
Auxiliary Constructs for Proving Liveness in
Compassion Discrete Systems

Teng Long and Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences, Beijing, China
{longteng,zwh}@ios.ac.cn

Abstract. For proving response properties for systems with compassion
requirements, a deduction rule is introduced in [13]. In order to use the
rule, auxiliary constructs are needed. They include helpful assertions and
ranking functions defined on a well-founded domain. Along the line of
the work [2] that computes ranking functions for response properties for
systems with justice requirements, we develop an approach which extends
that of [2] for computing ranking functions for systems with compassion
requirements. We illustrate the use of the approach on three examples.

1 Introduction

Model checking is a main verification technique for finite state systems, and has
been successfully applied to proving the correctness of hardware and software
designs. However, in the general case, the real systems in the world may be
(practically) infinite, such that model checking cannot be directly used to prove
the correctness of such systems.

The concept of abstraction helps enhancing the applicability of model check-
ing to infinite systems. Predicate abstraction [8, 4, 5], has been useful for veri-
fication of safety properties of infinite systems, and for verification of liveness
properties. Ranking abstraction has been introduced in [9, 3, 10] recognizing that
the usual state abstraction is often inadequate in order to capture liveness prop-
erties, in which compassion requirements are introduced into the abstract system
such that the abstraction preserves the liveness properties under consideration.

One of the common features of these two methods is that we need to extract
auxiliary constructs in order to make the methods successful in proving safety
and liveness properties. In the former case, one needs to construct invariants and
in the latter, one needs to construct ranking functions.

Our focus is on methods for computing ranking functions for proving liveness
properties. Invisible ranking introduced in [6] is one such method for automat-
ically generating helpful assertions and ranking functions for proving liveness
properties in systems with justice requirements. The method was then extended
to handle a large class of problems by relaxing restrictions requiring that the
helpful assertions and ranking functions only depend on the local states of a
process [7]. For dealing with ranking abstraction in proving liveness properties

2

in systems with justice requirements, an approach is presented in [2] based on
graph manipulation for generating helpful assertions and ranking functions.

Along this line of research, our approach presented in this paper extends
that of [2] in order to be able to compute ranking functions for proving liveness
properties in sequential and concurrent programs with compassion requirements
including those introduced with ranking abstraction and those stated explic-
itly in the compassion discrete system. Our approach may as well be used for
proving liveness properties with the use of predicate abstraction (when ranking
abstraction does not provide additional useful compassion requirements).

The rest of this paper is organized as follows. In Section 2 we introduce the
basic concepts used in the approach. It includes the computational model FDS
(fair discrete system) and CDS (compassion discrete system) with its related
notions of fairness, the rule RESPONSE [13] for the deductive proof of response
properties of CDS. Section 3 presents the approach for computing the auxiliary
constructs, and Section 4 illustrates the application of the approach on three
examples. Finally, concluding remarks are contained in Section 5.

2 Preliminaries

We introduce the computational model with fairness requirements [11], and the
rule for proving response properties [13].

2.1 Computational Model

A fair discrete system (FDS) is a quintuple D = 〈V, Θ, ρ, J, C〉 where the com-
ponents are as follows.

– V : A finite set of typed system variables, containing data and control vari-
ables. A set of states (interpretation) over V is denoted by Σ. For a state s
and a system variable v ∈ V , we denote by s[v] the value assigned to v by
the state s.

– Θ : The initial condition - an assertion (state formula) characterizing the
initial states.

– ρ : The transition relation - an assertion ρ(V, V ′), relating the variables in
state s ∈ Σ to the V ′ in a D-successor state s′ ∈ Σ.

– J : A set of justice requirements (weak fairness). The justice requirement
J ∈ J is an assertion which guarantee that every computation should include
infinitely many states satisfying J .

– C : A set of compassion requirements (strong fairness). The compassion
requirement 〈p, q〉 ∈ C is a pair of assertions, which guarantee that every
computation should include either only finitely many p-states, or infinitely
many q-states.

Computation A computation of D is an infinite sequence of state σ : s0, s1, s2, . . .,
satisfying the following requirements: (1) s0 |= Θ. (2) For each j = 0, 1, . . . , the
state sj+1 is in a D-successor of the state sj . For each v ∈ V , we interpret v as
sl[v] and v′ as sl+1[v], that is 〈sl, sl+1〉 |= ρ(V, V ′).

3

Justice A computation σ is just, if σ contains infinitely many occurrences of
J-states for every J ∈ J . A justice discrete system (JDS) is an FDS with no
compassion requirements.

Compassion A computation σ is compassionate, if σ contains only finitely many
p-states, or σ contains infinitely many q-states, for every 〈p, q〉 ∈ C. A compas-
sion discrete system (CDS) is an FDS with no justice requirements.

2.2 Proof Rule for Response Properties

The problem is that given an FDS D and a response property of the form p ⇒ ♦q,
where p and q are assertions, we want to prove the following statement

D |= (p ⇒ ♦q)

Since an FDS is equivalent to a CDS1, it is sufficient to consider CDS only. For
proving response properties over a CDS, the rule RESPONSE [13] was developed
for systems with compassion requirements (this rule is hereafter referred to as
C-RESPONSE for emphasizing that it involves compassion requirements). The
rule is shown in Fig. 1.

Let p, q be assertions.
Let A : (W,Â) be a well-founded domain.
Let {ϕi | i ∈ {1, ..., n}} be a set of assertions.
Let {Fi = 〈pi, qi〉 | i ∈ {1, ..., n}} be a set of compassion requirements.
Let {∆i : Σ → W | i ∈ {1, ..., n}} be a set of ranking functions.

R1 p ⇒ q ∨∨n
j=1(pj ∧ ϕj)

For each i:
R2 pi ∧ ϕi ∧ ρ ⇒ q′ ∨∨n

j=1((p
′
j ∧ ϕ′j)

R3 ϕi ∧ ρ ⇒ q′ ∨ (ϕ′i ∧∆i = ∆′
i) ∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆i Â ∆′

j)

R4 ϕi ⇒ ¬qi

p ⇒ ♦q

Fig. 1. Proof Rule: C-RESPONSE

The use of the rule requires: a well-founded domain A, and for each compas-
sion requirement 〈pi, qi〉, a helpful assertion ϕi and a ranking function ∆i : Σ 7→
W mapping states of D to elements of A.

R1 requires that any p-state is either a goal state (i.e., a q-state), or a (pi∧ϕi)-
state for some i ∈ {1, . . . , n}. R2 requires that any step from a (pi ∧ ϕi)-state
moves either directly to a q-state, or to another (pj ∧ ϕj)-state, or stays at a
state of the same type (i.e., a (pi ∧ ϕi)-state). R3 requires that any step from

1 The justice requirement can be expressed as the degenerate compassion requirement
〈1, J〉, where 1 denotes the assertion True which holds at every state.

4

a ϕi-state moves either directly to a q-state, or to another (pj ∧ ϕj)-state with
decreasing rank, or stays at a state of the same type with the same rank. R4
together with the previous rules guarantees that if an execution does not satisfy
♦q, then it violates the compassion requirement.

3 Proving a Response Property

Given a CDS D and a response property ψ : p ⇒ ♦q. In order to be able to
use the proof rule C-RESPONSE for proving the property, we have to define a
well-founded domain A, and for each compassion requirement 〈pi, qi〉, define a
helpful assertion ϕi and a ranking function ∆i : Σ 7→ W mapping states of D
to elements of A.

