
Bounded Semantics of CTL and SAT-based Verification

Wenhui Zhang
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

P.O.Box 8718, Beijing 100080, China

April 28, 2009

Abstract

Bounded model checking has been proposed as a com-
plementary approach to BDD based symbolic model check-
ing for combating the state explosion problem, esp. for
efficient error detection [3]. This has led to a lot of suc-
cessful work with respect to error detection in the checking
of LTL, ACTL (the universal fragment of CTL) and ACTL*
properties by satisfiability testing [3, 22, 25]. The use of
bounded model checking for verification (in contrast to er-
ror detection) of LTL and ACTL properties has later also
been studied [28, 30]. This paper studies the potentials and
limitations of bounded model checking for the verification
of CTL and CTL∗ formulas. On the theoretical side, we first
provide a framework for discussion of bounded semantics,
which serves as the basis for bounded model checking, then
extend the bounded semantics of ACTL [30] to a bounded
semantics of CTL, and discuss the limitation of developing
such a bounded semantics for CTL∗. On the practical side,
a deduction of a SAT-based bounded model checking ap-
proach for ACTL properties from the bounded semantics
of CTL is demonstrated, and a comparison of such an ap-
proach with BDD-based model checking is presented based
on experimental results.

1 Introduction

Bounded semantics of LTL with existential interpreta-
tion and that of ECTL (the existential fragment of CTL),
and the characterization of these existentially interpreted
properties have been studied and used as the theoretical ba-
sis for SAT-based bounded model checking [3, 22]. This
has led to successful works with respect to error detection in
the checking of LTL and ACTL (the universal fragment of
CTL) properties by satisfiability testing [2]. It is considered
as a complementary technique to BDD-based model check-
ing [5, 4, 20, 7] for combating the state explosion problem
[6], esp. for efficient error detection [23]. Bounded seman-

tics of existential LTL and that of ECTL, and the characteri-
zation of such properties are consistent with the fact that the
witness of the properties can be searched within a fragment
of the valid paths. For verification purposes, one need to
reach a completeness threshold or some termination criteria
[17, 9, 16, 10, 1] in order to show the non-existence of a
counter-example. This may not be as efficient. On the other
hand, the principle of bounded model checking for verifica-
tion (called bounded verification for short) should be sim-
ilar to bounded error detection, such that we start with a
small bounded model, if this is not sufficient, we increase
the bound, until we have a conclusion or we run out of re-
sources. With this principle in mind, bounded verification
should check whether every representative part (a k-path or
a set of such paths) of the system satisfies some property,
and according to this, conclude whether the system satisfies
this property. Bounded verification of general LTL formu-
las has been considered in [28], which can equivalently be
formulated as that a model satisfies an LTL formula ϕ if
there is a k-model such that every k-path starting with some
initial state satisfies ϕ. The paper provides a sufficient con-
dition (not a sufficient and necessary condition) and has dis-
cussed that in some special cases such as when dealing with
LTL formulas restricted to pUq, the sufficient condition is
actually a sufficient and necessary condition (for formulas
of the form Fp, a similar characterization is already known
[2]). Similar ideas have then been applied to ACTL formu-
las [29] and a similar result was obtained, and an imple-
mentation with experimental results was reported in [27].
These approaches for verification of LTL and ACTL formu-
las are based on bounded semantics of existential LTL and
ECTL with some kinds of weakening, which result in an
incomplete bounded characterization (i.e. with only a suffi-
cient condition) of LTL and ACTL formulas. This problem
has then been studied in [30] and a bounded semantics for
ACTL and a characterization of ACTL properties by propo-
sitional formulas were provided. An improvement of the
SAT-based encoding of the verification problem was con-
sidered in [8].

1

In this paper, on the theoretical side, we first propose a
framework for discussion of bounded semantics, then ex-
tend the bounded semantics of ACTL to a sound and com-
plete bounded semantics of CTL, and show that there is no
such sound and complete semantics for CTL* in the given
framework. On the practical side, we apply the bounded se-
mantics of CTL to derive a SAT-based characterization of
ACTL properties, and compare such a characterization with
BDD based verification approaches.

2 Bounded Semantics

In this section, we provide a framework for discussion of
bounded semantics.

A Kripke structure is a quadruple M = 〈S, T, I, L〉
where S is a set of states, T ⊆ S × S is a transition re-
lation which is total, I ⊆ S is a set of initial states and
L : S → 2AP is a labeling function that maps each state to
a subset of propositions of AP .

An infinite path π = π0π1 · · · of M is an infinite se-
quence of states such that (πi, πi+1) ∈ T for all i ≥ 0. A
finite path π of M is a finite prefix of an infinite path of M .
A k-path is a finite path with length k+1 (and k transitions).
Given a path π = π0π1 · · ·, we use πi to denote the subpath
of π starting at πi, use π(s) to denote a path with π0 = s.
Then ∃π(s).ϕ means that there is a path π with π0 = s such
that ϕ holds, and ∀π(s).ϕ means that for every path π with
π0 = s, ϕ holds.

Semantics of temporal logics is defined with respect to
Kripke structures. For brevity, a Kripke structure is called a
model. We require a semantic relation to be compositional.
We first define what we mean by compositionality with re-
spect to path quantifiers (universal and existential) and with
respect to propositional connectives (conjunction and dis-
junction).

Definition 2.1 (Compositionality w.r.t. Path Quantifiers)
Let M be a model and s be a state. Let |=a be a relation
defined for path formulas and state formulas. The relation
|=a is compositional with respect to path quantifiers, if the
following hold:

• M, s |=a Aϕ iff M, π(s) |=a ϕ for all π(s) of M .

• M, s |=a Eϕ iff M, π(s) |=a ϕ for some π(s) of M .

Let a structure be either a combination of M and a state
or of M and a path (either a finite one or an infinite one).

Definition 2.2 (Compositionality w.r.t. Prop. Connectives)
Let S be a structure. Let |=a be a relation. The relation |=a

is compositional with respect to propositional connectives,
if the following hold:

• S |=a ϕ ∨ ψ iff S |=a ψ or S |=a ψ

• S |=a ϕ ∧ ψ iff S |=a ψ and S |=a ψ

The compositionality property is a formalization of the
standard understanding of the path quantifiers and the
propositional connectives. In addition, we formulate a con-
sistency property with respect to the labeling at given posi-
tions (in a sequence of states).

Definition 2.3 (Consistency w.r.t. Position Labeling)
Let M be a model and s be a state. Let |=a be a relation
defined for path formulas and state formulas. Let X be the
next-time operator. Let p be a proposition. The relation |=a

satisfies the consistency property, if the following hold:

• M, s |=a p iff p ∈ L(s).

• M, π |=a Xnp iff p ∈ L(πn) when πn is the (n+1)-th
state of π.

