
ISCAS-LCS-I0-16 August，2010

中国科学院软件研究所
计算机科学实验室报告

Bounded Semantics of CTL

by

Wenhui Zhang

State key Laboratory of Computer Science
Institute of Software

Chinese Academy of Sciences
Beijing 100190.China



Copyright ©2010，State key Laboratoη ，of Computer Science，Institute of Software.
All rights reserved. Reproduction of all or part of this work is
permitted for educational or research use on condition that this
copyright notice is included in any copy.



Bounded Semantics of CTL

Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
P.O.Box 8718, Beijing 100190, China

18 August 2010

1 Introduction

Bounded model checking has been proposed as a complementary approach to
BDD based symbolic model checking for combating the state explosion problem
[1]. The idea was first applied to checking LTL properties, essentially for effi-
cient error detection. It has then been applied to checking ACTL properties [4],
mostly also for error detection. Both works were based on bounded semantics
for existentially interpreted logics, i.e., LTL with existential interpretation and
ECTL (the existential fragment of CTL). For verification of a property specified
as a universal one that is valid, such semantics is not very useful. It is therefore
important to develop bounded semantics of logics capable of specifying univer-
sal properties. This document presents the bounded semantics of CTL [5] and
related issues, including a QBF-based characterization of CTL formulas and an
bounded verification algorithm based on the characterization (called bounded
semantics model checking). The rest of this paper is organized as follows. In Sec-
tion 2, the logic CTL is presented. In Section 3, the bounded semantics of CTL is
presented. In Section 4, a QBF-based characterization of CTL and a QBF-based
bounded semantics model checking algorithm based on the characterization are
presented. In Section 5, a SAT-based characterization of ACTL/ECTL and a
SAT-based bounded semantics model checking algorithm based on the charac-
terization are presented. Concluding remarks are presented in Section 6 with
a short summary of an experimental evaluation of bounded semantics model
checking of CTL properties.

2 Computation Tree Logic

Computation Tree Logic (CTL) is a propositional branching-time temporal logic
[3] introduced by Emerson and Clarke as a specification language for finite state
systems.

Syntax Let AP be a set of propositional symbols and p range over AP . The set
of CTL formulas Φ over AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |
AX Φ |AF Φ |AG Φ |A(Φ U Φ) |A(Φ R Φ) |
EX Φ | EF Φ | EG Φ | E(Φ U Φ) | E(Φ R Φ)



The property of a finite state system may be specified by such a formula,
and conversely, the truth of such a formula may be evaluated in a finite state
system.

Models A finite state system may be represented by a Kripke structure which is
a quadruple M = 〈S, T, I, L〉 where S is a set of states, T ⊆ S×S is a transition
relation which is total, I ⊆ S is a set of initial states and L : S → 2AP is
a labeling function that maps each state to a subset of propositions of AP . A
Kripke structure is also called a model.

Paths A computation of M is then represented by a path of M which is an
infinite sequence of states π = π0π1 · · · such that (πi, πi+1) ∈ T for all i ≥ 0.
Given a path π = π0π1 · · ·, we use πi to denote the subpath of π starting at πi,
use π(s) to denote a path π with π0 = s. Then ∃π(s).ϕ means that there is a
path π with π0 = s such that ϕ holds, and ∀π(s).ϕ means that for every path π
with π0 = s, ϕ holds.

Let Ψ = {ψ | Eψ ∈ Φ} be a set of auxiliary formulas.

Definition 1. (Semantics of CTL) Let s be a state of M , p a propositional
symbol, ϕ,ϕ0, ϕ1 CTL formulas. The relation that ϕ holds on s in M is denoted
M, s |= ϕ. The relation |= is defined as follows (where M, π |= ψ is an auxiliary
relation for ψ ∈ Ψ).

