
ISCAS-LCS-I0-24 August ，2010

中国科学院软件研究所
计算机科学实验室报告

Ternary Boolean Diagrams

by

Wenhui Zhang

State key Laboratory of Computer Science /
Institute of Software

Chinese Academy of Sciences
Beijing 100190. China

Copyright ©2010，State key Laboratoη ，of Computer Science，Institute of Software.
All rights reserved. Reproduction of all or part of this work is
permitted for educational or research use on condition that this
copyright notice is included in any copy.

Ternary Boolean Diagrams

Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
P.O.Box 8718, Beijing 100190, China

18 August 2010

1 Introduction

Binary decision diagrams (BDDs) were introduced for representation of switch-
ing circuits in [5] in 1959. The full potential for efficient algorithms based on
the BDDs was investigated in [1] in 1986, in which a fixed variable ordering and
shared sub-graphs are used for compressed canonical representation. Efficient
boolean function manipulation has made BDDs been extensively used in logic
synthesis and formal verification, in particular, for combating the state explosion
problem of model checking, symbolic algorithms based on BDDs were introduced
in [2] in 1990, and since then, BDDs have dominated the research on efficient
symbolic algorithms for model checking. It is therefore of great importance to
search for new bases for boolean function manipulation and formal verification.
This document proposes ternary boolean diagrams (TBDs). The rest of his pa-
per is organized as follows. The basic idea is presented in section 2, in which
TBDs are introduced and their relation to boolean formulas is established. The
technical development is presented in Section 3, in which ordered TBDs are in-
troduced and operations on ordered TBDs are defined. Further refinement of
the idea for efficient TBD manipulation is presented in Section 4, in which re-
duced ordered TBDs are introduced. An application of TBDs is presented in
Section 5, in which boolean diagram model checking is introduced, which in this
context refers to model checking based on boolean diagrams, in particular, re-
duced ordered TBDs. Concluding remarks are presented in Section 6 with a short
summary of an experimental evaluation on boolean diagram model checking.

2 Ternary Boolean Diagrams

Let L be a set of labels. Let L− = {−x | x ∈ L}. A boolean diagram over L is a
graph with a root node and each node is assigned a label of L ∪ L−. A ternary
boolean diagram is such a graph where the out degree of a node is either 3 or
0, and the out edges of a node is ordered such that the left, the middle and the
right out edges of a node can be identified. Formally, ternary boolean diagrams
are defined as follows.

Definition 1 (Ternary Boolean Diagram). Let L be a set of labels. A ternary
boolean diagram (TBD) over L is a quadruple

(N, n0, E, L)

where N is a set of nodes, n0 ∈ N is the root node, E : N → N3 is a partial
function that defines the three out edges of a node, L : N → L∪L− is a labeling
function which assigns each node a label of L or its negation.

The set of ternary boolean diagrams over L is denoted D(L). For simplicity,
we fix an L and write D for D(L).

Notations When E(n) is not defined for a node n, the value of E(n) is denoted
by a special triple (ε, ε, ε). A TBD t with n0 as the root node may be repre-
sented by (x, a, b, c) when L(n0) = x,E(n0) = (a, b, c). For the clearness of the
presentation, additional notations to be used are as follows.

notation meaning condition
x > 0 x ∈ L
x < 0 x ∈ L−
L(t) x where t = (x, a, b, c)
−−x x where x > 0
|x| x where x > 0
|x| −x where x < 0

−(x, a, b, c) (−x, a, b, c) where x > 0 or x < 0
x · t t where x > 0
x · t −t where x < 0
τx (x, ε, ε, ε) where x > 0
τ∼x (x, ε, ε, ε) where x > 0 or x < 0

2.1 Langauge, Model and Equivalence

Let Σ = (L ∪ L−)∗.

Definition 2. Let r ∈ D and σ = x1 · · ·xk ∈ Σ. σ is accepted by r, denoted
σ |= r, iff there is an x ∈ L such that rdx1 · · · dxk

= τx in which rdn is defined as
follows:

rdn where n < 0 rdn where n > 0
r = τ∼x r r
r = (v, τ∼x , τ∼y , τz) ∧ |v| = |n| v · τ∼x v · τ∼y
r = (v, τ∼x , τ∼y ,−τz) ∧ |v| = |n| v · −τz v · −τz

r = (v, s, t, u) (v, sdn, tdn, udn) (v, sdn, tdn, udn)

such that the last rule is applied only when the other rules are not applicable.

Definition 3. Let r ∈ D and m ⊆ L. m is a model of r, denoted m |= r, iff there
is a sequence σ ∈ Σ such that x ∈ σ implies x > 0 ∧ x ∈ m or x < 0 ∧ −x 6∈ m,
and σ |= r.

r is complete iff for all m ⊆ L, m is a model of r.

Definition 4. Let s, t ∈ D be TBDs. s is equivalent to t, denoted s ≡ t, iff for
all m ⊆ L, m |= s iff m |= t.

2.2 Boolean Formulas as TBDs

Let Φ(S) denote the set of boolean formulas with variables in S. Let LI ⊆ L be
a subset of L.