The phases for proving D |= ψ including those of computing the helpful
assertions and ranking functions are as follows:

(1) use ranking abstraction [9, 3, 2] and construct Dα and ψα from D and ψ,
and then construct a pending graph [2] based on Dα.

(2) construct an initial rank for each node (except the goal state) of the
pending graph and a set of helpful compassion requirements associated to each
of these nodes of the pending graph.

(3) construct an abstract graph from the pending graph, such that each node
in the abstract graph represents a subset of the nodes of the pending graph, then
construct A, and for each node, construct ϕi and ∆i, and make an association
of some Fi = (pi, qi) ∈ F to the node. Note that according to the construction,
one Fi may correspond to several abstract nodes.

(4) use the helpful constructs to prove the response property D |= ψ by the
proof rule.

3.1 Ranking Abstraction and Pending Graph

This step is carried out according to the technique of ranking abstraction [9, 3,
2] and pending graph [2].

Ranking abstraction, as explained in [2], is a method of augmenting the
concrete program by a non-constraining progress monitor, which measures the
progress of program execution, relative to a given ranking function. In order to
distinguish this kind of ranking functions from the ranking functions in the proof
rule C-RESPONSE, we call this kine of ranking functions ARFs (augmenting
ranking functions) in the sequel. Once a program is augmented, a conventional
state abstraction can be used. In such a way, the state abstraction can preserve
the ability to monitor progress in the abstract system.

For a system S = 〈V, Θ, ρ, J, C〉 (in which J is empty when CDS is considered)
and a well-founded domain (W,≺), let δ be an ARF over W , let decδ be a fresh
variable, the augmentation of S by δ is

S + δ : 〈V ∪ {decδ}, Θ, ρ ∧ ρδ, J, C ∪ {(decδ > 0, decδ < 0)}〉

5

where ρδ is defined by

dec′δ =
{ 1 δ Â δ′

0 δ = δ′

−1 otherwise

A system may be augmented with a set of ARFs {δ1, ..., δk}. Then predicate
abstraction may be applied. In the predicate abstraction, it is not necessary
to abstract variables of the form decδ since it ranges over the finite domain
{−1, 0, 1}, and the abstraction preserves the compassion requirement (decδ >
0, decδ < 0).

Assuming that we already have an abstract program Dα from D constructed
by the above process with the abstraction map α, a pending graph [2] is then
constructed from Dα. Let us denote the graph by G = 〈N, E〉. The set of nodes
N are those satisfying pend ∨ g where pend characterizes the states reachable
from a p-state by a q-free path, and g is a qα-state reachable from a pending
state in one step. The set of edges E consists of all transitions connecting two
pending states and the edges connecting pend nodes to the goal node g.

The set of nodes of G may be written as {S0, S1, ..., Sm} where S0 = g is
the goal state and S1, ..., Sm are pending states. This is the starting point of our
algorithm for computing the helpful constructs for the proof rule.

3.2 Helpful Compassion Requirements and Initial Ranks

The ranking functions in the abstract program are represented as a mapping
N → TUPLES, where TUPLES is the type of lexicographic tuples whose ele-
ments are either natural numbers or ARFs. For simplicity, we call such a tuple
as a “rank”. Let Rl and Hl be respectively the rank and the list of helpful
compassion requirements for Sl ∈ N . For convenience, we write q for qα, and
similarly for other formulas and constructions. Let F1, ..., Fn be the original com-
passion requirements, and Fn+1, ..., Fn′ be the dec-requirements (the compassion
requirements introduced by the ranking abstraction). The procedure for comput-
ing Rl and Hl (which are initially empty) is described in Algorithm 1. The main
functions are explained as follows.

decompose(G) The graph G is decomposed into a set of MSCCs (maximal
strongly connected components), denoted C0, ..., Ck. They are ordered such that
if Ci is reachable from Cj , then i < j. For MSCCs not connected to each other,
their indices may be in an arbitrary order.

violate(Ci, Fj) The MSCC (may be the trivial one) Ci violates the compassion
requirement Fj = (pj , qj), if pj is satisfied by some node of the MSCC and qj is
not satisfied by any node of the MSCC.

term(Fj) For a dec-requirement Fj of the form 〈decδ > 0, decδ < 0〉, term(Fj) =
δ.

6

Algorithm 1 C-RANK(G)
1: decompose(G) into a set of MSCCs [C0, ..., Ck];
2: for i=0, i ≤ k, i++ do
3: for each Sl of Ci, append i to Rl;
4: end for
5: for i=0, i ≤ k, i++ do
6: if the goal state g is in Ci then
7: continue;
8: end if
9: for j=1; j ≤ n′; j++ do

10: if not violate(Ci,Fj) then
11: continue;
12: end if
13: for each Sl of Ci do
14: append Fj to Hl;
15: end for
16: if j > n then
17: for each Sl of Ci do
18: append term(Fj) to Rl;
19: end for
20: end if
21: if Ci is a trivial MSCC then
22: break;
23: else
24: removeedge(Ci,Fj); C-RANK(Ci); break;
25: end if
26: end for
27: end for

removeedge(Ci, Fj) Given an MSCC Ci and a compassion requirement Fj =
(pj , qj), this procedure modifies the MSCC in such a way that one node satisfying
pj is identified and all incoming edges of such a node in this MSCC are removed.

3.3 Abstract Nodes, Helpful Assertions and Ranks

According to Hl, we construct the abstract nodes as an assertion Φ by grouping
together certain nodes that need satisfying the same helpful compassion require-
ments. Let G′ be the abstract graph, initially empty, i.e., G′ = ({}, {}). The
procedure for constructing G′ is described in Algorithm 2. The main functions
are explained as follows.

subgraph(G,Fi) In the assignment Wi = subgraph(G,Fi), the variable Wi is
a local variable used to hold a subset of nodes (a subgraph). The nodes of
the subgraph is constructed according to Fi (non-dec-requirements) as follows:
Sl ∈ Wi iff Fi ∈ Hl. Then Wi is considered as a derived subgraph of G with the
nodes as specified.

7

Algorithm 2 C-GRAPH
1: call C-RANK(G);
2: for each Fi ∈ {F1, ..., Fn} do
3: Wi=subgraph(G, Fi);
4: end for
5: for each Wi ∈ {W1, ..., Wn} do
6: createandmergenodes(Wi, G

′);
7: end for
8: createedges(G′);

createandmergenodes(Wi, G
′) (1) Wi may contain several different MSCCs vio-

lating Fi. For each such MSCC in Wi, a node representing this MSCC is created
and added to G′. The rank ∆l of the abstract node Φl is assigned the rank ob-
tained before the MSCC is split into smaller MSCCs. (2) For the nodes created
previously, they are merges according to the following condition: the states that
the nodes represent differ only in the dec-variables introduced in the ranking ab-
straction. Then the rank of the abstract node is assigned the lowest rank of the
nodes represented by the abstract node. (3) For each node Φl in the final abstract
graph G′, the concrete helpful assertion ϕl = α−1(Φl) is obtained by concretiz-
ing the abstract nodes (viewed as abstract assertions, by making correspondence
between formulas and sets of states).

createedges(G′) For each pair of nodes Φ and Φ′ such that Φ′ 6⊂ Φ, if some node
of Φ is connected to some of Φ′, an edge from Φ to Φ′ is created.

