
Enhancing the Security of Protocols against
Actor Key Compromise Problems

Jing Ma
SKLCS, Institute of Software

Chinese Academy of Sciences &
University of Chinese Academy of Sciences

Wenhui Zhang
SKLCS, Institute of Software
Chinese Academy of Sciences

Beijing, China

Abstract

Security of complex systems is an important issue in software engineering.
For complex computer systems involving many actors, security protocols are
often used for the communication of sensitive data. Actor key compromise
(AKC) denotes a situation where the long-term secret key of an actor may
be known to an adversary for some reasons. Many protocols are not secure
enough for ensuring security in such a situation. In this paper, we further
study this problem by looking at potential types of attacks, defining their
formal properties and providing solutions to enhance the level of security.
As case studies, we analyze the vulnerabilities (with respect to potential
AKC attacks) of practical protocols, including PKMv2RSA and Kerberos, and
provide solutions to enhance the level of security of such protocols.

1. Introduction

Security of complex systems is an important issue in soft-
ware engineering. For complex computer systems involving
many actors, security protocols are often used for the commu-
nication of sensitive data. However, security protocols are not
always secure enough, because of reasons including that there
may be weakness in the methods for generation of secrete
keys, storage of keys and so on. If an actor’s key is revealed
and used by an adversary to impersonate another party com-
municating with the actor, then there is a key compromise
impersonation (KCI) attack [1], and then the attacker may
obtain sensitive data through such an impersonation. Actor
key compromise (AKC) attack is a generalization of this kind
of attacks. This has been studied in [2], where this property is
formalized and conditions under which it can and cannot be
achieved are identified.

Previous works focus on KCI attacks in the domain of
key establishment protocols. In [3] and [4] some concrete
two-party protocols have been studied and countermeasures
to prevent such attacks provided. The type of KCI attacks
is classified in [5] and [6] based on whether the responder
authenticates the initiator, and use digital signatures and time-
stamps as a help. [7] is the first to study security attribute
of group key exchange protocols under KCI attack. The
first computation model of KCI is provided in [9]. Then
[2] provides a systematic analysis of the consequences of
compromising the actor’s secret key and countermeasures, and
shows both constructive and impossibility results.

There are additional issues that need to be investigated.
Firstly, the classification of KCI attacks based on adversary’s

capability of eavesdropping and sending messages is generic
and may not reveal the particular feature of such attacks.
Furthermore, providing definitions of attack types may make
it easier to analyze the vulnerabilities and then modify the
protocol for enhancing security. Second, the work in [2]
focuses on the problem where a given actor may have the
secret key being compromised, and we focus on solutions for
enhancing the security in case one of the actors (however,
which one is unknown) has the secret key being compromised,
and we also consider multi-party protocols and a different type
of security claims. Third, no practical algorithms have been
provided in transforming a protocol into an AKC resilience
one, which is also important for the practical use of the
methods.

The purpose of this work is to provide practical solutions
for transforming protocols to achieve higher security levels
against AKC attacks. The work includes classifying types of
AKC attacks and providing their formal definitions, furnishing
solutions, and providing practical algorithms.

The rest of this paper is organized as follows. Section 2
introduces the modeling framework and gives formalization
of security properties. In Section 3, we classify four types
of AKC attacks and give formal definition of the attacks. In
Section 4, we propose solutions to prevent such attacks. We
present case studies in section 5 and concluding remarks in
Section 6.

The proofs of the propositions and corollaries, and the
algorithms for the transformation of protocols are to be found
in the appendix.

2. Preliminaries

We follow the formal framework for protocol specification
and the execution model defined in [10][11].

2.1. Protocol Specification

A partial function from X to Y is denoted f : X ↪→ Y .
The domain and range of f are denoted dom(f) and ran(f),
respectively. f [a 7→ b] denotes a function f ′ such that f ′(a) =
b, and otherwise it coincides with f . We write 〈s0, ..., sn〉 to
denote the sequence of elements from s0 to sn.

Let A, R, Fresh, Var, Func, and TID denote sets of agents,
roles, Fresh and so on. TID contains two distinguished thread
identifiers, Test and tidA which stands for a thread of an
arbitrary agent and that of an adversary thread.

t]tid binds the local term t to the protocol thread identified
by tid. By pk(X) we denote X’s asymmetric long-term public
key, and sk(X) denotes the corresponding secret key. The
superscript n in Func(Termn) denotes the arity of parameter.
Const is a special case of Func with arity 0. The use of
symmetric cryptography and hashing is not sufficient to ensure
AKC resilience [2]. For brevity, we do not consider symmetric
cryptography in this paper and therefore omit symmetric
cryptographic terms in the definition of the basic elements
of protocols.
Definition 1 (Terms):

Term ::=A | R | Fresh | V ar

| Fresh]TID | V ar]TID | Func(Termn)
| (Term, Term) | {Term}Term

| sk(A) | pk(A) | sk(R) | pk(R)

We define RoleTerm as the set of terms that have no
subterms in A ∪ Fresh]TID, and RunTerm as the set of
terms that have no subterms in R ∪ Fresh. A role term is
transformed into a run term by applying an instantiation from
the set Inst:

TID ↪→ ((R ↪→ A) ∪ ((Fresh ∪ V ar) ↪→ RunTerm)).

We define a binary relation ` on terms, where M ` t
denotes that the term t can be inferred from the set of terms
M. Let t−1 denote the inverse function on terms such that for
all agents a, (pk(a))−1 = sk(a) and (sk(a))−1 = pk(a), and
for all other terms, t−1 = t. Let t0, ..., tn ∈ Term and let
f ∈ Func. The relation ` is the smallest relation satisfying:

t ∈ M ⇒ M ` t

M ` t1 ∧M ` t2 ⇔ M ∈ (t1, t2)

M ` {t1}t2 ∧M ` (t2)−1 ⇒ M ` t1

M ` t1 ∧M ` t2 ⇒ M ` {t1}t2∧
0≤i≤n

M ` ti ⇒ M ` f(t0, ..., tn)

The subterm relation v is defined as the reflexive, transitive
closure of the smallest relation satisfying the following, for all
terms t1, ..., tn and function names f :

t1 v (t1, t2), t2 v (t1, t2)
t1 v {t1}t2 , t2 v {t1}t2

t1 v pk(t1), t1 v sk(t1)
ti v f(t1, ..., tn) for 1 ≤ i ≤ n

The accessible subterm relation vacc identifies potentially
retrievable subterms, is defined as a subset of subterm relation
such that t1 vacc (t1, t2) and t2 vacc (t1, t2). In order
to identifies position of pk(a) and sk(a), we define another
subterm relation vace such that t1 vace {t2}t1 .

Definition 2 (Event): Let Claim be a given set of claims
including the following claims commit, running, secret,
nisynch. Let Label be a set of labels. The set of events is
defined as follows.

RoleEvent :: = sendLabel(R,R, RoleTerm)
| revcLabel(R,R, RoleTerm)
| claimLabel(R, Claim[,R][, RoleTerm])

RunEvent :: = create(R,A)
| sendLabel(A,A, RunTerm)
| revcLabel(A,A, RunTerm)
| claimLabel(A, Claim[,A][, RunTerm])

AdvEvent :: = LKR(A)
Event :: = RoleEvent |RunEvent |AdvEvent

RunEvent describes how agents start threads, send and
receive messages. LKR(a) is an event where the adversary
compromises a’s long term secret key. The AdvEvent is
executed in the single adversary thread tidA.

As an example, the event

sendl(Alice,Bob, {n#tid}sk(Alice))

denotes that Alice sends Bob a nonce n#tid in the run tid
and encrypted with its secret key.

An event e has an event-type and a label which are denoted
evtype(e) and label(e), and the contents of a send-event e is
denoted cont(e).

In order to simplify the typing constraint, in the following,
e, e′ stand for events, ρ, ρ′ stand for sequence of events, r, r′

stand for roles, a, b stand for agents, l, l′ stand for labels, t, t′

stand for role terms and run terms (should be clear from the
context), m,n stand for run terms that are used in a message,
tid, tid1, tid2 for TID. Let X be a set. A sequence y of
elements of X is denoted y ∈ X∗. An element a in a sequence
y is denoted a ∈ y. The operation · denotes the concatenation
of two sequences. The powerset of X is denoted pow(X).

A sequence of RoleEvent is well-formed, if all variables
initialized in an accessible position in a recv event are not
used before that event. Let vars(X) denote the set of variables
appearing in X .

wellformed(ρ) ⇔
∀ρ′, l, a, b, t, ρ′′, v :

ρ = ρ′ · 〈recvl(a, b, t)〉 · ρ′′

⇒ (v vacc t ⇒ v /∈ vars(ρ′).