M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ0 iff M, s 6|= ϕ0

M, s |= ϕ0 ∧ ϕ1 iff M, s |= ϕ0 and M, s |= ϕ1

M, s |= ϕ0 ∨ ϕ1 iff M, s |= ϕ0 or M, s |= ϕ1

M, s |= Aψ0 iff ∀π(s).(M, π |= ψ0)
M, s |= Eψ0 iff ∃π(s).(M, π |= ψ0)
M, π |= Xϕ0 iff M, π1 |= ϕ0

M, π |= Fϕ0 iff ∃k ≥ 0.M, πk |= ϕ0

M, π |= Gϕ0 iff ∀k ≥ 0.M, πk |= ϕ0

M, π |= ϕ0Uϕ1 iff ∃k ≥ 0.(M, πk |= ϕ1 ∧ ∀j < k.(M, πj |= ϕ0))
M, π |= ϕ0Rϕ1 iff ∀k ≥ 0.(M, πk |= ϕ1 ∨ ∃j < k.(M, πj |= ϕ0))

Let M = 〈S, T, I, L〉 denote the model used in the rest of this paper.

Definition 2. M |= ϕ iff M, s |= ϕ for all s ∈ I.

A CTL formula is in the negation normal form (NNF), if the negation ¬ is
applied only to propositional symbols. Every CTL formula can be transformed
into an equivalent formula in NNF. Without loss of generality, we only consider
formulas in NNF. Formulas not in NNF are considered as an abbreviation of the
equivalent one in NNF.



3 Bounded Semantics

Finite Paths A finite path π of M is a finite prefix of an infinite path of M .

k-Paths Let k ≥ 0. A k-path of M is a finite path of M with length k + 1. π is
a k-path, if π = π0 · · ·πk such that πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for
i = 0, ..., k − 1. For the idea of a k-path, the reader is referred to [1].

Bounded Models The k-model of M is a quadruple Mk = 〈S, Phk, I, L〉 where
Phk is the set of all k-paths of M . Mk can be considered as an approximation
of M . For the idea of a bounded model, the reader is referred to [4].

Loops A loop is a k-path π such that πi = πk for some 0 ≤ i < k. This is similar
to the one defined in [1], which is a finite path such that the last element has a
successor to some element in the path.

Internal-Loops An internal-loop is a k-path that contains some sub-path which
is a loop. Let ilp(π) denote that π is an inward-loop. An important property of
such a loop is that if π is a prefix of π′, then ilp(π) → ilp(π′).

Definition 3 (Bounded Semantics of CTL). Let s be a state of M , p a
propositional symbol, ϕ,ϕ0, ϕ1 CTL formulas. The relation that ϕ holds on s
in Mk is denoted Mk, s |= ϕ. Let π denote a k-path of Phk. The relation |= is
defined as follows (where Mk, π |= ψ is an auxiliary relation).

Mk, s |= p iff p ∈ L(s) .
Mk, s |= ¬p iff p 6∈ L(s)
Mk, s |= ϕ0 ∧ ϕ1 iff (Mk, s |= ϕ0) and (Mk, s |= ϕ1)
Mk, s |= ϕ0 ∨ ϕ1 iff (Mk, s |= ϕ0) or (Mk, s |= ϕ1)
Mk, s |= Aψ iff ∀π(s).(Mk, π |= ψ)
Mk, s |= Eψ iff ∃π(s).(Mk, π |= ψ)
Mk, π |= Xϕ0 iff k ≥ 1 ∧ (Mk, π1 |= ϕ0)
Mk, π |= Fϕ0 iff ∃i ≤ k.(Mk, πi |= ϕ0)
Mk, π |= Gϕ0 iff ilp(π)∧ (∀i ≤ k.(Mk, πi |= ϕ0))
Mk, π |= ϕ0Uϕ1 iff ∀π(s).(∃i ≤ k.(Mk, πi |= ϕ1∧ ∀j < i.(Mk, πj |= ϕ0)))
Mk, π |= ϕ0Rϕ1 iff
∀i ≤ k.(Mk, πi |= ϕ1∨ ∃j < i.(Mk, πj |= ϕ0)) ∧ (∃j ≤ k.(Mk, πj |= ϕ0) ∨ ilp(π))

Proposition 1. M, s |= ϕ iff Mk, s |= ϕ for some k ≥ 0.

Bounded Semantics Model Checking Principle Let s be a state of M , ϕ a CTL
formula. The bounded semantics model checking principle for the verification of
M, s |= ϕ may be formulated as follows.

Let k = 0; .
If Mk, s |= ϕ holds, report that ϕ holds;
If Mk, s |= ¬ϕ holds, report that ϕ does not hold;
Increase k, go to the first “if”-test;

The correctness and the termination are guaranteed by Proposition 1.



