
ISCAS-SKLCS-19-02 Aug. , 2019

中国科学院软件研究所

计算机科学国家重点实验室

技术报告

Weak Well Founded Sets and Their
Application to Formal Verification

by

Wenhui Zhang

State key Laboratory of Computer Science
Institute of Software

Chinese Academy of Sciences
Beijing 100190. China

Copyright2019, State key Laboratory of Computer Science, Institute of Software.

 All rights reserved. Reproduction of all or part of this work is

 permitted for educational or research use on condition that this

 copyright notice is included in any copy.

Weak Well Founded Sets and Their Application
to Formal Verification

Wenhui Zhang
SKLCS, Institute of Software, Chinese Academy of Sciences, and

University of Chinese Academy of Sciences
zwh@ios.ac.cn

August, 2019

1 Introduction

Verification condition is an important notion in developing techniques for pro-
gram verification. For sequential programs, the main correctness concerns are
partial correctness and termination. Foundations for verification condition gen-
eration have been formulated in Floyd-Hoare logic [16, 20]. The essential point is
to turn a program verification problem into the problem of checking the validity
of first order formulas. Due to that the verification problem is not decidable for
reasonably expressive underlying first order logics for program construction, in
order to be able to do so, human efforts are usually needed, i.e., we have to
provide intermediate assertions and ranking functions in order to be able to use
the rules for verification condition generation. The use of verification condition
implies a clear separation of concerns in program verification: a first order logic
part and a verification condition generation part. Both parts may be assisted by
semi-automated techniques, such as theorem proving techniques [7, 14], invariant
generation techniques [3, 4], ranking function synthesis techniques [27, 1, 18].

For concurrent programs, the correctness issues usually concern temporal
properties, and the approach for reasoning of partial correctness and termination
can be adapted to reasoning of temporal properties. In [25, 26], Owicki and
Gries have developed rules for proving partial correctness, deadlock freedom and
termination of a kind of parallel programs. For reasoning of LTL properties in
a systematic way, proof rules have been proposed by Manna and Pnueli in [28].
For reasoning of CTL properties, proof rules have been proposed by Fix and
Grumberg in [15]. For reasoning of CTL∗ properties, a kind of compositional
deductive approach has been considered in [34, 21, 17] by Pnueli, Kesten and
Gabbay. From a practical point of view, some of the recent works have focused
on automated verification of temporal properties [10, 5, 11], and in particular
in [11], Cook et. al. have put the emphasis on automated verification of CTL∗

properties. Among the aforementioned approaches, there might be two kinds of
problems, i.e., the use of the approach might lead to transforming a verification
problem to a problem that is equally hard to solve, and the approach might
not be complete with respect to the targeted types of properties. The reader is
referred to Appendix A for further discussions on these issues.

One of the obstacles seems to be that although there are many approaches
for verification and reasoning of temporal properties, there are few underlying
principles for such reasoning, for instance, for reasoning of partial correctness
and safety properties, we may use the usual inductive argument (based on nat-
ural induction, or induction on time points), and for reasoning of termination,
eventuality and response properties, we may use inductive argument on well-
founded sets, however, for reasonably complicated temporal properties, it lacks
well-established simple principles for doing this kind of reasoning and first or-
der verification condition generation. In this work, similar to the Floyd-Hoare
logic style proofs [16, 20] and the various works on deductive verification of tem-
poral properties of concurrent systems, e.g., [28, 19, 29, 32, 31], we study proof
rules such that verification of temporal properties can be reduced to first order
reasoning, under the assumption that the necessary auxiliary constructs can be
provided.

Structure of the Paper The contents of the rest of the paper are as follows. To be-
gin with, we have a preliminary discussion on order sets and directed graphs, and
develop the necessary background and induction principle for further reasoning
of program models. Then we present the program model and the necessary back-
ground for further reasoning of temporal properties. After this, we study rules
for proving LTL properties. Many rules are similar to those in [28, 29]. The set of
rules is then identified to be relatively complete for a subset of LTL properties.
For this subset of LTL properties, proof rules for negative satisfiability (essen-
tially, this is the same as applying the existential interpretation to the negated
LTL formula) are also developed, providing a way for proving the non-validity
of such LTL properties. A combination of the proof rules for satisfiability and
negative satisfiability of LTL properties naturally leads to a set of proof rules
for CTL∗, though, this combination is only sound and relatively complete for a
subset of CTL∗. Then a customized set of proof rules for a sublogic of CTL∗,
denoted CTL†, is provided. The sublogic is sufficiently expressive that it covers
the properties considered in Appendix A and those of the interesting CTL∗ for-
mulas in Section 8.2 of [11]. An example demonstrating the verification condition
generation process with a supporting experimental tool is also presented.

2 Ordered Sets and Directed Graphs

Let (S,v) be a preorder, i.e., the relation v is reflexive and transitive. An infinite
descending chain is an infinite sequence π = π0π1π2 · · · such that πi A πi+1 for all
i ≥ 0. A finite descending chain of length n+1 is a finite sequence π = π0π1 · · ·πn
such that πi A πi+1 for all i ≤ n − 1. Notice that since the chains are based
on preorders, an element may appear many times or infinitely many times in a
chain.

For convenience, we use π0 to denote the first element of π (being a sequence
of elements of any type), πi to denote the (i+ 1)-element of π, and πi to denote
the sub-sequence starting from πi. We use π(a) to denote that π is starting from

a, i.e., π0 = a. Then ∃π(a) means that there exists a sequence π starting from
a.

Let Z ⊆ S. An infinite descending Z-chain is an infinite descending chain
such that every element in the chain is in Z. The set of infinite descending
Z-chains is denoted ∆(Z).

Definition 1. Let S be a set and Z ⊆ S. A preorder (S,v) is called a weak
well-founded set upon Z (or Z-well-founded set, for short), if a v b v a implies
a = b or a, b ∈ Z, and for every non-empty subset A of S, either A has a minimal
element or A ∩ Z 6= ∅.

For simplicity, we use WWF(Z) to denote the set of Z-well-founded sets. It is
easily seen that a preorder (S,v) is a well-founded set iff it is ∅-well-founded, and
furthermore, the following holds: (S,v) is Z-well-founded iff for every infinite
descending chain π, elements not in Z (referred to as non-Z elements in the
sequel) only appear finitely many times on π.

Lemma 1 (Induction). Let (S,v) ∈WWF(Z). Let ϕ be a predicate on S. The
following holds.

If ∀a ∈ S.(∀b @ a.(ϕ(b) ∨ ∃π(b) ∈ ∆(Z))→ ϕ(a)), then ∀a ∈ S.ϕ(a).

Proof. Suppose that ∀a ∈ S.(∀b @ a.(ϕ(b) ∨ ∃π(b) ∈ ∆(Z)) → ϕ(a)) holds
and there is an a ∈ S such that ϕ(a) does not hold, we prove that there is a
contradiction. Since ϕ(a) does not hold, ∀b @ a.(ϕ(b) ∨ ∃π(b) ∈ ∆(Z)) does not
hold. Then there is an a′ @ a such that a′ does not satisfy ϕ and there are no
infinite descending Z-chains starting from a′. Since ϕ(a′) does not hold, we can
use the same argument and obtain an a′′ @ a′ such that a′′ does not satisfy ϕ and
there are no infinite descending Z-chains starting from a′′. By using the same
argument repeatedly, we can construct an infinite descending chain π starting
from a such that for every i, there are no infinite descending Z-chains starting
from πi. This implies that non-Z elements must appear infinitely many times on
π, contradicting to that (S,v) is in WWF(Z). ut

Directed Graphs Let G = (V,E) be a directed graph (possibly with infinitely
many vertices). For convenience, we use s → s′ to denote (s, s′) ∈ E, and use
∗→ to denote the reflexive and transitive closure of →. An infinite path is an

infinite sequence π = π0π1π2 · · · such that πi → πi+1 for all i ≥ 0. A finite path
is a finite prefix of an infinite path. An infinite path starting from s is called an
s-path.