A simple compositional semantic relation is a relation
which is compositional with respect to both propositional
connectives and path quantifiers (whenever applicable) and
satisfies the consistency property. For brevity, such a re-
lation is called a simple relation. A compositional seman-
tic relation is either a simple compositional semantic rela-
tion or a propositional combination of such relations. For
brevity, such a relation is called a semantic relation.

Without loss of generality, a propositional combination
of simple relations may be written as a disjunction of con-
junctions of such relations, for instance, a semantic relation
|= may be written as

∨m
i=1

∧n
j=1 |=i,j . Then S |= ϕ iff

there is an i such that S |=i,j ϕ holds for all j.
A bounded semantics is then represented by a family of

semantic relations each defined on a bounded structure with
a parameter indicating the bound. Let us call such a struc-
ture a k-structure.

Definition 2.4 (Soundness and Completeness) Let Sk be
a k-structure of S. Let |=a,k be a family of semantic re-
lations with respect to a given relation |=. The bounded
semantics defined by |=a,k is sound and complete, iff the
following hold:

• (Soundness) If Sk |=a,k ϕ for some k ≥ 0, then S |=
ϕ.

• (Completeness) If S |= ϕ, then there is a k ≥ 0 such
that Sk |=a,k ϕ.

Remark The purpose of this framework is to formalize
the usual understanding of good bounded semantics. It ex-
cludes some definitions from being considered as semantic
definitions, for instance, the following one: M, s |= Aϕ iff
L(A(M, s)) ⊆ L(A(ϕ)) where L(A(M, s)) and L(A(ϕ))
are the languages of the automata constructed from respec-
tively the structure M, s and the LTL formula ϕ, because

it does not comply with compositionality and lacks good
characteristics of a semantic definition of temporal logics.
For the definition of the semantics of M, s |= Aϕ, it is rea-
sonable to look for other kinds of definitions (with good
structure and intuition).

3 On CTL

In this section, we provide a bounded semantics for CTL,
and formulate a bounded model checking and verification
principle for CTL properties.

Computation tree logic (CTL) is a propositional
branching-time temporal logic [13] introduced by Emerson
and Clarke as a specification language for finite state sys-
tems. Let AP be a set of propositional symbols. The set of
CTL formulas is defined as follows:

Every member of AP is a CTL formula.
The logical connectives of CTL are: ¬, ∧, and ∨.
If ϕ and ψ are CTL formulas, then so are:
¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ.
The temporal operators are:
EX , ER, EU , AX , AR, and AU .
If ϕ and ψ are CTL formulas, then so are:
EX ϕ, E(ϕ R ψ), E(ϕ U ψ), AX ϕ, A(ϕ R ψ), and
A(ϕ U ψ).

3.1 Semantics of CTL

Let M be a model, s a state, ϕ a CTL formula. The
relation that ϕ holds on s in M is denoted M, s |= ϕ.

Definition 3.1 (Semantics of CTL) Let p be a proposi-
tional symbol, ϕ and ψ CTL formulas. Let π = π0π1 · · ·
be an infinite path of M . The relation M, s |= ϕ is defined
as follows.

M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∧ ψ iff (M, s |= ϕ) and (M, s |= ψ)
M, s |= ϕ ∨ ψ iff (M, s |= ϕ) or (M, s |= ψ)
M, s |= AXϕ iff ∀π(s).(M, π1 |= ϕ)
M, s |= AFψ iff ∀π(s).(∃k ≥ 0.(M, πk |= ψ)
M, s |= AGψ iff ∀π(s).(∀k ≥ 0.(M, πk |= ψ)
M, s |= A(ϕUψ) iff ∀π(s).(∃k ≥ 0.(M, πk |= ψ∧

∀j < k.(M, πj |= ϕ)))
M, s |= A(ϕRψ) iff ∀π(s).(∀k ≥ 0.(M, πk |= ψ∨

∃j < k.(M, πj |= ϕ)))
M, s |= EXϕ iff ∃π(s).(M, π1 |= ϕ)
M, s |= EFψ iff ∃π(s).(∃k ≥ 0.(M, πk |= ψ)
M, s |= EGψ iff ∃π(s).(∀k ≥ 0.(M, πk |= ψ)
M, s |= E(ϕUψ) iff ∃π(s).(∃k ≥ 0.(M, πk |= ψ∧

∀j < k.(M, πj |= ϕ)))
M, s |= E(ϕRψ) iff ∃π(s).(∀k ≥ 0.(M, πk |= ψ∨

∃j < k.(M, πj |= ϕ)))

A CTL formula is in negation normal form (NNF), if the
symbol ¬ is applied only to propositional symbols. Every
formula can be transformed into an equivalent formula in
NNF.

The sublogic ACTL is the subset of CTL formulas that
can be transformed into NNF formulas such that the tem-
poral operators are restricted to {AX, AF, AG,AU,AR}.
The sublogic ECTL is the subset of CTL formulas that can
be transformed into NNF formulas such that the temporal
operators are restricted to {EX, EF, EG, EU,ER}.

Definition 3.2 Let ϕ be an ACTL formula. ϕ is true in M ,
denoted M |= ϕ, iff ϕ is true at all initial states of M .

Definition 3.3 Let ϕ be an ECTL formula. ϕ is true in M ,
denoted M |= ϕ, iff ϕ is true at some initial states of M .

3.2 Bounded Semantics of CTL

Since every CTL formula can be transformed into an
equivalent formula in NNF, we only consider formulas in
NNF. Therefore, in the following, a formula refers to such
a CTL formula unless otherwise stated. For simplicity, we
fix the model under consideration to be M = 〈S, T, I, L〉,
and in the sequel, M refers to this model, unless otherwise
stated.

k-Path Let k ≥ 0. A k-path of M is a finite path of M
with length k + 1. π is a k-path, if π = π0 · · ·πk such
that πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for i =
0, ..., k − 1. For the idea of a k-path, the reader is referred
to [3].

Bounded Model The k-model of M is a structure Mk =
〈S, Phk, I, L〉 where Phk is the set of all different k-paths
of M . Mk can be considered as an approximation of M .
For the idea of a bounded model, the reader is referred to
[22].

Loop A loop is a k-path π such that πi = πj for some
0 ≤ i < j ≤ k. Let lp(π) denote that π is a loop. An
important property of a loop is that if π is a prefix of π′,
then lp(π) → lp(π′). Note that this notation of loop is
different from the one defined in [3], which is a loop such
that the last element has a successor to some element in the
loop. Such a loop does not have the property stated above.

Definition 3.4 (Bounded Semantics of CTL) Let Mk be
the k-model of M , s a state, p a propositional symbol, ϕ
and ψ CTL formulas. The relation that ϕ holds on s in Mk

is denoted Mk, s |= ϕ. Let π = π0 · · ·πk be a k-path of
Phk. Let [n] denote the set {0, ..., n}. The relation |= is
defined as follows.

