisfiability testing (SAT) [2–4].
The basic idea is to search for a counter example of a particular length and
to generate a propositional formula that is satisfied iff such a counter example
exists. The efficiency of this method is based on the observation that if a system
is faulty then only a fragment of its state space is sufficient for finding an error.

? Supported by the National Natural Science Foundation of China under Grant No.
60573012 and 60721061, and the National Grand Fundamental Research 973 Pro-
gram of China under Grant No. 2002cb312200.

Given a finite transition system M , an LTL formula ϕ and a natural number k, a
BMC procedure decides whether there exists a computation in M of length k or
less that violates ϕ. If we have given M and ϕ such that M satisfies ϕ, then the
practical value of this approach depends on the existence of a relatively small
value of the completeness threshold. As stated in [11], knowing the complete-
ness threshold is essential for making BMC complete for practical applications.
Without it, there is no way of knowing whether the property holds or rather
the bound is not sufficiently high. Even if we know the completeness threshold,
for a reasonably large system, this threshold would possibly be large enough to
make the verification become intractable due to the complexity of solving the
corresponding SAT instance. For attacking this problem, many techniques have
been developed, for instance, for properties such as simple safety and liveness
properties [14, 12, 10, 1], in particular, a technique was developed to partly avoid
this problem for general LTL properties such that the approach may certify that
the property holds without knowing a completeness threshold [15].

In this paper, for the first, we present a weak bounded semantics as a theoret-
ical basis for the verification approach presented in [15]. For the second, since the
verification approach based on this weak bounded semantics is not a complete
approach, we define a canonical representation for LTL formulas, and proves for
a subset of LTL that the verification approach is complete.

2 Propositional Linear Temporal Logic

Propositional linear temporal logic (LTL) is a logic introduced by Pnueli as a
specification language for concurrent programs [13]. Let AP be a set of proposi-
tion symbols. The set of LTL formulas is defined as follows:

– Every member of AP is an LTL formula.
– Logical connectives of LTL include: ¬, ∧, ∨, and →.

If ϕ and ψ are LTL formulas, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ → ψ.
– Temporal operators include: X, F , G, U , and R.

If ϕ and ψ are LTL formulas, then so are: X ϕ, F ϕ, G ϕ, ϕ U ψ, and ϕ R ψ.

2.1 Semantics of LTL

The formal semantics of LTL is defined with respect to paths of a Kripke struc-
ture. Let M = 〈S, T, I, L〉 be a Kripke structure where S is a set of states,
T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of initial
states and L : S → 2AP is a labeling function. Let ϕ be an LTL formula. Let
π = π0π1 · · · be a path of M and πi be the subpath of π starting at πi. We define
the relation ”ϕ holds on π”, denoted π |= ϕ, as follows.

π |= p iff p ∈ L(π0) .
π |= ¬ϕ iff π 6|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ
π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ
π |= ϕ → ψ iff π |= ϕ implies π |= ψ
π |= Xϕ iff π1 |= ϕ

π |= Fϕ iff ∃k ≥ 0.πk |= ϕ
π |= Gϕ iff ∀k ≥ 0.πk |= ϕ
π |= ϕUψ iff ∃k ≥ 0.∀j < k.(πk |= ψ ∧ πj |= ϕ)
π |= ϕRψ iff ∀j ≥ 0.(πj |= ψ)∨ ∃k ≥ 0.((πk |= ϕ) ∧ (∀j ≤ k.(πj |= ψ))

For simplicity, we call a Kripke structure a model. An LTL formula ϕ is true
in the model M , denoted M |= ϕ, iff ϕ is true on all paths starting from an
arbitrary initial state of M .

2.2 Negation Normal Form

An LTL formula is in negation normal form (NNF), if the symbol → does not
appear in the formula and ¬ is applied only to proposition symbols. We call
proposition symbols and the negation of proposition symbols literals. In another
words, NNF formulas are constructed from literals with ∨, ∧, X, G, F , U , and
R. Every formula can be transformed into an equivalent formula in NNF by
using the following rules:

ϕ → ψ = ¬ϕ ∨ ψ
¬¬ϕ = ϕ
¬(ϕ ∨ ψ) = (¬ϕ ∧ ¬ψ)
¬(ϕ ∧ ψ) = (¬ϕ ∨ ¬ψ)
¬Xϕ = X¬ϕ
¬Fϕ = G¬ϕ
¬(ϕUψ) = ¬ϕR¬ψ
¬Gϕ = F¬ϕ
¬(ϕRψ) = ¬ϕU¬ψ

For simplicity, in the rest of this paper, we required every formula to be an
NNF formula. A formula not in NNF is considered as an abbreviation of such a
formula. By defining true to be p∨¬p for a given proposition symbol p, we have
the following equivalences

Fϕ = true Uϕ
ϕRψ = (ψU(ϕ ∧ ψ)) ∨Gψ

Without loss of generality, we only consider NNF formulas constructed from
literals with ∨, ∧, X, G, and U , since the operators F and R are definable.

2.3 Bounded Semantics of LTL Formulas

Let M = 〈S, T, I, L〉 be a model and k ∈ N a natural number. We call a
finite path π = π0 · · ·πk a k-path. A k-path π = π0 · · ·πk is a (k, l)-loop, if
π′ = (π0 · · ·πk)(πl · · ·πk)ω is an infinite path of M . A k-path π = π0 · · ·πk is
a k-loop, if it is a (k, l)-loop for some 0 ≤ l ≤ k. The following definition of
bounded semantics is according to [2] with modifications such that the relation
is defined on finite paths instead of infinite ones.

Definition 1 (Bounded Semantics for a Loop). Let k ≥ 0 and π be a k-
loop. Then an LTL formula ϕ is true on π, written π |=k ϕ, iff π′ |= ϕ with
π′ = (π0 · · ·πk)(πl · · ·πk)ω for some 0 ≤ l ≤ k.