For A ⊆ V , we use Gr(A) to denote the induced subgraph (A,E′) where
E′ = E ∩ (A × A). We use succ(A) to denote {s′ | s → s′, s ∈ A}, the set of
successors of A. Suppose that f : A→ B is a mapping from A to B. For X ⊆ A,
we use f(X) to denote {f(x) | x ∈ X}, the image of X under the mapping.

Definition 2. Let (V,E) be a directed graph. po(V,E) denotes the preorder (S,v
) with S = V and v defined by s v s′ iff s = s′ or there is a finite path s0 · · · sk
with k ≥ 1 such that s0 = s and sk = s′.

It is easily seen that po(V,E) is indeed a preorder.

Lemma 2. Let (V,E) be a directed graph and N0, N1, N2 ∈ V such that N2 ⊆
N0, N1 ∩N0 = ∅, succ(N0) ⊆ N0 ∪N1 and Gr(N0) is self-loop free. Let (W,v
) = po(Gr(N0)). Suppose that (W,v) is N2-well-founded. Let ϕ(s) denote the
following property.

For every s-path π, there is a k ≥ 1 such that π0, ..., πk−1 ∈ N0 and
πk ∈ N1, or for all i ≥ 0 we have πi ∈ N0 and there is an l ≥ 0 such
that πj ∈ N2 for all j ≥ l.

Then ∀s ∈ N0.ϕ(s).

Proof. The property ϕ ensures that for all a ∈ N0 we have the following.

∀b @ a.(ϕ(b) ∨ ∃π(b) ∈ ∆(N2))→ ϕ(a).

This is argued as follows. If a is a minimal element of N0, an a-path must
start with aa′ with a′ in N1, since Gr(N0) is self-loop free. Therefore we have
ϕ(a). Otherwise, a is not a minimal element. It is easily seen that if b satisfies
ϕ, then every path that passes b (with all of the vertices up to b in N0) satisfies
the necessary path-requirement. If ∀b @ a.(ϕ(b) ∨ ∃π(b) ∈ ∆(N2)) holds, then
every path that passes some elements not in N2 satisfies the necessary path-
requirement (for this part, such a path has an initial sequence in N0 and either
this sequence is followed by an N1 element, or an N0 \ N2 element b such that
ϕ(b) holds, since we have b @ a and there are no infinite descending N2-chains
starting from b), and every path that has all vertices in N2 trivially satisfies the
necessary path-requirement. Therefore we have ϕ(a). Then by induction over
weak well-founded sets (Lemma 1), we have ∀s ∈ N0.ϕ(s). ut

Remark For the intuitive understanding, a vertex s satisfies ϕ may be interpreted
as that every s-path satisfies the following property:

N0 ∧X(((N0)U(N1)) ∨ (G(N0) ∧ FG(N2)))

where X,U, F,G have the meaning of the usual temporal operators.

Z-Infinite Graphs

Definition 3 (Z-Infinite Graphs). Let (V,E) be a directed graph and Z ⊆ V .
(V,E) is Z-infinite, if it is self-loop free, and for every infinite path π in V , there
is an i ≥ 0 such that πj ∈ Z for all j ≥ i.

In other words, a Z-infinite directed graph is a self-loop free graph such that
non-Z vertices may only appear finitely many times in any infinite path. A graph
is ∅-infinite iff it is a graph with no infinite paths.

Lemma 3. Let (V,E) be a Z-infinite directed graph. Then (S,v) = po(V,E) is
Z-well-founded, and furthermore, if (s, s′) ∈ E, then s′ @ s.

Proof. Suppose that, on the contrary, po(V,E) is not Z-well-founded. Then
there is an infinite descending chain in po(V,E) such that elements not in Z
appear infinitely many times. Then there is an infinite path in (V,E) such that
elements not in Z appear infinitely many times, contradicting to that (V,E) is
Z-infinite. For the second part, suppose that (s, s′) ∈ E. By the definition of
po(V,E), we have s′ v s, and since (V,E) is Z-infinite, we have s′ 6= s. ut

Y -Bounded Subgraphs

Definition 4 (Y -Bounded Subgraphs). Let (V,E) be a directed graph and
S, Y ⊆ V . Gr(S) is Y -bounded, if S ∩ Y = ∅ and succ(S) ⊆ S ∪ Y .

In other words, a Y -bounded subgraph is subgraph such that every vertex in
the subgraph is not in Y and every step that moves out of the subgraph moves
to a vertex in Y .

Lemma 4. Let (V,E) be a directed graph and N0, N1 ∈ V such that Gr(N0) is
an N1-bounded subgraph. Let ϕ(s) denote the following property.

For every s-path π, there is a k ≥ 1 such that π0, ..., πk−1 ∈ N0 and
πk ∈ N1, or for all i ≥ 0 we have that πi ∈ N0.

Then ∀s ∈ N0.ϕ(s).

Proof. This lemma follows from the definition of N1-bounded subgraphs. ut

Lemma 5. Let (V,E) be a directed graph and N0, N1, N2 ⊆ V such that N0 ∩
N1 = ∅ and N2 ⊆ N0. Let Z ⊆ W and (W,v) be Z-well-founded. Let f :
N0 → W such that f(N0 \ N2) ∩ Z = ∅. Suppose that ∀a ∈ N0, if a → b, then
(i) b ∈ N1 or (ii) b ∈ N0 and f(b) @ f(a). Then Gr(N0) is an N1-bounded
N2-infinite subgraph.

Proof. We have to prove (i) N0 ∩N1 = ∅ and succ(N0) ⊆ N0 ∪N1, and (ii)
Gr(N0) is N2-infinite. The former follows easily from the premises. The latter is
argued as follows.

Suppose that Gr(N0) is not N2-infinite.
Since it is easily verified that Gr(N0) is self-loop free, there must be an

infinite path π in N0 such that N0 \ N2 elements appear infinitely many times
in π.

For πi ∈ N0, we have f(πi) ∈ W and for πj ∈ (N0 \ N2), we have f(πj) 6∈
Z. Therefore we have an infinite chain f(π) = f(π0)f(π1) · · · such that non-Z
elements appear infinitely many times on f(π), contradicting to that (W,v) is
Z-well-founded. ut

Lemma 6. Let (V,E) be a directed graph and N0, N1, N2 ∈ V such that N2 ⊆
N0 and Gr(N0) is an N1-bounded N2-infinite subgraph. Let ϕ(s) denote the
following property.

For every s-path π, there is a k ≥ 1 such that π0, ..., πk−1 ∈ N0 and
πk ∈ N1, or for all i ≥ 0 we have that πi ∈ N0 and there is an l ≥ 0
such that πj ∈ N2 for all j ≥ l.