Mk, s |= p iff p ∈ L(s) .
Mk, s |= ¬p iff p 6∈ L(s)
Mk, s |= ϕ ∧ ψ iff (Mk, s |= ϕ) and (Mk, s |= ψ)
Mk, s |= ϕ ∨ ψ iff (Mk, s |= ϕ) or (Mk, s |= ψ)
Mk, s |= AXϕ iff
k ≥ 1 ∧ ∀π(s).(Mk, π1 |= ϕ)
Mk, s |= AFψ iff
∀π(s).(∃i ≤ k.(Mk, πi |= ψ))
Mk, s |= AGψ iff
∀π(s).(lp(π)∧ (∀i ≤ k.(Mk, πi |= ψ)))
Mk, s |= A(ϕUψ) iff
∀π(s).(∃i ≤ k.(Mk, πi |= ψ∧ ∀j < i.(Mk, πj |= ϕ)))
Mk, s |= A(ϕRψ) iff
∀π(s).(∀i ≤ k.(Mk, πi |= ψ∨ ∃j < i.(Mk, πj |= ϕ)) ∧
(∃j ≤ k.(Mk, πj |= ϕ) ∨ lp(π)))
Mk, s |= EXϕ iff
k ≥ 1 ∧ ∃π(s).(Mk, π1 |= ϕ)
Mk, s |= EFψ iff
∃π(s).(∃i ≤ k.(Mk, πi |= ψ))
Mk, s |= EGψ iff
∃π(s).(lp(π)∧ (∀i ≤ k.(Mk, πi |= ψ)))
Mk, s |= E(ϕUψ) iff
∃π(s).(∃i ≤ k.(Mk, πi |= ψ∧ ∀j < i.(Mk, πj |= ϕ)))
Mk, s |= E(ϕRψ) iff
∃π(s).(∀i ≤ k.(Mk, πi |= ψ∨ ∃j < i.(Mk, πj |= ϕ)) ∧
(∃j ≤ k.(Mk, πj |= ϕ) ∨ lp(π)))

This semantics of CTL is an extension of the ACTL
bounded semantics given in [30]. Note that an extension of
the ECTL and ECTL∗ bounded semantics given in [22] to
a bounded semantics of CTL∗ has been done in [24], how-
ever the bounded semantics given in [24] is not regarded as
a sound one within our framework1. We establish that for
CTL, the bounded semantics given above is sound by first
presenting some lemmas.

Lemma 3.1 If Mk, s |= ϕ, then Mk+1, s |= ϕ.

A formal proof is to be based on structural induction.
The main arguments are explained as follows. For the first,
we observe that every k-path in Mk is a prefix of a path
in Mk+1, and every (k + 1)-path in Mk+1 is an exten-
sion of a path in Mk. By looking at the definition, we
can be assured that there is no problem in the cases of
AX, AF, AU,EX,EF,EU . By recognizing that the se-
mantics of AG and EG can be derived from that of AR
and ER (also in this bounded semantics), we only need to
look further at the two cases AR and ER. We first consider
the case of AR. Suppose that Mk, s |= A(ϕRψ) holds and

1The bounded semantics stated that a property is true iff the property
is true in a bounded model for a given k (not for some k ≥ 0 as in our
framework), and since the given k is very large, it is not useful as a basis
for establishing an efficient bounded model checking approach.

Mk+1, s |= A(ϕRψ) does not hold. Then there is a π(s)
such that

∀i ≤ k + 1.(Mk+1, πi |= ψ ∨ ∃j < i.(Mk+1, πj |= ϕ))
∧(∃j ≤ k + 1.(Mk+1, πj |= ϕ) ∨ lp(π))

(denote hereafter by (*)) does not hold. Let π′ be the k-
path that is at the same time a prefix of π. If lp(π′) does
not hold, then ∀i ≤ k.(Mk, πi |= ψ ∨ ∃j < i.(Mk, πj |=
ϕ)) ∧ (∃j ≤ k.(Mk, πj |= ϕ)) holds. Then by the induc-
tion hypothesis, we have ∀i ≤ k.(Mk+1, πi |= ψ ∨ ∃j <
i.(Mk+1, πj |= ϕ)) ∧ (∃j ≤ k.(Mk+1, πj |= ϕ)). This
contradicts to that (*) does not hold. If lp(π′) holds, then
∀i ≤ k.(Mk, πi |= ψ ∨ ∃j < i.(Mk, πj |= ϕ)) ∧ lp(π′)
holds. Similarly, by the induction hypothesis, we have ∀i ≤
k.(Mk+1, πi |= ψ ∨ ∃j < i.(Mk+1, πj |= ϕ)) and since
lp(π′) implies lp(π), the only possible case that may fail (*)
is that (Mk+1, πk+1 |= ψ ∨ ∃j < k + 1.(Mk+1, πj |= ϕ))
does not hold. Let π = π0 · · ·πkπk+1. Since lp(π′) holds,
we have that πi = πj for some 0 ≤ i < j ≤ k. Let
π′′ = π0 · · ·πiπj+1 · · ·πkπk+1. Then π′′ is a prefix (not
necessarily a proper one) of some k-path starting with s.
Since Mk, s |= A(ϕRψ), ∀i ≤ k.(Mk, π′′i |= ψ ∨ ∃j <
i.(Mk, π′′j |= ϕ))∧(∃j ≤ k.(Mk, π′′j |= ϕ)∨lp(π′′)) holds.
Let the position of πk+1 in π be l + 1 (i.e. π′′l = πk+1). We
obtain that (Mk, π′′l |= ψ ∨ ∃j < l.(Mk, π′′j |= ϕ)) holds.
Again, by the induction hypothesis, (Mk+1, π

′′
l |= ψ∨∃j <

l.(Mk+1, π
′′
j |= ϕ)) holds. By comparing π and π′′, we ob-

tain that (Mk+1, πk+1 |= ψ∨∃j < k+1.(Mk+1, πj |= ϕ))
holds. This contradicts to that (*) does not hold. For the
case of ER, the reasoning is similar.

Lemma 3.2 If Mn, s |= ϕ for some n ≥ 0, then M, s |= ϕ.