A protocol is a partial function from R to Event∗ together
with a function that formalizes which terms may be stored in
a given variable. For each role, the sequence of events must
be wellformed.
Definition 3 (Protocol): Let Π : R ↪→ Event∗ and typeΠ :
V ar → pow(RunTerm). If for all r ∈ dom(Π), Π(r) is
wellformed, then (Π, typeΠ) is a protocol.

For convenience, we extend the domain of typeΠ to Run-
Term such that typeΠ(t) for a run term t is the set of run
terms such that variables in t is substituted according to the
initial typeΠ.

In a protocol, a label l is associated with a send-role and a
receive-role, denoted respectively sl(l) and rl(l), defined by
sl(l) = r, if label(e) = l and, e = sendl(r, r′, t) ∈ Π(r) or
e = recvl(r, r′, t) ∈ Π(r′) for some t; rl(l) = r′, if label(e) =
l and, e = sendl(r, r′, t) ∈ Π(r) or e = recvl(r, r′, t) ∈
Π(r′).

2.2. Execution Model

Protocol execution is modeled as a labeled transition system
(State, RunEvent,→, s0). A state s = (trs, AKs, ths, σs)
consists of a trace trs ∈ (TID×(RunEvent ∪ AdvEvent)),
the adversary’s knowledge AKs, a partial function ths ∈
TID ↪→ RunEvent∗ and a role and variable instantiation
σs ∈ Inst. We denote σs(tid) as σs,tid, and trs(i) as trs,i

which is the i-th event of the trace. The initial state s0 is
(∅, AK0, ∅, ∅) where AK0 = {a, pk(a) | a ∈ A} ∪ {n#tidA :
n ∈ Fresh} is the initial adversary knowledge.

The operational semantics of a protocol is defined by a
transition system which are composed of execution rules from
Fig 1 with a selected subset of adversary rules in Fig 2. The
create rule starts a new thread of a protocol role R. The send
rule sends a message m to the network and add it to adversary
knowledge. The receive rule accepts message if it match the
pattern pt. The claim rule states a security property that is
expected to hold. The LKRactor rule allows the adversary to
learn the long-term keys of the agent executing the test run.

Let the protocol (Π, typeΠ) with an initial role R ∈
dom(Π), and a set of adversary rules A be given. If there is
a rule such that s → s′, then we write s →Π,typeΠ,R,A s′.
The set of reachable states denoted RS(Π, typeΠ, R, A) is
{s | s0 →∗

Π,typeΠ,R,A s}. The set of all possible traces of the
protocol (Π, typeΠ) is denoted Traces(Π, typeΠ).

In a state s, we have a trace trs and each thread in the trace
is created by a role. The special thread Test is created by R.
Let roles : TID → R be a function that identifies a tid with
a role in s. Then roles(Test) = R and roles(tid) = r′, if
(tid, create(r′, σs(r′))) ∈ trs.

2.3. Security Property

Security properties are modeled as reachability proper-
ties. A secrecy claim on a role term t is of the form
claiml(r, secret, t) for some label l and role r.
Definition 4 (secrecy claim): Let s be a state. If
γ = claiml(r, secret, t) is a secrecy claim on t, and
(Test, σs,Test(γ#Test)) ∈ trs, then

s |= γ ⇔ AKs 0 σs,Test(t#Test)

The following two properties are related to data agreement.

The commit property means that the initiator agree on some
data with the responder. The nisynch property means when-
ever initiator I completes a run of the protocol with responder
R, then R has previously been running the protocol with I , and
the two agents agreed on all the variables. A commit claim on
a role term t is of the form claiml(r, commit, r′, t) for some
label l and roles r and r′. A corresponding running claim for
such a commit claim is of the form claiml(r′, running, r, t).
Definition 5 (commit claim): Let s be a state. If
γ = claiml(r, commit, r′, t) is a commit claim, and
(Test, σs,Test(γ#Test)) ∈ trs, then s |= γ, iff

• there is a tid such that roles(tid) = r′, and
• there is a running claim δ = claiml(r′, running, r, t)

such that (tid, σs,Test(δ)) ∈ trs, and there exists a send-
event e, such that (tid, e) ∈ trs, t vacc cont(e).

Let <R denote the total order of events in a sequence
(for the sequence of events 〈ε1, ε2, ε3〉, we have ε1 <r ε2,
ε2 <r ε3, and ε1 <r ε3). The order on events which is
induced by the communications is defined as ε1 99K ε2 ⇔
∃l, r, r′, t1, t2 : ε1 = sendl(r, r′, t1) ∧ ε2 = recvl(r, r′, t2).
The transitive closure of the union of the role event order
and the communication relation is called the protocol order
≺P = (99K ∪

⋃
r∈R <r)+. prec(cl) is the set of causally

preceding communications of a claim event labeled with cl:
prec(cl) = {l | recvl(, ,) ≺p claimcl(...)}.

Let tidinsts : R ↪→ pow(TID) denote the function that
maps roles to runs according to trs of the state s. Let ev(trs,i)
denote e iff trs,i = (tid, e) for some tid.

A nisynch claim is of the form claiml(r, nisynch) for
some r and l for stating the correspondence between send-
messages and recv-messages.
Definition 6 (nisynch claim): Let s be a state. If
γ = claiml(r, nisynch) is a nisynch claim, and
(Test, σs,Test(γ#Test)) = trs,k for some k, then

s |= γ ⇔∀l′ ∈ prec(l), a, b, m,

∀j < k, tid ∈ tidinsts(rl(l′)) :

(ev(trs,j) = recvl′(a, b, m)#tid

⇒ ∃i < j, tid′ ∈ tidinsts(sr(l′)) :

(ev(trs,i) = sendl′(a, b, m)#tid′)

A protocol is AKC secure if its security claim holds
under AKC attacks. This property has been formalised in
[2]. Here we use (Π, typeΠ) |=A γ to denote that for all
s ∈ RS(Π, typeΠ, R, A), s |= γ.
Definition 7 (Actor key compromise security, AKCS):
Let (Π, typeΠ) be a protocol, R ∈ dom(Π), A an ad-
versary (represented by a set of adversary rules) such that
LKRactorΠ,R ∈ A, and γ ∈ Π(R) a security claim. γ is
actor key compromise secure (AKCS) in (Π, typeΠ) with
respect to A if (Π, typeΠ) |=A γ.

For the correctness of security properties, we assume that
no asymmetric long-term secret keys appear in accessible
positions in any messages of a protocol, in the subsequent
sections.

R∈dom(Π) tid6∈(dom(th))∪{tidA,Test} σ′:R→A
(tr,AK,th,σ)→(tr·〈(tid,create(R,σ(R)))〉,AK,th[tid7→σ′(Π(R))#tid],σ[tid7→σ′])

[createΠ]
th(tid)=〈sendl(a,b,m)〉·seq

(tr,AK,th,σ)→(tr·〈(tid,sendl(a,b,m))〉,AK∪{m},th[tid7→seq],σ) [send]
th(tid)=〈recvl(a,b,pt)〉·seq dom(σ′)=vars(pt) (∀x∈dom(σ′))(σ′(x)∈typeΠ(x)) AK`σ′(pt)

(tr,AK,th,σ)→(tr·〈(tid,recvl(a,b,σ′(pt)))〉,AK,th[tid7→σ′(seq)],σ[tid7→σtid∪σ′]) [recvtypeΠ]
th(tid)=〈e〉·seq evtype(e)=claim

(tr,AK,th,σ)→(tr·〈(tid,e)〉,AK,th[tid7→seq],σ) [claim]
Fig.1. Execution-model rules

a=σT est(R) a/∈{σT est(R
′):R′∈dom(Π)\{R}}

(tr,AK,th,σ)→(tr·〈(tidA,LKR(a)),AK∪LTK(a),th,σ〉) [LKRactorΠ,R]
a/∈{σT est(R):R∈dom(Π)}

(tr,AK,th,σ)→(tr·〈(tidA,LKR(a))〉,AK∪LTK(a),th,σ) [LKRothersΠ]
Fig.2. Adversary-compromise rules

3. Attack Types

Understanding adversary’s techniques to launch attacks and
their attack objectives is helpful in identifying weakness of
protocols. Some work has been done on categorizing attacks
with traditional Dolev-Yao adversary model. In [12], there
is a classification of known-key attacks, where they study
AK protocols and categorize attacks based on adversary’s
capability of modifying messages. In [13] one-pass two-party
key establishment protocols under KCI attacks are studied,
two classes of KCI attacks are described. Here we study types
of attacks under stronger adversary models. Furthermore, we
provide the formal definition of such attacks based on the trace
model and techniques for fixing such protocols are provided
in the next section.
Secrecy Attack One purpose of a protocol is to transmit a
secret nonce from an initiator to a responder. In order to keep
the nonce secret, The initiator will encrypt the nonce with the
responder’s public key, which is not safe if intruders knows
the responder’s secret keys.
Definition 8 (Secrecy attack):
Let (Π, typeΠ) be a protocol, R ∈ R, t ∈ RoleTerm.
If ∃s ∈ RS(Π, typeΠ, R, A), AKs ` σs,Test(t#Test),
then there is secrecy attack on t, which we denote
SecrecyAttack(t,Π, typeΠ).
Example Suppose that the initiator wants to transmit a secret
nonce to the responder before setting up a session key. In
order to keep the nonce secret, the initiator will encrypt the
nonce with the responder’s public key, which is not safe
if intruders knows the responder’s secret keys. Consider the
CCIT-ban1[19] protocol as follows.

