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Abstract. Deductive rules are useful for proving properties with fair-
ness constraints and there have been many studies on such rules with
justice and compassion constraints. This paper focuses on system speci-
fications with strengthened compassion that impose constraints on tran-
sitions involving states and their successors. A deductive rule for proving
liveness properties under strengthened compassion is presented with ex-
amples illustrating the application of the rule.

1 Introduction

Liveness properties are requirements that something good must eventually hap-
pen. A counterexample to such a property is typically a loop during which the
good thing never occurs. For avoiding acceptance of unrealistic loops in which
some process or action is infinitely ignored, fairness is needed for imposing re-
strictions on accepted runs on such models.

There are several different notions of fairness for dealing with different situ-
ations. Justice is a simple kind of fairness that may be represented by a set of
state formulas {φ1, ..., φn} and this fairness condition requires that each φi must
be true infinitely often along every path. In 1981, Lehmann, Pnueli and Stavi de-
fined justice requirements in [1], to describe the situation that some states must
be visited infinitely often. Compassion is a kind of generalizations of justice,
suggested by Pnueli and Sa’ar in [2], and may be represented by a set of pairs
of state formulas {⟨ψ1, φ1⟩, ..., ⟨ψn, φn⟩}. This fairness condition requires that
along every path, for each pair ⟨ψ,φ⟩, either the first part is true only finitely
many times or the second one is true infinitely often.

Justice and Compassion are regarded as weak and strong fairness in [3], both
of them constrain the fairness of actions. They can only deal with actions fairly
in one context situation. On the other hand, the correctness of many population
protocols rely on stronger fairness constraints that may constrain actions in all
contexts situation, e.g., self-stabilizing leader election in ring networks [4] and
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token circulation in rings [5]. Self-stabilizing algorithms [6], such as the former
one, can guarantee the robustness and fault-tolerance of distributed systems.

We study a kind of fairness based on compassion with additional constraints.
An important character of this kind of fairness is the constraint of transition
(involving states and their successors) which can deal with actions fairly in all
contexts situations. The fairness is referred to as strengthened compassion rep-
resented by a set of pairs of state formulas: {⟨ψi, {φi1, ..., φimi}⟩ | 1 ≤ i ≤ n}.
This specification requires that along every path, either ψi is true only finitely
many times or for all j, j ∈ [1..mi], φij (with 1 ≤ j ≤ mi) is true infinitely often
immediately after the state at which ψi holds.

For proving liveness properties, deduction rules have been presented in [7,
2] for systems with justice and compassion. In this paper, we also develop a
deductive rule SC RESPONSE for the strengthened compassion.

The rest of this paper is organized as follows. In Section 2, we present the
computation model with strengthened compassion requirements and compare it
with models under compassion. In Section 3, the deduction rule SC RESPONSE
is presented and its soundness and relative completeness are proved. In section 4,
an illustrative example is used to shown the application of the approach. Finally,
concluding remarks are presented in Section 5.

Related Works There has been a lot of research work on fairness. In [8], a process
analysis toolkit for system analysis with different kinds of fairness was presented.
In [9], a method for finding auxiliary constructs as the effective premises of de-
ductive proof of liveness property was proposed. In [10], a method based on
analysis of maximal strongly connected components was presented. It involves
compassion requirements introduced by ranking abstraction. [11] extended the
method to native1 compassion. In [12], an automatic method to derive a deduc-
tive proof of liveness properties from symbolic model checking under compassion
was presented. Strengthened compassion is closely related to extreme fairness
[13] which restrict transitions by adding predicates. The difference between ex-
treme fairness and strengthened compassion (to be formally defined later) is that
strengthened compassion is defined with one-step pair of state formulas instead
of the directions in extreme fairness.

2 Computational Model

We present a computational model with strengthened compassion. We first
present a transition system without fairness constraints, and then add strength-
ened compassion constraints to the model.

2.1 Discrete Transition Systems

A transition system is triple T = ⟨V,Θ, ρ⟩ where the components are as follows.

1 The compassion requirements without the additional variable dec that comes from
ranking abstraction.
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– V : A finite set of typed system variables - containing data and control
variables. A set of states (interpretation) over V is denoted by Σ. For a state
s and a system variable v ∈ V , we denote by s[v] the value assigned to v by
the state s.

– Θ : The initial condition - an assertion (state formula) characterizing the
initial states.

– ρ : The transition relation - an assertion ρ(V, V ′), relating the values V of
the variables in state s ∈ Σ to the values V ′ in a T -successor state s′ ∈ Σ.
If φ is a formula representing a set of states, then φ′ is the formula with each
v replaced by v′.

Computation A computation of T is an infinite sequence of state σ : s0, s1, . . .,
satisfying the following requirements: (1) s0 |= Θ. (2) For each j = 0, 1, . . . , the
state sj+1 is in a T -successor of the state sj . For each v ∈ V , we interpret v as
sj [v] and v

′ as sj+1[v], such that ⟨sj , sj+1⟩ |= ρ(V, V ′).

2.2 Fair Discrete Systems

A strengthened compassion constraint is specified as a pair ⟨r, U⟩ where r is an
assertion and U is a set of state assertions.