According to Lemma 3.1, if Mn, s |= ϕ for some
n, then Mk, s |= ϕ holds for a large k. Given
a model, all properties other than those of the form
AGψ, A(ϕRψ), EGψ,E(ϕRψ) can be witnessed by finite
paths. Let k be larger than the length of such paths and also
larger than the number of reachable states of M . Suppose
that a property of the form AGψ, A(ϕRψ), EGψ,E(ϕRψ)
such that ϕ does not hold in any state of π and ψ must hold
in all states of π, and therefore a prefix is not sufficient for
showing the truth of such a property. Since AG and EG can
be considered as subcases of AR and ER, we only consider
A(ϕRψ) and E(ϕRψ). Assume the aforementioned situa-
tion occurs and A(ϕRψ) holds in the bounded semantics.
We want to show that ϕRψ also holds on such a path π. For
the first, the situation implies that ψ is true on every state
of every k-path of which the set of states is a subset of that
of π. For the second, the set of states of all these k-paths
with the starting state π0 covers the set of states of π. These
two conditions guarantee that ψ is true on every state of π
and therefore ϕRψ holds on π. For the case of E(ϕRψ),
since π satisfies (ϕRψ) in the bounded semantics such that

ψ holds on all states of π, an infinite path in which all states
satisfying ψ can be constructed, therefore E(ϕRψ) holds.

Lemma 3.3 If M, s |= ϕ, then Mk, s |= ϕ for some k ≥ 0.

By looking at the definitions, the bounded semantics is
similar to the normal semantics, except that the bounded
semantics has a few additional constraints. Let k be suf-
ficiently large. Then the two conditions k ≥ 1 and lp(π)
in the bounded semantics hold without any problem. By
simplifying the bounded semantics based on this fact, the
difference between the bounded semantics and the normal
semantics is that the paths in the bounded semantics are re-
stricted to k-paths, while the paths in the normal seman-
tics are infinite paths. Therefore if M, s |= ϕ holds, then
Mk, s |= ϕ holds for a sufficiently large k (large enough to
make lp(π) true for all k-paths). In particular, the number
of reachable states of M will be such a k.

Theorem 3.1 (Soundness and Completeness) M, s |= ϕ
iff Mk, s |= ϕ for some k ≥ 0.

This theorem is a combination of the above lemmas.

Completeness Threshold The completeness threshold of
the problem M, s |= ϕ is defined as the least k such that if
Mk, s |= ϕ does not hold then Mk′ , s |= ϕ does not hold for
all k′ > k. Theorem 3.1 guarantees the existence of such a
completeness threshold.

Lemma 3.4 The completeness threshold of the problem
M, s |= ϕ exists.

If the completeness threshold ct of the problem M, s |=
ϕ is known, then the problem is almost solved. If ct = 0,
then we only need to check whether M0, s |= ϕ holds. If
ct > 0, then we know that Mct, s |= ϕ holds and therefore
M, s |= ϕ also holds. Therefore the complexity of know-
ing the completeness threshold is the same as solving the
problem.

Corollary 3.1 Let ct0 be an over-approximation of the
completeness threshold of M, s |= ϕ. M, s |= ϕ iff
Mk, s |= ϕ for some k ≤ ct0.

Let |M | denote the number of reachable states of M .
|M | is an over-approximation of the completeness thresh-
old of M, s |= ϕ for any CTL formula ϕ. For a given triple
M, s, ϕ, we may use a more accurate over-approximation.
Similar to the definitions in [17, 9], let the initial recurrence
diameter of a state s of M be the number of states in the
longest loop-free path between s and any reachable state,
and the recurrence diameter of M be the number of states
in the longest loop-free path between any two reachable
states. Let ct(M, s, ϕ) denote the completeness threshold of

M, s |= ϕ. Let p, q be propositional formulas. Then the ini-
tial recurrence diameter of s of M is an over-approximation
of ct(M, s,A(pUq)), while the recurrence diameter of M
is an over-approximation of ct(M, s,A(pUA(qUr))).

Bounded Model Checking Principle for CTL Let M be
a model, s a state and ϕ a CTL formula. The bounded model
checking principle2 may be formulated as follows.

Let ct0 be an over approx. of ct(M, s, ϕ);
Let k = 0; .
If Mk, s |= ϕ holds, report that ϕ holds;
If k = ct0, report that ϕ does not hold;
Increase k, go to the first “if”-test;

Because CTL is closed under negation, Theorem 3.1 also
provides a basis for bounded model checking and verifica-
tion (emphasizing the possibility to check whether a for-
mula is true or the negation of the formula is true without
using a completeness threshold or other termination crite-
ria)3 of CTL properties.

Theorem 3.2 M, s |= ϕ iff there is a k such that Mk, s |=
ϕ and there is no k such that Mk, s |= ¬ϕ.

Note that ¬ϕ represents the NNF formula equivalent to
¬ϕ and Mk, s 6|= ϕ is not equivalent to Mk, s |= ¬ϕ.

Bounded Model Checking and Verification Let M be a
model, s a state and ϕ a CTL formula. The bounded model
checking and verification principle may be formulated as
follows.

Let k = 0; .
If Mk, s |= ϕ holds, report that ϕ holds;
If Mk, s |= ¬ϕ holds, report that ϕ does not hold;
Increase k, go to the first “if”-test;

This approach is guaranteed to terminate by Theorem
3.2. One of the features of this bounded model checking
and verification principle is that we do not have to worry
about the completeness threshold which is important in the
previous bounded model checking principle.

4 On CTL∗

In this section, we discuss the possibility of extending the
bounded semantics of CTL to CTL∗, and prove that there

2We call this a principle, not a model checking approach, in the sense
that a direct implementation may not be efficient for general CTL proper-
ties. Later we shall develop an implementable approach for bounded model
checking and verification of ACTL formulas.

3This is not possible with the bounded semantics defined in [3, 22] for
model checking, respectively, LTL and ACTL properties

are no such extensions in our framework of bounded seman-
tics, in contrast to that there is a natural extension (within
this framework) of the bounded semantics of ECTL to that
of ECTL∗ [25].

We first introduce CTL∗ . The temporal logic CTL∗ was
proposed in [14] as a unifying framework subsuming both
CTL and LTL. This extension of CTL waives the restriction
of the use of path quantifiers and path operators such that
they can be used separately. Then there are two types of
formulas in CTL∗. One is state formulas and the other is
path formulas. Let AP be a set of propositional symbols.
The set of CTL∗ formulas over AP is defined as follows:

If p ∈ AP , then p is a state formula.
If ϕ0 and ϕ1 are state formulas,
then ¬ϕ0, ϕ0 ∧ ϕ1 and ϕ0 ∨ ϕ1 are state formulas.
If ψ is a path formula, then Eψ and Aψ are state formulas.
If ϕ is a state formula, then ϕ is a path formula.
If ψ0 and ψ1 are path formulas,
then ¬ψ0, ψ0 ∧ ψ1, ψ0 ∨ ψ1, Xψ0, Fψ0, Gψ0,
ψ0Uψ1 and ψ0Rψ1 are path formulas.

4.1 Semantics of CTL∗

Let M be a model, s a state of M , π a path of M . The
relation ψ holds on π in M for a path formula ψ is denoted
by M, π |= ψ, and the relation ϕ holds on s in M for a state
formula ϕ is denoted by M, s |= ϕ.