Then ∀s ∈ N0.ϕ(s).

Proof. Let (W,v) = po(Gr(N0)). By Lemma 3, (W,v) is N2-well-founded.
Then by Lemma 2, the conclusion holds.

Lemma 7. Let (V,E) be a directed graph and S,Z, Y ⊆ V such that Z ⊆ S.
Suppose that Gr(S) is a Y -bounded Z-infinite subgraph. Let (W,v) = po(Gr(S)).
Then W = S and (W,v) is Z-well-founded, and furthermore, if s ∈ S and
s→ s′, then (i) s′ ∈ Y or (ii) s′ ∈ S and s′ @ s.

Proof. The first part of this lemma follows from Lemma 3. The second part
follows from the definition of Y -bounded subgraphs and the last part of Lemma
3. ut

Some Special Cases of the Lemmas

Lemma 8. Let (V,E) be a directed graph with no infinite paths. Then (S,v) =
po(V,E) is a well-founded set, and furthermore, if (s, s′) ∈ E, then s′ @ s.

Proof. This is a special case of Lemma 3, by considering a directed graph
with no infinite paths as an ∅-infinite directed graph.

Lemma 9. Let (V,E) be a directed graph and N0, N1 ⊆ V such that N0∩N1 = ∅.
Let (W,v) be a well-founded set. Let f : N0 → W . Suppose that ∀a ∈ N0, if
a → b, then (i) b ∈ N1 or (ii) b ∈ N0 and f(b) @ f(a). Then Gr(N0) is an
N1-bounded subgraph with no infinite paths.

Proof. This is a special case of Lemma 5 by considering a subgraph with no
infinite paths as an ∅-infinite directed graph, and replacing N2 with the empty
set.

Y -Terminating Subgraphs

Definition 5 (Y -Terminating Subgraphs). Let (V,E) be a directed graph
and S, Y ⊆ V . Gr(S) is a Y -terminating subgraph of (V,E), if S ∩ Y = ∅ and
for every a ∈ S, there is a finite path s0 · · · sk with s0 = a and k ≥ 1 such that
s0, ..., sk−1 ∈ S and sk ∈ Y .

Lemma 10. Let (V,E) be a directed graph and N0, N1 ⊆ V such that N0∩N1 =
∅. Let (W,v) be a well-founded set. Let f : N0 → W . Suppose that ∀a ∈ N0,
there exists b such that a → b and (i) b ∈ N1 or (ii) b ∈ N0 and f(b) @ f(a).
Then Gr(N0) is an N1-terminating subgraph.

Proof. It is easily seen by applying an inductive argument over the well-
founded set that for every vertex in N0, there is a finite path of length > 1 such
that the last vertex in the path is in N1 and the rest of the elements of the path
are in N0, and since N0 ∩ N1 = ∅, we have that Gr(N0) is an N1-terminating
subgraph. ut

Lemma 11. Let (V,E) be a directed graph and S, Y ⊆ V . If Gr(S) is a Y -
terminating subgraph, then for every s ∈ S the following hold.

There exists an s-path π such that π0, ..., πk−1 ∈ S and πk ∈ Y for some
k ≥ 1.

Proof. This follows from the definition of Y -terminating subgraphs. ut

Definition 6. Let (V,E) be a directed graph and Y ⊆ V . wo(V,E, Y) denotes
the preorder (S,v) with S and v defined as follows.

– Let S−1 denote Y .

– Let Si for i ≥ 0 be defined as follows.

s ∈ Si iff s 6∈ ∪i−1
j=−1Sj and there is an s′ ∈ Si−1 such that (s, s′) ∈ E.

– S = ∪j≥0Sj.

– v = {(s, s′) | s ∈ Si, s′ ∈ Sj , j > i ≥ 0} ∪ {(s, s) | s ∈ S}.

By the definition, it is easily seen that (V ′,v) = wo(V,E, Y) is a well-founded
set, V ′ ⊆ V and V ′ ∩ Y = ∅.

Lemma 12. Let (V,E) be a directed graph and S, Y ⊆ V such that Gr(S) is
a Y -terminating subgraph. Let (S′,v) = wo(S ∪ Y,E, Y). Then (S′,v) is a
well-founded set and S′ = S, and furthermore, the following hold.

If s ∈ S′ is not a minimal element, then there exists s′ ∈ S′ such that
(s, s′) ∈ E and s′ @ s, and if s ∈ S′ is a minimal element, then there
exists s′ ∈ Y such that (s, s′) ∈ E.

Proof. This follows from the definition of Y -terminating subgraphs and that
of the definition of wo(S ∪ Y,E, Y). ut

Y -Weak-Bounded Subgraphs

Definition 7 (Y -Weak-Bounded Subgraphs). Let (V,E) be a directed graph
and S, Y ⊆ V . Gr(S) is a Y -weak-bounded subgraph of (V,E), if S ∩ Y = ∅ and
for every a ∈ S, succ({a}) ∩ (S ∪ Y) 6= ∅.

Lemma 13. Let (V,E) be a directed graph and S, Y ⊆ V . If Gr(S) is a Y -weak-
bounded subgraph, then for every s ∈ S the following hold.

There exists an s-path π such that π0, ..., πk−1 ∈ S and πk ∈ Y for some
k ≥ 1, or all vertices on π are in S.

Proof. This follows from the definition of Y -weak-bounded subgraphs. ut

3 First Order Kripke Structures

Let B = (F, P) where F is a set of function symbols and P is a set of predicate
symbols be the base for a first order logic. Let TB denote the set of terms induced
by F , and LB denote the set of the first order formulas induced by B.

For φ ∈ LB , we use φe1,...,ekx1,...,xk
to denote the result of simultaneously replacing

all occurrences of the free variables x1, ..., xk with respectively e1, ..., ek.
Similarly, for e ∈ TB , we use ee1,...,ekx1,...,xk

to denote the result of simultaneously
replacing all occurrences of the variables x1, ..., xk with respectively e1, ..., ek.

We use var(φ) to denote the set of free variables appearing in φ. We say that
φ ∈ LB is a formula over V , if var(φ) ⊆ V . The set of formulas over V is denoted
LB,V .

For a formula φ ∈ LB,V with V = {v1, ..., vn}, we use φ′ to denote φ
v′1,...,v

′
n

v1,...,vn .
Let I = (D, I0) be an interpretation of B.
Let Σ denote the set of assignments of variables.
For σ ∈ Σ, we use σ |=I φ, or simply σ |= φ when I is understood in the

context, to denote I(φ)σ = true. In this case, we say that σ satisfies φ.
Sometimes, I(φ)σ = true is also written as I(φ)σ or φ(σ) when the meaning

is clear from the context.
For d ∈ D, we use σ[v/d] to denote an assignment σ′ such that σ′(x) = σ(x)

for x 6= v and σ′(x) = d for x = v.
An assignment of variables restricted to those of V is a function in (V → D).

Such a function is called V -specific assignment.
For α ∈ (V → D), we use (σα) to denote an assignment σ′ such that σ′(x) =

σ(x) for x 6∈ V and σ′(x) = α(x) for x ∈ V .
Then for φ ∈ LB,V , we have I(φ)(σα) iff I(φ)(σ′α) for any σ, σ′ ∈ Σ.
In such a case, we may write I(φ)α instead of I(φ)(σα), and α |= φ instead

of σα |= φ.
If α |= φ, we say that α satisfies φ.
Similarly, for e being a term with all of the variables in V , we have I(e)(σα) =

I(e)(σ′α) for any σ, σ′ ∈ Σ, and in such a case, we may write I(e)α instead of
I(e)(σα).