I → R :
I, {Ta,Na, R,Xa, {Y a, {hash(Y a)}sk(I)}pk(R)}sk(I)

Clearly, there is secrecy attack on Ya, if the secret key of
the responder is known to the intruder.
Substitution Attack An attack of this type occurs in a
situation when an initiator and a responder try to use fresh
values or secret keys to authenticate each other. The main
characteristics of this type of attacks is that the adversary
replaces terms in a message with another terms without being
discovered.

Let Matchs(a, tid1, b, tid2) denote that the thread tid1

instantiated by the agent a is the corresponding thread com-
municating with tid2 instantiated by b according to σs of the
state s. In other words, Matchs(a, tid1, b, tid2) iff there is
r, r′ such that σs,tidi

(r) = a and σs,tidi
(r′) = b for i = 1, 2.

Let m[x/y] denote m′ derived from m by replacing y in
m with x. Let L be a subset of labels, S and S′ be sets of
terms, and ≺ be an access relation. The predicate Replace is
defined as follows.

Replace(s, L, S, S′,≺, tid) ⇔
∃l ∈ L, m, m′, a, b′, tid′,

x ∈ S, y ∈ S′, y 6= x, x ≺ m′ :
tid′ ∈ tidinsts(sr(l)) ∧ tid ∈ tidinsts(rl(l))∧

Matchs(a, tid′, b, tid)∧
∃k.(ev(trs,k) = recvl(a, b, m)#tid)∧

∀j < k.(ev(trs,j) = sendl(a, b, m′)#tid′

⇒ m′ = m[x/y])

In a substitution attack, the adversary eavesdrop the message
and modify some of its fresh values by its own fresh values
and transmit it to the receiver of the message.

Let Finish(s, tid) denote the thread tid has been com-
pleted in s, i.e., every event in the sequence ths(tid) has a
corresponding event in trs.

Let S = {t ∪ f(t) | t ∈ Fresh∗, f ∈ Func} and S′ =
{t ∪ f(t) | t ∈ AdvFresh∗, f ∈ Func}, where AdvFresh
denote the subset of Fresh used by the adversary.
Definition 9 (Substitution Attack): For a security pro-
tocol (Π, typeΠ), there is a substitution attack, if ∃s ∈
RS(Π, typeΠ, R, A) and a tid such that Finish(s, tid) and
Replace(s, Label, S, S′,vacc, tid) hold, which we denote
SubAttack(Π, typeΠ).
Example Consider the Bilateral Key Exchange (BKE) proto-
col as an example, which is supposed to guarantee the secrecy
of kir and agreement on nr and ni.

1. I → R : {ni, I}pk(R)

2. R → I : {hash(ni), nr,R, kir}pk(I)

3. I → R : {hash(nr)}kir

The protocol is vulnerable to substitution attacks. If the
intruder (denoted DAlice) knows the secret key of Bob (an

agent of the role R), he can decrypt message 2 using the
secret key, and constructing another message 2’ using its own
nonces. In this way, the adversary impersonate Bob to Alice
(an agent of I) and break agreement of ni and nr between
them:

1. Alice → Bob : {ni,Bob}pk(Bob)

2. Bob → DAlice : {hash(ni), nr,Alice, kir}pk(Alice)

3. DAlice decrypts message using sk(Alice)
and learns hash(ni)

4. DAlice chooses nr′, kir′

and constructs {hash(ni), nr′, Alice, kir′}pk(Alice)

5. DAlice → Alice : {hash(ni), nr′, Alice, kir′}pk(Alice)

6. Alice → DAlice : {hash(nr′)}kir′

Role-mixup Attack An attack of this type has the result that
the participating entities do not agree on who is playing what
role in the protocol. We use Termin(s, L) to denote that there
exists some label l ∈ L which contains role name in accessible
position and there is no matching send-events for a recv-event
in the trace.

Termin(s, L, tid) ⇔
∃l ∈ L, a, b, m, n, tid′ :

tid′ ∈ tidinsts(sr(l)) ∧ tid ∈ tidinsts(rl(l))∧
Matchs(a, tid′, b, tid)∧

∃k.(ev(trs,k) = recvl(a, b, m)#tid′)∧
∀j < k, l′ ∈ Label.(ev(trs,j) = sendl′(a, b, n)#tid

⇒ l 6= l′)

The role-mixup attack states that the messages which has
agent names in accessible position have been replaced by the
adversary, or the public(secret) key of some agent may be
replace by other agent’s public(secret) key, or the adversary
forged a message with agent names in accessible position to
impersonate another party.
Definition 10 (Role-mixup attack): Let (Π, typeΠ) be
a protocol, L be the subset of Label such that agent
names are accessible in the corresponding events, i.e. L =
{l | ∃a, e.(label(e) = l ∧ a vacc cont(e))}, S = {pk(a) ∪
sk(a) |a ∈ A}. The role-mixup attack of (Π, typeΠ), denoted
RoleMixupAttack(Π, typeΠ), is defined as follows.

RoleMixupAttack(Π, typeΠ) ⇔
∃s ∈ RS(Π, typeΠ, R, A), tid :

Finish(s, tid)∧
(Replace(s, L,A,A,vacc, tid) ∨ Termin(s, L, tid)∨

Replace(s, Label, S, S,vace, tid))

Example Consider the isoiec-9798-3-5 [20] protocol as an

example:

1. A → B : Cert(A), RA, Text1
2. B → A : Cert(B), RB, Text2
3. B → A : RB,RA,A, Text6, {RB, TA, A, Text5}sk(B)

4. A → B : RA,RB,B, Text4, {RA,RB,B, Text3}sk(A)

The protocol is vulnerable to role-mixup attacks. In this
protocol Bob and Alice want to agree on fresh values RA,
RB, Text3 and Text5. The attack is shown in Fig 3, in
which the adversary listens to the message between them and
impersonate Alice and Bob, such that Alice assumes Bob as
B and Bob assumes Alice as B, however both Alice and Bob
are acting as A.
Parallel Attack In the environment that the same protocol has
run as several threads, the authentication may not be preserved
because A may communicate with B in the first thread, and
with C which has run the same protocol later, but A still
assumes he is communicating with B.
Definition 11 (Parallel Attack): Let (Π, typeΠ) be
a protocol. The parallel attack of (Π, typeΠ), denoted
ParallelAttack(Π, typeΠ), is defined as follows.

ParallelAttack(Π, typeΠ) ⇔
∃s ∈ RS(Π, typeΠ, R, A), l, a, b, m,

∃k, tid ∈ TID.(ev(trs,k) = recvl(a, b, m)#tid)∧
∀j < k, tid′ ∈ tidinsts(sr(l)) :

(ev(trs,j) = sendl(a, b, m)#tid′

⇒!Matchs(a, tid′, b, tid))

Example Consider the following protocol, in which the two
agents authenticate each other using three nonces.

1. A → B : {na}sk(A)

2. B → A : {h(na, nb), nb}sk(B)

3. A → B : {h(nb, nc), nc}sk(A)

4. B → A : {h(nc)}sk(B)

The protocol is vulnerable to parallel attack when Alice has
two runs of the protocol. The adversary can forge the message
in the second run, which makes Bob initiate a session with
Alice in run 1 but receive the last authentication message in
run 2. We show the attack in Fig 4.

