

Complexity Issues of Ternary Boolean Diagrams

Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
P.O.Box 8718, Beijing 100190, China

21 September 2011

1 Introduction

Ternary Boolean diagrams (TBDs) were introduced in [5] for boolean function
manipulation and model checking. The complexity issues of TBDs with respect
to the representation succinctness is investigated in this paper. The represen-
tation succinctness is explained via a comparison of TBDs and binary decision
diagrams (BDDs) [4, 1, 2]. The rest of his paper is organized as follows. The
basic idea of TBDs is presented in section 2. In Section 3, two formulas are
used to demonstrate different kinds of differences in the representation succinct-
ness between TBDs and BDDs. Experimental data are presented in Section 4.
Concluding remarks are presented in Section 5.

2 Ternary Boolean Diagrams

Let L be a set of labels. Let L− = {−x | x ∈ L}. A boolean diagram over L is a
graph with a root node and each node is assigned a label of L ∪ L−. A ternary
boolean diagram is such a graph where the out degree of a node is either 3 or
0, and the out edges of a node is ordered such that the left, the middle and
the right out edges of a node can be identified. Ternary boolean diagrams are
defined as follows.

Definition 1 (Ternary Boolean Diagram). Let L be a set of labels. A ternary
boolean diagram (TBD) over L is a quadruple

(N, n0, E, L)

where N is a set of nodes, n0 ∈ N is the root node, E : N → N3 is a partial
function that defines the three out edges of a node, L : N → L∪L− is a labeling
function which assigns each node a label of L or its negation.

The set of ternary boolean diagrams over L is denoted D(L). For simplicity,
we fix an L and write D for D(L).

Notations When E(n) is not defined for a node n, the value of E(n) is denoted
by a special triple (ε, ε, ε). A TBD t with n0 as the root node may be repre-
sented by (x, a, b, c) when L(n0) = x,E(n0) = (a, b, c). For the clearness of the
presentation, additional notations to be used are as follows.

notation meaning condition
x > 0 x ∈ L
x < 0 x ∈ L−
L(t) x where t = (x, a, b, c)
−−x x where x > 0
|x| x where x > 0
|x| −x where x < 0

−(x, a, b, c) (−x, a, b, c) where x > 0 or x < 0
x · t t where x > 0
x · t −t where x < 0
τx (x, ε, ε, ε) where x > 0
τ∼x (x, ε, ε, ε) where x > 0 or x < 0

2.1 Language, Model and Equivalence

Let Σ = (L ∪ L−)∗.

Definition 2. Let r ∈ D and σ = x1 · · ·xk ∈ Σ. σ is accepted by r, denoted
σ |= r, iff there is an x ∈ L such that rdx1 · · · dxk

= τx in which rdw is defined as
follows:

rdw when w < 0 rdw when w > 0
r = τ∼x r r
r = (v, τ∼x , τ∼y , τz) ∧ |v| = |w| v · τ∼x v · τ∼y
r = (v, τ∼x , τ∼y ,−τz) ∧ |v| = |w| v · −τz v · −τz

r = (v, s, t, u) (v, sdw, tdw, udw) (v, sdw, tdw, udw)

such that the last rule is applied only when the other rules are not applicable.

Definition 3. Let r ∈ D and m ⊆ L. m is a model of r, denoted m |= r, iff there
is a sequence σ ∈ Σ such that x ∈ σ implies x > 0 ∧ x ∈ m or x < 0 ∧ −x 6∈ m,
and σ |= r.

Definition 4. Let s, t ∈ D be TBDs. s is equivalent to t, denoted s ≡ t, iff for
all m ⊆ L, m |= s iff m |= t.

2.2 Boolean Formulas as TBDs

Let Φ(S) denote the set of boolean formulas with variables in S. Let LI ⊆ L be
a subset of L.

Definition 5. Let ϕ ∈ Φ(LI) and m ⊆ L. m |= ϕ iff ϕ evaluates to true under
the assignment such that xi = 1 iff xi ∈ m.