We use σ|V to denote α ∈ (V → D) such that α(v) = σ(v) for v ∈ V . Then
for φ ∈ LB,V , we have that σ satisfies φ iff σ|V satisfies φ. For brevity, we may
not always distinguish σ and the V -specific assignment σ|V when they have the
same function in the context.

For a formula φ ∈ LB,V , we use θ(φ) to denote {σ|V | I(φ)(σ)}, the set of
V -specific assignments satisfying φ.

First Order Kripke Structures Let V be a set of variables. We use V ′ to denote
the set {v′ | v ∈ V }.

Definition 8. A first order Kripke structure over (B, V) is a triple (I, ρ,Θ)
where I = (D, I0) is an interpretation of B, ρ ∈ LB,V ∪V ′ is a formula over
V ∪ V ′, and Θ ∈ LB,V is a formula over V .

Let (B, V) with V = {v1, ..., vn} and M = (I, ρ,Θ) over (B, V) be given.

States Let A denote the set of V -specific assignments V → D. For convenience,
an assignment s ∈ A is called a state. For a set S ⊆ A, if s ∈ S, we say that s
is an S-state. For a formula φ ∈ LB,V , if s |= φ, we say that s is a φ-state, or in
other words, a state of φ. Sometimes, for convenience, we may consider φ as a
set of states, i.e., we may not distinguish the formula φ and the set {s | s |= φ}.

Transitions Let s, s′ be states. We use s→ s′ to denote that there is a transition
from s to s′. s → s′ iff there is a σ ∈ Σ such that σ|V = s and one of the
following holds.

– σ[v′1/s
′(v1)]...[v′n/s

′(vn)] |= ρ

– ∀σ′.σ[v′1/σ
′(v1)]...[v′n/σ

′(vn)] 6|= ρ and s′ = s.

The first line represents that there is a transition from s to s′ specified by
ρ. The second line represents a stuttering step (i.e., a transition step where the
state does not change) when no transitions are specified by ρ. Notice that the
symbol → is also used for logical implication. The meaning of the symbol is
determined by the context.

Successors If s → s′, we say that s′ is an s-successor, or in other words, a
successor state of s. For a set S ⊆ A, if s is a successor state of some S-state,
we say that s is an S-successor, or in other words, a successor state of S. For a
formula φ ∈ LB,V , if s is a successor state of some φ-state, we say that s is a
φ-successor, or in other words, a successor state of φ.

Paths and Computations A path of M is a path of the graph (A,→). A compu-
tation is an infinite path π such that π0 |= Θ. The set of computations of M is
denoted [[M]].

Reachability We say that s′ is reachable from s, if s
∗→ s′. Let S be a set of

states. We say that S is reachable from s, if there is a state s′ ∈ S such that
s
∗→ s′.

Nonstuttering Models A nonstuttering model is a model that stuttering steps
are not allowed unless the current state is a state at which there are no other
choices for making a transition step. Suppose that we have variables over nat-
ural numbers or over any domain with at least two values. Then a first order
Kripke structure over (B, V) not satisfying the nonstuttering condition can be
transformed into a model satisfying the condition by adding a new variable to
V and modifying ρ to ρ′ such that the value of the variable changes at every ρ′

step. Without loss of generality, in the following, we only consider nonstuttering
first order Kripke structures, and assume that M = (I, ρ,Θ) over (B, V) and
I = (D, I0) are given.

3.1 On Weakest Preconditions

Definition 9. Let φ ∈ LB,V be a formula. The one step weakest precondition
of φ with respect to M , denoted [M,φ], or simply written as [φ], when M is
understood in the context, is defined as follows.

[φ]
4
= (∀v′1 · · · v′n.(ρ→ φ′) ∧ (∃v′1 · · · v′n.ρ ∨ φ)).

Intuitively, [φ] represents the set of states in which every state has all its
successors in φ. This is clarified by the following lemmas.

Lemma 14. φ0 → [φ1] iff every φ0-successor is a φ1-state.

Proof.

– The if-part.
Suppose that s is a φ0 state implies that if s→ s′ then s′ is a φ1 state.
Suppose s is a φ0 state and s 6|= ∀v′1 · · · v′n.(ρ→ φ′1) ∧ (∃v′1 · · · v′n.ρ ∨ φ1).
We show that there is a contradiction.
We have two cases:
(1) s 6|= ∀v′1 · · · v′n.(ρ→ φ′1);
(2) s 6|= ∃v′1 · · · v′n.ρ ∨ φ1.
In the first case, we have s |= ∃v′1 · · · v′n.(ρ ∧ ¬φ′1);
Let σ be an assignment such that σ|V = s.
There is an s′ such that σ[v′1/s

′(v1)]...[v′n/s
′(vn)] |= ρ ∧ ¬φ′1.

Then we have s→ s′ and s′ |= ¬φ1, contradicting to the first supposition.
In the second case, we have s |= ∀v′1 · · · v′n.(¬ρ) ∧ ¬φ1;
Let σ be an assignment such that σ|V = s.
Then we have s→ s and s |= ¬φ1, which yields also a contradiction.

– The only-if part.
By definition, we have the following.
φ0 → [φ1] iff φ0 → ∀v′1 · · · v′n.(ρ→ φ′1) ∧ (∃v′1 · · · v′n.ρ ∨ φ1).
Suppose that φ0 → [φ1] holds, s is a φ0 state and s→ s′.
We have to prove that s′ is a φ1 state.
Since s |= φ0, we have s |= ∀v′1 · · · v′n.(ρ→ φ′1) ∧ (∃v′1 · · · v′n.ρ ∨ φ1).
Let σ be an assignment such that σ|V = s.
Then we have σ |= ∀v′1 · · · v′n.(ρ→ φ′1) ∧ (∃v′1 · · · v′n.ρ ∨ φ1).
Since s→ s′, we have two cases:
(1) σ[v′1/s

′(v1)]...[v′n/s
′(vn)] |= ρ;

(2) ∀σ′.σ[v′1/σ
′(v1)]...[v′n/σ

′(vn)] 6|= ρ and s′ = s.
In the first case, since we already have σ |= ∀v′1 · · · v′n.(ρ → φ′1), we have
σ[v′1/s

′(v1)]...[v′n/s
′(vn)] |= φ′1, and therefore s′ is a φ1 state.

In the second case, since we already have σ |= ∃v′1 · · · v′n.ρ ∨ φ1, we have
σ |= φ1, and therefore s |= φ1.
Then since s′ = s, we have s′ |= φ1.

ut

Lemma 15. If every s-successor is a φ-state, then s is a [φ]-state.

Proof. Let φs be the representation of s, i.e., φs(σ) holds iff σ|V = s. Suppose
that every s-successor is a φ-state. Then by Lemma 14, we have φs → [φ]. Then
every φs-state is a [φ]-state. Therefore s is a [φ]-state. ut

Lemma 16. Let η0 and η1 be first order formulas. Suppose that η0 ∧ [η1]→ η1

holds. Let Ni = θ(¬ηi) for i = 0, 1. Then Gr(N1 \ N0) is an (N1 ∩ N0)-weak-
bounded subgraph.