4. Preventing Attacks

In this section, we give constructive methods for avoiding
potential AKC attacks. In [2], transformations to achieve
unilateral security is provided. Our work tries to provide trans-
formations that achieve bilateral secrecy and agreement, and
instead of using secret keys to achieve agreement, we use hash
function and public keys to achieve agreement. The argument
here is that the content encrypted by public keys will not be
compromised easily, and we can use hash function to commit
values to be used as short term keys. Another particular point

#2#2 Text1,RA),Cert(Alice

cket2IntruderTi,RACert(Bob), #1

sk(Bob)

#2#1#2#1 cket5}IntruderTiAlice,,RA,{RAcket6,IntruderTiAlice,,RA,RA

sk(Alice)

#2#1#2#2#1#2 }Text3Bob,,RA,{RA,Text4Bob,,RA,RA

#1#1 Text,RACert(Bob),

cket1IntruderTi,RA),Cert(Alice #2

sk(Alice)

#2#1#2#1#2 }Text3Bob,,RA,{RAcket4,IntruderTiBob,,RA,RA

}Text3Alice,,RA,{RA,Text4Alice,,RA,RA #1#2#1#1#2#1

2#Run A rolein Alice

BobB- Assumes

1#Run A rolein Bob

AliceB- Assumes
Intruder

#2#1#2#1 Text1,Text1,RA,RACert(Bob),learn

 transmitand cket1IntruderTi cket2,IntruderTi choose

 transmitand cket5IntruderTi cket6,IntruderTi choose

 transmitand cket4IntruderTi Choose

nisynch

Fig 3

sk(Bob)
{na}

sk(Alice)
nb}nb),{h(na,

sk(Alice)
}nb'nb),{h(na,

sk(Bob)
nc}nc),{h(nb,

sk(Bob)
nc}nc},,{h{nb'

B rolein Alice

BobA- Assumes AliceB- Assumes

A rolein Bob

BobA- Assumes
B rolein Alice

Intruder

sk(Bob)
{na}

nc,nb' learns

sk(Bob)
nc}nc),,{h(nb'construct

sk(Alice)
{h(nc)}

synch-ni

Fig 4

of our work is to use a special tag including role names to
prevent role-mixup attack. Furthermore, we modify the n-
party NSL protocol in order to achieve the higher agreement
property nisynch, which illustrates the practicability of the
approach.

4.1. Resilience of Secrecy Attack

In [2], a tagging function for the transformation is provided.
We recall that the function τc and the restricted one τc|S
defined as follows .
Definition 12 (Tagging function) Let c ∈ Const, τc :

Term → Term, then for all t, t1, ..., tn ∈ Term :

τc(t) =

t, if t atomic or long-term key,

(τc(t1), τc(t2)), if t = (t1, t2),
{τc(t1), c}τc(t2), if t = {t1}t2 ,

f(τc(t1), ..., τc(tn)), c), if t = f(t1, ..., tn).

τc|S denotes the modification of τc which restricts the do-
main of τc to some set S of terms to avoid tagging unnecessary
terms.

The transformation in Fig 5 shows how to ensure AKCS of
secrecy. Three messages are added: the first one is a constant
asking for a nonce, the second one contains an encrypted
nonce, and the third one contains the secrecy encrypted by
the nonce and the public key together. The last two works like
encrypting secrecy with two pair of keys, which the adversary
at most compromise either pair of them, thus achieving AKCS
of secrecy for both sides. Here we add different constant tags
on message to ensure the secrecy.

Let typeTS(Π) = typeΠ, M = {k, c2}pk(R), N =
{{m, c3}k}pk(R′), and

S1 = 〈sendl1(R,R′, Request), recvl2(R
′, R, M),

sendl3(R,R′, N), claiml4(R, secret, m)〉
S2 = 〈recvl1(R,R′, Request), sendl2(R

′, R, M),
recvl3(R,R′, N), claiml5(R

′, secret, m)〉
S = {{t}t′ : typeΠ({t}t′) ∩ typeTS(Π)(M) 6= ∅}
∪ {{t}t′ : typeΠ({t}t′) ∩ typeTS(Π)(N) 6= ∅}

)(
},{

2 Rpk
ck

)(
},{

3 R'k
}{m

pk
c

1
cby tagged),,(

 type

secret(m)secret(m)

R R'

Request

Fig.5. Transforming Π for secrecy of m in both R and R′.

The formal definition of the transformation is as follows.

TS(Π)(x) =

τc1|S(Π(R)) · S1, if x = R,

τc1|S(Π(R)) · S2, if x = R′,

τc1|S(Π(x)), otherwise.

Since no asymmetric long-term secret keys appear in acces-
sible position in a sent-message (a requirement stated at the
end of Section 2), and it can be proved [2] that the adversary
can not reveal or infer the peers’ asymmetric long-term secret
key, except the one the adversary knows through the given
adversary rule. The proof of the following proposition uses the
fact that adversary cannot forge the last message, therefore m
only appears in accessible position of {m, c3}k. The secrecy
of m depends on secrecy of k and pk(R′), which cannot be
compromised at the same time. The reader is referred to the
appendix for details.
Proposition 1 (Secrecy by asymmetric encryption):
Let R,R′ ∈ dom(Π) where R 6= R′. Let A,A′ an adver-
sary which can compromise R and R′ long-term secret key
respectively. c1, c2, c3, Request ∈ Const, l1, l2, l3, l4, l5 ∈
Label and all of them are unequal and unused in Π. Let k,
n ∈ Fresh, m ∈ RoleTerm such that n vacc m and k, n
all be unused in Π. If (TS(Π), typeTS(Π)) is a protocol and
typeTS(Π) = typeΠ :

(TS(Π), typeTS(Π)) |=A claiml4(R, secret, m)
(TS(Π), typeTS(Π)) |=A′ claiml5(R

′, secret, m)

Following this proposition, it is easy to see that
no secrecy attacks on m can be successful, i.e.,
¬SecrecyAttack(m,TS(Π), typeTS(Π)) holds.

4.1.0.1. Remarks. The idea of adding messages to ensure
secrecy is similar to that of [2]. The difference is that the
purpose here is to ensure bilateral secrecy (i.e., no matter
which key is compromised, the secrecy of m is guaranteed).

4.2. On Substitution and Parallel Attack

One way to prevent parallel attack is to tag each message
with a hash function which includes all the previous variables.
If the adversary wants to disorganize one message between
different threads, it has to learn all the previous variables from
both sides which is very hard. In order to prevent substitution
attack, we can also take advantage of hash function by
including new fresh and old variables together in one hash
function. Then the adversary cannot forge a message using its
own fresh because of the use of hash functions. We use this
technique in the following transformation function and prove
that the commit property can be achieved with AKC attacks.

The transformation in Fig 6 shows how to ensure AKCS of
agreement. We assume m ∈ Fresh occurs in Π and keeps
secret. We add two messages: the first one contains hash
function of m and n, where n is not used in the previous
events. The second one is a response using hash of n. The
hash function here works like a signature, where it takes use
of m or n’s secrecy to ensure that the adversary can not forge
the message.

pk(R)
}cn,n),{h(m,

2

)pk(R'
}c{h(n),

3

1
cby tagged),type,(

R R'

n),commit(R'

n)commit(R,

n),running(R'

n)running(R,

Fig.6. Transforming Π for agreement on n for both R and
R′.

Let typeTA(Π) = typeΠ, N = {h(n), c3}pk(R′), M =
{h(m,n), n, c2}pk(R), and

S1 = 〈recvl2(R
′, R, M), claiml1(R, commit, R′, n),

claiml3(R, running,R′, n), sendl4(R,R′, N)〉
S2 = 〈claiml1(R

′, running,R, n), sendl2(R
′, R, M),

recvl4(R,R′, N), claiml3(R
′, commit, R, n)〉

S = {{t}t′ : typeΠ({t}t′) ∩ typeTA(Π)(M) 6= ∅}
∪ {{t}t′ : typeΠ({t}t′) ∩ typeTA(Π)(N) 6= ∅}

The formal definition of the transformation is then as

follows.

TA(Π)(x) =

τc1|S(Π(R)) · S1, if x = R,

τc1|S(Π(R)) · S2, if x = R′,

τc1|S(Π(x)), otherwise.