Strengthened Compassion A computation σ of a discrete transition system T
is fair with respect to the strengthened compassion (abbreviated to scp) with
respect to a set of fairness constraints (state assertions) F = {⟨ri, Ui⟩|i = 1, ..., n}
with Ui = {ui,1, ..., ui,mi}, if for each i ∈ {1, ..., n}, σ contains only finitely many
ri-states, or σ contains infinitely many pairs of states, such that for all j ∈ [1..mi]:
(sk, sk+1), sk |= ri and sk+1 |= ui,j .

Discrete Systems with Strengthened Compassion Requirements A discrete system
with strengthened compassion requirements (SCDS) D = (T, F ) is a pair of a
discrete transition system and a set of strengthened compassion constraints such
that a fair computation of D is a scp computation of T with respect to F .

2.3 A Discussion on Different Kinds of Fairness

We explain the differences between compassion and strengthened compassion by
considering the transitions in Fig. 1.

– Compassion requirements constrains that infinitely enabled actions must
eventually be taken.
The compassion requirement: ⟨x = 1 ∧ y = 0, x = 0⟩ constrains that if
“x = 1 ∧ y = 0” is satisfied infinitely many times, then “x=0” must be
satisfied infinitely many times.
The infinite loop (S1S2S3S2)

ω satisfy this constraint. In such a loop, the
action “x=x-1” is enabled infinitely many times, and this action is taken
infinitely times.
The action “x=x-1” in the figure is enabled in both S1 and S2, however, the
compassion requirement does not distinguish the two different transitions.
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Fig. 1. Case 1

– Strengthened compassion requirements constrains that transitions with an
infinitely enabled action must eventually be taken.
The strengthened compassion requirement ⟨x = 1 ∧ y = 0, {x = 0}⟩ con-
strains that if “x = 1∧ y = 0” is satisfied infinitely many times, then “x=0”
must be satisfied infinitely many times right after “x = 1 ∧ y = 0”.
The infinite loop (S1S2S3S2)

ω does not satisfy this requirement. In such a
loop, the action “x=x-1” is enabled infinitely many times at S1 and S2, but
the action “x=x-1” is never taken from S1 (which satisfies x = 1∧ y = 0) in

the loop (i.e., the transition S1
x=x−1−−−−−→ S4 is not taken).

3 Proving Properties

The liveness properties considered in this paper are response properties. Re-
sponse properties are an important and widely studied type of liveness proper-
ties [2, 14]. A response property is of the form p ⇒ ⋄q where p and q are state
assertions. A SCDS D satisfies the response property p⇒ ⋄q whenever a reach-
able state of D satisfies p at which every fair computation starts, it will reach a
q state at some point (including the starting point).

3.1 Proof Rule

In Fig. 2, we present proof rule SC RESPONSE that establishes the response
property p ⇒ ⋄q for a SCDS D. The use of the rule requires a well-founded
domain A, and for each requirement ⟨ri, Ui⟩, a helpful assertion φi and a ranking
function ∆i : Σ 7→W mapping states of D to elements of A.

R1 requires that any p-state is either a goal state (i.e., a q-state), or a (ri∧φi)-
state for some i ∈ {1, . . . , n}. R2 requires that any step from a (ri ∧ φi)-state
moves either directly to a q-state, or to another (rj∧φj)-state, or stays at a state
of the same level (i.e., a (ri∧φi)-state). R3 requires that any step from a φi-state
moves either directly to a q-state, or to another (rj ∧ φj)-state with decreasing
rank (∆i ≻ ∆j), or stays at a state with the same rank. R4 ensures that there
exists at least one ui,k such that these ui,k-states as the successors of (φi ∧ ri)-
states are not in φi. In other words, during the transitions among the states
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Let p, q be assertions.
Let A = (W,≻) be a well-founded domain.
Let {Fi = ⟨ri, {ui,1, .., ui,mi}⟩ | i ∈ {1, ..., n}} be a set of scp requirements.
Let {φi | i ∈ {1, ..., n}} be a set of assertions.
Let {∆i : Σ →W | i ∈ {1, ..., n}} be a set of ranking functions.

R1 p ⇒ q ∨
∨n

j=1(rj ∧ φj)

∀i ≤ n:
R2 ri ∧ φi ∧ ρ ⇒ q′ ∨

∨n
j=1(r

′
j ∧ φ′

j)

R3 φi ∧ ρ ⇒ q′ ∨ (φ′
i ∧∆i = ∆′

i) ∨
∨n

j=1(r
′
j ∧ φ′

j ∧∆i ≻ ∆′
j)

R4 φi ∧ ri ∧ ρ ∧ φ′
i ⇒ ¬u′

i,k for some 1 ≤ k ≤ mi

p ⇒ ♢q

Fig. 2. Proof Rule: SC RESPONSE

inside of φi, there are no ri to ui,k transitions. R2−4 together with the definition
of strengthened compassion requirements guarantee that if an execution enters
a loop (consisting of states of some φi) without leaving it, then it violates the
strengthened compassion requirements, such that it must get out of all the unfair
loops and finally reach q-state (the goal state).

3.2 Soundness of the Rule

The soundness is established as follows. Suppose that the premises of the rule
are valid and the conclusion is not. We prove that this is a contradiction.