Definition 2 (Bounded Semantics without a Loop). Let k ≥ 0 and π be
a k-path which is not a k-loop. Then an LTL formula ϕ is true on π, written
π |=k ϕ, iff π |=0

k ϕ where:

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff π 6|=i

k p
π |=i

k ϕ ∧ ψ iff π |=i
k ϕ and π |=i

k ψ
π |=i

k ϕ ∨ ψ iff π |=i
k ϕ or π |=i

k ψ

π |=i
k Xϕ iff i < k and π |=i+1

k ϕ
π |=i

k Gϕ iff false.
π |=i

k ϕUψ iff ∃j ∈ {i, ..., k}. ∀n ∈ {i, ..., j − 1}.(π |=j
k ψ ∧ π |=n

k ϕ)

Note that π |=i
k Gϕ is false by definition if the k-path is not a k-loop. This

is explained by that a global property can only be witnessed by an infinite path
(or a path with a loop).

Let ϕ be an LTL formula. Generally, if there is an infinite path π of M such
that π |= ϕ, there is a π′ = (π0 · · ·πk)(πl · · ·πk)ω such that π′ |= ϕ. Therefore if
there is an infinite path π of M such that π |= ϕ, then there is a k-path π′ such
that π′ |=k ϕ. On the other hand, if there is a k-path π such that π |=k ϕ, then
there is an infinite path π′ of M such that π′ |= ϕ. Therefore, M 6|= ϕ iff there
is a path π and a k ≥ 0 such that π |=k ¬ϕ.

The principle of this bounded semantics is based on showing the existence of
a witness (a path on which a formula is true) with respect to k-paths. If π |=k ϕ,
then we have a k-path π such that an infinite path π′ can be constructed from
the k-path such that π′ |= ϕ. This is sufficient as a counter example for M |= ¬ϕ
[2].

2.4 Weak Bounded Semantics of LTL

The principle of the weak bounded semantics is to show the existence of a
bounded model with certain property contradicts the existence of witness.

Definition 3 (Weak Bounded Semantics). Let k ≥ 0 and π = π0 · · ·πk

be a k-path. Then an LTL formula ϕ is true with respect to the weak bounded
semantics on π, written π |=e ϕ, iff π |=0

e ϕ where:

π |=i
e p iff p ∈ L(πi)

π |=i
e ¬p iff π 6|=i

e p
π |=i

e ϕ ∧ ψ iff π |=i
e ϕ and π |=i

e ψ
π |=i

e ϕ ∨ ψ iff π |=i
e ϕ or π |=i

e ψ
π |=i

e Xϕ iff i = k or π |=i+1
e ϕ

π |=i
e Gϕ iff ∀n ∈ {i, ..., k}.(π |=n

e ϕ)
π |=i

e ϕUψ iff ∃j ∈ {i, ..., k}.
∀n ∈ {i, ..., j − 1}.(π |=j

e ψ ∧ π |=n
e ϕ)∨ ∀n ∈ {i, ..., k}.(π |=n

e ϕ)

The weak bounded semantics is weaker than the bounded semantics. This
can be seen from their definitions.

Proposition 1. Let π be a k-path and ϕ an LTL formula. If π |=k ϕ, then
π |=e ϕ.

Proof. We consider two cases: π is a k-loop and π is not a k-loop. For the first
case, let π′ be ππ′′ where π′′ is the loop part of the k-loop, we prove that

if π′i |= ϕ, then π |=i
e ϕ for all 0 ≤ i ≤ k.

This can be seen using the structural induction. We have that the definitions of
π′i |= ϕ and π |=i

e ϕ are the same for ϕ being a literal, and the defining term for
π′i |= ϕ is at least equally strong as that of π |=i

e ϕ for composed formulas. The
second case is similar, by comparing the definitions and proving that

if π |=i
k ϕ, then π |=i

e ϕ for all 0 ≤ i ≤ k.

For convenience, for an empty string ε, we define ε |=e ϕ to be true for
ϕ. According to the definition, we obtain that, for any ϕ, a k-path π can be
extended to an infinite path π′ such that π′ |= ϕ only if π |=e ϕ. In another
words, we have the following proposition.

Proposition 2. Let π be an infinite path and ϕ an LTL formula. If there is
some finite prefix π′ of π such that π′ 6|=e ϕ, then π |= ¬ϕ.

Proof. Let k ≥ 0 be arbitrarily given and π′ = π0π1 · · ·πk. We reformulate the
problem in the other direction and prove that if π |= ϕ, then π′ |=e ϕ. Then,
similar to the proof of Proposition 1, we only need to prove

if πi |= ϕ, then π′ |=i
e ϕ.

We have that the definitions of πi |= ϕ and π′ |=i
e ϕ are the same for ϕ being

a literal, and the defining term for πi |= ϕ is at least equally strong as that
of π′ |=i

e ϕ for composed formulas. Therefore the statement holds by structural
induction.

The relation between finite paths and their prefix can be established as fol-
lows: for any ϕ, a k-path π can be extended to an (k + 1)-path π′ such that
π′ |= ϕ only if π |=e ϕ.

Proposition 3. Let π be a k-path and ϕ an LTL formula. If there is some prefix
π′ of π such that π′ 6|=e ϕ, then π 6|=e ϕ.

Proof. Let π = π0π1 · · ·πk and π′ = π0π1 · · ·πl for l ≤ k. We prove that

if π |=i
e ϕ, then π′ |=i

e ϕ for all 0 ≤ i ≤ l.

The reasoning is similar to the that of Proposition 2 and the statement holds by
structural induction.

Proposition 3 guarantees that if π 6|=e ϕ, then there is a π′ such that for all
π′ which is a proper prefix of π, π′ |=e ϕ, and for all π′′ of which π is a prefix,
π′′ 6|=e ϕ.