Proposition 2 (Agreement by hashing):
Let R,R′ ∈ dom(Π) such that R 6= R′. Let A,A′ be
adversaries which can compromise R and R′ long-term secret
key respectively. Let l1, l2, l3, l4 ∈ Label and c1, c2, c3 ∈
Const all be different and unused in Π, m, n ∈ RoleTerm,
and A an adversary such that ∀s ∈ RS(Π, typeΠ, R, A),
AKs 0 σs,Test(m). If (TA(Π), typeTA(Π)) is a protocol and
typeTA(Π) = typeΠ, then

(TA(Π), typeTA(Π)) |=A claiml1(R, commit, R′, n)
(TA(Π), typeTA(Π)) |=A′ claiml3(R

′, commit, R, n)

The reader is referred to the appendix for a proof. This kind
of transformation is resilient against substitution and parallel
attack.
Corollary 1 (Resilience of Substitution Attack) If the
original protocol is resilient against substitution attack, then
the modified protocol keeps this property:

¬SubAttack(Π, typeΠ) ⇒ ¬SubAttack(TA(Π), typeTA(Π))

Corollary 2 (Resilience of Parallel Attack) If the original
protocol is resilient against parallel attack, then the modified
protocol keeps this property:

¬ParallelAttack(Π, typeΠ)
⇒ ¬ParallelAttack(TA(Π), typeTA(Π))

The two corollaries show that when a protocol is trans-
formed step by step (starting with an empty sequence of
events), we end up with a transformed protocol that is secure
against substitution and parallel attacks. The reader is referred
to the appendix for the proofs of the corollaries.

4.3. Resilience of Role Mixup Attack

For preventing role-mixup attacks, we find a special kind of
tags, which contain all role names encrypted by secret keys,
very useful. Let t, t1, ..., tn ∈ Term be terms. Let AR(x) =
{dom(Π) \ x}sk(x), the tagging function υx(t) is defined as
follows.

υx(t) =

t, if t atomic or a long-term key,
(υx(t1), υx(t2), AR(x)), if t = (t1, t2),
{υx(t1), AR(x)}t2 , if t = {t1}t2 .

Let vx : Term → Term extends to Event∗ → Event∗

by replacing all terms in the event sequence accordingly. This
will then provide a transformation function TR(Π) such that
TR(Π)(x) = υx(Π(x)).

Assume that the content of every message is composite (in
contrast to atomic terms) and any send-event has response.
Then this transformation is helpful for preventing role-mixup

attack. The reason is that, if we consider agent names as
fresh values, then based on proposition 11 in [2], every two
parties which communicated with each other agree on all the
agent names. Because the communication among parties can
form a strongly connected graph, so all parties agree on the
agent names. Then if there is role-mixup attack, there exists
reachable state s such that either Replace or Termin function
holds. Since each party has agreed on which agent instantiated
which role, replacement or forgery can detected by the agents.

In the following, we apply this technique together with the
transformations provided in Propositions 1 and 2 to achieve
nisynch-property of multi-party protocols.
AKCS in Multi-Party Authentication Protocols Multi-party
protocols are more vulnerable to AKC attacks as a result of
complicated communications among parties. We consider a
family of multi-party NSL protocols, which are brought up
by [14]. The protocols are vulnerable to AKC attacks. Let
the protocols be denoted (Πp, typeΠp) where p denotes the
number of parties in the particular protocol.

The approach for the transformation is as follows. We first
modify messages between each pair of parties, and add hash
function tags in them to prevent substitution and parallel
attack. Then we combine the messages between each pair to
form a new protocol, and finally add AR(x) tags to prevent
role-mixup attack. Let n0, ..., np−1 ∈ Fresh, R0, ..., Rp−1 ∈
R, and

MA(i) = {{n0, ..., ni, AR(Ri)}sk(Ri)}pk(Ri+1)

MB(i) = {h(n0, ..., ni, R0, ..., Rp−1), n1, ..., ni}pk(R0)

MC(i) = {h(ni+1, ..., np−1), ni+2, ..., np−1}pk(Ri+1))
Then we define the i’th protocol message, for 0 6 i <

2p− 1, by

Msg(i) =

MA(i), if 0 6 i < p− 1,

MB(i), if i = p− 1,

MC(i), if p− 1 < i < 2p− 1.

Here we simplify the tag function νx(t), because it is suffi-
cient to tag only the first round of communication in one acces-
sible position. Furthermore, we encrypt fresh with secret key
in MA to ensure the agreement. Let l0, ..., l2p−1,m0, ...,mp−1

be labels, and S1 and S2 be defined as follows.

S1 =〈sendl0(R0, R1,Msg(0)),
recvlp−1(Rp−1, R0,Msg(p− 1)),
sendlp(R0, R1,Msg(p− 1)),
claimm0(R0, nisynch)〉

S2(i) =〈recvli−1(Ri−1, RiMsg(i− 1)),
sendli(Ri, Ri+1,Msg(i)),
recvli+p

(Ri−1, Ri,Msg(i + p)),
claimmi

(Ri, nisynch)〉
The modification of a such a protocol (Πp, typeΠp

) is as
follows (with typeΠp

keeps unchanged).

TM(Πp)(x) =

{
S1, if x = R0,

S2(i), if x = Ri (0 < i 6 p− 1).

This transformed protocol has the same structure as the
original one with each message replaced by the given ones.
The correctness with respect to the nisynch claim is stated in
the following proposition and proved by using the fact that, the
message encrypted by asymmetric secret key or contain hash
functions on secret nonce can achieve agreement between two
parties. The reader is referred to the appendix for a proof.
Proposition 3 (Multi-party NSL agreement):
Let(TM(Πp), typeTM(Πp)) be the transformed protocol, with
dom(TM(Πp)) = {R0, ..., Rp−1}. Let A0, ..., Ap−1 be adver-
saries which can compromise the respective long-term secret
key of Ri. Let γ(x) = claimmx(Rx, nisynch). Then

TM(Πp), typeTM(Πp)) |=Ai
γ(i) for i = 0, ..., p− 1.

5. Case Studies

Many protocols are vulnerable under AKC attacks, with
examples shown in Section 3. We have applied the above
techniques to enhance the security level of such protocols. In
accordance with the transformation provided in Propositions
1, 2, we transform these protocols into AKCS ones. Table 1
shows part of the results of experiments using the Scyther tool
[18] after that we have applied the transformation scheme. ’–’
means the property is not required for the protocol. For

√
we

means the property holds for each party in the protocol (after
the transformation).

TABLE 1: Protocol Experiment
protocol secrecy nisynch

Bilateral Key Exchange kir(
√

)
√

CCIT-ban1 Ya(
√

)
√

CCIT-ban3 Ya,Yb(
√

)
√

isoiec-9798-3-5 –
√

NSL ni,nr(
√

)
√

PKMV2RSA prepak(
√

)
√

Kerberos Kr(
√

)
√

TMN ST(
√

)
√

Splice/AS N2(
√

)
√

Cardholder-Registration PAN(
√

)
√

In the following, we demonstrate how the three prac-
tical protocols, PKMV2RSA, Kerberos and Cardholder-
Registration protocols, are transformed. We give the original
model of these protocols, point out the AKC attack on autho-
rization and secrecy in them and transform the protocol based
on the propositions.

5.1. PKMV2RSA

PKMV2RSA [15] is a subprotocol of WiMAX, which
known as a wireless access system to deliver the ”last mile”
wireless broadband access. The subprotocols are used for
authentication, key management, and secure communication.
Among them, PKMV2RSA authenticates the base station (BS)
and mobile station (MS) and establishes a shared secret which
is used to secure the exchange of traffic encryption keys
(TEKs). There are six messages in all, but since the secrecy

of TEKs depends on the secrecy of prepak, and the last three
messages is resilient against AKC attack, then we only need
to look at the first three messages. The protocol proceeds as
follows:

1. MS → BS : {msrand, said,MS}sk(MS)

2. BS → MS : {msrand, bsrand,

{prepak, MS}pk(MS), BS}sk(BS)

3. MS → BS : {bsrand}sk(MS)

The secrecy of prepak is based on the secrecy of mobile
station’s long-term secret key sk(MS). Then there is AKC
attack on secrecy of TEKs and agreement of both sides. We
implement the protocol by using said to encrypt prepak in
message 2, and add hash function on message 3, which is an
example of the transformation scheme of Propositions 1 and
2. The modified protocol is as follows.

1. MS → BS : {msrand, {said}pk(B),MS}sk(MS)

2. BS → MS : {msrand, bsrand,

{{prepak}said,MS}pk(MS), BS}sk(BS)

3. MS → BS : {h(bsrand, msrand, prepak)}sk(MS)

As shown in Table 1, this modified protocol satisfies the
nisynch-property, the claim on the secrecy of prepak holds.