Definition 6. Let ϕ ∈ Φ(LI) and r ∈ D. ϕ is equivalent to r, denoted ϕ ≡ r,
iff for all m ⊆ L, m |= ϕ iff m |= r.

2.3 Ordered TBDs and Operations on Ordered TBDs

Let≤ be a linear order on L. x < y iff x ≤ y and x 6= y. Let L = {x1, ..., xn, xn+1}
such that xi < xi+1 for i = 1, ..., n. Let τ = τxn+1 = (xn+1, ε, ε, ε).

Definition 7. The set DO ⊆ D of ordered TBDs is defined as follows. s ∈ DO
iff s = τ , s = −τ , or s = (x, a0, a1, a2) ∈ D where a0, a1, a2 are ordered and for
all i ∈ {0, 1, 2}, |x| < |L(ai)|.

Negation: Let s = (x, a, b, c) ∈ DO. The negation of s, denoted ¬s, is computed
by ¬s = (−x, a, b, c).

Conjunction: Let s = (x, a, b, c), t = (x′, a′, b′, c′) be ordered TBDs (in which
a, b, c, a′, b′, c′ may be ε). The conjunction of s and t, a commutative operator,
denoted s ∧ t, is computed as follows, in which τ c denotes ε when c is ε and
denotes τ otherwise, both ε∧ ε and ¬¬ε denote ε, both ¬ε∧¬ε and ε∧¬ε denote
¬ε, and (x,¬ε,¬ε, ε) denotes (−x, ε, ε, ε).

s ∧ t
x = x′ ∧ x > 0 (x, a ∧ a′, b ∧ b′, c ∧ c′)
x = x′ ∧ x < 0 (x,¬(¬(a ∧ c) ∧ ¬(a′ ∧ c′)),¬(¬(b ∧ c) ∧ ¬(b′ ∧ c′)), τ c)
|x| = |x′| ∧ x > x′ (x, a ∧ ¬(a′ ∧ c′), b ∧ ¬(b′ ∧ c′), c)
|x| < |x′| ∧ x > 0 (x, a, b, c ∧ t)
|x| < |x′| ∧ x < 0 (x,¬(¬a ∧ t),¬(¬b ∧ t),¬(¬c ∧ t))

The cases where |x| > |x′| or |x| = |x′|∧x < x′ are computed by s∧ t = t∧s,
since ∧ is defined to be a commutative operator. Following from the definition,
we have s ∧ τ ≡ s and s ∧ −τ ≡ −τ .

2.4 Equivalences and Rewrite Rules

Let x ∈ L ∪ L− and y ∈ L. The following equivalences hold for ordered TBDs.

(x,−τ,−τ, c) ≡ (x · −τ) (x, a, b,−τ) ≡ (x · −τ)
(x, τ, τ, c) ≡ (x · c) (x, a, a, τ) ≡ (x · a)
(x, a,−τ, τ) ≡ (x, τ,−τ, a) (x,−τ, b, τ) ≡ (x,−τ, τ, b)
(x, a, c, c) ≡ (x, a, τ, c) (x, c, b, c) ≡ (x, τ, b, c)
(−y, τ, b, τ) ≡ (y,−τ,−b, τ) (−y, a, τ, τ) ≡ (y,−a,−τ, τ)
(−y, τ,−τ, c) ≡ (y,−c, τ, τ) (−y,−τ, τ, c) ≡ (y, τ,−c, τ)

These equivalences may be used as rewrite rules (replacing terms in the
left hand sides with those in the right hand side of the equivalences) for the
simplification of ordered TBDs.

2.5 Boolean Formulas as Ordered TBDs

Let LI defined in the previous section be restricted to a subset of L \ {xn+1}.
Let x, ϕ0, ϕ1 ∈ Φ(LI) and s, t ∈ DO. The following hold.