Let Πk be a set of k-paths.
Let Πk |=e ϕ denote that for all π ∈ Πk, π |=e ϕ and Πk#eϕ denote that for

all π ∈ Πk, π 6|=e ϕ.
Let Mk denote the set of k-path of M where each such k-path starts from

some initial state of M .

Theorem 1. Let M be a model, ϕ an LTL formula. M |= ¬ϕ if there is a k
such that Mk#eϕ.

Proof. By Proposition 2, if there is a k and for each π ∈ Mk, π 6|=e ϕ, then no
infinite extension of a path of Mk satisfies ϕ, therefore every path starting from
some initial state of M satisfies ¬ϕ.

3 Encoding of the Problem in SAT-Formulas

A SAT-based encoding of LTL model checking problem has been given in [15].
In this section, we relate this encoding to the weak bounded semantics. Given
a model M , an LTL formula ϕ and a bound k. The problem considered here is
M |=k ϕ. we will construct encodings for the pair (M, ϕ) for each given k. Let
u0, ..., uk be a finite sequence of state variables. We first define [[M]]k to be a
formula representing that u0 · · ·uk is a finite prefix of a valid path of M starting
from an arbitrary initial state.

Definition 4 (Transition Relation). Let M = 〈S, T, I, L〉 be a model and
k ≥ 0.

[[M]]k := I(u0) ∧
k−1∧

i=0

T (ui, ui+1)

This translation of transition relation corresponds to that in [2]. In the fol-
lowing, we fixed the model under consideration to be M = 〈S, T, I, L〉 unless
otherwise is stated.

3.1 Encoding of LTL formulas

Let p ∈ AP be a proposition symbol and p(u) represent the propositional formula
representing the states in which p is true according to L. For a state and a
formula, we present the encoding for (formula,state) pair according to the weak
bounded semantics of LTL.

Definition 5 (Translation of LTL formulas). Let u0, ..., uk be state variables
and ϕ be a formula. The encoding [[ϕ, ui]]k is defined as follows.

[[p, ui]]k = p(ui)
[[¬p, ui]]k = ¬p(ui)
[[ϕ ∨ ψ, ui]]k = [[ϕ, ui]]k ∨ [[ψ, ui]]k
[[ϕ ∧ ψ, ui]]k = [[ϕ, ui]]k ∧ [[ψ, ui]]k
[[Xϕ, ui]]k = [[ϕ, ui+1]]k
[[Gϕ, ui]]k =

∧k
j=i[[ϕ, uj]]k

[[ϕUψ, ui]]k =
∨k

j=i([[ψ, uj]]k ∧
∧j−1

t=i [[ϕ, ut]]k) ∨∧k
t=i[[ϕ, ut]]k

where [[ϕ, uk+1]]k = true.

The term [[ϕ, uk+1]]k is only a representation of true for convenience of
writing the definition. uk+1 needs not be interpreted to be a corresponding
state of M . Given that an interpretation α of u0, ..., uk corresponds to a path
α(u0) · · ·α(uk) of M , the definition of [[ϕ, u0]]k captures the meaning of α(u0) · · ·α(uk) |=e

ϕ.

Lemma 1. Let α be an assignment of {u0, ..., uk}. α(u0) · · ·α(uk) |=e ϕ iff
[[ϕ, u0]]k.

Proof. Let π = α(u0) · · ·α(uk). We prove that

π |=i
e ϕ iff [[ϕ, u0]]k is true under the assignment α.

By comparing the definitions, it is easily seen that this holds by structural in-
duction.

Definition 6. [[M, ϕ]]k := [[M]]k ∧ [[ϕ, u0]]k

This definition combines the definition of [[ϕ, u0]]k with path information.
Every assignment α satisfying [[M, ϕ]]k makes α(u0) · · ·α(uk) a valid path of M
starting from some initial state of M , in addition to that α(u0) · · ·α(uk) |=e ϕ.

Theorem 2. Let M be a model, ϕ an LTL formula. Mk 6|=e ϕ iff [[M, ϕ]]k is
unsatisfiable.

Proof. Let α be an assignment of {u0, ..., uk} that maps them to k+1 states (not
necessary all different) of M that satisfies [[M, ϕ]]k. Then α(u0) · · ·α(uk) is a k-
path of Mk (i.e. a valid path of length k+1 of M starting from some initial state
of M), since α satisfies [[M]]k. Then α(u0) · · ·α(uk) |=e ϕ according to Lemma
1, since α also satisfies [[ϕ, u0]]k. On the other hand, if α is an assignment of
{u0, ..., uk} that does not satisfy [[M, ϕ]]k, then either α(u0) · · ·α(uk) is not a
path of Mk or α(u0) · · ·α(uk) 6|=e ϕ when α(u0) · · ·α(uk) is a path of Mk.

3.2 Bounded Model Verification

Theorem 1 and Theorem 2 provide a theoretical basis for verification of LTL
formulas. As a corollary, we have

Corollary 1. M |= ϕ if there is a k such that [[M,¬ϕ]]k is unsatisfiable.

This has also been proved in [15] in a different way, and yields a iterative
bounded model checking procedure as follows. (1) Start with k = 0; (2) Compute
[[M,¬ϕ]]k and if [[M,¬ϕ]]k is unsatisfiable, report that M |= ϕ is valid; (3)
Increase k and repeat the process until a resource bound is reached.

We first present an illustrative example to show the potential advantage
of this approach and discuss the combining of this with the original bounded
model checking approach, and then in Section 4, we show that for a subset of
LTL formulas a stronger result can be obtained to improve the bounded model
checking procedure.