5.2. Kerberos

Kerberos [16] is designed to authenticate clients to multiple
networked services. PKINIT, an extension of Kerberos 5, is
modified to allow public-key authentication. The basic Ker-
beros has four parties: Client (C), whose goal is to authenticate
itself to various application servers; Kerberos Authentication
Server (KS), who provide ”ticket-granting ticket” (TGT);
Ticket-Granting Server (TS), who is presented TGT and then
provide ”server ticket” (ST) to client. ST is the credential that
client uses to authenticate herself to the application server.
Since role C talk to KS, TS and S separately, we can divide
the protocol to three two-party parts. We show the first part
below:

1. C → KS : {Tc, n, C,KS, TS}sk(C)

2. KS → C : {{k,H(C, TS, {Tc, n, C,KS, TS}sk(C)),
TGT}sk(KS)}pk(C), {AK, Tk, TS}k

The main issue is to ensure secrecy of ST before client sends
it to the server, and the secrecy of ST depends on secrecy
of AK, which depends on secrecy of k. However, k can be
revealed if the intruder knows sk(C) and it is easy for the
intruder to fake a message 2 and sent it to KS. Therefore we
use Propositions 1 and 2 to modify message 2 as follows.

{{{k}n,H(C, TS, n, {Tc, n, C,KS, TS}sk(C)),
C, TGT}sk(KS)}pk(C), {AK, n, Tk, TS}k

Then part 1 can achieve both secret and nisynch property.
The other two parts can be modified similarly.

5.3. Cardholder-Registration

Cardholder-Registration protocol [17] is the first part of
SET protocol in online purchase. It comprises three message
exchange between the cardholder and a certificate authority.
In the first exchange, the cardholder requests registration and
is given the certificate authority’s public keys. In the second
exchange, the cardholder supplies his credit card number
(PAN) and receives an application form for the bank that
issued his credit card. In the third exchange, the cardholder
returns the completed application form and delivers his public
signature key and supplies a CardSecret. This process is as
follows.

1. C → CA : {C,Nc1}pk(CA)

2. CA → C : {C,H(Nc1)}pk(C)

3. C → CA : {C,Nc2,H(PAN)}c1, {c1, PAN}pk(CA)

4. CA → C : {C,Nc2, Nca}pk(C)

5. C → CA : {C,Nc3, c2, pk(C), {H(C,Nc3, c2, pk(C),
PAN,NsecC)}sk(C)}c3, {c3, PAN, NsecC}pk(CA)

6. CA → C : {C, c3, CA,NsecCA}c2

The protocol is not secure: the secrecy PAN, NsecC, and
NsecCA will be revealed if C or CA’s long-term secret key
is compromised. It also fails to reach agreement: message 3,
4 or 5, 6 contains no previously received messages, and is
thus vulnerable to parallel attacks. We can modify the protocol
by inserting a new nonce Nc4 to encrypt PAN and NsecC
and adding hash tags in each message to guarantee nisynch
property. The modified protocol is as follows.

1. C → CA : {C,Nc1}pk(CA)

2. CA → C : {C,H(Nc1, Nc4), Nc4}pk(C)

3. C → CA : {C,Nc2,H(PAN)}c1, {{c1, PAN}Nc4,

H(C,Nc2, Nc1, c1)}pk(CA)

4. CA → C : {C,Nc2, {Nca}Nc1,

H(Nc2, Nca, Nc1)}pk(C)

5. C → CA : {C,Nc3, c2, pk(C), {H(C,Nc3, c2,

pk(C), PAN, Nc2, Nca, Nc1, NsecC)}sk(C)}c3,

{c3, PAN, {NsecC}Nc4}pk(CA)

6. CA → C : {{C, c3, CA, {NsecCA}Nc1,

H(Nc2, Nca, Nc1, NsecC,NsecCA)}sk(CA)}c2

The modification guarantees the secrecy of PAN and the
nisynch-property.

6. Concluding Remarks

This paper gives an analysis of AKC attacks and provides
solutions to enhance the level of security. We consider four
types of AKC attacks and give the definition of these types.
Then based on the attack types, we provide techniques for
transformation of protocols. A guiding principle in design-
ing security protocol under potential AKC attacks is using

short-term keys to ensure secrecy, hash functions to maintain
agreement and role names to prevent role-mixup attack. We
have applied the techniques to the transformation of practical
protocols and have used the verification tool Scyther to show
that the modified protocols have achieved higher level of
security.

References

[1] Blake-Wilson, Simon, D. Johnson, and A. Menezes. ”Key agreement
protocols and their security analysis.” Lecture Notes in Computer Science
(1997):30-45.

[2] David Basin, Cas Cremers, and Marko Horvat. ”Actor Key Compromise:
Consequences and Countermeasures.” 2014 IEEE 27th Computer Secu-
rity Foundations Symposium (CSF) IEEE Computer Society, 2014:244-
258.

[3] Gao, Meng, and F. Zhang. ”Key-Compromise Impersonation Attacks
on Some Certificateless Key Agreement Protocols and Two Improved
Protocols.” Education Technology and Computer Science, International
Workshop on IEEE, 2009:62-66.

[4] Qiang Tang, and Liqun Chen. ”Extended KCI attack against two-
party key establishment protocols.” Information Processing Letters
111.15(2011):744C747.

[5] Chalkias, K., et al. ”Two Types of Key-Compromise Impersonation
Attacks against One-Pass Key Establishment Protocols.” e-Business and
Telecommunications e-Business and Telecommunications, 2009:227.

[6] Chalkias, K., et al. ”On the Key-Compromise Impersonation Vulner-
ability of One-Pass Key Establishment Protocols” 2007 SECRYPT,
2007:222-228

[7] Gorantla, M. C., et al. ”Modeling key compromise impersonation attacks
on group key exchange protocols.” Lecture Notes in Computer Science
14.4(2009):105-123.

[8] Lamacchia, B., K. Lauter, and A. Mityagin. ”Stronger security of
authenticated key exchange, Paper presented.” The Proceedings of The
Provsec07 of Lncs 2006.1-4(2007):263-283(21).

[9] Zhu, Robert W., Tian, Xiaojian and Wong, Duncan S.. ”Enhancing CK-
Model for Key Compromise Impersonation Resilience and Identity-based
Key Exchange..” IACR Cryptology ePrint Archive 2005 (2005): 455.

[10] Basin, David, and C. Cremers. ”Modeling and Analyzing Security in
the Presence of Compromising Adversaries.” Lecture Notes in Computer
Science (2010).

[11] Cremers, Cas, and S. Mauw. Operational semantics and verification
of security protocols. Operational semantics and verification of security
protocols. Springer, 2012.

[12] Shim, Kyungah. The Risks of Compromising Secret Information. Infor-
mation and Communications Security. Springer Berlin Heidelberg, 2002.

[13] Chalkias, K., et al. ”Two Types of Key-Compromise Impersonation
Attacks against One-Pass Key Establishment Protocols.” e-Business and
Telecommunications e-Business and Telecommunications, 2009:227.

[14] Cremers, C., Mauw, S. ”A Family of Multi-Party Authentication Pro-
tocols”. First Benelux Workshop on Information and System Security
(WISSec) (2006)

[15] Basin, David, et al. ”Improving the Security of Cryptographic Protocol
Standards.” Security and Privacy, IEEE 13(2015).

[16] Aaron D. Jaggard, et al. ”Breaking and fixing public-key Kerberos.” In
Proc. WITS06 2006:402C424.

[17] Bella, Giampaolo, F. Massacci, and L. C. Paulson. ”An overview of
the verification of SET.” International Journal of Information Security
4.1-2(2005):2005.

[18] C. Cremers, The Scyther Tool: Verification, falsification, and analysis
[19] ”Security Protocols Open Repository”, http://www.lsv.ens-

cachan.fr/Software/spore/index.html of security protocols, in Proc.
CAV, ser. LNCS, vol. 5123. Springer, 2008, pp. 414C418.

[20] Basin, David, C. Cremers, and S. Meier. ”Provably repairing the
ISO/IEC 9798 standard for entity authentication.” Proceedings of the First
international conference on Principles of Security and Trust Springer-
Verlag, 2012:129-148.

7. Appendix

7.1. Proofs

Before presenting the proofs of the propositions and corol-
laries, we present 3 lemmas. Lemma 1 states that if some
term t is secret before some event and no parts of t occur in
accessible positions in the later events, then it keeps secret at
the end of the sequence of the events. Lemma 2 states that a
term encrypted by a secret nonce must have been sent by an
agent, because no derivation of the term from AKs is possible.
Lemma 3 states a similar property with a hashed term.