– If x ∈ LI is an atomic formulas, then x ≡ (x,−τ, τ, τ);
– if ϕ0 ≡ s and ϕ1 ≡ t, then ¬ϕ0 ≡ ¬s and ϕ0 ∧ ϕ1 ≡ s ∧ t.

Then Boolean formulas can be transformed into TBDs according to these
equivalences and the operations on TBDs.

Example Let ϕ be ¬(p ∧ ¬q) ∧ ¬(¬p ∧ q). Let L = {p, q, z} with p < q < z such
that LI = {p, q}. Following the definitions of negation and conjunction, and the
rewrite rules, ϕ can be transformed to a TBD as follows.

p ≡ (p,−τ, τ, τ)
¬p ≡ (p, τ,−τ, τ)
q ≡ (q,−τ, τ, τ)
¬q ≡ (q, τ,−τ, τ)
p ∧ ¬q ≡ (p,−τ, τ, (q, τ,−τ, τ))
¬p ∧ q ≡ (p, τ,−τ, (q,−τ, τ, τ))
¬(p ∧ ¬q) ≡ (p, τ, (q,−τ, τ, τ), τ)
¬(¬p ∧ q) ≡ (p, (q, τ,−τ, τ), τ, τ)
ϕ ≡ (p, (q, τ,−τ, τ), (q,−τ, τ, τ), τ)

The TBD for ϕ has 10 nodes when it is considered as a tree, and it has 5
nodes when it is considered as a graph with shared nodes (in this case, only the
7 terminal nodes are merged into 2 nodes).

3 Complexity Issues

The representation succinctness is explained via a comparison of TBDs and
BDDs. The node size of t, denoted |t|, is the number of different nodes of t that
may use shared nodes. The tree size of t, denoted ||t||, is the number of nodes
of t where t is expanded as a tree. For TBDs, a TBD tree t has (2||t|| + 1)/3
terminal nodes, and therefore |t| ≤ (||t|| − 1)/3 + 2.

Variable Order Let v = v1 · · · vm denote the partial order ({v1, ..., vm, z},≤)
with vi < vj iff i < j and vi < z for all i. An ordering v of variables of ψ is such
an ordering where {v1, ..., vm} is a permutation of variables appearing in ψ (the
special variable z is needed for TBDs, it is not necessary for BDDs, however
adding this special variable to an ordering of variables would not cause any
trouble for BDDs). Let v[x → 1] denote the ordering v′ where the first element
of v′ is x, and the rest of the elements of v′ is the same as v with x removed
from v.

3.1 Bit Comparators

TBDs may not be as sensitive to variable orderings as BDDs do.

Definition 8. Let p ↔ q denote ¬(p∧¬q)∧¬(¬p∧q). Let ai, bi with i ∈ {1, ..., n}
be propositional variables.

ϕi = ai ↔ bi

ϕ =
∧n

i=1 ϕi

Proposition 1. There is some variable ordering, such that the reduced ordered
BDD representation of ϕ has node size ≥ 2n, while for all variable orderings, we
can construct a TBD representation for ϕ with tree size and node size linear in
n.

Proof: It is known that representations of ϕ by reduced ordered BDDs varies
from 3 · n + 2 to 3 · 2n − 1 depending on the ordering of the variables [3]. The
second part of this proposition follows from Lemma 3, which is to be established
as follows.

Positive TBDs A positive TBD is an ordered TBD where all non-terminal nodes
are marked by positive labels.

Lemma 1. Let s, t be positive TBDs. Then we can construct a positive TBD
for s ∧ t such that ||s ∧ t|| ≤ ||s||+ ||t|| − 1.

Proof: Since τ ∧ u = u ∧ τ = u and −τ ∧ u = u ∧ −τ = −τ for any TBD
u, this lemma holds when one of s and t is τ or −τ . Let s = (x, a, b, c) and
t = (x′, a′, b′, c′). We have three cases x < x′, x = x′ or x > x′.