Illustrative Example and Discussion This approach also has advantage over BDD
based approaches, when a small k is sufficient for the verification. We use an
example to illustrate this advantage. Let p0, ..., pn−2, q, r be variables of the
domain {0, 1} and ⊕ be the function: addition modulo 2. Let the system be
consist of n processes. A, B and Ci for i = 0, ..., n − 3 (each is a sequential
process which executed in parallel to each other with the interleaving semantics)
with the following specification:

A : r = r ⊕ 1; p0 = p0 ⊕ 1
B : pn−2 = pn−2 ⊕ 1; q = q ⊕ 1
Ci : pi = pi ⊕ 1; pi+1 = pi+1 ⊕ 1 for i = 0, ..., n− 3

Let the initial state be pi = 0 and q = r = 1.
Let ϕ = ((p1 ∨ p3 · · · ∨ pn−2)Rq) for an odd number n.
For verifying ϕ(n), we first transform the problem to CNF formula according

to the proposed transformation scheme, then we use zChaff 1 for verification.
For n = 7, 9, 11, 13, the property is verified when k reaches respectively 6, 7, 8, 9.
The verification times by zChaff for n = 7, 9, 11, 13 are as follows.

Property k Time (s) Variables Clauses SAT-Time (s)
ϕ(7) 6 0.12 252 4206 0.07
ϕ(9) 7 0.42 366 7825 0.15
ϕ(11) 8 1.62 500 13053 0.31
ϕ(13) 9 13.01 654 20181 0.66

The second column shows the value of k which is sufficient for verifying the
property. The third column is the time used by zChaff for the round where k
is sufficient for verification, or for the k-th round. The fourth and fifth columns
are the numbers of variables and clauses generated in the same round. The last
column show the total time used in the previous rounds (i.e. from 0-th round to
(k − 1)-th round of the unsuccessful verification attempts) in which the inputs
to zChaff are all satisfiable.

The formula can also be written as the CTL formula A((p1∨p3 · · ·∨pn−2)Rq).
For comparison, we have carried out the same verification task using SMV (re-
lease 2.5.4.3) 2. An example of SMV code for n = 3 is shown as follows.
1 Available from http://www.princeton.edu/∼chaff/zchaff.html
2 Available from http://www.cs.cmu.edu/∼modelcheck/smv.html

MODULE main
VAR

q: boolean; r: boolean;
p0: boolean; p1: boolean;
b0: process cc(p1,q);
c0: process cc(p0,p1,q);

ASSIGN
init(r):=1; init(q):=1;
init(p0):=0; init(p1):=0;

VAR a: {a0,a1,a2};
ASSIGN

init(a) := a0;
next(a) := case a=a0: a1; a=a1: a2; 1: a; esac;
next(r) := case a=a0: !r; 1: r; esac;
next(p0) := case a=a1: !p0; 1: p0; esac;

SPEC (!E[!(p1)U!(q)])
MODULE cc(p,s)
VAR c: {c0,c1,c2};
ASSIGN

init(c) := c0;
next(c) := case c=c0: c1; c=c1: c2; 1: c; esac;
next(p) := case c=c0: !p; 1: p; esac;
next(s) := case c=c1: !s; 1: s; esac;

The verification data for n = 7, 9, 11, 13 are shown as follows.

Property Time (s) BDD nodes Memory (KB)
ϕ(7) 1.14 16481 1441.792
ϕ(9) 9.07 102518 2818.048
ϕ(11) 101.22 638219 11337.728
ϕ(13) 2248.33 3789672 61800.448

For n = 7, the difference of time between the two approaches is around 6
times (counting the total time used by zChaff in all k+1 rounds), and for n = 13,
the difference is more than 150 times. Therefore the tables show clear advantage
of using the bounded verification approach over the BDD based verification
approach for this example.

3.3 Combining Approaches

As mentioned, the approach presented previously is effective for verification of
certain model checking problem instances, but there is no guarantee that we
finally obtain a conclusion, especially for unsatisfied properties. This can be
combined with the bounded model checking approach [2, 3] such that there are
possibility of quickly coming to a conclusion for either satisfiable or unsatisfi-
able properties, and there is a guarantee that a conclusion is reached when k

is sufficiently large (assuming that we have sufficient computation resources).
We first present the encoding of the bounded model checking approach for
(formula, state) pairs based on the bounded semantics.

The encoding of (formula, state) pairs in the bounded model checking ap-
proach is based on the concept of (k, l)-loop. Let min() be the minimum operation
and s(i, k, l) denote

if (k = i) then l else i + 1.

Definition 7 (Translation of LTL formulas). Let u0, ..., uk be state variables
and ϕ be an LTL formula. The encoding of (ϕ, ui), denoted by [[ϕ, ui]]k,l, is
defined as follows.

[[p, ui]]k,l = p(ui)
[[¬p, ui]]k,l = ¬p(ui)
[[ϕ ∨ ψ, ui]]k,l = [[ϕ, ui]]k,l ∨ [[ψ, ui]]k,l

[[ϕ ∧ ψ, ui]]k,l = [[ϕ, ui]]k,l ∧ [[ψ, ui]]k,l

[[Xϕ, ui]]k,l = [[ϕ, us(i,k,l)]]k,l

[[Gϕ, ui]]k,l =
∧k

j=min(i,l)[[ϕ, uj]]k,l

[[ϕUψ, ui]]k,l =
∨k

j=i([[ψ, uj]]k,l ∧
∧j−1

t=i [[ϕ, ut]]k,l)∨∧k
t=i[[ϕ, ut]]k,l∧∨i−1
j=l ([[ψ, uj]]k,l ∧

∧j−1
t=l [[ϕ, ut]]k,l)

where [[ϕ, u−1]]k,l = false.

In the above definition, u−1 is a special symbol used only for the purpose
of uniform formula representation (avoiding specification of different cases ex-
plicitly), for instance, [[p ∨ q, u−1]]k,l must be replaced by false and not by
[[p, u−1]]k,l ∨ [[q, u−1]]k,l. In addition, we define T (uk, u−1) = true. The sub-
script (k, l) in the definition indicates that the path is a (k, l)-loop for l ≥ 0,
otherwise the path is considered loop free (when l = −1).