Proof. Let s ∈ (N1 \N0), i.e., s satisfies ¬η1 and η0.
By the premise and Lemma 15, not every successor of s is an η1 state, i.e.,

there is an s-successor s′ such that s′ is a ¬η1 state, i.e., s′ ∈ N1.
This means that for every s ∈ (N1 \N0), succ({s}) ∩N1 6= ∅, and therefore

Gr(N1 \ N0) is an (N1 ∩ N0)-weak-bounded subgraph, since N1 = (N1 \ N0) ∪
(N1 ∩N0). ut

Lemma 17. Let η0 and η1 be first order formulas. Suppose that ¬η0∧η1 → [η1]
holds. Let Ni = θ(ηi) for i = 0, 1. Then Gr(N1 \ N0) is an (N1 ∩ N0)-bounded
subgraph.

Proof. Let s ∈ N1 \N0, i.e., s satisfies η1 and ¬η0.
By the premise and Lemma 14, every successor of s is an η1 state, i.e.,

succ({s}) ∈ N1.
This means that succ(N1 \ N0) ⊆ N1, and therefore Gr(N1 \ N0) is an

(N1 ∩N0)-bounded subgraph, since N1 = (N1 \N0) ∪ (N1 ∩N0). ut

Lemma 18. Let η0, η1, η2, w, u ∈ LB such that w, u are formulas with x as
the only free variable. Let e ∈ TB, v be a binary predicate symbol of P , and
v be a variable not appearing in η0, η1, η2, e, w, u. Let W = {σ(x) | I(w)(σ)}
and Z = {σ(x) | I(w ∧ u)(σ)}. Suppose that (W, I0(v)) with W ⊆ D is Z-well-
founded, η0∧¬η2 → ¬uex and ∀v.(η0 → (wex∧ (e = v → [η1∨ (η0∧ e @ v)]))). Let
N0 = θ(ηi) for i = 0, 1, 2. Then Gr(N0 \N1) is an N1-bounded ((N0 \N1)∩N2)-
infinite subgraph.

Proof. Let N ′0 = N0\N1 and N ′2 = N ′0∩N2. It is easily seen that N ′0∩N1 = ∅,
N ′2 ⊆ N ′0.

By weakening the premise, we have ∀v.(η0 ∧ ¬η1 → (wex ∧ (e = v → [η1 ∨
((η0 ∧ ¬η1) ∧ e @ v)]))).

Let f be defined by f(σ) = I(e)(σ).
Since we have η0 ∧ ¬η1 → wex, η0 ∧ ¬η2 → ¬uex and ∀v.(η0 ∧ ¬η1 → ((e =

v → ([η1 ∨ ((η0 ∧ ¬η1) ∧ e @ v)])))), it is easily seen f is a mapping from N ′0 to
W such that f(N ′0 \N2) ∩ Z = ∅ holds, and the supposition in Lemma 5 holds.
Therefore by Lemma 5, Gr(N ′0) is an N1-bounded N ′2-infinite subgraph. ut

Lemma 19. Let η0, η1, w ∈ LB such that w is a formula with x as the only free
variable. Let e ∈ TB, v be a binary predicate symbol of P , and v be a variable not
appearing in η0, η1, e, w. Let W = {σ(x) |I(w)(σ)}. Suppose that (W, I0(v)) with
W ⊆ D is a well-founded set, and ∀v.(η0 → (wex∧ (e = v → [η1∨ (η0∧e @ v)]))).
Let N0 = θ(ηi) for i = 0, 1. Then Gr(N0 \N1) is an N1-bounded subgraph with
no infinite paths.

Proof. This lemma is a special case of Lemma 18, with u and η2 replaced by
false.

Lemma 20. Let η0, η1, w ∈ LB such that w is a formula with x as the only free
variable. Let e ∈ TB, v be a binary predicate symbol of P , and v be a variable
not appearing in η0, η1, e, w. Let W = {σ(x) | I(w)(σ)}. Suppose that (W, I0(v))
with W ⊆ D is a well-founded set, and ∀v.(¬η0 → (wex ∧ ([(η1 ∧ (e @ v → η0)]→
e 6= v)))). Let Ni = θ(¬ηi) for i = 0, 1. Then Gr(N0 \N1) is an N1-terminating
subgraph.

Proof. Let N ′0 = N0 \N1 = θ(¬(η0∨¬η1)). It is easily seen that N ′0∩N1 = ∅.
By weakening the premise, we have ∀v.(¬(η0∨¬η1)→ (wex∧ ([(η1∧ (e @ v →

(η0 ∨ ¬η1))]→ e 6= v)))).
Let f be defined by f(σ) = I(e)(σ).
Since we have ¬(η0 ∨ ¬η1) → wex and ∀v.(¬η0 → ([(η1 ∧ (e @ v → ¬(η0 ∨

¬η1))] → e 6= v))), it is easily seen f is a mapping from N ′0 to W , and the
supposition in Lemma 10 holds. Therefore by Lemma 10, Gr(N ′0) is an N1-
terminating subgraph. ut

3.2 On Sufficiently Expressive Underlying First Order Logics

In order to be able to formulate necessary assertions on states for specification
and verification purposes, we assume that the underlying first order logic is
sufficiently expressive. The expressiveness condition assumes the following.

– If a representation of a set of states is needed, then the set is representable
by a first order formula.

– If a relation is need for comparing elements of a weak well-founded set, then
the relation is representable by a predicate symbol.

– If a function is needed for mapping a set of states to values, then the function
is representable by a term.

Suppose that w, u are formulas with x as the only free variable, and v is a
binary relation symbol.

Let W = {σ(x) | I(w)(σ)} ⊆ D and Z = {σ(x) | I(w ∧ u)(σ)} ⊆W .
We say that w, u and v define a weak-well-founded set, if (W, I0(v)) is Z-

well-founded. As a special case, if (W, I0(v)) is well-founded, we say that w and
v define a well-founded set.

Then we have the following notations and remarks that concretizing the
expressiveness condition.

– For S being a set of states, we use z(S) to denote the first order formula
representing S, i.e., I(z(S))(s) holds iff s ∈ S.

– For (W,�) being a Z-well-founded set where W is a set of states and Z ⊆W ,
there are formulas w, u with x as the only free variable, and a binary relation
symbol v, such that w, u and v define a weak-well-founded set.

– Furthermore, suppose that W ′ = {σ(x) | I(w)(σ)} and Z ′ = {σ(x) | I(w ∧
u)(σ)}. Then there is a term e such that I(e) represents a function f from
W to W ′ satisfying b � a iff (f(b), f(a)) ∈ I0(v).

Lemma 21. Let (V,→) be a directed graph and S,Z, Y ⊆ V . Suppose that
Gr(S) is a Y -bounded Z-infinite subgraph. Then there are e, w, u and v such
that they define a weak-well-founded set and the following hold.

– z(S) ∧ ¬z(Z) |= ¬uex;
– z(S) |= wex ∧ (e = v → [z(Y) ∨ (z(S) ∧ e @ v)]);

Proof. Let (W,vS) = po(Gr(S)). By Lemma 7, W = S and (S,vS) is a
Z-well-founded set. By the expressiveness condition, there are an expression e,
first order formulas w, u, a symbol v, a set W ′ = {σ(x) | I(w)(σ)} ⊆ D and a
set Z ′ = {σ(x) | I(w ∧ u)(σ)} such that the following hold.