– If x < x′, we have s ∧ t = (x, a, b, c ∧ t).
Then ||s∧t|| ≤ ((||s||−||a||−||b||−1)+||t||−1)+||a||+||b||+1 = ||s||+||t||−1.

– If x = x′, we have s ∧ t = (x, a ∧ a′, b ∧ b′, c ∧ c′).
Then ||s∧ t|| ≤ (||a||+ ||a′|| − 1) + (||b||+ ||b′|| − 1) + (||c||+ ||c′|| − 1) + 1 <
||s||+ ||t|| − 1.

– If x > x′, we have s ∧ t = (x′, a′, b′, c′ ∧ s).
Similar to the first case, ||s ∧ t|| ≤ ||s||+ ||t|| − 1.

Lemma 2. For any ordering v of variables of ϕ, we can construct a positive
TBD for ϕi with tree size 10.

Proof: This follows from the construction demonstrated in the example shown
above in Section 2.

Lemma 3. For any ordering v of variables of ϕ, we can construct a positive
TBD t for ϕ with ||t|| ≤ 9n + 1 and |t| ≤ 3n + 2.

Proof: According to Lemma 2, for each ϕi, we construct a positive TBD with
tree size 10. Then according to Lemma 1, for ϕ, we construct a positive TBD t
with ||t|| ≤ n · 10− (n− 1) = 9n + 1. This implies |t| ≤ 3n + 2.

3.2 Modified Bit Comparators

TBDs may be more succinct than BDDs for representing a formula regardless
of the ordering of variables.

Definition 9. Let p ∨ q denote ¬(¬p ∧ ¬q). Let ai,j with i, j ∈ {1, ..., n} and b
be propositional variables.

ϕi = ai,1 ↔ · · · ↔ ai,n

ϕ′j = a1,j ↔ · · · ↔ an,j

ϕ =
∧n

i=1 ϕi

ϕ′ =
∧n

j=1 ϕ′j
ψ = (b ∧ ϕ) ∨ (¬b ∧ ϕ′)

Proposition 2. For all variable orderings, the reduced ordered BDD represen-
tation of ψ has node size ≥ 2n, while we can construct a TBD representation
for ψ with node size polynomial in n.

Proof: This proposition follows from Proposition 3 and Proposition 4, which are
to be established as follows.

BDD size of ψ

Let bddv(ϕ) denote the reduced ordered BDD of ϕ with the variable order spec-
ified in v.

Lemma 4. Let φ be a formula.
Then |bddv(φ)| ≥ max(|bddv(φ|x=0)|, |bddv(φ|x=1)|) for any x and any ordering
v of variables.

Proof: Starting with bddv(φ), in order to create bddv(φ|x=0), all pointers to the
node labeled with x in bddv(φ) are redirected to the left branch of the node (with
possibly further reductions). This modification will not increase the number of
nodes.

Lemma 5. Let φ be (a1 ↔ b1) ∧ · · · ∧ (an ↔ bn).
Let (x1, ..., xn) and (y1, ..., yn) be permutations of respectively {a1, ..., an} and
{b1, ..., bn}. Let v = x1...xny1...yn. Then |bddv(φ)| = 3 · 2n − 1.

Proof: A similar result is known when v = a1...anb1...bn [3]. For v = x1...xny1...yn,
the reasoning is as follows.

– Expanding x1, ..., xn we have 2n − 1 nodes and 2n different cases (of type
0). 2n−1 of the cases (where the variable corresponding with y1 is assigned
false) of type 0 point to false when y1 assigns false, creating 2n−1 new y1

nodes. 2n−1 of the cases (where the variable corresponding with y1 is assigned
true) of type 0 point to false when y1 assigns true, creating another 2n−1

new y1 nodes. There remains 2n undecided cases. Half of the cases are the
same as (or symmetric with respect to the truth assignments of y1 and the
corresponding x-variable) to the other half of the cases. Therefore there
remain 2n−1 different cases (of type 1).