3.4 Claim of the Helpful Constructions

For each compassion requirement (pi, qi), several abstract states may be associ-
ated. We consider the set of compassion requirements as a multiset, such that
one compassion requirement (pi, qi) has the number of occurrences matching the
number of associated abstract states. Then each (occurrence of a) compassion
requirement corresponds to one abstract state (with a rank and a helpful as-
sertion) associated with it. These helpful constructs are then to be used in the
proof rule for proving the response property D |= Ψ .

Ranking Core For the correctness, we assume that every ranking function in the
ranking abstraction is chosen to be a variable. Such a set of variables (represent-
ing a set of ranking functions) are called ranking core R [9]. It is easily seen that
the proof of the correctness of the above algorithms with this assumption can
be extended to ranking functions that are arithmetic terms. The abstraction of
D according to the abstraction map α and the ranking core R is denoted DR,α.

Main Claim Let CDS D, a ranking core R, an abstraction mapping α and the
property Ψ be given. Let the assertions ϕi and ranking functions ∆i be those
extracted by C-GRAPH. If DR,α |= Ψα then R1-R4 of the rule C-RESPONSE

8

are provable with the extracted helpful constructs (with the set of compassion
requirements reorganized as a suitable multiset).

Correctness The correctness is then established by analyzing the different steps
in the construction of the helpful constructs.

Let ∆ > ∆′ (similarly R > R′), where ∆,∆′ represent ranks and R, R′

represent ranks, denote that ∆ appear after ∆′ according to the lexicographic
order. Let ∆ ÂE ∆′ denote that ∆ appear after ∆′ according to the lexicographic
order with the following conditions: (1) each variable x of the ranking core R
appearing in ∆′ are replaced by x′, (2) the lexicographic order is augmented by
an environment E that specifies whether x > x′ or x = x′. The environment
E may be replaced by a state S that reflects whether the value of a variable is
decreased when the program moves to the state S.

Claim 1 Let Si and Sj be states in the pending graph. The following prop-
erties hold.

P1. If ∆i ÂSj
∆j and ∆j > ∆k, then ∆i ÂSj

∆k.
P2. If the states Si and Sj agree on the values of their non-dec variables, then

they have the same set of successors.

P1 is true according to the definition. P2 is true according to the construction
of the pending graph. These properties are the same as those stated in [2].

Claim 2 Let Ri and Rj be the associated ranks of Si and Sj. Then on
successful termination of C-RANK, the following properties hold.

P3. For every two states Si, Sj belonging to different MSCCs such that Si is
connected to Sj , there is a rank decrease Ri ÂSj

Rj .
P4. For every two states Si, Sj belonging to one MSCC such that Si is connected

to Sj , there is no rank decrease only if the MSCC violates some compassion
requirement (pk, qk) (non-dec-requirements) and there is at least a state Sk

which Sk |= pk, or the MSCC does not violate any compassion requirement.

P3 follows from the decomposition of the pending graph into MSCCs. P4

follows from the way MSCCs being modified when they do not satisfy some
compassion requirements.

Claim 3 Let ∆i and ∆j be the associated ranks of Φi and Φj. Then on
termination of C-GRAPH, the following properties hold.

P5. If Φi is connected to Φj in the abstract graph and S ∈ Φj , then there is a Φk

such that S ∈ Φk, ∆i ÂS ∆k and S |= pk where (pk, qk) is the compassion
requirement violated by the MSCC represented by Φk.

P6. Let s[∆] be ∆ with the variables replaced by their value in the state s.
If concrete states s, s′ satisfy s |= ϕi, and s′ |= ϕj , i 6= j and s′ is a D-
successor of s, then there is a ϕk such that s′ |= ϕk ∧ pk and s[∆i] Â s′[∆k].

9

P5 follows from the construction of the abstract graph. Φk in P5 is necessarily
a superset of Φj (i.e., Φj ⊆ Φk), when Φk is considered as a set of nodes of the
pending graph. P6 follows from P5 by the soundness of the abstraction.

Proof of the main claim. Let Φ0 = g, Φ1, ..., Φn be the nodes in the abstract
graph, and ϕi,∆i, (pi, qi) be the helpful assertion, rank, and compassion require-
ment (which has been reorganized into a multiset that matches the number of
Φi) associated to Φi for i = 1, ..., n. Assume Dα |= Ψα. (1) Since Ψα is true, the
disjunction of the abstract states g, Φ1, ..., Φn covers the states in the pending
graph. By the correctness of the abstraction, g ∨∨l

i=1 ϕi covers the state space
represented by the pending graph. The a p-state is either the goal state g or a
state with a progress requirement, i.e. pi∧ϕi for some i ∈ {1, ..., n}. (2) Similarly,
successor states of such a state (excluding g) also satisfy the same condition. (3)
The correctness of R3 follows from property P6. (4) R4 is guaranteed by the
construction of ϕi, since each ϕi represents an MSCC (or a collection of MSCCs
when they are merged) violating the compassion requirement (pi, qi).

3.5 Discussion

Previous works in this direction of research include using deduction rules with
weak fairness (justice) requirements to prove liveness properties of sequential or
simple concurrent programs. They depend on Dec-requirements to decide the
ranks of states in just MSCC. Our approach concerns deductive rule with strong
fairness requirements to prove liveness properties of more complex concurrent
programs. It depends on compassion requirements to decide the ranks of states in
MSCC. A comparison of the algorithm RANK-JUST-GRAPH [2] and C-GRAPH
is given in Fig.2.

Algorithm RANK-JUST-GRAPH C-GRAPH

Deductive Rule JUST-RESPONSE C-RESPONSE

Fairness of Systems Weak fairness Fairness

Control of Unfair Loops Depend on Dec- Depend on compassion
requirements to decide the requirements to decide the
ranks of states in MSCC ranks of states in MSCC

Fig. 2. Algorithms for Computing Auxiliary Constructs

4 Examples

We illustrate the application of the approach on three programs:

– MUX-SEM, a concurrent program for mutual exclusion [1].
This example is supposed to show the approach applied on a verification
problem with predicate abstraction.

10

– COND-TERM, a sequential program with a non-deterministic choice of the
values of a variable [13].
This example is supposed to show the approach applied on a verification
problem with predicate abstraction in which some Dec-requirement is intro-
duced in the abstraction phase. The pending graph includes two kinds of
uncompassionate loops, one violating the given compassion and the other
violating the compassion introduced in the abstraction phase.

– UP-DOWN, a concurrent program with only justice requirements [12].
This example is supposed to show some differences and similarities between
this approach and the approach presented in [2] when compassion require-
ments in the system are restricted to justice requirements.