– (W ′, I0(v)) is Z ′-well-founded,
– s ∈ S iff I(e)(s) ∈W ′,
– s ∈ Z iff I(e)(s) ∈ Z ′,
– (s, s′) ∈ vS iff (I(e)(s), I(e)(s′)) ∈ I0(v).

By the construction, we have z(S)∧¬z(Z) |= ¬uex and z(S) |= wex, explained
as follows.

– Suppose that I(z(S))(s) holds.
Then we have s ∈ S, I(e)(s) ∈W , I(w)(σ[x/I(e)(s)]), and therefore I(wex)(s).

– Suppose that I(¬z(Z))(s) holds.
Then we have s 6∈ Z, I(e)(s) 6∈ Z ′, I(w ∧ u)(σ[x/I(e)(s)]) = false.
Suppose that I(z(S) ∧ ¬z(Z))(s) holds.
Then we have I(u)(σ[x/I(e)(s)]) = false, I(¬u)(σ[x/I(e)(s)]) = true, and
therefore I(¬uex)(s).

Let s be a z(Y) state.
By Lemma 7, if s→ s′, then s′ is either in Y or in S. Then we have z(S)→

[z(Y) ∨z(S)]. In addition, if s′ ∈ S, then (s′, s) ∈ @S , i.e., (I(e)(s′), I(e)(s)) ∈
I0(@). Therefore z(S) |= wex ∧ (e = v → [z(Y) ∨ (z(S) ∧ e @ v)]). ut

Lemma 22. Let (V,→) be a directed graph. Let S, Y ⊆ V . Suppose that Gr(S)
is a Y -bounded subgraph with no infinite paths. Then there are e, w and v such
that they define a well-founded set and

z(S) |= wex ∧ (e = v → [z(Y) ∨ (z(S) ∧ e @ v)]).

Proof. This is a special case of Lemma 21 by considering a subgraph with no
infinite paths as an ∅-infinite directed graph, and replacing Z with the empty
set and u with false. ut

Lemma 23. Let (V,→) be a directed graph and S, Y ⊆ V such that Gr(S) is
a Y -terminating subgraph. Then there are e, w and v such that they define a
well-founded set and

z(S) |= wex ∧ ([¬z(Y) ∧ (e @ v → ¬z(S))]→ e 6= v).

Proof.
Let (W,vS) = wo(S ∪ Y,→, Y). By Lemma 12, W = S and (S,vS) is a

well-founded set. By the expressiveness condition, there are an expression e, a
first order formula w, a symbol v, a set W ′ = {σ(x) | I(w)(σ)} ⊆ D such that
the following hold.

– (W ′, I0(v)) is a well-founded set.
– s ∈ S iff I(e)(s) ∈W ′,
– (s, s′) ∈ vS iff (I(e)(s), I(e)(s′)) ∈ I0(v).

By the construction, we have z(S) |= wex.
Let s be a z(S) state.
By Lemma 12, if s is a minimal element of S, there exists an s-successor s′

such that s′ is a Y -state, i.e., s is not in [¬z(Y) ∧ (e @ v → ¬z(S))] for every
v such that v = I(e)(s). On the other hand, if s is not a minimal element of S,
then there exists an s-successor s′ such that s′ is an S-state and (s′, s) ∈ @S .
This means that we have (I(e)(s′), I(e)(s)) ∈ I0(@), and for every v such that
v = I(e)(s), s′ is an z(S) state and (I(e)(s′), v) ∈ I0(@). Therefore z(S) |=
wex ∧ ([¬z(Y) ∧ (e @ v → ¬z(Z))]→ e 6= v). ut

4 LTL Formulas

Let (B, V) be given. In the following, we present a first order linear time temporal
logic (LTL). The logic was introduced in [33] and the following presentation can
be seen as a subset of the one in [28].

Syntax Let φ range over LB,V . The set of LTL formulas over (B, V) is defined
as follows.

Φ ::= φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Φ→ Φ |X Φ | F Φ |G Φ | Φ U Φ | Φ R Φ

Semantics Let the first order Kripke structure M = 〈I, ρ,Θ〉 over (B, V) be
given.

Definition 10. Let π denote an infinite path of M . Let ϕ (possibly with sub-
scripts) denote an LTL formula. That the path π satisfies ϕ, denoted π |=M ϕ,
or simply π |= ϕ when M is understood in the context, is defined as follows.

π |= ϕ if ϕ ∈ LB,V and I(ϕ)(π0) = true
π |= ¬ϕ if π 6|= ϕ
π |= ϕ0 ∨ ϕ1 if π |= ϕ0 or π |= ϕ1

π |= ϕ0 ∧ ϕ1 if π |= ϕ0 and π |= ϕ1

π |= ϕ0 → ϕ1 if π |= ϕ0 implies π |= ϕ1

π |= Xϕ if π1 |= ϕ
π |= Gϕ if ∀i ≥ 0.(πi |= ϕ)
π |= Fϕ if ∃i ≥ 0.(πi |= ϕ)
π |= ϕ0Uϕ1 if ∃i ≥ 0.((πi |= ϕ1) ∧ ∀j < i.(πj |= ϕ0))
π |= ϕ0Rϕ1 if ∀i ≥ 0.(∀j < i.(πj 6|= ϕ0)→ (πi |= ϕ1))

Definition 11. M |= ϕ, if π |= ϕ for every computation π ∈ [[M]].

Definition 12 (Equivalence). Let ϕ0 and ϕ1 be two LTL formulas. ϕ0 and
ϕ1 are equivalent, denoted ϕ0 ≡ ϕ1, if for every first order Kripke structure M
over (B, V), we have M |= ϕ0 iff M |= ϕ1.

For convenience, we use ⊥ to denote the logical constant false (or the formula
t 6= t for some ground term t of the first order language, assuming that the set
of ground terms is not empty), and > to denote the logical constant true.

In addition to the traditional binary operators U and R, we introduce two
quinary operators U and R. The quinary operators are a kind of generalization
of their respective binary ones, with the following interpretation.

ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ≡ ϕ0U(ϕ1 ∨ (ϕ2Rϕ3) ∨ Fϕ4)
ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4) ≡ ϕ0R(ϕ1 ∧ (ϕ2Uϕ3) ∧Gϕ4)

The motivation of adding the quinary operators is to have a single opera-
tor (with its dual one) to cover the set of CTL∗ properties considered as the
interesting ones in [11]. We have the following equivalences.

Fϕ ≡ >Uϕ
Gϕ ≡ ⊥Rϕ

ϕ0Uϕ1 ≡ ϕ0U(ϕ1,⊥,⊥,⊥)
ϕ0Rϕ1 ≡ ϕ0R(ϕ1,>,>,>)

¬(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)) ≡ (¬ϕ0U(¬ϕ1,¬ϕ2,¬ϕ3,¬ϕ4))
¬(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)) ≡ (¬ϕ0R(¬ϕ1,¬ϕ2,¬ϕ3,¬ϕ4))

ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ≡ (ϕ0Uϕ1) ∨ (ϕ0U(ϕ2Rϕ3)) ∨ Fϕ4

Normal Form An LTL formula is in the negation normal form (NNF), if the
negation ¬ is applied only to first order formulas and the formula does not
contain the symbol →. Let NNF(X,U,R) denote the set of NNF formulas with
temporal operators only in {X,U,R} where U,R are the two quinary operators.
Let φ range over LB,V . The set of NNF(X,U,R) formulas is defined as follows.