4 QBF-based Characterization of CTL Formulas

From the bounded semantics, a QBF-based characterization of CTL formulas
can be developed as follow. Let k ≥ 0. Let u0, ..., uk be a finite sequence of state
variables. The sequence u0, ..., uk (denoted by

→
u) is intended to be used as a

representation of a path of Mk. This is captured by the following definition of
Pk(

→
u).

Definition 4.

Pk(
→
u) :=

k−1∧

j=0

T (uj , uj+1)

Every assignment to the set of state variables {u0, ..., uk} satisfying Pk(
→
u)

represents a valid k-path of M . Let ek(
→
u) denote that the k-path represented

by
→
u is a loop. Formally, we have the following definition of ek(

→
u).

Definition 5.

ek(
→
u) :=

k−1∨
x=0

k∨
y=x+1

ux = uy.

Let p ∈ AP be a proposition symbol and p(v) be the propositional formula
such that p(v) is true whenever v is assigned the truth value representing a state
s in which p holds.

Definition 6 (Translation of CTL Formulas). Let k ≥ 0. Let v be a state
variable and ϕ be a CTL formula. The encoding [[ϕ, v]]k is defined as follows.

[[p, v]]k = p(v)
[[¬p, v]]k = ¬p(v)
[[ϕ ∨ ψ, v]]k = [[ϕ, v]]k ∨ [[ψ, v]]k
[[ϕ ∧ ψ, v]]k = [[ϕ, v]]k ∧ [[ψ, v]]k
[[Aϕ, v]]k = ∀→u.(P (

→
u) ∧ v = u0 → [[ϕ,

→
u ]]k)

[[Eϕ, v]]k = ∃→u.(P (
→
u) ∧ v = u0 ∧ [[ϕ,

→
u ]]k)

[[Xϕ,
→
u ]]k = k ≥ 1 ∧ [[ϕ, u1]]k

[[Fψ,
→
u ]]k =

∨k
j=0[[ψ, uj ]]k

[[Gψ,
→
u ]]k =

∧k
j=0[[ψ, uj ]]k ∧ ek(

→
u))

[[ϕUψ,
→
u ]]k =

∨k
j=0([[ψ, uj ]]k ∧

∧j−1
t=0 [[ϕ, ut]]k)

[[ϕRψ,
→
u ]]k =

∧k
j=0([[ψ, uj ]]k ∨

∨j−1
t=0 [[ϕ, ut]]k) ∧ (

∨k
t=0[[ϕ, ut]]k ∨ ek(

→
u))

Let v(s) denote that the state variable v has been assigned a value corre-
sponding to the state s.

Proposition 2. Let ϕ be a CTL formula. Mk, s |= ϕ iff [[ϕ, v(s)]]k holds.

Let I(v) denote the propositional formula that restricts potential values of v
to the initial states of M .

Corollary 1. Let ϕ be a CTL formula. M |= ϕ iff there is a k ≥ 0 such that
∀v.(I(v) → [[ϕ, v]]k) and there is no k such that ∃v.(I(v) ∧ [[¬ϕ, v]]k).



Bounded Semantics Model Checking Algorithm Let ϕ be a CTL formula. The
corresponding QBF-based bounded semantics model checking algorithm for the
verification of M |= ϕ is then as follows.

Let k = 0; .
If ∀v.(I(v) → [[ϕ, v]]k) holds, report that ϕ holds;
If ∃v.(I(v) ∧ [[¬ϕ, v]]k) holds, report that ϕ does not hold;
Increase k, go to the first “if”-test;

5 SAT-based Characterization of ACTL Formulas

The restriction of CTL to formulas (in NNF) not containing the existential path
quantifier E is called ACTL. Similarly, the restriction of CTL to formulas not
containing the universal path quantifier A is called ECTL.

Submodels Let Mk = 〈S, Phk, I, L〉 be the k-model of M . M
′
k = 〈S, Ph

′
k, I, L〉

is a submodel of Mk, if Ph
′
k ⊆ Phk. M

′
k is called a (k, n)-submodel of Mk when

|M ′
k| = n with |M ′

k| denoting the size of Ph
′
k.