The conclusion is not valid means that there exists a computation σ =
s0, s1 . . . and a position j ≥ 0 such that sj |= p and no state sk, for k ≥ j
satisfies q. Without loss of generality, we take j = 0. According to premises of
R1 and R2 and the assumptions that no states satisfy q, then any state sw satis-
fies ri ∧φi for some i ∈ {1, ..., n}. Since there are only finitely many different i’s,
there exists a cutoff index h ≥ 0 such that for every i and w ≥ h, sw |= ri ∧ φi

if and only if σ contains infinitely many (ri ∧ φi)-positions.
Consider position w1 = h. Choose i1 to be the index such that sw1 |= ri1∧φi1.

According to R3 and the assumption that σ contains no q-positions, then either
φi1 holds at all positions w ≥ w1, or there exists a position w2 ≥ w1 and index
i2 such that sw2 |= ri2∧φi2 and ∆i1(sw1) ≻ ∆i2(sw2). We argue that the former
case is not possible and then the latter leads to an infinite sequence of decreasing
values of ∆.

– If φi1 holds continuously beyond w1, then due to premise of R4, ri1 ∧ φi1

holding at w1 ≥ h implies that ri1∧φi1 (and therefore ri1) holds at infinitely
many positions without succeed infinitely many ui1,k-states. This violates the
requirement ⟨ri1, {Ui1}⟩.

– If there exists a position w2 ≥ w1 and index i2 such that sw2 |= ri2 ∧
φi2 and ∆i1(sw1) ≻ ∆i2(sw2), we can continuously find i3, i4, . . . , such
that ∆i1(sw1) ≻ ∆i2(sw2) ≻ ∆i3(sw3) ≻ . . . . According to the definition of
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well-founded domain, it is impossible to find infinite positions to satisfy the
decrease sequence.

Therefore there cannot exist a computation σ violating the response property
p⇒ ⋄q if the premises of rule are all valid.

3.3 Relative Completeness of the Rule

Completeness means that, whenever a response property p ⇒ ⋄q is valid over a
SCDS D, there exists a well-founded domain and auxiliary constructs such that
the premises of the rule can be proved. The auxiliary constructs consist of a list
of helpful assertions φ1, . . . , φn and a list of ranking functions ∆1, . . . , ∆n. We
only consider relative completeness, in the sense that the followings are assumed:
the premises of the rule can be proved when they are valid, and the language
for expressing the assertions is sufficient to express information (including the
expressions E(p S q) and E(p U q) defined below) that are necessary for proving
the validity of the premises.

Operators

1. For assertions p and q , the formula E(p S q) captures the set of states that
are reachable from a q-state by a p-path all of whose states, except possibly
the first, satisfy p. In this expression we use the since temporal operator S.

2. The formula E(p U q) captures the set of states that originate a path leading
to any q-state, such that all the states in the path, except possibly the last,
satisfy p. In this expression we use the until temporal operator U .

3. The formula EX(p) captures the set of states that are the immediate pre-
decessors of p-states.

Considering a SCDS D and a response property p ⇒ ⋄q, we present an al-
gorithm which extracts a deductive proof according to the rule of a response
property p⇒ ⋄q. It defines the values δ1, . . . , δm of the respective ranking func-
tions ∆1, . . . , ∆m on different sets of states, and identify an associated require-
ment ⟨ri, Ui⟩, and a helpful assertion φi for each i ∈ {1, ..,m}. The algorithm
Auxiliary constructs is presented as Algorithm 1.

The expression accessibleD captures the set of all accessible states with D.
The expression of pend describes all states which are reachable from any ac-
cessible p-state by a finite q-free path. prefix is a list that is supposed to be a
prefix of some δ. The list operation ∗ denotes the concatenation of two lists. ψ
is the set of Y-states without r-states which are the predecessors of uj-states.
φ is the set of ψ-states which can be reached by r, i.e. φ-states are those that
form a strongly connected subgraph of ψ. rem is the set of φ-states that are not
r-states. The new Y is the set of remaining states.

For each i, φi, fi, δi where ∆i(s) = δi for s ∈ φi, are the auxiliary constructs
discovered at the respective stages of the execution of the algorithm. For each
strengthened compassion fi: ⟨r, {u1, ..., uk}⟩, we construct φi (the set of states
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Algorithm 1 Auxiliary constructs
1: m := 0
2: accessibleD := E(trueSΘ)
3: pend := accessibleD ∧ E(¬qS(p ∧ ¬q))
4: rank SC(pend, [])

where the procedure rank SC is defined as follows.
procedure rank SC(subpart ,prefix)
d:integer
Y:assertion

5: Let d := 0
6: Let Y := subpart
7: FIX (Y)
8: Forall (⟨r, {u1, u2, . . . , uk}⟩ ∈ F ) do
9: Let ψ = Y ∧ ¬(Y ∧ r ∧ EX(Y ∧ uj))
10: if ψ ∧ r ̸= ∅ then
11: Let φ = E(ψS(ψ ∧ r))
12: if φ ∧ ¬E(φU(φ ∧ r)) = ∅ then
13: Let m=m+1
14: Let d=d+1
15: Let φm := φ
16: Let fm:= ⟨r, {u1, u2, . . . , uk}⟩
17: Let δm := prefix ∗ [d]
18: Let Y := Y ∧ ¬φ
19: Let rem := φ ∧ ¬r
20: if (rem ̸= ∅) then
21: rank SC(rem, prefix ∗ [d])
22: end if
23: end if
24: end if
25: end for
26: if (Y ̸= ∅) then
27: report “fail”
28: end if
29: end-Fix

that formed an unfair loop that contains r-states which are not the predecessor
of uj-states for some j) with its own δi to measure the distance between the loop
to the goal states. The construction is as follows:

– S1: To start with, we deal with the pend states (line 4), i.e. Y0 = pend. By
the definition of pend, we know that there are no goal states in pend. The
first unfair loop we can find, is the one nearest to goal states (under the
strengthened compassion for the transition to goal states).