Φ ::= φ | Φ ∧ Φ | Φ ∨ Φ |X Φ | Φ U (Φ,Φ, Φ, Φ) | Φ R (Φ,Φ, Φ, Φ)

Every LTL formula can be transformed into an equivalent one in NNF(X,U,R).
Then without loss of generality, we only consider NNF(X,U,R) formulas. Formu-
las not in such a form are considered as an abbreviation of the equivalent ones
in NNF(X,U,R).

4.1 A Proof System

In the following, we use φ to denote a first order formula, Γ to denote a set of
first order formulas, and ϕ to denote an LTL formula (in NNF). For brevity, we
sometimes write φ for {φ}, and Γ, φ for Γ ∪ {φ}.

– A state s is called a ϕ-state, if ∀π(s).(π |= ϕ).

– A state s is called a Γ -state, if it is a φ-state for every φ ∈ Γ .

Since a first order formula φ is also an LTL formula, whether a state is a
φ-state may be determined by this definition. This usage coincides with the
meaning of φ-states defined in the previous section.

For convenience, the set of ϕ states is denoted θ(ϕ), and we use θ̄(ϕ) to
denote the set of states such that each of the states is a starting point for some
path satisfying ¬ϕ.

Definition 13. Γ |= ϕ, if every Γ -state is a ϕ-state.

Proposition 1. M |= ϕ iff Θ |= ϕ.

This proposition is a consequence of the definitions of M |= ϕ and Θ |= ϕ.
In the following, we present a proof system for Γ |= ϕ.

Lemma 24. Let η0 and η1 be first order formulas. Suppose that ¬η0∧η1 → [η1]
holds. Then η1 |= η0Rη1.

Proof. Let Ni = θ(ηi) for i = 0, 1.
By Lemma 17, Gr(N1 \N0) is an N1∩N0-bounded subgraph. Following from

Lemma 4, we have η1 ∧ ¬η0 |= η0Rη1.
Since it is trivially that η1 ∧ η0 |= η0Rη1 holds, we have η1 |= η0Rη1. ut

Lemma 25. Let η0, η1, η2, w, u ∈ LB such that w, u are formulas with x as
the only free variable. Let e ∈ TB, v be a binary relation symbol of P , and v
be a variable not appearing in η0, η1, η2, e, w, u. Let W = {σ(x) | I(w)(σ)} and
Z = {σ(x) | I(w ∧ u)(σ)}. Suppose that (W, I0(v)) with W ⊆ D is Z-well-
founded, η0 ∧ ¬η2 → ¬uex and ∀v.(η0 → (wex ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]))).
Then η0 ∨ η1 |= (η0Uη1) ∨ (G(η0) ∧ FG(η2)) holds.

Proof.
Let Xi = θ(ηi) for i = 0, 1, 2.
Let N0 = X0 \X1, N1 = X1 and N2 = N0 ∩X2.
By Lemma 18, Gr(N0) is an N1-bounded N2-infinite subgraph. Following

from Lemma 6, we have η0∧¬η1 |= X(((η0∧¬η1)Uη1)∨ (G(η0∧¬η1)∧FG(η0∧
¬η1 ∧ η2))).

Since it implies η0∧¬η1 |= (η0Uη1)∨(G(η0)∧FG(η2)) and it is trivially that
η1 |= (η0Uη1) ∨ (G(η0) ∧ FG(η2)) holds, we have η0 ∨ η1 |= (η0Uη1) ∨ (G(η0) ∧
FG(η2)). ut

Lemma 26. Let η0, η1, w ∈ LB such that w is a formula with x as the only free
variable. Let e ∈ TB, v be a binary relation symbol of P , and v be a variable not
appearing in η0, η1, e, w. Let W = {σ(x) |I(w)(σ)}. Suppose that (W, I0(v)) with
W ⊆ D is a well-founded set, and ∀v.(η0 → (wex∧ (e = v → [η1∨ (η0∧e @ v)]))).
Then η0 ∨ η1 |= η0Uη1 holds.

Proof. This lemma is a special case of Lemma 25, with u and η2 replaced by
false.

Proving First Order Formulas When ϕ is a first order formula, Γ |= ϕ holds
iff the conjunction of the formulas of Γ implies ϕ. We assume that we have an
underlying proof system for proving Γ |= ϕ in this case. We assume that this
proof system is powerful enough such that we can freely use the usual first order
reasoning techniques.

Proving Temporal Formulas Let B = (F, P) be given. Let e (possibly with
subscripts) denote a term of the first order logic, w, u denote first order formulas
with x as the only free variable, v denote a variable, η denote a first order
formula, and v denote a binary relation symbol of P . A set of reduction rules
(referred to as RED-rules) is provided in Table 1. The reduction rules are used
to reduce a proof of a formula to proofs of simpler ones (by using the rules
backwards).

For the application of the rule involving both of w and u, it is required
that w, u and v define a weak-well-founded set. For the application of the rule
involving w without the accompanying u, it is required that w,v define a well-
founded set. Similar restriction applies to w1,v1 as well. In addition, v, v1 are
required to be variables not appearing in any places other than those explicitly
specified in the rule.

Remark Notice that the use of terms to represent values imposes a restriction
on the applicability of the rule, since what a term can express is constrained
by the available symbols specified in B. As discussed in [24], one may as well
use formulas for representing values in a rule. For simplicity, we still use terms
for representing values. Besides using formulas for increasing the expressivity,
for practicality, one may extend the set of symbols in B, which is discussed in
Section 6.3.

Derived Rules For convenience, we formulate a set of derived rules for the unary
operators F,G and the binary operators U,R. The rules are presented in Table 2.
The name RG indicates that the rule is derived from the rule R for the operator
G, and RR indicates that the rule is derived from the rule R for the binary
operator R. The other two names have similar meaning. The explanation of the
derivation is in the following table, where the meaning of the rows is as follows:
The rule indicated in the column Rule is obtained from the rule in the column
Origin by replacing the formulas listed in the column True with > and replacing
those in the column False with ⊥.