Lemma 1: Let s, s′ be states such that s′ →∗ s. Suppose
that last(trs′) = (tid, e′) and last(trs) = (Test, e), where
last() denotes the last element of a sequence. Suppose that
t vacc cont(e′). If for all e′′ such that label(e′) < label(e′′) <
label(e), each t′′ vacc cont(e′′) has never been used before
s′, then

AKs′ 0 σs′,Test(t) ⇒ AKs 0 σs,Test(t).

Proof of Lemma 1: Using the execution rules and adversary
rules, we have AKs = AKs′ ∪ K where K denotes newly
added adversary knowledge between l′ and l. We want to
prove that AKs 0 σs,Test(t). We have AKs′ 0 σs,Test(t),
and t 6vacc cont(e′′) for every e′′ that appears between s′ and
s, then we get t 6vacc K. Because for each term t′′ that we
get from accessible position of e′′, t′′ has never been used
before, thus K is not helpful in deducing t. Then we get
AKs 0 σs,Test(t).

Lemma 2: Suppose that n = {m#tid, c}k with c ∈ Const,
k ∈ Fresh, m,n ∈ Runterm, tid ∈ TID. Let s be
a reachable state such that AKs 0 σs,Test(k#Test). If
trs · 〈(Test, recvl(a, b, {m}pk(b)))〉 ∈ Traces(Π, typeΠ) for
some a, b, l, then

∃(tid, e′) ∈ trs.(evtype(e′) = send ∧ n vacc cont(e′)).

Proof of Lemma 2: Since AKs 0 k, no derivation of
σs,Test({m, c}k) can end in a composition step, which implies
that m vacc AKs by Lemma 6 of [2]. Therefore there exists
tid′ ∈ TID, e ∈ RunEvent such that (tid′, e) ∈ trs,
evtype(e) = send, and n vacc cont(e).

Lemma 3: Suppose that m = (h(n, t), t#tid) with h ∈
Func, n, t ∈ Fresh, tid ∈ TID. Let s be a reach-
able state such that AKs 0 σs,Test(n#Test). If trs ·
〈(Test, recvl(a, b, {m, c}pk(b)))〉 ∈ Traces(Π, typeΠ) for
some c ∈ Const and a, b, l, then

∃(tid, e) ∈ trs.(evtype(e) = send ∧m vacc cont(e)).

Proof of Lemma 3: Since AKs 0 n#Test, and t#tid has
first appear in m, we get AKs 0 m. If m can be forged by
adversary, then it has to know n#Test which is not accessible
by adversary. That means no derivation of σs,Test(m) can end

in a composition step. Then we get m vacc AKs by Lemma
6 in [2]. Therefore there exists tid′ ∈ TID, e ∈ RunEvent
such that (tid′, e) ∈ trs, evtype(e) = send, and m vacc

cont(e).

Proof of Proposition 1:
Let Π′ = TS(Π).
(1) We prove (Π′, typeΠ′) |=A claiml4(R, secret, m).
Let s ∈ RS(Π′, typeΠ′ , R, A) such that
(Test, σs,Test(claiml4(R, secret, m#Test))) ∈ trs.
The goal is to prove that AKs 0 σs,Test(m#Test).
Let N = {m, c3}k ∈ RoleTerm.
According to Proposition 10 of [2], we get AKs 0 N .
Since m vacc N appears first time in N , we have AKs 0

σs,Test(m#Test).
(2) We prove (Π′, typeΠ′) |=A′ claiml5(R

′, secret, m).
Let s ∈ RS(Π′, typeΠ′ , R′, A′) such that
(Test, σs,Test(claiml5(R

′, secret, m))) ∈ trs.
The goal is to prove that AKs 0 σs,Test(m#tid).
At step 1, we want to prove AKs 0 σs,Test(k#Test).
Let s′ ∈ RS(Π′, typeΠ′ , R′, A′) such that s′ →∗ s.
Let tid′ ∈ TID and e′ ∈ Event such that (tid′, e′) =

last(trs′), evtype(e′) = send, k#Test vacc cont(e′).
According to Proposition 10 of [2], we have AKs′ 0

σs′,Test(k#Test).
By Lemma 1, we get AKs 0 σs,Test(k#Test).
By Lemma 2, there exists tid′, e such that (tid′, e) ∈ trs,

evtype(e) = send, m vacc cont(e).
Assume that l′ 6= l5, then e is an instance of a tagged step of

Π, such that there exist t′ ∈ RoleTerm and σs,tid′(t′#tid′) =
cont(e) and sendl′(·, ·, t′) ∈ τc1|S(Π(roles(tid))).

Then there exists {t0}t1 ∈ S such that
σs,tid′(τc1(({t0}t1)

#tid)) = σs,Test({m#tid, c3}k).
This implies that c1 = c3 and contradicts the conditions of

the transformation.
Hence l′ = l5.
Since AKs 0 σs,Test(k#Test) and m#tid appears in e first

time, according to Proposition 10 of [2], we have that m#tid

is only accessible in the set AKs as a subterm of the term
σs,Test({m, c3}k).

Since we have proved that AKs 0 σs,Test(k#Test), we have
AKs 6∈ σs,Test(m#Test).

Proof of Proposition 2:
Let Π′ = TS(Π).
(1) We prove (Π′, typeΠ′) |=A claiml1(R, commit, R′, n).
Let s ∈ RS(Π′, typeΠ′ , R, A) such that
(Test, σs,Test(claiml1(R, commit, R′, n#tid))) ∈ trs.
We prove that the corresponding running claim holds.
Let t = σs,Test(h(m,n), n#tid).
Since AKs 0 σs,Test(n#tid), by Lemma 3, there exists tid′,

e such that (tid′, e) ∈ trs, evtype(e) = send, t vacc cont(e).
Assume that l′ 6= l1, then e is an instance of a tagged event

of Π′.
Then there is a {t0}t1 ∈ S and σs,tid′(τc1(({t0}t1)

#tid)) =
σs,Test({h(m,n), n#tid, c2}pk(R)), which contradicts c1 6=
c2.

Hence l′ = l1. Therefore the running claim holds.
(2) We prove (Π′, typeΠ′) |=A′ claiml3(R, commit, R′, n).
Let s ∈ RS(Π′, typeΠ′ , R, A) such that
(Test, σs,Test(claiml3(R

′, commit, R, n#Test))) ∈ trs.
According to Proposition 10 of [2] and Lemma 1, we get

AKs 0 σs,Test(n#Test).
The rest of the proof is similar to the above one, in which we

use Lemma 3 to prove that the corresponding running claim
holds.

Proof of Corollary 1: If either R or R′ long-term secret key
is compromised, from the proof of Proposition 2, we know
that ∃i, j, i′, j′ ∈ N , i < j, i′ < j′, a, b ∈ A, tid ∈ TID and
a reachable state s such that

trs,i = σs,Test(sendl2(b, a, h(m,n), n#tid)),
trs,j = σs,tid(recvl2(b, a, h(m,n), n#tid)),
trs,i′ = σs,tid(sendl4(a, b, h(n))), and
trs,j′ = σs,Test(recvl4(a, b, h(n))).
Then according to the precondition, we have that for each

label l ∈ prec(l3), ∃i, j ∈ N , i < j, tid1, tid2 ∈ TID, such
that Match(a, tid1, b, tid2) and ev(trs,i) = sendl(a, b, m) ∧
ev(trs,j) = recvl(a, b, m).

This has violate the definition of substitution attack. There-
fore the conclusion is correct.

Proof of Corollary 2: Since we have proved there exists
tid1, tid2 ∈ TID such that Match(a, tid1, b, tid2) for cor-
responding send and recv events, which also violates the
definition of parallel attack, then the conclusion is correct.

Proof of Proposition 3:
Let p be arbitrary given, and let Π′ = TM(Πp).
First, we prove that, for a reachable state s, AKs 0

σs,Test(nk). Since σs,Test(nk) appears first time in the send-
event of Rk, and each accessible position where σs,Test(nk)
appears is encrypted by pk(Rs) where (s 6= k), and Ak 0
sk(Rs), therefore AKs 0 σs,Test(nk).

Then we prove that, each agent has the same assumption
of agent names with others. For adversary A0, if any agent
has different assumption of agent names with σs,Test(R0),
because AKs 0 sk(σs,Test(Rx))(x 6= 0) and agent names
were transmitted between R1 and Rp−1 by secret key, then
σs,Test(Rp−1) has different assumption with σs,Test(R0).
Since AKs 0 σs,Test(n0), then σs,Test(Msg(p − 1)) cannot
end in a compositional step, then σs,Test(R0) will find that
he has different assumption with others, and terminates the
protocol, which violates the premise of nisynch property.
Therefore, for adversary A0, all agent has the same assumption
of agent names. The proof for other adversary Ax is similar.