– S2: For each m, after removing an unfair loop φm, the new set of states we
will be dealing with is Y ′ = Y − φm (line 18). In Y ′, by calling rank SC
(line 21) recursively, we construct φm+1 and δm+1 (line 15,17).
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– S3: According to the definition of strengthened compassion, the reason of
unfairness is the “bad”states: the r-states in the loop (line 12). Therefore we
remove r-sates from each φi (line 19), and then we deal with the remaining
part of φi recursively (line 20,21). The ranks of states in φi are with the
same prefix δi.

– S4: If all the pend states consist of unfair loops which can be constrained by
strengthened compassion to leave the pend states, then the liveness property
can be guaranteed. Otherwise, the liveness property fails (line 26,27).

Additional explanation of the algorithm is as follows.

– Line 7: FIX Y terminates when Y does not change after the specified com-
putation. After termination, it is at line 26 which prepares the final result
for S4.

– Line 9: Constructing ψ by removing the r states that enable the transition
r → uj from Y . Then there are no transitions of the form r → uj in ψi.
Then if r is part of a loop in ψ, then this loop must be unfair violating the
fairness requirement under consideration.

– Line 10: Checking whether there may exist such unfair loop by checking
whether there exist r-states in ψi.

– Line 11: Constructing assertion φ which consists of all of the reachable states
from r-states in ψi.

– Line 12: Checking whether φ is a loop by checking whether all of the φ-states
can reach r-states in φ.
If there is at least one state in φ that cannot reach the r-states in φ, it means
that φ is not a loop. Such that the distance of the unfair part of φ might not
be the right one or the constraint is not specific enough. Then we go back
to line 8 and consider another strengthened compassion requirement.
If it is a loop, then it is the unfair one that is to be denoted φm and to be
assigned the value of rank δm in the subsequent actions.

– Line 13-17: Constructing the helpful assertion φm, the strengthened com-
passion constraint fm and the distance measure δm, respectively.

– Line 18-22: Constructing the new Y for the use by S2, and preparing the
recursive call for S3.

Validity of the Algorithm For every Y at different levels of the recursive
calls of the algorithm, if there exist a fairness constraint ⟨r, {u1, u2, . . . , uk}⟩ and
some j, such that there exists at least one r-state which is not the predecessor
of uj-states, then this fairness constraint is sufficient to guarantee that it is not
possible to stay at φ-states (the reachable states from r-states) infinitely often.

Otherwise, if during all fairness constraints, there is no such j exist, the
execution of the model are not required to leave these r-states2, and hence the
response property is not valid.

2 Following the tradition of [10], every state is assumed to have a loop to itself, and
every state must be constrained by some fairness requirement in order to force the
progress of computations of such a system model.
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Proof of the Completeness The above arguments implies that if the response
property is valid, the algorithm will terminate properly without reporting “fail”,
i.e. Y is decreased to the empty set at each levels of the algorithm in the recursive
computation of φi, fi and ∆i. We consider in turn each of the premises and show
that it holds for the extracted constructs φi, fi and ∆i with i ≤ m. Clearly, we
have {f1, ..., fm} ⊆ F . If Fl ∈ F is not in {f1, ..., fm}, we may add fm+1 = Fl

to the set and let φm+1 be false and ∆m+1 be the empty list. If fl1 , ..., flk are
the same as Fl for some l, for technical reason, we make k copies of Fl such that
each corresponds to one element of {fl1 , ..., flk}. Replacing Fl with k-copies does
not change the contents of the system description. Then we may assume that
m = n (the number of fairness requirements).

1. Premise of R1 claims that every p-state s satisfies q or rj ∧ φj , for some
j ∈ [1..n]. Indeed, if s does not satisfy q, it belongs to the pending graph
(i.e., the initial Y , denoted hereafter by Y0), and since all Y0-states are
divided and removed after the algorithm, s must be a part of the removed
ones, it means that s belongs to some rj ∧ φj .

2. Premise of R2 requires that every immediate successor of s that satisfies
ri ∧ φi must satisfy q or rj ∧ φj for some j ∈ [1..n]. As mentioned before,
s belongs to Y0, and its successor sb must satisfy q or belong to Y0. Similar
to the situation in premise of R1, we can get that sb must belong to some
rj ∧ φj .

3. Premise of R3 considers a state sa that satisfies φi. Consider a successor
sb. It requires that sb satisfies q, or φi and has the same value as ∆i(sa),
or satisfies rj ∧ φj for some j and has ∆j(sb) ≺ ∆i(sa). According to the
construction, every φi-state s has a rank ∆i(s) and φi-state can be reached
from a ri-state by a finite φi-path π.