Definition 5. Let ϕ ∈ Φ(LI) and m ⊆ L. m |= ϕ iff ϕ evaluates to true under
the assignment such that xi = 1 iff xi ∈ m.

Definition 6. Let ϕ ∈ Φ(LI) and r ∈ D. ϕ is equivalent to r, denoted ϕ ≡ r,
iff for all m ⊆ L, m |= ϕ iff m |= r.

3 Ordered TBDs

Let≤ be a linear order on L. x < y iff x ≤ y and x 6= y. Let L = {x1, ..., xn, xn+1}
such that xi < xi+1 for i = 1, ..., n. Let τ = τxn+1 = (xn+1, ε, ε, ε).

Definition 7. The set DO ⊆ D of ordered TBDs is defined as follows. s ∈ DO
iff s = τ , s = −τ , or s = (x, a0, a1, a2) ∈ D where a0, a1, a2 are ordered and for
all i ∈ {0, 1, 2}, |x| < |L(ai)|.

3.1 Operations

Negation: Let s = (x, a, b, c) ∈ DO. The negation of s, denoted ¬s, is computed
by ¬s = (−x, a, b, c).

Conjunction: Let s ∈ {τ,−τ, (x, a, b, c)}, t ∈ {τ,−τ, (x′, a′, b′, c′)} be elements
of DO. The conjunction of s and t, a commutative operation, denoted s ∧ t, is
computed as follows.

s ∧ t
t = τ s
t = −τ t
x > 0 ∧ x′ > 0 ∧ x = x′ (x, a ∧ a′, b ∧ b′, c ∧ c′)
x < 0 ∧ x′ < 0 ∧ x = x′ (x,¬(¬(a ∧ c) ∧ ¬(a′ ∧ c′)),¬(¬(b ∧ c) ∧ ¬(b′ ∧ c′)), τ)
x > 0 ∧ x′ < 0 ∧ |x| = |x′| (x, a ∧ ¬(a′ ∧ c′), b ∧ ¬(b′ ∧ c′), c)
x > 0 ∧ |x| < |x′| (x, a, b, c ∧ t)
x < 0 ∧ |x| < |x′| (x,¬(¬a ∧ t),¬(¬b ∧ t),¬(¬c ∧ t))

The cases not covered above, including s ∈ {τ,−τ}, x < 0∧x′ > 0∧|x| = |x′|,
and |x| > |x′|, are computed by s∧t = t∧s, since ∧ is defined to be a commutative
operation.

Abstraction: Let r ∈ {τ,−τ, (v, s, t, u)} be an element of DO. The abstraction of
r on x, denoted abs(x)(r), is computed by abs(x)(r) = r|−x ∧ r|x in which r|n is
computed as follows:

r|n when n < 0 r|n when n > 0
r ∈ {τ,−τ} r r
|v| = |n| v · (s ∧ u) v · (t ∧ u)
|v| 6= |n| (v, s|n, t|n, u|n) (v, s|n, t|n, u|n)

The existential abstraction of r on x, is then defined by ¬abs(x)(¬r).

Proposition 1. let s1, s2, t1, t2 ∈ DO and x ∈ L. If s1 ≡ s2 and t1 ≡ t2, then
¬s1 ≡ ¬s2, s1 ∧ t1 ≡ s2 ∧ t2 and abs(x)(s1) ≡ abs(x)(s2).

3.2 Observations

Completeness: The predicate comp on DO for observation of whether a TBD is
complete is defined as follows: comp(r) = (abs(x1)abs(x2) · · · abs(xn)(r) = τ).

Proposition 2. Let r ∈ DO. r is complete iff comp(r) holds.

3.3 Boolean Formulas as Ordered TBDs

Let LI defined in the previous section be restricted to a subset of L \ {xn+1}.

Proposition 3. Let x, ϕ0, ϕ1 ∈ Φ(LI) and s, t ∈ DO. If x ∈ LI is an atomic
formulas, then x ≡ (x,−τ, τ, τ), and if ϕ0 ≡ s and ϕ1 ≡ t, then ¬ϕ0 ≡ ¬s and
ϕ0 ∧ ϕ1 ≡ s ∧ t.

Proposition 4. Let ϕ ∈ Φ(LI) and s ∈ DO. If ϕ ≡ s, then ∀x.ϕ ≡ abs(x)(s).

Proposition 5. Let ϕ ∈ Φ(LI) and s ∈ DO. If ϕ ≡ s, then ϕ is valid iff s is
complete.

4 Reduced Ordered TBDs

Definition 8. The set of reduced ordered TBDs, denoted DR, is defined as fol-
lows. τ ∈ DR, −τ ∈ DR, and (x, a, b, c) ∈ DR iff the following conditions hold:

c 6= −τ
b = −τ ∧ c = τ ⇒ a = τ
a = −τ ∧ c = τ ⇒ b = τ
a = b ⇒ a, c 6∈ {τ,−τ}
c ∈ {a, b} ⇒ c = τ ∧ x > 0

Let x ∈ L ∪ L− and y ∈ L. Let R be a rewrite system with the following set
of rules.