– 2n−2 of the cases (where the variable corresponding with y2 is assigned false)
of type 1 point to false when y2 assigns false, creating 2n−2 new y2 nodes.
2n−2 of the cases (where the variable corresponding with y2 is assigned true)
of type 1 point to false when y2 assigns true, creating another 2n−2 new y2

nodes. Similarly, there remain 2n−2 different cases (of type 2).
– Generally, at the i-th round, there remains 2n−i different cases of types i.

Half of the cases point to false when yi+1 assigns false, creating 2n−i new
yi+1 nodes, and half of the cases point to false when yi+1 assigns true, also
creating 2n−i new yi+1 nodes. This process continues until there remains 2
different cases, requiring two new yn nodes.

– Therefore there are 2n−i+1 yi nodes, by looking backward, we know that
they must be different, and in total, there are 2n+1 − 2 different nodes for
y1, ..., yn. Summing up the number of nodes for x1, ..., xn, y1, ..., yn and the
two terminal nodes, we have |bddv(φ)| = 3 · 2n − 1.

Proposition 3. Let o be an ordering o of variables of ψ. Then |bddo(ψ)| ≥
3 · 2n−1 − 1.

Proof: Let o = c1 · · · cm such that (c1, ..., cm) is a permutation of {ai,j |1 ≤ i, j ≤
n}∪{b}. Let v(ϕ) denote the set of variables appearing in ϕ. Let oi = {c1, ..., ci}.
Let k be the least number such that |v(ϕi)∩ om| = n− 1 or |v(ϕ′i)∩ om| = n− 1
for some 0 ≤ 1 ≤ n. The proof is as follows.

– Either |v(ϕl) ∩ ok| = n− 1 or |v(ϕ′l) ∩ ok| = n− 1 for some l. Suppose that
the former is the case (the latter is symmetric).

– Let S = v(ϕl) ∩ ok = {a1,l, ..., ax−1,l, ax+1,l, ..., ai,l}.
– For each ai,j ∈ S, we select an ai,yi

6∈ ok. Let S′ denote the set of these
variables, and ϕ′′ denote ϕ′ with every variable not in S ∪ S′ replaced by 1.

– Then ϕ′′ is a formula corresponding to the one in Lemma 5 with 2(n − 1)
variables.

– According to Lemma 4 and Lemma 5,
|bddo(ψ)| ≥ |bddo(ψ|b=0)| = |bddo(ϕ′)| ≥ |bddo(ϕ′′)| = 3 · 2n−1 − 1.

TBD size of ψ

Let [t] denote the height of the TBD t with [τ] = [−τ] = 0.

Lemma 6. Let s, t be positive TBDs. If s and t have no variables in common,
then we can construct a positive TBD for s ∧ t with at most [s] + [t] new nodes.

Proof: By induction. This lemma holds when one of s and t is τ or −τ . Let
s = (x, a, b, c) and t = (x′, a′, b′, c′). We have two cases x < x′ or x > x′.

– If x < x′, we have s ∧ t = (x, a, b, c ∧ t).
According to the induction hypothesis, c ∧ t requires at most [c] + [t] new
nodes, therefore s ∧ t requires at most [c] + [t] + 1 ≤ [s] + [t] new nodes.

– If x > x′, we have s ∧ t = (x′, a′, b′, c′ ∧ s).
Similarly, s ∧ t requires at most [c′] + [s] + 1 ≤ [s] + [t] new nodes.

Lemma 7. Let φi be (a1 ↔ · · · ↔ ai). We can construct a positive TBD t for
φn with |t| ≤ 2(n + 1) for any ordering of variables.

Proof: In fact, we can create a positive TBD for φn and a positive TBD for ¬φn

such that the total number of different nodes in the two TBDs is 2(n + 1). The
reasoning by induction is as follows. The statement is true when n = 1. Then
we can use the TBD t0 for φn−1 and the TBD t1 for ¬φn−1 to build a positive
TBD t′0 = (an, t1, t0, τ) for φn and a positive TBD t′1 = (an, t0, t1, τ) for ¬φn

with only two additional new nodes. The construction assumes variable order
v = an · · · a1. Since the variables in φi are all symmetric, this construction can
be done for any variable order by rearranging the position of the variables in the
formula.