Definition 4.1 (Semantics of CTL∗) Let ϕ be a state for-
mula and ψ be a path formula. The relation M, π |= ψ and
M, s |= ϕ are defined as follows.

M, s |= p iff p ∈ L(s)
M, s |= ¬ϕ0 iff M, s 6|= ϕ0

M, s |= ϕ0 ∧ ϕ1 iff M, s |= ϕ0 and M, s |= ϕ1

M, s |= ϕ0 ∨ ϕ1 iff M, s |= ϕ0 or M, s |= ϕ1

M, s |= Eψ0 iff ∃π(s).(M, π |= ψ0)
M, s |= Aψ0 iff ∀π(s).(M, π |= ψ0)
M, π |= ϕ iff M, π0 |= ϕ
M, π |= ¬ψ0 iff M, π 6|= ψ0

M, π |= ψ0 ∧ ψ1 iff M, π |= ψ0 and M, π |= ψ1

M, π |= ψ0 ∨ ψ1 iff M, π |= ψ0 or M, π |= ψ1

M, π |= Xψ0 iff M, π1 |= ψ0

M, π |= Fψ0 iff ∃k ≥ 0.M, πk |= ψ0

M, π |= Gψ0 iff ∀k ≥ 0.M, πk |= ψ0

M, π |= ψ0Uψ1 iff
∃k ≥ 0.∀j < k.(M, πk |= ψ1 ∧M, πj |= ψ0)
M, π |= ψ0Rψ1 iff
∀j ≥ 0.(M, πj |= ψ1)∨
∃k ≥ 0.((M, πk |= ψ0) ∧ (∀j ≤ k.(M, πj |= ψ1))

The restriction of CTL∗ to path formulas such that path
quantifers (E,A) do not occur in the formulas is LTL. The

restriction of CTL∗ to state formulas such that temporal
path operators (X ,F ,G,U ,R) and path quantifers (E,A) oc-
cur in pair and each path operator is immediately preceded
by a path quantifer is CTL.

A CTL∗ formula is in NNF, if the negation ¬ is applied
only to propositional symbols. Every CTL∗ formula can be
transformed into an equivalent formula in NNF. The restric-
tion of CTL∗ to NNF formulas not containing the existential
path quantifier is called ACTL∗. The restriction of CTL∗ to
NNF formulas not containing the universal path quantifier
is called ECTL∗.

Definition 4.2 Let ϕ be an ACTL∗ formula. ϕ is true in
M , denoted M |= ϕ, iff ϕ is true at all initial states of M .
Let ϕ be an ECTL∗ formula. ϕ is true in M , also denoted
M |= ϕ, iff ϕ is true at some initial state of M .

4.2 Bounded Semantics of CTL∗

Let |=a,k be a family of bounded relations each defined
as a propositional combination of simple relations with re-
spect to |= (for state formulas) as follows.

m∨

i=1

(
n∧

j=1

|=i,j
a,k)

Since |=i,j
a,k is a simple relation for state formulas, when

evaluating formulas of the form Aϕ, it must be related to
the corresponding path relation. For clarity, we use a dif-
ferent notation for the corresponding path relation. Let
|=i,j

a,k,p denote the relation |=i,j
a,k for path formulas. Then

Mk, s |=i,j
a,k Aϕ iff Mk, π(s) |=i,j

a,k,p ϕ for every k-path
π(s), according to the compositionality of the relation.

Each |=i,j
a,k,p may also be defined by a disjunction of con-

junctions of simple relations for path formulas. Let such a
definition be as follows.

ai,j∨
x=1

(
bi,j∧
y=1

|=i,j,x,y
a,k,p)

Suppose that M, s |=a,k ϕ holds. Then there is some i

such that for all j and every k-path π(s), Mk, π(s) |=i,j
a,k,p ϕ

holds.
Let R(i) be

∧n
j=1

∨ai,j

x=1(
∧bi,j

y=1 |=i,j,x,y
a,k,p).

Expanding R(i) to a disjunction of conjunctions of sim-
ple relations, we may write R(i) as

∨r
x=1(|=a,k,p,i,x) where

|=a,k,p,i,x is a conjunction of simple relations consistent
with the definition of R(i).

Suppose that Mk, s |=a,k ϕ holds. Then there is some i
and x such that for every k-path π(s), Mk, π(s) |=a,k,p,i,x

ϕ holds.

Lemma 4.1 Suppose a sound and complete bounded se-
mantics with respect to |= is defined by the family of
bounded relations |=a,k. Then the following hold:

1. If Mk, π |=a,k,p,i,x Gp, then p ∈ L(πi) for all i ∈ [k].

2. If Mk, π |=a,k,p,i,x Fp, then p ∈ L(πi) for some i ∈
[k].

Proof: Suppose that |=a,k is such a family of relations
defining the bounded semantics and Mk, π |=a,k,p,i,x Gp
without requiring every πi satisfy p. Then we can con-
struct a model M ′ such that π ∈ M ′

k and a formula ϕ (a
disjunction of conjunctions of formulas of the form Xnq
where 0 ≤ n ≤ k and q is a propositional formula charac-
terizing the n-th state of a path) characterizing the k-paths
starting at π0 that are not identical to π. Then we have
M ′

k, π′ |=a,k,p,i,x ϕ ∨ Gp for every k-path π′ starting at
π0. Then according to the completeness of |=a,k, we obtain
that M ′, π0 |= A(ϕ∨Gp) which is obviously not true, since
not every state along the path starting with π0, not charac-
terized by ϕ, satisfies p. This is a contradiction. Therefore
the first property must hold. Similarly, the second property
must hold.

Theorem 4.1 There is no sound and complete bounded se-
mantics with respect to the semantics of CTL∗.

Proof: Suppose that |=a,k is such a family of relations
defining the bounded semantics. Let M be the model shown
in Fig. 1. Let ϕ be A(Gp ∨ Fr).

Figure 1. Model with two loops

Since M, s0 |= ϕ, there is a k ≥ 0 such that Mk, s0 |=a,k

ϕ according to the completeness of |=a,k. There are follow-
ing three types of k-paths in Mk that starts with s0.

• (s0)k+1

• (s0)ks1 for k ≥ 1.

• (s0)is1(s2)j for k ≥ 1 and i + j = k.

By Lemma 4.1 and the compositionality of the relation,
the only possibility for Mk, s0 |=a,k ϕ to hold is the case
when k = 0, since (s0)ks1 does not satisfy Gp∨Fr for any

relation corresponding to |=a,k,p,i,x. When k = 0, there is
only one path in M0, namely s0. Then M0, s0 |=a,k ϕ.

Let M ′ be the modification of M such that a self-loop
from s1 to s1 is added, as shown in Fig. 2.