Definition 8. Let M be a model and ϕ be an LTL formula. [[M, ϕ]]ok := [[M]]k∧∨k
l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l).

The encoding of [[M, ϕ]]ok corresponds to that in [2] with a simplification
where a condition

∧k
l=0 ¬T (uk, ul) representing loop-free-ness is removed (or

more precisely, replaced by true). This change does not affect the satisfiability
of the formula, since if a formula is satisfied by a k-path which is not interpreted
as a k-loop, then it is also satisfied by the same k-path interpreted as a k-loop
(if it indeed is one). We formulate this fact as a lemma as follows.

Lemma 2. [[ϕ, u0]]k,−1 → [[ϕ, u0]]k,l for l ∈ {0, ..., k}.
Proof. We prove a more general property for [[ϕ, ui]]k,l and consider the lemma
as a special case where i = 0 of this property. The property is as follows.

[[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l for i ∈ {0, ..., k} and l ∈ {0, ..., k}

This property is to be proved by structural induction. The case is trivial for ϕ
being a proposition or negation of a proposition. Assume the induction hypoth-
esis.

– The case is also trivial for ϕ being a conjunctive or disjunctive formula,
according to the induction hypothesis.

– If ϕ = Xϕ0, then [[ϕ, ui]]k,−1 is either false (i = k) or the same as [[ϕ0, ui+1]]k,−1

(i < k).
In the latter case, [[ϕ, ui]]k,l = [[ϕ0, ui+1]]k,l. Then, according to the induc-
tion hypothesis, [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.

– If ϕ = Gϕ0, then [[ϕ, ui]]k,−1 is false. Therefore [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.
– If ϕ = ϕ0Uϕ1,

then
∨i−1

j=−1([[ϕ1, uj]]k,−1 ∧
∧j−1

t=−1[[ϕ0, ut]]k,−1) = false.
Therefore
[[ϕ, ui]]k,−1 =

∨k
j=i([[ϕ1, uj]]k,−1 ∧

∧j−1
t=i [[ϕ0, ut]]k,−1).

Then, according to the induction hypothesis,
[[ϕ, ui]]k,−1 →

∨k
j=i([[ϕ1, uj]]k,l ∧

∧j−1
t=i [[ϕ0, ut]]k,l).

Since the right side of the implication is a disjunctive part of [[ϕ, ui]]k,l, we
obtain [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.

The following theorem corresponds to the soundness theorem of the bounded
LTL model checking approach as presented in [2].

Theorem 3. Let M be a model, ϕ be an LTL formula. Let k ≥ 0. There is a
path π of M such that π |=k ϕ iff [[M, ϕ]]k is satisfiable.

Proof. Since the only difference in the encoding [[M, ϕ]]k and that in [2] is that
a condition representing loop-free-ness is removed, the fact that this change does
not affect the satisfiability of the formula is easily seen based on Lemma 2.

Corollary 2. Let M be a model, ϕ an LTL formula. M 6|= ϕ iff there is a k
such that [[M,¬ϕ]]ok is satisfiable.

A combination of Corollary 1 and Corollary 2 suggests the following combi-
nation of verification and error detection approach. Let M be a model and ϕ be
an LTL formula to be verified.

– Start with k = 0;
– If [[M,¬ϕ]]k is unsatisfiable, report that M |= ϕ is valid;
– If [[M,¬ϕ]]ok is satisfiable, report that M |= ϕ does not hold;
– If a given completeness threshold is reached, report that M |= ϕ is valid;
– Increase k and repeat the process.

As implied by the example, the procedure may terminate before reaching a
completeness threshold. However, in the general case, it may be necessary to
repeat the process until a completeness threshold is reached. For instance, if we
have the trivial property ϕ = G true, which is true for all systems, then we have
[[M,¬ϕ]]ok = false and [[M,¬ϕ]]k = I(u0) ∧

∧k−1
i=0 T (ui, ui+1). Then the first

one is unsatisfiable and the second is always satisfiable. The above approach can
only terminate when a completeness threshold is reached. In the next section, we
improve the approach for a subset of LTL formulas, such that the completeness
threshold is avoided for this subset of formulas.

4 LTL(X,G)

The subset of LTL considered here is LTL formulas in NNF not containing
temporal operators not in {X,G}. This subset is denoted LTL(X,G). Define X-
rank of a formula to be the number of nested levels of X and G-rank to be the
number of nested levels of G. Formally:

Definition 9. Let gr(ϕ) be the G-rank of ϕ and xr(ϕ) be the X-rank of ϕ. Then

gr(p) = 0 for a literal p
gr(Xϕ) = gr(ϕ)
gr(Gϕ) = gr(ϕ) + 1
gr(ϕUψ) = gr(ϕ ∨ ψ) = gr(ϕ ∧ ψ) = max(gr(ϕ), gr(ψ))
xr(p) = 0 for a literal p
xr(Xϕ) = xr(ϕ) + 1
xr(Gϕ) = xr(ϕ)
xr(ϕUψ) = xr(ϕ ∨ ψ) = xr(ϕ ∧ ψ) = max(xr(ϕ), xr(ψ))

For convenience, we write π |= ϕ for π |=k ϕ when π is a finite path with
|π| = k − 1. Then π in π |= ϕ may be a finite path or an infinite path according
to the context.

For an LTL(X,G) formula with G-rank = 0, the prefix of length xr + 1 of
a path (with xr being the X-rank of the formula) is sufficient for proving or
disproving whether the path satisfies the formula.

Lemma 3. Let ϕ be an LTL(X,G) formula with G-rank = 0. Let xr be the
X-rank of ϕ. If π |=e ϕ and |π| ≥ xr + 1, then π0 · · ·πxr |= ϕ.