Definition 7. Let ϕ,ψ be respectively an ACTL formula and an ECTL formula.
na(Mk, ϕ) is the least number such that for all s, Mk, s |= ϕ iff M ′

k, s |= ϕ for
all (k, na(ϕ))-submodels M ′

k of Mk; ne(Mk, ψ) is the least number such that for
all s, Mk, s |= ψ iff M ′

k, s |= ψ for some (k, ne(ψ))-submodel M ′
k of Mk.

Proposition 3. Let ϕ be an ACTL formula and m ≥ na(Mk, ϕ). M, s |= ϕ iff
for all (k, m)-submodel N of Mk, we have N, s |= ϕ for some k ≥ 0.

Proposition 4. Let ψ be an ECTL formula and m ≥ ne(Mk, ψ). M, s |= ψ iff
for there is some (k, m)-submodel N of Mk such that N, s |= ϕ for some k ≥ 0.

Definition 8. Let ϕ be an ACTL formula. fk(ϕ) is defined as follows.

fk(p) = 0 if p ∈ AP
fk(¬p) = 0 if p ∈ AP
fk(ϕ0 ∧ ϕ1) = max(fk(ϕ0), fk(ϕ1))
fk(ϕ0 ∨ ϕ1) = fk(ϕ0) + fk(ϕ1)
fk(AXϕ) = fk(ϕ) + 1
fk(AFϕ) = (k + 1) · fk(ϕ) + 1
fk(AGϕ) = fk(ϕ) + 1
fk(A(ϕ0Uϕ1)) = k ·max(fk(ϕ0), fk(ϕ1)) + fk(ϕ0) + fk(ϕ1) + 1
fk(A(ϕ0Rϕ1)) = k · fk(ϕ0) + max(fk(ϕ0), fk(ϕ1)) + 1

Proposition 5. fk(ϕ) ≥ na(Mk, ϕ) and fk(ϕ) ≥ ne(Mk,¬ϕ).

Then a SAT-based characterization of ACTL and ECTL formulas can be
developed as follow. Let k ≥ 0. Let i ≥ 1 and ui,0, ..., ui,k be a finite sequence
of state variables. The sequence ui,0, ..., ui,k (denoted by

→
ui) is intended to be

used as a representation of a path of Mk. Every assignment to the set of state
variables {ui,0, ..., ui,k} satisfying Pk(

→
ui) represents a valid k-path of M .



Definition 9. Let k ≥ 0, b ≥ 1.

[[M ]]bk :=
b∧

i=1

Pk(
→
ui)

This is a collection of Pk(l) for l = 1, ..., b, and is intended to represent the
set of the k-paths in a (k, b)-submodel of Mk.

Definition 10 (Translation of ACTL and ECTL formulas). Let k ≥ 0.
Let u be a state variable and ϕ be an ACTL formula. The encoding [[ϕ, u]]bk is
defined as follows.

[[p, u]]bk = p(u)
[[¬p, u]]bk = ¬p(u)
[[ϕ ∨ ψ, u]]bk = [[ϕ, u]]bk ∨ [[ψ, u]]bk
[[ϕ ∧ ψ, u]]bk = [[ϕ, u]]bk ∧ [[ψ, u]]bk
[[Aϕ, u]]bk =

∧b
i=1(u = ui,0 → [[ϕ,

→
ui]]bk)

[[Eϕ, u]]bk =
∧b

i=1(u = ui,0 ∧ [[ϕ,
→
ui]]bk)

[[Xϕ,
→
ui]]bk = k ≥ 1 ∧ [[ϕ, ui,1]]bk

[[Fψ,
→
ui]]bk =

∨k
j=0[[ψ, ui,j ]]bk

[[Gψ,
→
ui]]bk =

∧k
j=0[[ψ, ui,j ]]bk ∧ ek(

→
ui)

[[ϕUψ,
→
ui]]bk =

∨k
j=0([[ψ, ui,j ]]bk ∧

∧j−1
t=0 [[ϕ, ui,t]]bk)

[[ϕRψ,
→
ui]]bk =

∧k
j=0([[ψ, ui,j ]]bk ∨

∨j−1
t=0 [[ϕ, ui,t]]bk) ∧ (

∨k
t=0[[ϕ, ui,t]]bk ∨ ek(

→
ui))

Proposition 6. Let ϕ be an ACTL formula and [[M, ϕ, u]]bk = [[M ]]bk → [[ϕ, u]]bk.
[[M, ϕ, u(s)]]bk is valid iff M ′

k, s |= ϕ for all (k, b)-submodel M ′
k.