– If sb is a q-state, then it is acceptable.
– If sb is in Y , by the definition of Y = φi + Y ′ (Y ′ is not reachable from

states in φi) and the construction of φi, we know that sb is in φi.
– If sb is in Y0 - Y , such that sb must have been removed from Y0 in some

earlier stage, satisfy rj ∧ φj with ∆j(sb) ≺ ∆i(sa) for some j < i.

4. Premise of R4 requires that at least one type of transitions from ri to ui,k
cannot be taken from ri-states in φi. By the definition of strengthened com-
passion , it satisfies this condition.

The above arguments proves the completeness, i.e., whenever a response
property is valid, there exist auxiliary constructs for proving the property.

3.4 Dealing with Systems with Infinite Number of States

For dealing with infinite state systems, in addition to the above algorithm for
constructing helpful assertions and ranks, we have to apply abstraction and
concretization. The basic steps for proving the property is as follows

– Abstracting the program to a finite state one
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– Constructing the helpful assertions and ranks
– Concretizing the constructs
– Proving the property by using the proof rule

The main focus of this paper is the second and the fourth issues. An example
to demonstrate the above steps is shown in the next section.

4 An Example with Non-Deterministic Choice

Consider the program (which appeared also in [15]) with a non-deterministic
choice of the values of variable x in Figure 3.


x : natural;
init x > 2;
l0 : while : (x > 0)
l1 : x:=2 or x:=x-1

l2


Fig. 3. Example 1

Fig. 4. Pending graph after abstraction

At location l1 there is a non-deterministic choice, and we may denote the
first transition as l1a and the second as l1b. Let x

′ denote the next state variable
of x.

The property we wish to establish is at l0 ⇒ ♢at l2, and the strengthened
compassion requirements are:

Fc0: ⟨at l0, {¬at l0}⟩
Fc1: ⟨at l1, {at l0 ∧ x = 2, at l0 ∧ x′ < x}⟩
Fc2: ⟨at l1 ∧ x = 1, {at l0 ∧ x = 2, at l0 ∧ x′ < x}⟩
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The basic fairness requirement of location 0 is Fc0. Fc1 implies that if it is
at location 1 infinitely times, the action “x=2 ”must be taken from location 1
infinitely times, so does action “x=x-1”. Fc2 implies that if it is at location 1
and x equals 1 infinitely times, the action “x=2” must be taken from location 1
infinitely times, so does action “x=x-1”.

Proving the property The following basic steps are explained in the subsections
that follow.

– Abstracting the program to a finite state one
– Calculating the helpful assertions and ranks
– Concretizing the constructs
– Proving the property by using the proof rule

4.1 Abstraction

We apply the following abstraction α :

α : Π = π,X = x̃,Decx = decx

where the assertion π = i stands for at program location li. X and decx are
defined as follows.

x̃ =

{ 0 x = 0
1 x = 1
2 x = 2
3 x > 2

decx =

{ 1 x ≻ x′

0 x = x′

−1 otherwise

The response property after applying the abstraction is now Π = 0 ⇒ ♢Π =
2, and the strengthened compassion requirements are as follows:

F0 : ⟨Π = 0, {Π ̸= 0}⟩
F1 : ⟨Π = 1, {Π = 0 ∧ (X = 2),Π = 0 ∧ (Decx = 1)}⟩
F2 : ⟨Π = 1 ∧ (X = 1), {Π = 0 ∧ (X = 2),Π = 0 ∧ (Decx = 1)}⟩

F0, F1 and F2 are respectively the abstract version of Fc0, Fc1 and Fc2.

4.2 Calculation

The pending graph of the finite state transition system after applying the ab-
straction is shown in Fig. 4. The helpful assertions and ranks we get by algorithm
Auxiliary constructs are in Table. 1, and the process of the calculation is ex-
plained as follows.

1. We start with rank SC(pend, []), and set Y= pend={S1, ..., S9}, d=0, m=0.
2. Neither of F1 and F2 satisfies the assumption ψ ∧ r at line 10. This means

that these two strengthened compassion requirements may be fair to Y .
3. Then F0 is chosen at line 9, and we get ψ = {S1, S2, S4, S8}.
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Φi Si δi Hi

φ9 Π = 0 ∧X = 3 ∧Decx = {1, 0} [4, 1] F0

φ8 Π = 0 ∧X = 3 ∧Decx = {1, 0} [4] F1

∨Π = 1 ∧X = 3 ∧Decx = 0

φ7 Π = 0 ∧X = 2 ∧Decx = 1 [3] F0

φ6 Π = 0 ∧X = 2 ∧Decx = −1 [2, 3] F0

φ5 Π = 0 ∧X = 2 ∧Decx = 0 [2, 2, 1] F0

φ4 Π = {0, 1} ∧X = 2 ∧Decx = 0 [2, 2] F1

φ3 Π = 0 ∧X = 1 ∧Decx = 1 [2, 1] F0

φ2 Π = {0, 1} ∧X = 2 ∧Decx = 0 [2] F2

∨Π = 0 ∧X = 1 ∧Decx = 1
∨Π = 0 ∧X = 2 ∧Decx = −1

φ1 Π = 0 ∧X = 0 ∧Decx = 1 [1] F0

Table 1. The Rank Table of Example 1

4. At line 10, (Y ∧Π = 0) ̸= ∅, and we get φ = {S1} at line 11.
5. States in φ can reach the r-state in φ (S1 can reach itself), which means it