Lemma 8. For any ordering v of variables of ψ, we can construct a positive
TBD t for ψ with |t| ≤ 4n2(n+1)+1 for the modified variable ordering v[b → 1].

Proof: The proof is as follows.

– According to Lemma 7, for each ϕi, we can construct a corresponding TBD
with 2(n + 1) nodes. According to Lemma 6, for ϕ, we can construct a
corresponding TBD t with |t| ≤ 2(n + 1) · n + (n− 1) · 2 · n2 = 2n2(n + 1).

– Similarly, for ϕ′, we can construct a corresponding TBD t′ with |t′| ≤ 2n2(n+
1).

– Then t′′ = (b, t, t′, τ) is a TBD for ψ with |t′′| ≤ 4n2(n + 1) + 1 different
nodes (where τ is not counted, since it must have appeared in t or t′) with b
as the label of the top node of the TBD compatible with the order v[b → 1].

Lemma 9. Let p > 0 and q > 0. Each of the following pairs represent the same
formula with different variable orderings on p and q.

(p, (q, a, b, c), c′, c′′)
(q, (p, a, τ, τ), (p, b, τ, τ), (p, c, c′, c′′))
(p, c, (q, a′, b′, c′), c′′)
(q, (p, τ, a′, τ), (p, τ, b′, τ), (p, c, c′, c′′))
(p, c, c′, (q, a′′, b′′, c′′))
(q, (p, τ, τ, a′′), (p, τ, τ, b′′), (p, c, c′, c′′))
(p, (q, a, b, c), (q, a′, b′, c′), c′′)
(q, (p, a, a′, τ), (p, b, b′, τ), (p, c, c′, c′′))
(p, (q, a, b, c), c′, (q, a′′, b′′, c′′))
(q, (p, a, τ, a′′), (p, b, τ, b′′), (p, c, c′, c′′))
(p, c, (q, a′, b′, c′), (q, a′′, b′′, c′′))
(q, (p, τ, a′, a′′), (p, τ, b′, b′′), (p, c, c′, c′′))
(p, (q, a, b, c), (q, a′, b′, c′), (q, a′′, b′′, c′′))
(q, (p, a, a′, a′′), (p, b, b′, b′′), (p, c, c′, c′′))

Proof: These equivalences follow from the semantics of ordered TBDs.

Lemma 10. Let v be a given ordering of variables, and t be a positive TBD
with variable ordering v[b → 1]. Then we can construct a TBD t′ with variable
ordering v such that t and t′ represent the same formula and |t′| ≤ 4 · |t|.
Proof: By moving b down 1 level in the reordering of the variables (applying
the equivalences in Lemma 9 for reordering), the nodes at the current level is
replaced, and for each such node, it may create 3 new nodes. In total, it may
create at most 3 · |t| new nodes for all of the levels of t.

Proposition 4. For any ordering v of variables of ψ, we can construct a positive
TBD t for ψ with |t| ≤ 16n2(n + 1) + 4.

Proof: This follows from Lemma 8 and Lemma 10.

4 Experimental Comparison of TBDs and BDDs

It is already shown that TBDs can be more succinct than BDDs for representa-
tion of some Boolean formulas. For practical application of TBDs, the average
complexity is in many cases more important than best case complexity. The con-
tents of this section are experimental data on the average complexity of TBD
representation of Boolean formulas for selected types of random Boolean formu-
las.

4.1 Types of Boolean Formulas

Consider Boolean formulas in CNF (conjunctive normal form) and DNF (dis-
junctive normal form). The number of variables is set to 30. The length of clauses
in {10, 20, 30} and the number of clauses in {100, 200, 300}. This makes 9 types
of CNF formulas and 9 types of DNF formulas. For each type, we randomly
choose 20 formulas, and for each formula, we randomly choose 20 different vari-
able orders.