Proof. Proof by induction on the X-rank and the structure of ϕ. The lemma
is trivial for xr = 0. Let the X-rank of ϕ be xr + 1. If ϕ is a conjunction or
a disjunction, then the conclusion follows from the induction hypothesis. Let
ϕ = Xϕ0. According to the induction hypothesis, if π |=e ϕ0 and |π| ≥ xr + 1,
then π0 · · ·πxr |= ϕ0. Assume π′ |=e Xϕ0 and |π′| ≥ xr + 2. Let π′ = π′0π

′′.
Then π′′ |=e ϕ0 and |π′′| ≥ xr + 1. Therefore π′′0 · · ·π′′xr |= ϕ0. By looking at the
relation between π′ and π′′, we obtain that π′0 · · ·π′xr+1 |= Xϕ0. This concludes
the proof.

For an LTL(X,G) formula with G-rank = 1, then a finite prefix of a path is
sufficient for showing whether there is a path of M satisfying the formula.

Lemma 4. Let ϕ be an LTL(X,G) formula with G-rank = 0. Let xr be the X-
rank of ϕ. If π |=e Gϕ with |π| ≥ (2 ·xr +1) · k2·xr+1

M +2 ·xr · kM +1, then there
is an xr ≤ i < π such that π0 · · ·πi |= Gϕ.

Proof. Since |π| ≥ (2 · xr + 1) · k2·xr+1
M + 2 · xr · kM + 1, there is an s such

that s appears at least m = (2 · xr + 1) · (k2·xr
M + 1) times in π. Let the posi-

tions of the occurrences of s in π be j1, j2, ..., jm. Let aj = xr + j · (2xr + 1).
Among the positions, choose ja0 , ja1 , ..., ja

k2·xr
M

. The distance between any two

of these positions in π is at least (2xr + 1), the distances from πja0
to the first

position of π and from ja
k2·xr

M

to the last position of π are at least xr. For

each such position j, we have a path πj−xr · · · , πj · · ·πj+xr of length 2xr + 1
(in which πj = s for all such j) with no overlap with any other such path.
Since there are k2·xr

M + 1 such paths, at least two of them are identical. Let
a < b such that πa−xr · · ·πa · · ·πa+xr = πb−xr · · ·πb · · ·πb+xr. Then we have
a path π0 · · ·πa · · ·πb with T (πb, πa+1) holds such that π0 · · ·πa · · ·πb |= Gϕ
and b < |π|. Since ϕ is an LTL(X,G) formula with G-rank = 0 and xr ≤ b,
we have π0 · · ·πa · · ·πb |= ϕ. Therefore there is an xr ≤ b < |π| such that
π0 · · ·πa · · ·πb |= Gϕ.

Corollary 3. Let ϕ and ψ be LTL(X,G) formulas with G-rank = 0. Let xr be
the X-rank of ψ∧Gϕ. If π |=e ψ∧Gϕ with |π| ≥ (2·xr+1)·k2·xr+1

M +2·xr ·kM +1,
then there is an xr ≤ i < π such that π0 · · ·πi |= ψ ∧Gϕ.

For a general LTL(X,G) formula, then a finite prefix of a path is also suffi-
cient for showing whether there is a path of M satisfying the formula. Before
considering general LTL(X,G) formulas, we define a normal form for LTL by
allowing generalized disjunction (a disjunction of a set of formulas).

4.1 LTL Disjunctive Normal Form

Definition 10. LTLdnf formulas are formulas constructed by the following rules:

– If p1, ..., pn are literals and m1, ..., mn ≥ 0, then
∨n

i=1 Xmipi is a base LTLdnf

formula. A base LTLdnf formula is an LTLdnf formula.
– If ϕi,0 is a base LTLdnf formula, and ϕi,1, ϕi,2, ϕi,3 are LTLdnf formulas for

i ∈ {1, ..., n}, then
∨n

i=1 ψi is an LTLdnf formula, where ψi is either ϕi,0,
Gϕi,1, ϕi,2Uϕi,3, or a conjunction of two or all the three of these formulas.

Every LTL formula can be transformed into an equivalent LTLdnf formula.
For the first we require an LTL formula to be in NNF. Then the operator X can
be moved next to literals by applying the following equivalences:

X(ϕ0 ∧ ϕ1) = Xϕ0 ∧Xϕ1

X(ϕ0 ∨ ϕ1) = Xϕ0 ∨Xϕ1

XGϕ0 = GXϕ0

X(ϕ0Uϕ1) = Xϕ0UXϕ1

LTL formulas not involving U and G can be transformed into base LTLdnf

formulas by applying distributivity, associativity and commutativity of the op-
erators ∧ and ∨.

For more complicated formulas, this can be done inductively. If the outermost
operation is ∨, let the formula be ϕ∨ψ. Then the induction hypothesis is appli-
cable to ϕ and ψ. If the outermost operation is G, let the formula be Gϕ. Then
the induction hypothesis is applicable to ϕ. Let the result of the transformation
of ϕ be ϕ′. Then Gϕ′ is an LTLdnf formula.

The case is similar for the operator U . If the outermost operation is ∧, then
the formula can be treated as a conjunction of a set of formulas. If some of the
formulas is a disjunction, we can apply the distributivity of ∧, such that we
have a disjunction of two simpler formulas and the induction hypothesis can be
applied. Assume the formulas in the disjunction are of the form Xnp, Gϕ and
ϕUψ. We first collect the formulas of the form Xnp to be a base LTLdnf formula.
Then we collect and transform the formulas of the form Gϕ (if there is any) to
be a formula of the form Gϕ′ where ϕ′ is an LTLdnf formula. This can be done
as follows. Let the formulas of the form Gϕ be Gϕ1,...,Gϕn. We have

Gϕ1 ∧ · · · ∧Gϕn = G(ϕ1 ∧ · · · ∧ ϕn).