4.1 Example 1: MUX-SEM

Fig. 3 shows the program MUX-SEM. Let at li[j] denotes that process j is at li
(of process j). The response property we wish to establish is at l2[1] ⇒ ♦at l3[1].
The just requirements are ¬at l4[j] and ¬at l3[j]. The compassion requirement
is F1 = 〈at l2[1] ∧ y = 1, at l3[1]〉. The just requirements are special compassion
requirements formulated as 〈1,¬at l4[i]〉 for i ∈ {1, ..., n} and 〈1,¬at l3[i]〉 for
i ∈ {1, ..., n}.

local y : boolean init y = 1;

‖n
i=1P [i] ::




loop forever do
l1 : Noncritical
l2 : request y
l3 : Critical
l4 : release y




Fig. 3. Program MUX-SEM

The abstraction mapping α is defined by:

α : Π = π, Π3 = π3,Π4 = π4, Y = (y > 0)

where Π is a function with range {1, 2, 3, 4} (and the domain being the system
states). Π = i denotes that at li[1] is true, for i ∈ {1, ..., 4}. Πk is a function
with range {0, 1} and it is 1 iff the following is true:

n∨

j=2

(at lk[j] ∧
n∧

i=2

((i 6= j) ⇒ ¬at lk[i]))

The set of compassion requirements {〈1,¬at l4[i]〉 | i = 1, ..., n} and the
set {〈1,¬at l3[i]〉 | i = 1, ..., n} induce two new compassion requirements F2 =
〈1,¬π4 = 1〉 and F3 = 〈1,¬π3 = 1〉. Then the set of compassion requirements of
the abstract program is F = {F1, F2, F3}.

11

Fig. 4. The Pending Graph Fig. 5. The Abstract Graph

Let − denote any value in the range of the respective position of the abstract
states. For instance, (1,−,−,−) denote the abstract states where the value of
(Π, Π3,Π4, Y) satisfying Π = 1 and the rest of the positions could be any value.
Then the abstract states represented by the following tuples covers the reachable
concrete states

(1,−,−,−)
(2, 0, 0, 1)
(2, 1, 0, 0)
(2, 0, 1, 0)
(3,−,−,−)
(4,−,−,−)

Let S0, S1, S2, S3 be the set of states represented by respectively

(3,−,−,−),(2, 0, 0, 1),(2, 0, 1, 0),(2, 1, 0, 0).

Then we construct the pending graph (shown in shown in Fig. 4) with these
four states with S0 = g. Let Ri and Hi be the rank of Si and the set of helpful
compassion requirements associated to Si, respectively, initially with Ri = [] and
Hi = [].

We have two MSCCs: {S3,S2,S1} and {S0}. Then R0 = [0], R1 = R2 = R3 =
[1].

By checking the MSCCs {S3,S2,S1} and {S0}, we find that the first one
violates the compassion requirement F1 = 〈at l2[1]∧ y = 1, at l3[1]〉. Then H1 =
H2 = H3 = [F1].

We remove the edges (S1, S3) and (S1, S1), then apply C-RANK again. We
obtain 3 MSCCs {S1}, {S2}, {S3}. Then R3 = [1, 2], R2 = [1, 1], R1 = [1, 0].

By checking the 3 MSCCs, we find that {S2} violates F2 = 〈1,¬π4 = 1〉 and
{S3} violates F3 = 〈1,¬π3 = 1〉. The compassion requirements are then added

12

to the respective nodes, such that H3 = [F1, F3],H2 = [F1, F3]. The final value
of Ri and Hi are as shown in Table 1.

Index i Si Ri Hi

3 S3 [1, 2] [F1, F3]

2 S2 [1, 1] [F1, F2]

1 S1 [1, 0] [F1]

0 S0 [0]

Table 1. The Rank Table of Program MUX-SEM

According to Hi, we construct the abstract nodes by grouping together nodes
that need satisfying the same compassion requirement. The abstract nodes of
the program MUX-SEM with their respective ranks2 are listed in Table 2 and
the abstract graph is shown in Fig. 5. In the abstract graph, we mark “Fi” as
the label of edges to illuminate that the program must follow the transitions
because of the compassion requirements. The transitions which do not relate to
the compassion requirements are not shown in the abstract diagram.

Abstract Node Nodes Rank Compassion Req.

Φ3 S3 [1, 2] F3

Φ2 S2 [1, 1] F2

Φ1 S1, S2, S3 [1] F1

Φ0 S0 [0]

Table 2. The Abstract Table of Program MUX-SEM

Finally, we obtain the concrete helpful assertions ϕ1, ϕ2, ϕ3 by concretizing
the abstract assertions Φ1, Φ2, Φ3, and obtain the ranks ∆1,∆2,∆3 by renum-
bering the respective ranks in Fig. 5. The concrete assertions ϕ1, ϕ2, ϕ3 and the
ranks ∆1,∆2,∆3 are shown in the table in Table 3.

Relating to the original program with n processes, let (3, j) denote the states
where process j is at label l3 and (4, j) denote the states where process j is at
label l4 for j = 1, ..., n, we obtain Table 4.

The validity of the premises of rule C-RESPONSE for example 1 has been
verified with the constructed auxiliary constructs ϕ1, ϕ2, ϕ3 and ∆1,∆2,∆3. The
reader is referred to Appendix A.1 for the details.

2 Note that F1 is associated to the nodes in the first level of computation of ranks,
therefore the rank of Φ1 is only concerned with its first level projection.

13

Index i ϕi ∆i

3 at l2[1] ∧∨n
j=2(at l3[j] ∧

∧n
i=2((i 6= j) ⇒ ¬at l3[i])) ∧ y = 0 [2]

2 at l2[1] ∧∨n
j=2(at l4[j] ∧

∧n
i=2((i 6= j) ⇒ ¬at l4[i])) ∧ y = 0 [1]

1 at l2[1] [0]

Table 3. The Concrete Table of MUX-SEM Program

index i ϕi ∆i

(3, j), j > 1 at l2[1] ∧ at l3[j] ∧ y = 0 [2]

(4, j), j > 1 at l2[1] ∧ at l4[j] ∧ y = 0 [1]

(−, 1) at l2[1] [0]

Table 4. The Concrete Table of MUX-SEM Program

4.2 Example 2: COND-TERM

Fig. 6 shows the program COND-TERM. The response property we wish to
establish is Ψ : at l1 ⇒ ♦at l4. The just requirements are ¬at li for i = 1, 2, 3, 4,
and the compassion requirements is F1 = 〈at l3∧x = 0, 0〉. Let Fi+1 be 〈1,¬at li〉
representing the just requirements for i = 1, 2, 3.

x,y: natural init x = 0
l1: while y > 0 do
l2: x:= {0,1}
l3: y := y + 1− 2x
l4:

Fig. 6. Program COND-TERM

Let decy = sign(y − y′) in which y denotes the value of y in the previous
state and y′ denotes the value of y in the current state. The abstraction mapping
α is defined by :

α : Π = π, X = (x > 0), Y = (y > 0), Decy = decy

where Π = i denotes at li is true. We construct the pending graph as showing in
Fig. 7. The constraints of the graph include the additional compassion require-
ment FD = 〈Decy > 0, Decy < 0〉 which is deduced from the condition of the
while loop according to the rank abstraction process.

There are 8 states {S0, S1, ..., S7} with S0 = g. Let Ri and Hi be the rank of
Si and the set of helpful compassion requirements associated to Si, respectively,
initially with Ri = [] and Hi = [].

In the first level of computation, we have 4 MSCCs: {g}, {S1}, {S2, S3, S4, S5,
S6 }, {S7}. Then R0 = [0], R1 = [1], R2 = R3 = R4 = R5 = R6 = [2], R7 = [3].