(x,−τ,−τ, c) → (x · −τ) (x, a, b,−τ) → (x · −τ)
(x, τ, τ, c) → (x · c) (x, a, a, τ) → (x · a)
(x, a,−τ, τ) → (x, τ,−τ, a) (x,−τ, b, τ) → (x,−τ, τ, b)
(x, a, c, c) → (x, a, τ, c) (x, c, b, c) → (x, τ, b, c)
(−y, τ, b, τ) → (y,−τ,−b, τ) (−y, a, τ, τ) → (y,−a,−τ, τ)

Let s
∗→t denotes that s rewrites to t in 0 or more steps.

Proposition 6. For every s ∈ DO, there exists t ∈ DR, such that s
∗→t and

s ≡ t, and in addition, if s
∗→t′ and t′ ∈ DR, then t = t′.

5 Boolean Diagram Model Checking

A state in a finite state transition system can be represented by an assign-
ment of a set of boolean variables. Suppose that {v1, ..., vm} is such a set of
variables. Let Φ(x1, ..., xk) denote the set of boolean formulas with variables
in {x1, ..., xk}. Then a finite state transition system can be represented by a
formula I ∈ Φ(v1, ..., vm) representing the set of initial states and a formula
R ∈ Φ(v1, ..., vm, v′1, ..., v

′
m) representing the transition relation.

Let
→
v and

→
v
′
denote respectively v1, ..., vm and v′1, ..., v

′
m. Let ϕ,ψ be CTL

formulas with boolean variables in {v1, ..., vm}. By interpreting a formula as a
set of states, the set of states of the transition system (I, R) satisfying a CTL
formula can be computed as follows [4]:

EXϕ = ∃→v ′.(R ∧ ϕ
→
v
′

→
v

)
EFϕ = µZ(ϕ ∨ EXZ)
EGϕ = νZ(ϕ ∧ EXZ)
E(ϕUψ) = µZ(ψ ∨ (ϕ ∧ EXZ))
E(ϕRψ) = νZ(ψ ∧ (ϕ ∨ EXZ))

Let L = {v1, ..., vm, v′1, ..., v
′
m, z}. Let ≤ be a linear order on L such that z is

the largest element of L. Let LI = {v1, ..., vm, v′1, ..., v
′
m}.

For transformation of the problem of checking whether the finite state tran-
sition system (I, R) satisfies a CTL formula into the problem of manipula-
tion of ordered TBDs, Proposition 3 provides a way to represent a formula of
Φ(v1, ..., vm, v′1, ..., v

′
m) by an equivalent ordered TBD of D(L); Proposition 4 es-

tablishes the relation between quantified boolean formulas and TBD abstraction;
Proposition 5 together with Proposition 2 provides a way for checking whether
the set of states represented by a formula is empty. This is sufficient for the
transformation of the problem.

For efficient manipulation of TBDs, Proposition 6 established the relation
between ordered TBDs and reduced ordered TBDs, and together with Proposi-
tion 1, it provides the possibility for the use of reduced ordered TBDs instead
of ordered TBDs.

6 Evaluation and Concluding Remarks

Ternary boolean diagrams are introduced and their connection to boolean for-
mulas has been established. A connection of ternary boolean diagrams to the
problem of model checking finite state transition systems is also established.

Evaluation Experimental evaluation1 of the efficiency of boolean function mani-
pulation with TBDs and that with BDDs has been carried out based on an
experimental comparison of the efficiency of a plain implementation of boolean
diagram model checking in verds version 1.30 and the BDD based symbolic
model checking implemented in NuSMV version 2.5.0 [3]. The evaluation was
based on two types of random boolean programs and a set of 24 CTL formulas
which includes formulas with nested CTL operators. The experimental data
show that verds has advantages in all 24 cases with the first type of random
programs, and advantages in 20 of 24 cases with the second type of random
programs. Although NuSMV has advantages in 4 of 24 cases in the latter case, the
advantages decrease as the size of the problem increases. On the other hand, in
most cases where verds has advantages, the differences seem to yield a coefficient
of an exponential factor in the number of boolean variables (when testing a
property with a set of models of different sizes).

Note: The aforementioned implementation of boolean diagram model checking
is a plain one in the sense that there are no use of cone of influence reduction,
partitioned transition relation, or sophisticated relational product computation
(the implemented computation is straightforward: first conjunction and then
existential abstraction). It is expected that the integration of such techniques [4]
will greatly increase the efficiency of boolean diagram model checking.

References

1. R. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans-
action on Computers 35(8):677-691. 1986.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. LICS 1990: 428-439.

3. A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri. NUSMV: A New Symbolic
Model Verifier. CAV 1999: 495-499.

4. E. M. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT Press. 1999.
5. C. Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell

Systems Technical Journal 38: 985-999. 1959.

1 Details are available at http://lcs.ios.ac.cn/∼zwh/verds/

	tr1024.pdf
	trcopyright.pdf
	verds1.30t1.pdf