Since ϕ1∧· · ·∧ϕn is simpler than the formula we started with, the induction
hypothesis is applicable. Therefore ϕ1∧· · ·∧ϕn can be transformed to an LTLdnf

formula. Finally, we collect and transform the formulas of the form ϕUψ (if there
is any) to be a formula of the form ϕ′Uψ′ where ϕ′ and ψ′ are LTLdnf Formulas.
Let the formulas of the form ϕUψ be ϕ1Uψ1,...,ϕmUψm. Let [m] denote the set
{1, ..., m}. We have

(ϕ1Uψ1) ∧ · · · ∧ (ϕmUψm)
= (

∧
i∈[m] ϕi)U(

∨
i∈[m](ψi ∧

∧
j∈[m]\{i}(ϕjUψj)))

Since
∧

i∈[m] ϕi and ψi ∧
∧

j∈[m]\{i}(ϕjUψj) are simpler than the formula
we started with, the induction hypothesis is applicable and these formulas can
be transformed to LTLdnf formulas. Therefore a formula with the outermost
operation ∧ can also be transformed into a formula in the required format.

As a summary, every LTL formula (in NNF) can be transformed into an
equivalent LTLdnf formula by the following transformation rules (in addition to
the associativity and commutativity of conjunction and disjunction).

X(ϕ0 ∧ ϕ1) = Xϕ0 ∧Xϕ1

X(ϕ0 ∨ ϕ1) = Xϕ0 ∨Xϕ1

XGϕ0 = GXϕ0

X(ϕ0Uϕ1) = Xϕ0UXϕ1

ϕ ∧ (ψ0 ∨ ψ1) = (ϕ ∧ ψ0) ∨ (ϕ ∧ ψ1)
Gϕ ∧Gψ = G(ϕ ∧ ψ)
(ϕ0Uϕ1) ∧ (ψ0Uψ1) = (ϕ0 ∧ ψ0)U((ϕ1 ∧ (ψ0Uψ1))∨

(ψ1 ∧ (ϕ0Uϕ1)))

By examining these transformation rules, we have that the formulas on both
sides are equivalent also with respect to the weak bounded semantics.

Theorem 4. Let ϕ be an LTL formula, and ϕ′ be an LTLdnf formula con-
structed from ϕ by applying the given rules. Then π |=e ϕ iff π |=e ϕ′.

Proof. Since each of the rules is sound with respect to the weak bounded seman-
tics, the theorem follows from induction on the number of applications of the
rules.

A property of the transformation rules is that if ϕ and ψ are LTLdnf formulas
with G-rank ≤ n, then the G-rank of ϕ ∧ ψ (viewed as an abbreviation of the
equivalent LTLdnf formula after the transformation) is also ≤ n.

4.2 LTLdnf (X,G)

Following the definition of LTLdnf , every LTL(X,G) formula can be transformed
into an equivalent LTLdnf formula (with respect to both the normal semantics
and the weak bounded semantics) restricted to temporal operators X and G.
We denote this fragment of LTLdnf by LTLdnf (X,G). Instead of considering
LTL(X,G) formulas, we now consider LTLdnf (X,G) formulas. Without of loss of
generality, We only consider LTLdnf (X,G) formula of the following form

ψ0 ∨
n∨

i=1

ψi ∧Gϕi

where ψi for i = 0, ..., n are base LTLdnf formulas (ψi may be true) and ϕi for
i = 1, ..., n are LTLdnf formulas of the above form. A formula not in this form is
considered as an abbreviation of the equivalent formula of this form.

Lemma 5. Let ζ = ζ ′0∨(ζ ′1∧Gζ1)∨· · ·∨(ζ ′n∧Gζn) be an LTLdnf (X,G) formula.
Let gr be the G-rank of ζ, and xr be the X-rank of ζ. There is an f such that if
π |=e ζ with |π| ≥ f(gr, ζ) then there is an xr ≤ i < π such that π0 · · ·πi |= ζ.

Proof. The case is obvious, if π |=e ζ ′0. Suppose that one of (ζ ′i ∧ Gζi) for i =
1, ..., n holds. The case where gr = 1 is covered by Corollary 3. Let m = ((2 ·xr+
1) · k2·xr+1

M + 2 · xr · kM + 1). In this case, we may just set f(1, ζ) = m. Suppose
that the lemma holds for formulas with G-rank ≤ t and gr = t + 1. Assume (1)
π |=e (ζ ′1∧Gζ1) (the other cases are similar). Let ζ1 be ψ0∨(ψ1∧Gϕ1)∨· · ·∨(ψn1∧
Gϕn1). Let π = π0 · · ·πk. Since π |=e Gζ1, without loss of generality, we assume
that Gϕi holds at some point on π for all i (otherwise, we only need to consider a
simpler formula), and assume (2) there is 0 ≤ a0 ≤ a1 ≤ a2 ≤ · · · ≤ an1 ≤ k + 1
(the other cases are similar) such that

– πj |=e ψ0 for j = 0, ..., a0 − 1;
– πa0 |=e Gϕ1 and πj |=e (ψ0 ∨ ψ1) for j = a0, ..., a1 − 1;
– πa1 |=e G(ϕ1 ∧ ϕ2) and πj |=e (ψ0 ∨ ψ1 ∨ ψ2) for j = a1, ..., a2 − 1;
– · · ·;
– πan1−1 |=e G(ϕ1 ∧ · · · ∧ ϕn1) and πj |=e (ψ0 ∨ ψ1 ∨ · · · ∨ ψn1) for j =

an1−1, ..., an1 − 1;

Let ζ1(i) be
∧a0−1

j=0 Xjψ0∧∧a1−1
j=a0

Xj((ψ0 ∨ ψ1) ∧ ϕ1) ∧ · · · ∧∧ai−1
j=ai−1

Xj((ψ0 ∨ ψ1 ∨ · · · ∨ ψi−1) ∧ ϕ1 ∧ · · · ∧ ϕi−1)∧
GXai((ψ0 ∨ ψ1 ∨ · · · ∨ ψi) ∧ ϕ1 ∧ · · · ∧ ϕi)

Considering ζ1(i) as an abbreviation of the equivalent LTLdnf (X,G) formula,
the G-rank of ζ1(i) is ≤ t. This fact is needed for the use of induction.