14

Fig. 7. The Pending Graph Fig. 8. The Abstract Graph

Let C0, C1, C2, C3 denote the 4 MSCCs. By checking the MSCCs (excluding
C0) against the compassion requirements, we obtain the table as shown in Table
5.

Component Violation

C1 F2

C2 F1

C3 F2

Table 5. The MSCCs C1, C2, C3

Component Violation

C21 F4

C22 F2

C23 FD

Table 6. The MSCCs C21, C22, C23

Then we add the respective compassion requirement to H1, ..., H7 such that
H1 = H7 = [F2],H2 = H3 = H4 = H5 = H6 = [F1].

Since C2 is not a non-trivial subgraph, we remove the edge (S4 → S3), which
leads into the state satisfying at l3 ∧ x = 0, from C2, and compute again with
the modified subgraph.

In the second level of computation, we have 3 MSCCs: {S3}, {S6}, {S4, S2,
S5}. Then R3 = [2, 2], R6 = [2, 1], R2 = R4 = R5 = [2, 0].

15

Let C21, C22, C23 denote the 3 MSCCs. By checking the MSCCs against the
compassion requirements, we obtain the table as shown in Table 6.

Then we add the respective compassion requirement to H2, ..., H6. In ad-
dition, since C23={S4, S2, S5} violates FD = 〈Decy > 0, Decy < 0〉, we add
y to R2, R4, R5. Then since C23 is not a non-trivial subgraph, we remove the
edge (S2 → S5), which leads into the state satisfying Decy > 0, from C23, and
compute again with the modified subgraph.

In the third level of computation, we have 3 MSCCs: {S5}, {S4}, {S2}. The
rank to be assigned to the nodes in this level is 2, 1, 0.

Then R5 = [2, 1, y, 2], R4 = [2, 1, y, 1], R2 = [2, 1, y, 0]. Since {S5}, {S4} and
{S2} are trivial MSCCs, we add F2, F3, F4 to H5,H4,H2 respectively. The final
value of Ri and Hi are as shown in Table 7.

Index i Si Ri Hi

7 S7 [3] [F2]

6 S6 [2, 1] [F1, F2]

5 S5 [2, 0, y, 2] [F1, FD, F2]

4 S4 [2, 0, y, 1] [F1, FD, F3]

3 S3 [2, 2] [F1, F4]

2 S2 [2, 0, y, 0] [F1, FD, F4]

1 S1 [1] [F2]

0 S0 [0]

Table 7. The Rank Table of Program COND-TERM

According to Hi, we construct the abstract nodes 3 by grouping together
nodes that need satisfying the same compassion requirement merging S6 - S2 as
an abstract state Φ2 and by grouping together nodes that agree with the value
of all variables except Dec: merging S7 and S5 as another abstract state Φ6.

The abstract nodes with their respective ranks are listed in Table 8 and the
abstract graph is shown in Fig. 8.

Finally, we obtain the concrete helpful assertions ϕ1, . . . , ϕ7 by concretizing
the abstract assertions Φ1, . . . , Φ7, and obtain the ranks ∆1, . . . , ∆7 by renum-
bering the respective ranks in Fig. 8. The helpful assertions and the ranks are
shown in the table in Table 9.

The validity of the premises of rule C-RESPONSE for example 2 has been
verified with the constructed auxiliary constructs ϕ1, ..., ϕ7 and ∆1, ..., ∆7. The
reader is referred to Appendix A.2 for the details.

3 Note that FD is not involved in the construction of abstract nodes, since it is not
one of the original system constraints.

16

Abstract Node Nodes Rank Compassion Req.

Φ7 S3 [2, 2] F4

Φ6 S6, S7 [2, 1] F2

Φ5 S5 [2, 0, y, 2] F2

Φ4 S4 [2, 0, y, 1] F3

Φ3 S2 [2, 0, y, 0] F4

Φ2 S2, ..., S6 [2] F1

Φ1 S1 [1] F2

Φ0 S0 [0]

Table 8. The Abstract Table of Program COND-TERM

Index ϕi ∆i

7 at l3 ∧ y > 0 ∧ x = 0 [2, 2]

6 at l1 ∧ y > 0 ∧ x = 0 [2, 1]

5 at l1 ∧ y > 0 ∧ x = 1 [2, 0, y, 2]

4 at l2 ∧ y > 0 ∧ x ∈ {0, 1} [2, 0, y, 1]

3 at l3 ∧ y > 0 ∧ x = 1 [2, 0, y, 0]

2 at l1..3 ∧ y > at l1,2,3 ∧ x ∈ {0, 1} [2]

1 at l1 ∧ y = 0 ∧ x = 1 [1]

Table 9. The Concrete Table of Program COND-TERM

4.3 Example 3: UP-DOWN

Fig. 9 shows the program UP-DOWN. This program can be handled by RANK-
JUST-GRAPH [2]. Here we illustrate how it is handled by C-GRAPH, in order
to get an impression of the similarity and differences of these two approaches.The
abstract program is shown in Fig.10.

The response property is (π1 = 0∧π2 = 0) ⇒ ♦(π1 = 4), where π1 and π2 are
the location counters for P1 and P2. They are denoted by li and mi, respectively.

x,y: natural init x =0, y=1
l0: while x =0 do
l1: y := y+1
l2: while y > 0 do m0: x:=1
l3: y := y-1 m1:
l4:

Fig. 9. Program UP-DOWN

X,Y: natural init X =0, Y=1
l0: while X =0 do
l1: Y := 1
l2: while Y = 1 do m0: X:=1
l3: Y := max(Y-1,0) m1:
l4:

Fig. 10. Abstract Program UP-DOWN

We also use the notation at li to denote π1 = i, and at mj to denote π2 = j.
The justice requirements of the program include F0 : 〈1,¬at l0〉, F1 : 〈1,¬at l1〉,
F2 : 〈1,¬at l2〉, F3 : 〈1,¬at l3〉, F4 : 〈1,¬at m1〉. Employing the predicate base

17

P : x > 0, y > 0, we obtain the abstraction

α : Π1 = π1,Π2 = π2, X = (x > 0), Y = (y > 0)

The abstract property is Ψα : (Π1 = 0 ∧Π2 = 0) ⇒ ♦(Π1 = 4).
The pending graph is shown in Fig.11 and the abstract diagram is shown in

Fig.12.

Fig. 11. The Pending Graph Fig. 12. The Abstract Graph

In the first level of computation, the MSCC decomposition yields the follow-
ing sorted list: g ,S1,{S2,S3},S4,S5,S6,S7,{ S8,S9},S10. Consequently, we assign
to nodes g, S1,. . . ,S7 the sequence of ranks: 0 ,1 ,2 ,2 ,3 ,4 ,5 ,6, 7, 7, 8.

In the second level of computation, we consider the MSCCs {S2,S3} and
{S8,S9}. Table 10 shows the final values of Ri and Hi.

18

Index i Si Ri Hi

10 S10 [8] [F0, F5]

9 S9 [7, 1] [F5, F1]

8 S8 [7, 0] [F5, F0]

7 S7 [6] [F1]

6 S6 [5] [F0]

5 S5 [4] [F0]

4 S4 [3] [F2]

3 S3 [2, y, 1] [F2, FD]

2 S2 [2, y, 0)] [F3, FD]

1 S1 [1] [F2]

0 S0 [0]

Table 10. The Rank Table of Program UP-DOWN

According to Ri and Hi for i = 1, ..., 8, we construct abstract states with
their associated ranks as shown in Table 11. The the abstract graph is shown in
Fig.12.