Then we consider proving the proposition by 2 cases.
(1) We look at the role Rk with A = Ak for 0 < k 6 p−1.
Let s ∈ RS(Π′, typeΠ′ , Rk, A) with a position qi such that:

trs,qi
= (Test, claimmk

(Rk
#Test, nisynch)).

Let qj−1, qj , qj+k be positions such that 0 6 qj−1 < qj <
qj+k < qi.

Let a = σs,Test(Rk−1), b = σs,Test(Rk), and c =
σs,Test(Rk+1). Then

ev(trs,qj−1) = recvlk−1(a, b, Msg(k − 1))#Test,

ev(trs,qj) = sendlk(b, c, Msg(k))#Test,

ev(trs,qj+k
) = recvlk+p

(a, b, Msg(k + p))#Test.

We want to prove that there are positions qj′−1, qj′ , qj′+k

and tid1, tid2 ∈ TID, such that qj′−1 < qj−1, qj < qj′ ,
qj′+k < qj+k, and

ev(trs,qj′−1
) = sendlk−1(a, b, Msg(k − 1))#tid1 , (1)

ev(trs,qj′) = recvlk(b, c, Msg(k))#tid2 , (2)

ev(trs,qj′+k
) = sendlk+p

(a, b, Msg(k + p))#tid1 . (3)

(1a) First we look at the 3rd equation with label lk+p.
For adversary Ak, we have proved AKs 0 σs,Test(nk).
We use Lemma 3 to establish position qj′+k and tid1

such that qj′+k < qj+k and the equalities ev(trs,qj′+k
) =

sendlk+p
(a, b, Msg(k + p))#tid1 .

(1b) Then we look at the 1st equation with label lk−1. For
adversary Ak, since AK 0 sk(Ri)(i 6= k), and pk(Rk) can
not be replaced as AR(x) has determined the agent, then no
derivation of σs,tid1(sendlk−1(a, b, MsgA(k−1))) from AKs

can end in a composition step. Then there exists qj′−1 < qj−1

such that ev(trs,qj′−1
) = sendlk−1(a, b, Msg(k − 1))#tid1 .

(1c) At last we look at 2nd equation with label lk. We
have proved that Rk has agree on nk by receiving message
Msg(k + p). Then we deduce that Rk+1 has Msg(k) which
has nk in accessible positions. Since AK 0 sk(Ri)(i 6= k),
then there exists qj′ and qj < qj′ such that ev(trs,qj′) =
recvlk(b, c, Msg(k))#tid2 .

(2) We look at the role R0 with A = A0.
Let s ∈ RS(Π′, typeΠ′ , R0, A). Since we already

have AKs 0 σs,Test(n0), then by Lemma 3, we
have that there exists a send-event corresponding to
recvlp−1(Rp−1, R0,Msg(p − 1)). Since it is the only recv-
event for R0, we are done with the proof.

7.2. Algorithms

In this subsection, we present algorithms for the transforma-
tion based on the transformation scheme provided in Section
4.

7.2.1. Protocol Syntax. For practical reasons, we make re-
strictions on the protocol syntax. We require that the content
in a message has some fixed structure. The terms in a protocol
are organized such that role names appears first, and then fresh
names, then hash functions, etc. Each fresh appears accessible
only once in a message. The role in pk(r) should be the
responder, and the role in sk(r) should be the initiator. Terms
in the original message should not be encrypt by fresh names,
but it can be encrypt after the transformation. The protocols

are defined as follows.

protocol ::= mess∗, claim∗

mess ::= Role, Role, tm, tmp, tms, tmps, tmsp

tm ::= ε | tmr, tmf, tmh, tmn

tmp ::= ε | {tm}pk(tmr)

tms ::= ε | {tm}sk(tmr)

tmh ::= ε | h(tmf)
tmr ::= Role∗

tmf ::= Fresh∗

tmn ::= ε | {tmf}Fresh

tmps ::= ε | {tm, tmp}sk(tmr)

tmsp ::= ε | {tm, tms}pk(tmr)

claim ::= (Role, secret, Fresh)∗

| (Role, commit,Role, Fresh)∗

| (Role, nisynch)∗

7.2.2. Functions. For events and messages, a set of operations
are defined. cn collects fresh names in messages, chn collects
fresh names appearing in hash functions, cs collects fresh
names in secrecy-claims, cc collects fresh names in commit-
claims.

cn(mess) =
{f ∈ Fresh | ∃s ∈ tmf.(s vacc mess ∧ f vacc s)})
chn(mess) =
{f ∈ Fresh | ∃s ∈ tmf.(h(s) vacc mess ∧ f vacc s)}
cs(claim, i) =
{f ∈ Fresh | cl = (i, secret, f) ∧ cl ∈ claim}
cc(claim, i, r) =
{f ∈ Fresh | cl = (i, commit, r, f) ∧ cl ∈ claim}

For f ∈ Fresh, sk, pk denote the initiator’s secret key
and responder’s public key, ps represents that the fresh was
encrypt by public key first and then secret key, and it is similar
with sp. We define fen function as encryption type of some
fresh f in message.

fen(f,mess) =

sk, ∃s ∈ tms.(f vacc s ∧ s vacc mess),
pk, ∃s ∈ tmp.(f vacc s ∧ s vacc mess),
ps, ∃s ∈ tmps.(f vacc s ∧ s vacc mess),
sp, ∃s ∈ tmsp.(f vacc s ∧ s vacc mess).
NULL, otherwise

Then we define enc to encrypt f with s in messages. If f
has been encrypt by s already, then do nothing.

enc(f, s,mess) ={
mess, fen(f,mess) ∈ {s, ps, sp},
mess[f/{f}s], otherwise.

We define eha to encrypt fresh set F with hash function.
Let · denote the concatenation of messages. Let F ⊆ Fresh.

eha(F,mess) ={
mess, F ⊆ chn(mess),
mess · h(F), otherwise

7.2.3. Algorithms. According to the transformation tech-
niques presented in Section 4, we have designed algorithms for
enhancing the security level of protocols. The pseudo-codes of
the algorithms are in the next page. In the algorithms, i denotes
the initiator and r the responder.

Algorithm 1 This algorithm is based on Proposition 1 for
ensuring secrecy under AKC. The algorithm works as fol-
lows: we set secret set ini and secret set res to store
freshes claims to be secret in initiator and responder. We
go through each message, encrypt fresh in secret set ini or
secret set res with secret short-term key which is generated
by the other opposite party.

Algorithm 1 transform-two-party-secrecy (protocol)
1: secret set ini = cs(claim, i)
2: secret set res = cs(claim, r)
3: if secret set ini 6= ∅ or secret set res 6= ∅ then
4: for each m ∈ mess do
5: ft = cn(m)
6: if m is the first message then
7: ma = i, r, Request
8: mb = r, i, {ni}pk(i)

9: Insert two messages ma, mb before m
10: for each n ∈ secret set do
11: replace m with enc(n, ni, m)
12: end for
13: else
14: if m is transmitted from i to r then
15: k is a secret short-term key generated by r
16: secret set = secret set ini
17: else
18: k is a secret short-term key generated by i
19: secret set = secret set res
20: end if
21: for each n ∈ secret set do
22: replace m with enc(n, k,m)
23: end for
24: end if
25: end for
26: end if

Algorithm 2 This algorithm is based on Proposition 2 for
ensuring the commit-property. The algorithm also go through
each message, and encrypt fresh with secret key or hash
function. We set com set ini and com set res to store
freshes claims to commit in initiator and responder and assume

secret values ni and nr. If the fresh is encrypted by secret
key, then algorithm will follow Proposition 1. Otherwise, it
will follow Proposition 2.

Algorithm 2 transform-two-party-commit (protocol)
1: com set ini = cc(claim, i, r)
2: com set res = cc(claim, r, i)
3: ni is a secret short-term key for i
4: nr is a secret short-term key for r
5: if com set ini 6= ∅ or com set res 6= ∅ then
6: for each m ∈ mess do
7: ft = cn(m)
8: if m is transmitted from i to r then
9: com set = com set res

10: ns = ni
11: else
12: com set = com set ini
13: ns = nr
14: end if
15: for each n ∈ ft do
16: if n ∈ com set then
17: if fen(n, m) = NULL then
18: replace m with enc(n, sk, m)
19: else
20: if fen(n, m) = pk then
21: replace m with eha({ns, n},m)
22: end if
23: end if
24: end if
25: end for
26: end for
27: end if