is right to use the strengthened compassion requirement F0.
6. Set m=1, d=1, φ1 = {S1}, f1= F0, δ1 = [1], Y ′= {S2, ..., S9} and rem = 0.
7. rem = 0 does not satisfy the condition at line 20, back to line 8 to choose

another strengthened compassion requirement.
8. F2 is chosen at line 9, and we get ψ = Y = {S2, ..., S9}.
9. At line 10, (Y ∧Π = 1∧X = 1) ̸= ∅, and we get φ = {S2, ..., S6} at line 11.
10. All of the states {S2, ..., S6} in φ can reach the r-state in φ: {S2}, which

means it is right to use the strengthened compassion requirement F2.
11. Set m=2, d=2, φ2 = {S2, ..., S6}, f2= F2, δ2 = [2], Y ′= {S7, ..., S9} and rem

= {S3, ..., S6}.
12. Then call rank SC({S3, ..., S6}, [2]) in which the following is done.

– Set Y = {S3, ..., S6}, d=0.
– Choose F0 at line 9, we get ψ = {S3, ..., S6}.
– At line 10, (Y ∧Π = 0) ̸= ∅, and we get φ = {S3} at line 11.
– Set m=3, d=1, φ3 = {S3}, f3= F0, δ3 = [2, 1], Y ′= {S4, ..., S6} and rem

= 0.
– This continues until we have constructed φ4, φ5, φ6 and the respective

ranks as shown in the table, and then Y in this recursion is empty.
13. After the recursive function call, we deal with Y = {S7, ..., S9}, d=2 (equals

the value of d before the recursion), m=6 (equals the value of m at the end
of the recursion). Choose F0 at line 9, and we get ψ = {S7, S8}.

14. At line 10, (Y ∧Π = 0) ̸= 0, and we get φ = {S7} at line 11.
15. Set m=7, d=3, φ7 = {S7}, f7= F0, δ7 = [3], Y ′= {S8, S9} and rem = 0.
16. rem = 0 is does not satisfy the condition at line 20, back to line 8 to chose

another strengthened compassion requirement.
17. Then choose F1 is chosen at line 9, we get ψ = Y = {S,S9}.
18. At line 10, (Y ∧Π = 1) ̸= ∅, and we get φ = {S8, S9} at line 11.
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19. All of the states {S8, S9} in φ can reach the r-state in φ: {S8}, which means
it is right to use the strengthened compassion requirement F1.

20. Set m=8, d=4, φ8 = {S8, S9}, f8= F1, δ8 = [4], Y ′= {∅} and rem = {S9}.
21. Then call rank SC({S9}, [4]) in which the following is done.

– Set Y = {S9}, d=0.
– Choose F0 at line 9, we get ψ = {S9}.
– At line 10, (Y ∧Π = 0) ̸= 0, and we get φ = S9 at line 11.
– Set m=9, d=1, φ9 = {S9}, f9= F0, δ9 = [4, 1], Y ′= {∅} and rem = 0.
– In this recursion, Y is empty, back to the previous level.

22. Finally, Y is empty. The algorithm terminates successfully.

Merging Assertions In order to reduce the number of assertions and ranking
functions, we merge assertions that differ only in their Dec variables. i.e φ5−φ7 as
φ′
5. The rank of φ′ is the lowest rank of these φi. Then we make a re-enumeration

of φi, and get the new helpful assertions and ranks shown in Table. 2.

Φi Si δi Hi

φ7 Π = 0 ∧X = 3 ∧Decx = {1, 0} [4, 1] F0

φ6 Π = 0 ∧X = 3 ∧Decx = {1, 0} [4] F1

∨Π = 1 ∧X = 3 ∧Decx = 0

φ5 Π = 0 ∧X = 2 ∧Decx = {0, 1,−1} [2, 2, 1] F0

φ4 Π = {0, 1} ∧X = 2 ∧Decx = 0 [2, 2] F1

φ3 Π = 0 ∧X = 1 ∧Decx = 1 [2, 1] F0

φ2 Π = {0, 1} ∧X = 2 ∧Decx = 0 [2] F2

∨Π = 0 ∧X = 1 ∧Decx = 1
∨Π = 0 ∧X = 2 ∧Decx = −1

φ1 Π = 0 ∧X = 0 ∧Decx = 1 [1] F0

Table 2. The Abstract Rank

4.3 Concretization

The helpful assertions and ranks after concretization is shown in Table 3. The
process of concretization is explained as follows.

Concretizing Ranks Because Decx is an additional variable by ranking abstrac-
tion and must be remove after concretization, we should make sure that the
constraint by Decx in the abstract strengthened compassion requirements is re-
flected in the definition of ranks. The way to deal with this aspect is to append
the value of variable x to corresponding ranking tuples [10].