Abstract Node Nodes Rank Compassion Req.

Φ8 S9 [7] F1

Φ7 S8, S10 [6] F0

Φ6 S9, S8, S10 [5] F5

Φ5 S7 [4] F1

Φ4 S5, S6 [3] F0

Φ3 S3, S4 [2, y, 1] F2

Φ2 S2 [2, y, 0] F3

Φ1 S1 [1] F2

Φ0 S0 [0]

Table 11. The Abstract Table of Program UP-DOWN

At the last step, we compute the concrete helpful assertions ϕ1, . . . , ϕ8 by
concretization of the abstract assertions Φ1, . . . , Φ8. The concrete helpful asser-
tions are shown in the table in Table 12.

The validity of the premises of rule C-RESPONSE for example 3 has been
verified with the constructed auxiliary constructs ϕ1, ..., ϕ8 and ∆1, ..., ∆8. The
reader is referred to Appendix A.3 for the details.

4.4 Discussion

On different compassion requirements Suppose that in the first example, we
replace the original compassion requirement 〈at l2[1] ∧ y, at l3[1]〉 by 〈at l2[1] ∧

19

Index ϕi ∆i

8 at l1 ∧ at m0 ∧ x = 0 ∧ y > 0 [7]

7 at l0 ∧ at m0 ∧ x = 0 ∧ y > 0 [6]

6 at l0,1 ∧ at m0 ∧ x = 0 ∧ y > 0 [5]

5 at l1 ∧ at m1 ∧ x > 0 ∧ y > 0 [4]

4 at l0 ∧ at m1 ∧ x > 0 ∧ y > 0 [3]

3 at l2 ∧ at m1 ∧ x > 0 ∧ y > 0 [2, y, 1]

2 at l3 ∧ at m1 ∧ x > 0 ∧ y > 0 [2, y, 0]

1 at l2at m1 ∧ x > 0 ∧ y = 0 [1]

Table 12. The Concrete Table of Program UP-DOWN

y ∧ at l2[j], at l3[1]〉. According to the approach, we can also obtain a set of
auxiliary assertions and ranks, however these are too weak for the deductive
proof of the liveness property. Since the modified system does not satisfy the
liveness property, because the fairness requirement is not strong enough, the
result is as expected. Details are in Appendix A.1 (Example 1a).

On the construction of pending graph We may construct a pending graph by
grouping states together to obtain a smaller graph. However this may cause
problems, if it is not done carefully. Suppose that in the second example, we con-
struct the pending graph as shown in Fig. 13, which is more compact than that
used in the second example. The problem with this pending graph is explained

Fig. 13. Another Pending Graph of COND-TERM

20

as follows. Since the MSCC {S4, S2, S1} violates FD : 〈Decy > 0, Decy < 0〉,
we have to remove some edges of the MSCC in order to continue the further
analysis. If we remove the edge (S2 → S1), then the rank of S2 is the mini-
mum. However it does not necessarily make progress to the goal state, because
the value of variable X in S1 includes 1 and 0. Therefore we have to sepa-
rate the state 〈Π : 1, X ∈ {0, 1}, Y : 0, Decy : 1〉 into two different states:
〈Π : 1, X : 0, Y : 0, Decy : 1〉 and 〈Π : 1, X : 1, Y : 0, Decy : 1〉. This mod-
ification makes the pending graph of COND-TERM that we used in Section
4.2.

5 Concluding Remarks

For proving the response property in systems with fairness based on the rule
presented in [13], we need auxiliary constructs. We have presented a method
for extracting such constructs. The method extends that presented in [2] which
aimed at proving the response property in systems with justice. When the sys-
tem is restricted to only allow justice requirements, the auxiliary constructs we
obtained may be different from that obtained by using the method presented in
[2].

References

1. Arons T, Pnueli A, Ruah S, Xu Y, Zuck L D. Parameterized Verification with
Automatically Computed Inductive Assertions. Proc. Computer Aided Verification,
volume 2102 of LNCS, pp.221–234. Springer,2001.

2. Balaban I, Pnueli A, Zuck L D. Modular ranking abstraction. International Journal
of Foundations of Computer Science, 2007, 18(1): 5–44.

3. Balaban I, Pnueli A, Zuck L D. Ranking abstraction as companion to predicate
abstraction. In Proc. FORTE, Taipei, Taiwan, October 2–5, 2005, pp.1-12.

4. Ball T, Majumdar R, Millstein T, Rajamani S. Automatic predicate abstraction
if C programs. Proc. PLDI, volume 36 of ACM SIGPLAN Notices, pp.203–213.
ACM Press, 2001.

5. Das S. Predicate Abstraction. Stanford University, 2003.
6. Fang Y, Piterman N, Pnueli A, Zuck L D. Liveness by invisible ranking. Proc.

VMCAI2004, LNCS 2937, pp.223–238, 2004.
7. Fang Y, Piterman N, Pnueli A, Zuck L D. Liveness with incomprehensible rank-

ing. In Proc. Tools and Algorithms for the Construction and Analysis of Systems,
Barcelona, Spain, Mar. 29–Apr. 2, 2004, pp.482-496.

8. Graf S, Saidi H. Construction of abstract state graph with PVS. Proc. Computer
Aided Verification, volume 1254 of LNCS, pp.72–83. Springer,1997.

9. Kesten Y, Pnueli A. Verification by augmented finitary abstraction. Information
and Computation, 2000, 163(1): 203-243.

10. Kesten Y, Pnueli A, Vardi M. Verification by augmented abstraction: The au-
tomata theoretic view. J.Comp¿systems Sci, 2001, 62:668–690.

11. Manna Z, Pnueli A. Completing the temporal picture. TCS, 1991, 83(1):91–130.
12. Manna z, Pnueli A. Temporal verification diagrams. Theoretical Aspects of Com-

puter Software, Volume 789:726-765,1994.
13. Pnueli A, Sa’ar Y. All you need is compassion. In Proc. VMCAI, San Francisco,

USA, January 7–9, 2008, pp.33–247.

21

A Appendix

This appendix contains the steps of checking whether the premisses of the rule
C-RESPONSE is valid by utilizing the auxiliary constructs produced by C-
GRAPH.

A.1 Example 1: MUX-SEM

The goal represented by p → ♦q, the compassion requirements represented by
(pi, qi), and the auxiliary constructs for example 1 are listed as follows.

p: at l2[1] q: at l3[1]
ϕ1 : at l2[1] p1 : at l2[1] ∧ y = 1 q1 : at l3[1] ∆1: [0]
ϕ2 : at l2[1] ∧ at l4[j] ∧ y = 0 p2: 1 q2 : ¬at l4[j] ∆2: [1]
ϕ3 : at l2[1] ∧ at l3[j] ∧ y = 0 p3: 1 q3 : ¬at l3[j] ∆3: [2]

We prove that the premisses of the rule C-RESPONSE hold when using the
above auxiliary constructs as follows. In the proof, Si which represents a subset
of the concrete states is the corresponding state in Fig. 4.