4.2 Experimental Data

Experimental Data for CNF Formulas The experimental data for the size of
TBDs are presented in Table 1, where cll is the clause length, cln is the number
of clauses in a formula, min is the minimum size of the TBD obtained among the
400 TBDs (20 instances with 20 different variable orders), max is the maximum
size of the TBDs, and average is the average size of the TBDs. The experimental
data for the size of BDDs are presented in Table 2. In addition, the ratio between
the average size of BDDs (presented in this table) and that of TBDs (presented
in the previous table) is calculated for each case. These ratios show that TBDs
has significant advantage over BDDs for representing some of the formulas.

cll cln min max average

10 100 709 756 732.59
200 1321 1389 1354.85
300 1893 1977 1934.85

20 100 1472 1560 1516.81
200 2808 2921 2865.39
300 4088 4223 4149.23

30 100 1743 1847 1794.53
200 3104 3252 3187.11
300 4333 4514 4430.60

Table 1. Size of TBDs for CNF formulas

cll cln min max average ratio

10 100 82729 215897 136146.64 186.35
200 577533 1035169 768347.00 567.95
300 1516800 2512466 1973997.62 1021.29

20 100 2606 3848 3173.77 2.09
200 6715 9036 7634.59 2.67
300 11380 15282 12916.41 3.11

30 100 1743 1847 1794.53 1.00
200 3104 3252 3187.11 1.00
300 4333 4514 4430.60 1.00

Table 2. Size of BDDs for CNF formulas

Experimental Data for DNF Formulas The experimental data for the size of
TBDs and BDDs for the types of DNF formulas are shown in Table 3 and
Table 4. These data are similar to those presented in Table 1 and Table 2, and

the ratios between size of TBDs and size of BDDs also show that TBDs has
significant advantage over BDDs for representing some of the formulas.

cll cln min max average

10 100 709 758 731.39
200 1325 1391 1353.56
300 1893 1964 1933.90

20 100 1478 1551 1518.05
200 2812 2918 2864.66
300 4061 4212 4148.40

30 100 1738 1842 1793.01
200 3107 3267 3186.71
300 4299 4543 4427.99

Table 3. Size of TBDs for DNF formulas

cll cln min max average ratio

10 100 80947 223120 135831.05 186.22
200 576519 1050933 765908.19 566.68
300 1561373 2481051 1966855.62 1018.09

20 100 2743 3728 3171.91 2.09
200 6386 9028 7596.83 2.65
300 11067 14691 12866.37 3.10

30 100 1738 1842 1793.01 1.00
200 3107 3267 3186.71 1.00
300 4299 4543 4427.99 1.00

Table 4. Size of BDDs for DNF formulas

5 Concluding Remarks

Complexity analysis has shown that there are cases TBDs can be more compact
than BDDs for representation of Boolean functions. In particular, the examples
have demonstrated that TBDs may not be as sensitive to variable orderings as
BDDs, and moreover TBDs may be more succinct than BDDs for representing a
formula regardless of the ordering of variables. Experimental data also support
this fact. Therefore TBDs may be considered as a data structure complementary
to BDDs, and may be used in certain cases where BDDs are not sufficiently
efficient.

Acknowledgement This work is supported by the National Natural Science
Foundation of China under Grant No. 60573012, 60421001 and the CAS inno-
vation program.

References

1. R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transaction on Computers 35(8):677-691. 1986.

2. R. E. Bryant: Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv. 24(3): 293-318. 1992.

3. E. M. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT Press. 1999.
4. C. Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell

Systems Technical Journal 38: 985-999. 1959.
5. W. Zhang. Ternary Boolean Diagrams. Technical Report ISCAS-LCS-10-24, Insti-

tute of Software, Chinese Academy of Sciences. 2010.

	tr1117.pdf
	copyright2011.pdf
	2011rep1.pdf