If a rank is associated with an abstract fairness requirement involving the
special variable Decx (for any variable x), then the rank ∆i is to be modified as
follows.
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φ si ∆i(s) Hi

φ7 at l0 ∧ x > 2 [4, xs, 1] Fc0

φ6 at l0,1 ∧ x > 2 [4, xs, 0] Fc1

φ5 at l0 ∧ x = 2 [2, 2, xs, 1] Fc0

φ4 at l0,1 ∧ x = 2 [2, 2, xs, 0] Fc1

φ3 at l0 ∧ (x = 1) [2, 1] Fc0

φ2 at l0,1 ∧ (0 < x ≤ 2) [2] Fc2

φ1 at l0 ∧ (x = 0) [1] Fc0

Table 3. The Concrete Rank

– If φi satisfies Decx = −1, then no modification is necessary, since adding the
value of variable x does not help the decreasing of the rank in computations.

– Otherwise, if δi = [β] is obtained with a strengthened compassion require-
ment F involving Decx, then we insert the value of variable x and 0 after
β in δi. Then for δj = [β, γ] with the same prefix β, it will be modified to
[β, xs, γ], i.e., ∆j(s) = [β, xs, γ] where xs denotes the value of x at state s.

For instance, in Table 1, F1 = ⟨Π = 1, {Π = 0∧(X = 2), Π = 0∧(Dec = 1)}⟩
is used to constrain φ4 with rank [β] = [2, 2], and φ4 2 (Decx = −1). Then
δ4 = [β] = [2, 2] is modified to ∆4(s) = [β, xs, 0] = [2, 2, xs, 0]. For δ5 = [β, γ] =
[2, 2, 1] with the same prefix “2,2”, it is modified to ∆5(s) = [2, 2, xs, 1].

Concretizing Assertions This process changes the abstract variables back to the
concrete ones by reversing the abstraction, and removing propositions involving
Decx.

Concretizing Requirements This process changes the abstract requirements back
to the corresponding concrete ones.

4.4 Proof

We first convert the transitions of the program into formulas as follows.

ρ = at l0 ∧ x > 0 ∧ at l′1
∨at l1 ∧ (x′ = 2 ∨ x′ = x− 1) ∧ at l′0
∨at l0 ∧ ¬(x > 0) ∧ at l′2

p: at l0 q: at l2
φ1 : at l0 ∧ x = 0 r1: at l0 u1 : ¬at l0 ∆1(s): [1]
φ2 : at l0,1 ∧ 0 < x ≤ 2 r2: at l1 ∧ x = 1 u2,1 : at l0 ∧ x = 2,u2,2 : at l0 ∧ x′ < x ∆2(s): [2]
φ3 : at l0 ∧ x = 1 r3: at l0 u3 : ¬at l0 ∆3(s): [2,1]
φ4 : at l0,1 ∧ x = 2 r4: at l1 u4,1 : at l0 ∧ x = 2,u4,2 : at l0 ∧ x′ < x ∆4(s): [2,2,xs,0]
φ5 : at l0 ∧ x = 2 r5: at l0 u5 : ¬at l0 ∆5(s): [2,2,xs,1]
φ6 : at l0,1 ∧ x > 2 r6: at l1 u6,1 : at l0 ∧ x = 2,u6,2 : at l0 ∧ x′ < x ∆6(s): [4,xs,0]
φ7 : at l0 ∧ x > 2 r7: at l0 u7 : ¬at l0 ∆7(s): [4,xs,1]
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We prove that the premisses of the rule SC RESPONSE hold when using the
above auxiliary constructs as follows.

R1 p ⇒ q ∨
∨n

j=1(rj ∧ φj)

at l0 r7 ∧ φ7

r5 ∧ φ5

r3 ∧ φ3

r1 ∧ φ1

The implication holds, since

– p = at l0,
– at l0 implies the disjunction of r7 ∧ φ7, r5 ∧ φ5, r3 ∧ φ3 and r1 ∧ φ1,
– this disjunction is a part of q ∨

∨n
j=1(rj ∧ φj).

In the following, for each i ∈ {1, ..., 7}, we prove R2, R3, R4, and we use the
above format without further explanation.

i=1

1R2 r1 ∧ φ1 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l0 ∧ x = 0 ∧ ρ at l′2

1R3 φ1 ∧ ρ ⇒ q′∨ (φ1 ∧∆1 = ∆′
1)∨

∨n
j=1(r

′
j ∧ φ′

j ∧∆1 ≻ ∆′
j)

at l0 ∧ x = 0 ∧ ρ at l′2

1R4 φ1 ∧ r1 ∧ ρ ∧ φ′
1 ⇒ ¬u′1,k

∅ at l′0

i=2

2R2 r2 ∧ φ2 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l1 ∧ x = 1 ∧ ρ r′3 ∧ φ′
3 : at l′0 ∧ x′ = 2

r′1 ∧ φ′
1 : at l′0 ∧ x′ = 0

2R3 φ2 ∧ ρ ⇒ q′∨ (φ′
2 ∧∆2 = ∆′

2)∨
∨n

j=1(r
′
j ∧ φ′

j ∧∆2 ≻ ∆′
j)

at l0,1 ∧ x = {1, 2} ∧ ρ φ′
2 : at l′0,1 ∧ x′ = {1, 2} r′1 ∧ φ′

1 : at l′0 ∧ x′ = 0

2R4 φ2 ∧ r2 ∧ ρ ∧ φ′
2 ⇒ ¬u′2,k

at l′0 ∧ x′ = 2 ¬u′2,2
i=3

3R2 r3 ∧ φ3 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l0 ∧ x = 1 ∧ ρ r′2 ∧ φ′
2 : at l′1 ∧ x′ = 1