Figure 2. Model with three loops

Let M ′
0 be the 0-model of M ′. Since M ′

0=M0, we have
M ′

0, s0 |=a,k ϕ for k = 0 as well. Then we obtain M ′, s0 |=
ϕ according to the soundness of |=a,k. This is not a correct
conclusion. Therefore |=a,k does not have the properties as
claimed. We conclude that the theorem holds.

On ACTL∗ The proof above also shows that there are no
sound and complete bounded semantics for ACTL∗. On
the other hand, for ECTL∗, a sound and complete bounded
semantics is available [25].

5 Applications

The bounded semantics of CTL may serve as a basis
for developing a bounded model checking algorithm for
checking CTL formulas based on QBF (quantified boolean
formulas)-solvers [19]. However, in this section, we will
rather concentrate on checking ACTL formulas based on
SAT (boolean satisfiability)-solvers, because the universal
properties are considered typical in system specifications
[11], and of the efficiency of SAT-solvers.

5.1 Further Development for ACTL Properties

For the practical use of the verification principle, the
main problem is how to verify Mk, s |= ϕ and Mk, s |= ¬ϕ.
Since there are many bounded paths in Mk (an over estima-
tion of the number of bounded paths is |M |k+1), a brute-
force checking of the validity of the two problems is not
practical. The development in this section for the verifi-
cation of ACTL properties is similar to that presented in
[22, 30], only that this is now developed under the bounded
semantics of CTL that admits bounded model checking and
verification principle.

Definition 5.1 (Submodels) Let Mk = 〈S, Phk, I, L〉 be
the k-model of M . Mn

k = 〈S, Phn
k , I, L〉 is a submodel of

Mk, if Phn
k ⊆ Phk where n denotes the size of Phn

k . We

write Mn
k ≤ Mk for this relation and call Mn

k a (k, n)-
submodel of Mk.

Let M b
k be a (k, b)-submodel of Mk. Let the relation

M b
k , s |= ϕ be defined similar to the relation Mk, s |= ϕ,

only with paths restricted to that of M b
k . For a sufficiently

large n, an ACTL formula is satisfied in a k-model iff it is
satisfied in all submodels of size n, and an ECTL formula
is satisfied in a k-model iff it is satisfied in some submodel
of size n. Note that since we do not have Mk, s |= ϕ iff
Mk, s 6|= ¬ϕ, the above two statements are different, and
need to be considered separately. Obviously, if we put n =
|M |k+1, the statements hold. However, we are interested in
smaller n.

Let ϕ be an ACTL formula and ψ be an ECTL formula.
Let na

k(ϕ) be the least number such that for all s, Mk, s |= ϕ
iff M ′

k, s |= ϕ for all (k, na
k(ϕ))-submodels M ′

k. Let ne
k(ψ)

be the least number such that for all s, Mk, s |= ψ iff
M ′

k, s |= ψ for some (k, ne
k(ψ))-submodel M ′

k. We con-
sider over-approximations of na

k(ϕ) and ne
k(ψ).

Definition 5.2 Let ϕ be an ACTL formula. fk(ϕ) is defined
as follows.

fk(p) = 0 if p ∈ AP
fk(¬p) = 0 if p ∈ AP
fk(ϕ0 ∧ ϕ1) = max(fk(ϕ0), fk(ϕ1))
fk(ϕ0 ∨ ϕ1) = fk(ϕ0) + fk(ϕ1)
fk(AXϕ) = fk(ϕ) + 1
fk(AFϕ) = (k + 1) · fk(ϕ) + 1
fk(AGϕ) = fk(ϕ) + 1
fk(A(ϕ0Uϕ1)) = k ·max(fk(ϕ0), fk(ϕ1))+

fk(ϕ0) + fk(ϕ1) + 1
fk(A(ϕ0Rϕ1)) = k · fk(ϕ0)+

max(fk(ϕ0), fk(ϕ1)) + 1

Lemma 5.1 Let ϕ be an ACTL formula. na
k(ϕ) ≤ fk(ϕ).

Let ϕ be an ACTL formula. Then Mk, s |= ϕ iff
M ′

k, s |= ϕ for all (k, fk(ϕ))-submodels M ′
k. The reason-

ing is similar to that presented in [22, 30] and is omitted,
although the definition of the semantics and the definition
of the over-approximation of the necessary number of paths
are different4. Similarly, we have the following lemma.

Lemma 5.2 Let ψ be an ECTL formula. ne
k(ψ) ≤ fk(¬ψ).

By Theorem 3.2 and the above two lemmas, we have the
following theorem.

Theorem 5.1 Let ϕ be an ACTL formula. M, s |= ϕ
iff there is a k such that M ′

k, s |= ϕ for all (k, fk(ϕ))-
submodels M ′′

k and there is no k such that M ′′
k , s |= ¬ϕ

for some (k, fk(ϕ))-submodel M ′′
k .

4For simplicity, we do not present functions for calculating over-
approximations for na

k(ϕ) and ne
k(ϕ) separately, such that the definition

of fk() may in some cases seem to be unnecessarily large.

Definition 5.3 Let ϕ be an ACTL formula. M b
k |= ϕ iff

M b
k , s |= ϕ for all s ∈ I .

Definition 5.4 Let ψ be an ECTL formula. M b
k |= ψ iff

M b
k , s |= ψ for some s ∈ I .

The following statement follows from Theorem 5.1.

Corollary 5.1 Let ϕ be an ACTL formula. M |= ϕ iff there
is a k such that M ′

k |= ϕ for all (k, fk(ϕ))-submodels M ′′
k

and there is no k such that M ′′
k |= ¬ϕ for some (k, fk(ϕ))-

submodel M ′′
k .

Bounded Model Checking and Verification for ACTL
Let M be a model and ϕ an ACTL formula. The cor-
responding bounded model checking and verification ap-
proach is as follows.

Let k = 0; .
If M ′

k |= ϕ for all (fk(ϕ), k)-models M ′
k,

report that the property holds;
If M ′

k |= ¬ϕ for some (fk(ϕ), k)-model M ′
k,

report that the property does not hold;
Increase k, go to the first “if”-test;

5.2 SAT-Based Implementation

A SAT-based characterization of the above approach for
ACTL can then be developed5. The development follows
from the idea of [22, 30] and is therefore omitted. It has
then been implemented (the tools is called VERBS6 here-
after) and an experimental study has been carried out with a
comparison to SMV (release 2.5.4.3), an implementation of
the BDD-based symbolic model checking technique [20].
The experiments are carried out on a Sun Blade 1000 with
750 MHz and 512 MB. In the experiments, VERBS inter-
nally calls MiniSat-1.14 [12].