R1 p ⇒ q ∨ ∨n
j=1(pj ∧ ϕj)

S3, S2, S1 p1 ∧ ϕ1 : S1

p2 ∧ ϕ2 : S2

p3 ∧ ϕ3 : S3

This means that the initial states S3, S2, S1 which satisfy p : at l2[1] can
be covered by the set of states specified on the right hand side. This proof uses
information provided by the pend graph. Formally, the proof of p ⇒ q∨∨n

j=1(pj∧
ϕj) may be carried out (without using the pend graph) as follows.

p ⇒ q ∨∨n
j=1(pj ∧ ϕj)

iff
at l2[1] ⇒ at l3[1] ∨ (at l2[1] ∧ y = 1 ∧ at l2[1])

∨∃j 6= 1.(at l2[1] ∧ at l4[j] ∧ y = 0)
∨∃j 6= 1.(at l2[1] ∧ at l3[j] ∧ y = 0)

iff
at l2[1] ⇒ at l3[1] ∨ (y = 1)

∨∃j 6= 1.(at l4[j] ∧ y = 0)
∨∃j 6= 1.(at l3[j] ∧ y = 0)

iff
at l2[1] ⇒ (y = 1)

∨∃j 6= 1.(at l4[j] ∧ y = 0)
∨∃j 6= 1.(at l3[j] ∧ y = 0)

only if
y 6= 1 ⇒ ∃j.(at l4[j]) ∨ ∃j.(at l3[j])

The last implication holds, because it is an invariant of the program. In the
following, for simplicity, we use the pend graph as the basis of our proofs of the
validity of R2-R4, and omit this kind of details.

22

i=1

1R2 p1 ∧ ϕ1 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S3, S1 g p1 ∧ ϕ1 : S1

p3 ∧ ϕ3 : S3

1R3 ϕ1 ∧ ρ ⇒ q′∨ (ϕ′1 ∧∆1 = ∆′
1)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆1 Â ∆′

j)
S3, S2, S1 g ϕ1 : S1, S2, S3

1R4 ϕ1 ⇒ ¬q1

S3, S2, S1 S3, S2, S1

i=2

2R2 p2 ∧ ϕ2 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S1, S2 g p1 ∧ ϕ1 : S1

p2 ∧ ϕ2 : S2

2R3 ϕ2 ∧ ρ ⇒ q′∨ (ϕ′2 ∧∆2 = ∆′
2)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆2 Â ∆′

j)
S1, S2 g ϕ2 : S2 p1 ∧ ϕ1 : S1

2R4 ϕ2 ⇒ ¬q2

S2 S2

i=3

3R2 p3 ∧ ϕ3 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S2, S3 p2 ∧ ϕ2 : S2

p3 ∧ ϕ3 : S3

3R3 ϕ3 ∧ ρ ⇒ q′∨ (ϕ′3 ∧∆3 = ∆′
3)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆3 Â ∆′

j)
S2, S3 ϕ3 : S3 p2 ∧ ϕ2 : S2

3R4 ϕ3 ⇒ ¬q3

S3 S3

This means that the transitions from ϕi and pi∧ϕi satisfy R2−R4. Therefore
we can reach the goal state: at l3[1] with these transitions, and the liveness
property holds.

For illustration, the transitions of the program with 3 processes are shown in
Fig. 14- Fig. 17 . The labels on the transitions indicate how states are changed
according to the premisses of the rule, such that if we start from some state
satisfying the initial assertion p, then we have transitions satisfy the premisses
of the rule, and we can reach the goal state with these transitions.

23

Fig. 14. S1 in 3-Processes MUX Fig. 15. S2 in 3-Processes MUX

Fig. 16. S3 in 3-Processes MUX Fig. 17. S0 in 3-Processes MUX

24

A.2 Example 2: COND-TERM

The goal, the compassion requirements and the auxiliary constructs for example
2 are listed as follows.

p: at l1 q: at l3
ϕ1 : at l1 ∧ y = 0 p1: 1 q1 : ¬at l1 ∆1: [1]
ϕ2 : at l1..3 ∧ y > at l1,2,3 ∧ x ∈ {0, 1} p2 : at l3 ∧ x = 0 q2: 0 ∆2: [2]
ϕ3 : at l3 ∧ y > 0 ∧ x = 1 p3: 1 q3 : ¬at l3 ∆3: [2,0,y,0]
ϕ4 : at l2 ∧ y > 0 ∧ x ∈ {0, 1} p4: 1 q4 : ¬at l2 ∆4: [2,0,y,1]
ϕ5 : at l1 ∧ y > 0 ∧ x = 1 p5: 1 q5 : ¬at l1 ∆5: [2,0,y,2]
ϕ6 : at l1 ∧ y > 0 ∧ x = 0 p6: 1 q6 : ¬at l1 ∆6: [2,1]
ϕ7 : at l3 ∧ y > 0 ∧ x = 0 p7: 1 q7 : ¬at l3 ∆7: [2,2]

We prove that the premisses of the rule C-RESPONSE hold when using the
above auxiliary constructs as follows.

R1 p ⇒ q ∨ ∨n
j=1(pj ∧ ϕj)

S7, S6, S5, S1 p1 ∧ ϕ1 : S1

p5 ∧ ϕ5 : S5

p6 ∧ ϕ6 : S6, S7

This means that the initial states S7, S6, S5, S1 which satisfy p : at l1 can be
covered by the set of states specified on the right hand side.

i=1

1R2 p1 ∧ ϕ1 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

g g
1R3 ϕ1 ∧ ρ ⇒ q′∨ (ϕ1 ∧∆1 = ∆′

1)∨
∨n

j=1(p
′
j ∧ ϕ′j ∧∆1 Â ∆′

j)
g g

1R4 ϕ1 ⇒ ¬q1

S1 S1

i=2

2R2 p2 ∧ ϕ2 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S6 p6 ∧ ϕ6 : S6

2R3 ϕ2 ∧ ρ ⇒ q′∨ (ϕ′2 ∧∆2 = ∆′
2)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆2 Â ∆′

j)
S6, S5, S4, S3, S2, S1 g ϕ2 : S6, S5, S4, S3, S2 p1 ∧ ϕ1 : S1

2R4 ϕ2 ⇒ ¬q2

S6, S5, S4, S3, S2 S6, S5, S4, S3, S2

i=3

3R2 p3 ∧ ϕ3 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S5, S1 g p1 ∧ ϕ1 : S1

p5 ∧ ϕ5 : S5

25

3R3 ϕ3 ∧ ρ ⇒ q′∨ (ϕ′3 ∧∆3 = ∆′
3)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆3 Â ∆′

j)
S5, S1 g p1 ∧ ϕ1 : S1

p5 ∧ ϕ5 : S5

In 3R3, we have ∆3 ÂS1 ∆1 and ∆3 ÂS5 ∆5. The validity of the former is
trivial. The validity of latter depends on Decy. In S5, we have Decy = 1 meaning
y > y′. The values of ∆3 and ∆5 depend on the values of y. In this case, we have
∆3 ÂS5 ∆5 and the condition