Proposition 7. Let ϕ be an ECTL formula and [[M, ψ, u]]bk := [[M ]]bk∧[[ψ, u]]bk.
[[M, ϕ, u(s)]]bk is satisfiable iff M ′

k, s |= ϕ for some (k, b)-submodel M ′
k.

Proposition 8. Let ϕ be an ACTL formula. M, s |= ϕ iff there is a k such
that [[M, ϕ, u(s)]]fk(ϕ)

k is valid and there is no k such that [[M,¬ϕ, u(s)]]fk(ϕ)
k is

satisfiable.

Corollary 2. Let ϕ be an ACTL formula. M |= ϕ iff there is a k such that
[[M, ϕ]]bk := I(u) → [[M, ϕ, u]]bk is valid and there is no k such that I(u) ∧
[[M,¬ϕ, u]]fk(ϕ)

k is satisfiable.

Bounded Semantics Model Checking Algorithm Let ϕ be an ACTL formula. The
corresponding SAT-based bounded semantics model checking algorithm for the
verification of M |= ϕ is then as follows.

Let k = 0; .
Let b = fk(ϕ);
If I(u) ∧ ¬[[M, ϕ, u]]bk is unsatisfiable, report that ϕ holds;
If I(u) ∧ [[M,¬ϕ, u]]bk is satisfiable, report that ϕ does not hold;
Increase k, go to the second “let”-statement;



6 Evaluation and Concluding Remarks

Bounded semantics of CTL and QBF-based characterization of CTL based on
such a semantics are presented. Bounded semantics model checking algorithm
based on solving QBF-formulas has then been established.

Evaluation Experimental evaluation1 of the efficiency of QBF-based bounded
semantics model checking of CTL formulas has been carried out. The evalua-
tion is based on comparing an implementation of the bounded semantics model
checking algorithm in verds version 1.30 with an implementation of boolean dia-
gram model checking also in verds version 1.30. The evaluation was based on two
types of random boolean programs and a set of 24 CTL formulas which includes
formulas with nested CTL operators. Based on the test cases, the experimental
evaluation shows that the bounded semantics model checking does not have ad-
vantage in verifying any of the properties that start with AG. On the other hand,
the bounded semantics model checking has advantage in various degrees with
respect to the other verification and falsification problems (including falsifica-
tion of AG properties). In summary, the bounded semantics model checking has
advantage in more than 50 percent of the test cases, which are well distributed
among verification and falsification of universal properties (of the form Aϕ).
In this sense, bounded semantics model checking and boolean diagram model
checking may be considered complementary with their own advantages.

Note The evaluation of the bounded semantics model checking uses verds for
comparison, instead of the well known symbolic model checker NuSMV [2],
since the boolean diagram model checking in verds is generally more efficient
than NuSMV with respect to the test cases [6]. The efficiency of bounded se-
mantics model checking also depends very much on the QBF-solving techniques.
External QBF-solvers may be used to increase the efficiency of the verification.
For ACTL formulas, special considerations are possible, and the use of SAT-
solving techniques may be more efficient for this kind of problems.

References

1. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

2. A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri. NUSMV: A New Symbolic
Model Verifier. CAV 1999: 495-499.

3. E. Allen Emerson and E. M. Clarke. Using Branching-time Temporal Logics to
Synthesize Synchronization Skeletons. Sci. of Comp. Prog. 2(3):241-266. 1982.

4. W. Penczek, B. Wozna, and A. Zbrzezny. Bounded Model Checking for the Uni-
versal Fragment of CTL. Fundamenta Informaticae 51:135-156. 2002.

5. W. Zhang. Bounded Semantics of CTL and SAT-based Verification. Lecture Notes
in Computer Science 5885 (ICFEM 2009):286-305. Springer-Verlag. 2009.

6. W. Zhang. Ternary Boolean Diagrams. Technical Report ISCAS-LCS-10-15, Insti-
tute of Software, Chinese Academy of Sciences. 2010.

1 Details are available at http://lcs.ios.ac.cn/∼zwh/verds/


	tr1016.pdf
	trcopyright.pdf
	verds1.30t2.pdf