Model The model consists of global boolean variables
p[0],..., p[n−1], q[0], ..., q[n−1], r[0], ..., r[n−1] and three
processes p,q,r, each of which has in addition one local vari-
able and has n transitions. The transitions of p written in the
first order transition system are as follows:

ss = a0 −→ (p[0], ss) := (¬p[0], a1);
ss = a1 −→ (p[1], ss) := (¬p[1], a2);
...
ss = an−2 −→ (p[n− 2], ss) := (¬p[n− 2], an−1);
ss = an−1 −→ (p[n− 1], ss) := (¬p[n− 1], a0);

5For CTL, as mentioned earlier, a QBF-based characterization maybe
developed, however, it is unclear whether it is possible to develop a SAT-
based characterization.

6This is available from the webpage “http://lcs.ios.ac.cn/∼zwh/verbs/”.

Within the process, the variables p[i] are initially set to
0 for all i ∈ {0, ..., n − 1}, and the variable ss (acting
as the program counter, which takes one of the values of
{a0, ..., an−1}) is initially a0 (in practice, ai is interpreted
as number i). The other two processes are similar.

Properties Let ϕ(i) be¬p[i]∧¬q[i]∧¬r[i]. The following
types of properties are considered.

PT1 : A(¬ϕ(i)RA(¬ϕ(j)Rϕ(k)))
PT2 : A(¬ϕ(i)RA(ϕ(j)U ¬ϕ(k)))
PT3 : A(ϕ(i)U A(¬ϕ(j)Rϕ(k)))
PT4 : A(ϕ(i)U A(ϕ(j)U ¬ϕ(k)))

Experimental Results and Discussion There are n3

properties of each type (i, j, k range from 0 to n − 1). The
experimental data for n = 9 (with 729 properties of each
type) is summarized in Table 1. The explanation of the sym-
bols in the table is as follows.

A number of true properties of each
of the types in the model

B number of false properties of each
of the types in the model

C range of time (in seconds) for the
true properties by SMV

D range of time (in seconds) for the
false properties by SMV

E range of time (in seconds) for the
true properties by VERBS

F range of time (in seconds) for the
false properties by VERBS

G percentage of true properties in which
VERBS has advantage

H percentage of false properties in which
VERBS has advantage

600+ the time is greater than the given
time limit, 600 seconds

The data show that SMV, within each type of properties,
is not very sensitive to the concrete properties being veri-
fied, with respect to the usage of time, on the other hand,
VERBS is sensitive to the concrete properties. As the types
of properties are considered, VERBS has an advantage be-
tween 18.2 and 67.5 percent (on the other hand, SMV has an
advantage between 32.5 and 81.8 percent) for the properties
true in the model. In average, for these properties, VERBS
has advantage in 41.7 percent of cases, while SMV has ad-
vantage in 58.3 percent of the cases. For the properties false
in the model, VERBS performs a lot better7.

7Note that VERBS does not have counterexample generation function-
ality yet, while SMV uses some time on the counterexample generation.

Table 1. Summary of the Experimental Data
for n = 9

PT1 PT2 PT3 PT4
A 204 405 324 525
B 525 324 405 204
C 8 - 8 13-16 11-13 13 - 26
D 9 - 12 21-29 13-18 37 - 48
E 0 - 600+ 0 - 600+ 0- 600+ 0-600+
F 0 - 31 0-8 0-41 0 - 28
G 22.5% 18.2% 67.5% 58.8%
H 94.8% 100.0% 66.1% 100.0%

Table 2. Summary of the Experimental Data
for n = 13

PT1 PT2 PT3 PT4
A 650 1183 1014 1547
B 1547 1014 1183 650
C 53 - 54 131 - 156 76 - 89 131 - 266
D 59 - 81 232 - 286 89 - 127 419 - 507
E 0 - 600+ 0 - 600+ 0 - 600+ 0 - 600+
F 0 - 340 0 - 600+ 0 - 600+ 0 - 600+
G 24.3% 18.1% 72.8% 59.5%
H 96.8% 99.6% 72.7% 96.3%

In order to have some idea on the asymptotic behavior of
the performance, we have also carried out experiments with
n = 13 with 2197 properties of each type. The experimen-
tal data is summarized in Table 2. As the types of properties
are considered, the relative advantage and disadvantage are
similar (or slightly better in average) when the size of the
problem increases.

For the given time limit and the experimental environ-
ment, it is expected that, for instance, when n increases to a
relatively big number, the verification of the properties us-
ing SMV will be ineffective for all of the problem instances,
on the other hand, a significant percentage of the problem
instances can still be verified or falsified by VERBS within
the time limit.

Mutual Exclusion Experiments have also been carried
out with a mutual exclusion algorithm [18], with two pro-
cesses. Three problem instances are considered, one for ver-
ification of mutual exclusion property, one for liveness and
one for non-starvation. Let the two processes be identified
by p1 and p2 and let req, cri represent the process states
for having just made request for entering the critical region
and having just entered the critical region, respectively. The

three properties are as follows:

AG(¬(p1.cri ∧ p2.cri))
AG((p1.req ∨ p2.req) → AF (p1.cri ∨ p2.cri))
AG((p1.req → AF (p1.cri)) ∧ (p2.req → AF (p2.cri)))

The verification process correctly verified the first two
properties and falsified the last one.

Coherence Experiments have also been carried out with
an asynchronous communication mechanism (ACM) with
rereading and overwriting [15]. The model is specified as
a set of conditional rewriting rules. The coherence prop-
erty specified in [15] is that if some process starts to read
and some starts to write, then the read-process will operates
on the first element of the ACM and the write-process will
operates on the last element of the ACM. The memory of
the ACM of the instance of our model has length 6. Let the
memory be denoted by x[0]x[1]...x[5]. Let s ∈ {1, .., 6} de-
note the length of the part of the memory that is in use. Let
read-operation on a memory cell containing a be denoted by
ra, let the write-operation on a memory cell containing a be
denoted by wa. Let y ∈ x denote x[0] = y∨· · ·∨x[5] = y.
Then one instance of the property is specified as follows.

AG(s = 6 →
(ra ∈ x → ra = a[0] ∧ (wa ∈ x → wa = a[5])))

The verification process correctly verified this property
and falsified incorrect ones, for instance, when we change
wa = a[5] to wa = a[4] in the property.

6 Concluding Remarks

We have provided a framework for discussion of
bounded semantics. This framework has formalized what
is the usual understanding of bounded semantics, such that
we have a framework to discuss this particular kind of se-
mantics. The traditional bounded semantics presented in
[3, 22, 25] fall into this framework and is sound and com-
plete for their target languages, while the bounded seman-
tics of CTL∗ presented in [24] are considered unsound. In
this framework, we have provided a sound and complete
bounded semantics for CTL formulas and identified the lim-
itation of such semantics, namely, there are no such sound
and complete bounded semantics for CTL∗.