If a0 ≥ m, then π0 · · ·πm−1 |=e ψ0. Then according to Lemma 4, there is
an xr ≤ j < m such that π0 · · ·πj |= Gψ0, and therefore π0 · · ·πj |= Gζ1,
π0 · · ·πj |= ζ ′1 ∧ Gζ1, and π0 · · ·πj |= ζ. For the remaining cases, the induction
hypothesis is to be used.

Assume a0 < m. Let m0 = m and mi = max{f(t, ζ1(i − 1)) | aj < mj , j =
0, ..., i−1}. Since we have π0 · · ·πai−1 |=e ζ1(i), if ai ≥ mi, let xr′ be the X-rank
of ζ1(i), then according to the induction hypothesis, there is an xr ≤ xr′ ≤ j < ai

such that π0 · · ·πj |= ζ1(i) and therefore π0 · · ·πj |= Gζ1, π0 · · ·πj |= ζ ′1 ∧ Gζ1,
and π0 · · ·πj |= ζ. Let f1,1(t + 1, ζ) = max{m0,m1, ..., mn1}. Then, in the case
with assumption (1) and (2), we have that if |π| ≥ f1,1(t + 1, ζ), there is an
xr ≤ i < |π| such that π0 · · ·πi |= ζ.

Similar for the other cases, we can define f1,j(t+1, ζ) for j = 2, ..., n1! similar
to f1,1(t + 1, ζ) for each permutation of the order of ai, and define fi,j(t + 1, ζ)
for i = 2, ..., n and j = 1, ..., ni! for the case when π |=e ζ ′i ∧Gζi holds. Finally,
we define f(t + 1, ζ) to be the maximum of these numbers. Then we have that
if |π| ≥ f(t + 1, ζ), there is an xr ≤ i < |π| such that π0 · · ·πi |= ζ. ut

Since every LTL(X,G) formula can be transformed into an equivalent LTLdnf

(X,G) formula, the result on LTLdnf (X,G) formulas applies also to LTL(X,G)
formulas.

Corollary 4. Let M be a model, ψ an LTL(X,G) formula. Let π be an infinite
path of M . If for all k, π0 · · ·πk |=e ψ, then there is an infinite path π′ of M
such that π′ |= ψ.

4.3 Verification Approach for the Negation of LTL(X,G) Formulas

Theorem 5. Let M be a model, ϕ an LTL(X,G) formula. M |= ¬ϕ iff there is
a k such that Mk 6|=e ϕ.

Proof. This theorem follows from Theorem 1 and Corollary 4.

Corollary 5. Let M be a model, ϕ an LTL(X,G) formula. M |= ¬ϕ iff there is
a k such that [[M, ϕ]]k is unsatisfiable.

The bounded model verification approach in the Section 3 can therefore be
improved to be as follows for verification of the negation of LTL(X,G) formulas.
Let M be a model and ϕ be a temporal formula such that ¬ϕ is an LTL(X,G)
formula. For verification of M |= ϕ, we have the following steps.

– Start with k = 0;
– If [[M,¬ϕ]]k is unsatisfiable, report that M |= ϕ is valid;
– If [[M,¬ϕ]]ok is satisfiable, report that M |= ϕ does not hold;
– Increase k and repeat the process.

In this procedure, the use of the completeness threshold has been avoided.
The termination of this procedure is guaranteed by Theorem 5 and Theorem 3.

5 Concluding Remarks

For the first, a weak bounded semantics for LTL has been presented as a theo-
retical basis for the SAT-based bounded verification of LTL formulas. Then as
known that this is not a complete approach, we have proved for a subset of LTL
that this verification approach is complete. We have also provided an example
to show the potential advantage of the verification approach and discussed the
advantage of a combination of this approach with the traditional bounded model
checking approach.

References

1. A. Biere, A. Cimmatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. Advances in Computers 58, Academic Press, 2003.

2. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

3. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, Yunshan
Zhu. Symbolic Model Checking Using SAT Procedures instead of BDDs. DAC
1999: 317-320

4. Edmund M. Clarke, Armin Biere, Richard Raimi, Yunshan Zhu. Bounded Model
Checking Using Satisfiability Solving. Formal Methods in System Design 19(1):
7-34 (2001).

5. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit
verification using symbolic model checking. DAC 1990:46-51.

6. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. IEEE Symposium on Logic in Computer
Science 5: 428-439, 1990.

7. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. Lecture Notes in Computer Science 131:52-71.
Springer-Verlag, 1981.

8. E. M. Clarke and E. A. Emerson and A. P. Sistla. Automatic Verification of Finite
state Concurrent Systems Using Temporal Logic Specifications. POPL 1983:117-
126.

9. E. Allen Emerson and E. M. Clarke. Using Branching-time Temporal Log-
ics to Synthesize Synchronization Skeletons. Science of Computer Programming
2(3):241-266. 1982.

10. Ranjit Jhala and Kenneth L. McMillan. Interpolation and SAT-based Model
Checking. CAV 2003: 1-13.

11. D. Kroening, O. Strichman. Efficient Computation of Recurrence Diameters. VM-
CAI 2003: 298-309.

12. Leonardo de Moura, Harald Ruess, Maria Sorea. Bounded Model Checking and
Induction: From Refutation to Verification. CAV 2003: 14-26.

13. A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science
13:45-60. 1981.

14. Mary Sheeran, Satnam Singh and Gunnar Stlmarck. Checking Safety Properties
Using Induction and a SAT-Solver. FMCAD 2000: 108-125.

15. Wenhui Zhang: SAT-Based Verification of LTL Formulas. Lecture Notes in Com-
puter Science 4346 (FMICS/PDMC 2006):277-292.