∨n
j=1(p

′
j ∧ ϕ′j ∧∆3 Â ∆′

j) holds in 3R3.
3R4 ϕ3 ⇒ ¬q3

S2 S2

i=4

4R2 p4 ∧ ϕ4 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S3, S2 g p3 ∧ ϕ3 : S2

p1 ∧ ϕ1 : S3

4R3 ϕ4 ∧ ρ ⇒ q′∨ (ϕ′4 ∧∆4 = ∆′
4)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆4 Â ∆′

j)
S3, S2 g p3 ∧ ϕ3 : S2

p2 ∧ ϕ2 : S3

4R4 ϕ4 ⇒ ¬q4

S4 S4

i=5

5R2 p5 ∧ ϕ5 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S4 g p4 ∧ ϕ4 : S4

5R3 ϕ5 ∧ ρ ⇒ q′∨ (ϕ′5 ∧∆5 = ∆′
5)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆5 Â ∆′

j)
S4 g p4 ∧ ϕ4 : S4

5R4 ϕ5 ⇒ ¬q5

S5 S5

i=6

6R2 p7 ∧ ϕ6 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S4 p4 ∧ ϕ4 : S4

6R3 ϕ6 ∧ ρ ⇒ q′∨ (ϕ′6 ∧∆6 = ∆′
6)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆6 Â ∆′

j)
S4 p4 ∧ ϕ4 : S4

6R4 ϕ6 ⇒ ¬q6

S7, S6 S7, S6

i=7

7R2 p7 ∧ ϕ7 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S6 p6 ∧ ϕ6 : S6

7R3 ϕ7 ∧ ρ ⇒ q′∨ (ϕ′7 ∧∆7 = ∆′
7)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆7 Â ∆′

j)
S6 p6 ∧ ϕ6 : S6

26

7R4 ϕ7 ⇒ ¬q7

S3 S3

This means that every state in the transitions satisfies the premisses of the
rule, therefore we can reach the goal state: at l3 with these transitions, and the
liveness property holds.

A.3 Example 3: UP-DOWN

The goal, the compassion requirements and the auxiliary constructs for example
3 are listed as follows.

p: at l0 ∧ at m0 q: at l4
ϕ1 : at l2 ∧ at m1 ∧ x > 0 ∧ y = 0 p1: 1 q1 : ¬at l2 ∆1: [1]
ϕ2 : at l3 ∧ at m1 ∧ x > 0 ∧ y > 0 p2 : 1 q2 : ¬at l3 ∆2: [2,y,0]
ϕ3 : at l2 ∧ at m1 ∧ x > 0 ∧ y > 0 p3: 1 q3 : ¬at l2 ∆3: [2,y,1]
ϕ4 : at l0 ∧ at m1 ∧ x > 0 ∧ y > 0 p4: 1 q4 : ¬at l0 ∆4: [3]
ϕ5 : at l1 ∧ at m1 ∧ x > 0 ∧ y > 0 p5: 1 q5 : ¬at l1 ∆5: [4]
ϕ6 : at l0,1 ∧ at m0 ∧ x = 0 ∧ y > 0 p6: 1 q6 : ¬at m0 ∆6: [5]
ϕ7 : at l0 ∧ at m0 ∧ x = 0 ∧ y > 0 p7: 1 q7 : ¬at l0 ∆7: [6]
ϕ8 : at l1 ∧ at m0 ∧ x = 0 ∧ y > 0 p8: 1 q8 : ¬at l1 ∆8: [7]

We prove that the premisses of the rule C-RESPONSE hold when using the
above auxiliary constructs as follows.

R1 p ⇒ q ∨ ∨n
j=1(pj ∧ ϕj)

S10, S8 p6 ∧ ϕ6 : S10, S8

p7 ∧ ϕ7 : S10, S8

This means that the initial states S10, S8 which satisfy p : at l0 ∧ at m0 can
be covered by the set of states specified on the right hand side.

i=1

1R2 p1 ∧ ϕ1 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

g g

1R3 ϕ1 ∧ ρ ⇒ q′∨ (ϕ1 ∧∆1 = ∆′
1)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆1 Â ∆′

j)
g g

1R4 ϕ1 ⇒ ¬q1

S1 S1

i=2

2R2 p2 ∧ ϕ2 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S3, S1 p3 ∧ ϕ3 : S3

p1 ∧ ϕ1 : S1

27

2R3 ϕ2 ∧ ρ ⇒ q′∨ (ϕ′2 ∧∆2 = ∆′
2)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆2 Â ∆′

j)
S3, S1 g p1 ∧ ϕ1 : S1

p3 ∧ ϕ3 : S3

2R4 ϕ2 ⇒ ¬q2

S3, S1 S3, S1

i=3

3R2 p3 ∧ ϕ3 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S2 g p2 ∧ ϕ2 : S2

3R3 ϕ3 ∧ ρ ⇒ q′∨ (ϕ′3 ∧∆3 = ∆′
3)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆3 Â ∆′

j)
S2 g p2 ∧ ϕ2 : S2

3R4 ϕ3 ⇒ ¬q3

S3, S4 S3, S4

i=4

4R2 p4 ∧ ϕ4 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S4 g p3 ∧ ϕ3 : S4

4R3 ϕ4 ∧ ρ ⇒ q′∨ (ϕ′4 ∧∆4 = ∆′
4)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆4 Â ∆′

j)
S4 g p3 ∧ ϕ3 : S4

4R4 ϕ4 ⇒ ¬q4

S5S6 S5S6

i=5

5R2 p5 ∧ ϕ5 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S6 g p4 ∧ ϕ4 : S6

5R3 ϕ5 ∧ ρ ⇒ q′∨ (ϕ′5 ∧∆5 = ∆′
5)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆5 Â ∆′

j)
S6 g p4 ∧ ϕ4 : S6

5R4 ϕ5 ⇒ ¬q5

S7 S7

i=6

6R2 p7 ∧ ϕ6 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S4, S7, S5 p3 ∧ ϕ3 : S5

p4 ∧ ϕ4 : S5

p5 ∧ ϕ5 : S7

6R3 ϕ6 ∧ ρ ⇒ q′∨ (ϕ′6 ∧∆6 = ∆′
6)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆6 Â ∆′

j)
S4, S7, S5 p3 ∧ ϕ3 : S5

p4 ∧ ϕ4 : S5

p5 ∧ ϕ5 : S7

6R4 ϕ6 ⇒ ¬q6

S8, S9, S10 S8, S9, S10

28

i=7

7R2 p7 ∧ ϕ7 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S9 p6 ∧ ϕ6 : S9

7R3 ϕ7 ∧ ρ ⇒ q′∨ (ϕ′7 ∧∆7 = ∆′
7)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆7 Â ∆′

j)
S9 p6 ∧ ϕ6 : S9

7R4 ϕ7 ⇒ ¬q7

S8, S10 S8, S10

i=8

8R2 p7 ∧ ϕ7 ∧ ρ ⇒ q′∨ ∨n
j=1((p

′
j ∧ ϕ′j)

S8 p7 ∧ ϕ7 : S8

8R3 ϕ7 ∧ ρ ⇒ q′∨ (ϕ′7 ∧∆7 = ∆′
7)∨

∨n
j=1(p

′
j ∧ ϕ′j ∧∆7 Â ∆′

j)
S8 p7 ∧ ϕ7 : S8

8R4 ϕ7 ⇒ ¬q7

S9 S9

This means that every state in the transitions satisfies the premisses of the
rule, therefore we can reach the goal state: at l4 with these transitions, and the
liveness property holds.