The bounded semantics of CTL differs from the previ-
ously developed bounded semantics [3, 22, 25, 30] in that
the target language is closed under negation such that it can
be used to check both a formula and its negation8, and used

8The semantics of CTL∗ presented in [24] can also be used to check a
formula and its negation, but it is not a sound semantics in our framework
as pointed out in Section 3.2.

as the basis for bounded model checking and verification in
the sense discussed in Section 3. The bounded semantics
of CTL is then refined in order to develop a SAT-based al-
gorithm for checking ACTL properties. This algorithm is
implemented, and experimental comparison with a BDD-
based model checking tool SMV is carried out. The ex-
perimental results show that this bounded semantics based
approach has advantage when a small k is sufficient for ver-
ification or error detection of given ACTL properties, while
BDD-based approaches has advantage in the rest of cases.
One of the important features of this approach based on
CTL bounded semantics is that we do not have to be wor-
ried about over-approximations of the completeness thresh-
old and the termination criteria which are one of the diffi-
culties of bounded model checking and have been devoted
a lot of research effort [17, 9, 16, 10, 1].

Experiments have also been carried out on models for
instances of a mutual exclusion algorithm [18] and an asyn-
chronous communication mechanism with rereading and
overwriting [15]. For future research, one the theoretical
side, we may further investigate bounded semantics of tem-
poral logics, and at the practical side, we may improve
the efficiency of the current bounded semantics based ap-
proaches9, including the improvement of SAT-solving tech-
niques and the use of other techniques such as SMT-solvers
[21], in order to extend potential advantages of such an ap-
proach.

References

[1] Mohammad Awedh, Fabio Somenzi: Termination Cri-
teria for Bounded Model Checking: Extensions and
Comparison. Electr. Notes Theor. Comput. Sci. 144(1):
51-66 (2006)

[2] A. Biere, A. Cimmatti, E. Clarke, O. Strichman, and Y.
Zhu. Bounded Model Checking. Advances in Comput-
ers 58, Academic Press, 2003.

[3] A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu.
Symbolic Model Checking without BDDs. LNCS
1579:193-207. TACAS 99.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and J. Hwang. Symbolic model checking: 1020 states
and beyond. LICS 1990: 428-439.

[5] R. Bryant. Graph based algorithms for boolean func-
tion manipulation. IEEE Transaction on Computers
35(8):677-691. 1986.

9One improvement for handling formulas involving EX has been con-
sidered in [26]. It can be further developed and used in the approached
described above.

[6] Randal E. Bryant. On the Complexity of VLSI Im-
plementations and Graph Representations of Boolean
Functions with Application to Integer Multiplication.
IEEE Trans. Computers 40(2): 205-213 (1991).

[7] R. Bryant. Binary decision diagrams and beyond:
enabling technologies for formal verification.
CAD’95:236-243. 1995.

[8] W. Chen, W. Zhang. Bounded Model Checking of
ACTL formulae. TASE 2009, to appear.

[9] Edmund M. Clarke, Daniel Kroening, Joel Ouak-
nine, Ofer Strichman. Completeness and Complexity
of Bounded Model Checking. VMCAI 2004: 85-96.

[10] E. M. Clarke, D. Kroening, J. Ouaknine, and
O. Strichman. Computational challenges in bounded
model checking. STTT 7(2): 174-183. 2005.

[11] E. M. Clarke, O. Grumberg and D. Peled. Model
Checking. The MIT Press. 1999.

[12] Niklas Een, Niklas Sorensson: An Extensible SAT-
solver. SAT 2003: 502-518.

[13] E. Allen Emerson and E. M. Clarke. Using Branching-
time Temporal Logics to Synthesize Synchroniza-
tion Skeletons. Science of Computer Programming
2(3):241-266. 1982.

[14] E. Allen Emerson, Joseph Y. Halpern: “Sometimes”
and “Not Never” revisited: on branching versus linear
time temporal logic. J. ACM 33(1): 151-178. 1986.

[15] Kyller Gorgonio, Fei Xia. Modeling and verify-
ing asynchronous communication mechanisms using
coloured Petri nets. ACSD 2008: 138-147.

[16] Keijo Heljanko, Tommi A. Junttila, Timo Latvala: In-
cremental and Complete Bounded Model Checking for
Full PLTL. CAV 2005: 98-111.

[17] D. Kroening, O. Strichman. Efficient Computation of
Recurrence Diameters. VMCAI 2003: 298-309.

[18] Leslie Lamport. A fast mutual exclusion algorithm.
ACM Transactions on Computer Systems 5(1):1-11.
1987.

[19] Daniel Le Berre, Laurent Simon, Armando Tacchella:
Challenges in the QBF Arena: the SAT’03 Evaluation
of QBF Solvers. SAT 2003: 468-485

[20] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publisher,1993.

[21] Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli:
Solving SAT and SAT Modulo Theories: From an ab-
stract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). J. ACM 53(6): 937-977 (2006).

[22] W. Penczek, B. Wozna, and A. Zbrzezny. Bounded
Model Checking for the Universal Fragment of CTL.
Fundamenta Informaticae 51:135-156. 2002.

[23] Mukul R. Prasad, Armin Biere, Aarti Gupta. A survey
of recent advances in SAT-based formal verification.
STTT 7(2): 156-173 (2005).

[24] Zhi-Hong Tao, Cong-Hua Zhou, Zhong Chen, Li-Fu
Wang: Bounded Model Checking of CTL. J. Comput.
Sci. Technol. 22(1): 39-43 (2007).

[25] Bozena Wozna. ATCL* properties and Bounded
Model Checking. Fundam. Inform. 63(1): 65-87
(2004).

[26] L. Xu, W. Chen, Y. Xu, W. Zhang. Improved Bounded
Model Checking for Universal Fragment of CTL. Jour-
nal of Computer Science and Technology 24(1):96-
109. 2009.

[27] Y. Xu, W. Chen, L. Xu, W. Zhang. Evaluation of
SAT-based Bounded Model Checking of ACTL Prop-
erties. Proceedings of the 1st Joint IEEE/IFIP Sympo-
sium on Theoretical Aspects of Software Engineering
(TASE’07):339-348. IEEE Computer Society Press,
2007. Shanghai, China. June 5-8, 2007.

[28] W. Zhang. SAT-based verification of LTL formulas.
Lecture Notes in Computer Science 4346 (FMICS
2006):277-292.

[29] W. Zhang. Verification of ACTL Properties by
Bounded Model Checking. Lecture Notes in Computer
Science 4739 (EUROCAST 2007):556-563.

[30] W. Zhang. Model Checking with SAT-Based Charac-
terization of ACTL Formulas. Lecture Notes in Com-
puter Science 4789 (ICFEM 2007):191-211.