3R3 φ3 ∧ ρ ⇒ q′∨ (φ′
3 ∧∆3 = ∆′

3)∨
∨n

j=1(p
′
j ∧ φ′

j ∧∆3 ≻ ∆′
j)

at l0 ∧ x = 1 ∧ ρ r′2 ∧ φ′
2 : at l′1 ∧ x′ = 1

3R4 φ3 ∧ r3 ∧ ρ ∧ φ′
3 ⇒ ¬u′3,k

∅ at l′0

i=4
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4R2 r4 ∧ φ4 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l1 ∧ x = 2 ∧ ρ r′3 ∧ φ′
3 : at l′0 ∧ x′ = 1

r′5 ∧ φ′
5 : at l′0 ∧ x′ = 2

4R3 φ4 ∧ ρ ⇒ q′∨ (φ′
4 ∧∆4 = ∆′

4)∨
∨n

j=1(r
′
j ∧ φ′

j ∧∆4 ≻ ∆′
j)

at l0,1 ∧ x = 2 ∧ ρ φ′
4 : at l′0,1 ∧ x′ = 2 r′3 ∧ φ′

3 : at l′0 ∧ x′ = 1

4R4 φ4 ∧ r4 ∧ ρ ∧ φ′
4 ⇒ ¬u′4,k

at l′0 ∧ x′ = 2 ¬u′4,2
i=5

5R2 r5 ∧ φ5 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l0 ∧ x = 2 ∧ ρ r′4 ∧ φ′
4 : at l′1 ∧ x′ = 2

5R3 φ5 ∧ ρ ⇒ q′∨ (φ′
5 ∧∆5 = ∆′

5)∨
∨n

j=1(r
′
j ∧ φ′

j ∧∆5 ≻ ∆′
j)

at l0 ∧ x = 2 ∧ ρ r′4 ∧ φ′
4 : at l′1 ∧ x′ = 2

5R4 φ5 ∧ r5 ∧ ρ ∧ φ′
5 ⇒ ¬u′5,k

∅ at l′0

i=6

6R2 r6 ∧ φ6 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l1 ∧ x > 2 ∧ ρ r′7 ∧ φ′
7 : at l′0 ∧ x′ > 2

r′5 ∧ φ′
5 : at l′0 ∧ x′ = 2

6R3 φ6 ∧ ρ ⇒ q′∨ (φ′
6 ∧∆6 = ∆′

6)∨
∨n

j=1(r
′
j ∧ φ′

j ∧∆6 ≻ ∆′
j)

at l0,1 ∧ x > 2 ∧ ρ φ′
6 : at l′0,1 ∧ x′ > 2 ∧ x = x′ r′5 ∧ φ′

5 : at l′0 ∧ x′ = 2
r7 ∧ φ7 : at l′0 ∧ x′ > 2 ∧ x > x′

r′6 ∧ φ′
6 : at l′1 ∧ x′ > 2 ∧ x > x′

6R4 φ6 ∧ r6 ∧ ρ ∧ φ′
6 ⇒ ¬u′6,k

at l′0 ∧ x′ > 2 ¬u′6,1
i=7

7R2 r7 ∧ φ7 ∧ ρ ⇒ q′∨
∨n

j=1((r
′
j ∧ φ′

j)

at l0 ∧ x > 2 ∧ ρ r′6 ∧ φ′
6 : at l′1 ∧ x′ > 2

7R3 φ7 ∧ ρ ⇒ q′∨ (φ′
7 ∧∆7 = ∆′

7)∨
∨n

j=1(r
′
j ∧ φ′

j ∧∆7 ≻ ∆′
j)

at l0 ∧ x > 2 ∧ ρ r′6 ∧ φ′
6 : at l′1 ∧ x′ > 2

7R4 φ7 ∧ r7 ∧ ρ ∧ φ′
7 ⇒ ¬u′7,k

∅ at l′1

4.5 Discussion

For proving the termination of the above program, strengthened compassion
requirements are necessary. Compassion requirements are not sufficient to con-
strain the strongly connected component {S2, S3, S4, S5, S6}.

The strengthened compassion requirements require that when x = 1 infinitely
often at l0, x must decrease right after at least once, and if this happens, the
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program will terminate. However, similar compassion requirements require only
that when x = 1 infinitely often at l0, x must decrease some time in the future at
least once, however x may increase before it decreases, and this is not sufficient
for leading to termination.

Concretely, the infinite loop (S2S5S4S3)
ω in the pending graph in Fig. 4 is fair

to this compassion interpretation, and is not fair to the strengthened compassion
interpretation of the requirements.

5 Concluding Remarks

Strengthened compassion requirements have been studied. This kind of require-
ments has been compared with compassion requirements, which shows the dif-
ference between the expressive powers of these two kinds of fairness require-
ments. A deductive rule SC RESPONSE for proving response properties with
such requirements has been presented. Proofs of the soundness and the relative
completeness of the rule have also been provided, and the application of the rule
has been illustrated.
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