Rule Origin True False
RR R ϕ2, ϕ3, ϕ4, η3, η4 η2

UU U ϕ2, ϕ3, ϕ4, η2, η3, η4, η5, η6, u
RG RR ϕ0, η0

UF UU ϕ0

UUR U ϕ1, ϕ4, η1, η4, η5

Table 1. RED Rules

∧ Γ ` ϕ0 Γ ` ϕ1

Γ ` ϕ0 ∧ ϕ1

∨ η0 ` ϕ0 η1 ` ϕ1 Γ ` η0 ∨ η1
Γ ` ϕ0 ∨ ϕ1

X
η1 ` ϕ1 Γ ` [η1]

Γ ` Xϕ1

R

η0 ` ϕ0

η1 ` ϕ1

η3 ` ϕ3

η4 ` ϕ4

η1 ` (η2 ∨ η3) ∧ η4
η1,¬η0 ` [η1]

η4 ` [η4]
η2 ` ϕ2 ∧ we

x ∧ (e = v → [η3 ∨ (η2 ∧ e @ v)])
Γ ` η1
Γ ` ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)

U

η1 ` ϕ1

η2 ` ϕ2

η3 ` ϕ3

η4 ` ϕ4

η6,¬η2,¬η4 ` [η6]
η6,¬η3 ` η5 ∨ η4
η0,¬η3 ` ¬ue

x
η0 ` ϕ0 ∧ we

x ∧ (e = v → [η1 ∨ η6 ∨ (η0 ∧ e @ v)])
η5 ` (w1)e1x ∧ (e1 = v1 → [η4 ∨ (η5 ∧ e1 @1 v1)])
Γ ` η0 ∨ η1 ∨ η6
Γ ` ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)

Table 2. RED Derived Rules

RG
η1 ` ϕ1 η1 ` [η1] Γ ` η1

Γ ` Gϕ1

RR
η0 ` ϕ0 η1 ` ϕ1 η1,¬η0 ` [η1] Γ ` η1

Γ ` ϕ0Rϕ1

UF
η0 ` we

x ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]) η1 ` ϕ1 Γ ` η0 ∨ η1
Γ ` Fϕ1

UU
η0 ` ϕ0 ∧ we

x ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]) η1 ` ϕ1 Γ ` η0 ∨ η1
Γ ` ϕ0Uϕ1

UUR

η2 ` ϕ2

η3 ` ϕ3

η6 ` η3
η6,¬η2 ` [η6]
η0,¬η3 ` ¬ue

x
η0 ` ϕ0 ∧ we

x ∧ (e = v → [η6 ∨ (η0 ∧ e @ v)])
Γ ` η0 ∨ η6
Γ ` ϕ0U(ϕ2Rϕ3)

4.2 Soundness

In the following, we prove that the proof system is sound.

Theorem 1. If Γ ` ϕ, then Γ |= ϕ.

Proof by induction. If ϕ is a first order formula, then that Γ ` ϕ implies
Γ |= ϕ is implied by the assumption on the soundness of the underlying proof
system for the first order logic. For the RED-rules, we consider the rules case by
case as follows.

Case 1. ∧.

Suppose that we have Γ |= ϕ0 and Γ |= ϕ1. We prove Γ |= ϕ0∧ϕ1 as follows.
Let s be a Γ -state. Then s is a state of ϕ0 and s is a state of ϕ1. Therefore

s is a state of ϕ0 ∧ ϕ1.

Case 2. ∨.

Suppose that we have η0 |= ϕ0, η1 |= ϕ1, and Γ |= η0 ∨ η1. We prove
Γ |= ϕ0 ∨ ϕ1 as follows.

Let s be a Γ -state. Then s is a state of η0 ∨ η1.
Since η0 and η1 are first order formulas, either s is a state of η0 or s is a state

of η1. Then either s is a state of ϕ0 or s is a state of ϕ1. Therefore s is a state
of ϕ0 ∨ ϕ1.

Case 3. X.

Suppose that we have η1 |= ϕ1 and Γ |= [η1]. We prove Γ |= Xϕ1 as follows.
Let s be a Γ -state. Since we have Γ |= [η1], by Lemma 14, every s-successor

is an η1 state. Therefore every s-successor is a ϕ1 state. Therefore s is a state of
Xϕ1.

Case 4. R.

Suppose that the premises hold.
By the 6th premise and Lemma 24, we have the following.

(i) η1 |= η0Rη1

By the 1st and 2nd premises, we have (i’) η1 |= ϕ0Rϕ1.
By the second part of the 8th premise and Lemma 26, we have η2 ∨ η3 |=

η2Uη3, and then by the first part of the 8th premise and the 3rd premise, we
have the following.

(ii) η2 ∨ η3 |= ϕ2Uϕ3

Suppose that Γ |= ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4) does not hold.
Let s ∈ Γ and π be an s-path such that π |= ¬ϕ0U(¬ϕ1∨(¬ϕ2R¬ϕ3)∨F¬ϕ4).
By the 9th premise, we have that s is an η1 state.
We prove that there is a contradiction. We have three cases.

– Case 1: π |= ¬ϕ0U¬ϕ1.
By (i’), π0 is not an η1 state, contradicting to that s (we have π0 = s) is an
η1 state.

– Case 2: π |= ¬ϕ0U(¬ϕ2R¬ϕ3).
Then there is a k ≥ 0 such that π0, ..., πk−1 satisfy ¬ϕ0 and πk satisfies
¬ϕ2R¬ϕ3.
By the 1st premise, π0, ..., πk−1 are not η0 states.
On the other hand, by (i), s is an η0Rη1 state, and then since π0, ..., πk−1

are not η0 states and π0 = s, we have that πk is an η1 state.
By (ii), we have η2 ∨ η3 |= ϕ2Uϕ3.
Then by the 5th premise, we have η1 |= ϕ2Uϕ3, and therefore πk is a ϕ2Uϕ3

state, contradicting to that πk satisfies ¬ϕ2R¬ϕ3.
– Case 3: π |= F¬ϕ4.

Then there is a k ≥ 0 such that πk satisfies ¬ϕ4.
This means that πk is not a ϕ4 state.
Since s is an η1 state, s is a ϕ4 state, by the 5th and 4th premises.
Then we have k ≥ 1.
Without loss of generality, we may assume that k is the least i such that πi
is not a ϕ4 state.
According to the 7th premise, πk−1 cannot be a ϕ4 state, contradicting to
the above assumption.

Case 5. U .

Suppose that the premises hold.
By the 5th premises and Lemma 24, we have η6 |= (η2 ∨ η4)R(η6), and then

by the 6th premise, we have the following.

(i) η6 |= (η2 ∨ η4)R(η5 ∨ η4 ∨ η3).

By the 7th premise, the second part of the 8th premise and Lemma 25, we
have the following.

(ii) η0 ∨ η1 ∨ η6 |= (η0U(η1 ∨ η6)) ∨ (G(η0) ∧ FG(η3))

By the 9th premise and Lemma 26, we have the following.

(iii) η5 ∨ η4 |= η5Uη4

Suppose that Γ |= ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) does not hold.
Let s ∈ Γ and π be an s-path such that π |= ¬ϕ0R(¬ϕ1∧(¬ϕ2U¬ϕ3)∧G¬ϕ4).
By the 10th premise, s is also an η0 ∨ η1 ∨ η6 state.
Let ψ denote (ϕ1 ∨ (ϕ2Rϕ3) ∨ Fϕ4).
Then π |= ¬ϕ0R¬ψ, i.e., π |= ((¬ψ)U(¬ψ ∧ ¬ϕ0)) ∨ G¬ψ. We prove that

there is a contradiction. We have two cases.

– Case 1: π |= (¬ψ)U(¬ψ ∧ ¬ϕ0).
Then πj satisfies ¬ϕ4 for all j ≥ 0, and there is a k ≥ 0 such that πk satisfies
¬ϕ0, and πi satisfies ¬ϕ1 and ¬ϕ2U¬ϕ3 for i = 0, 1, ..., k.

By the first part of the 8th premise, πk is a ¬η0 state.

By the 1st premise, π0, ..., πk are ¬η1 states.

By the 4th premise, πj satisfies ¬η4 for all j ≥ 0, and then by (iii) πj is not
an η5 ∨ η4 state for all j ≥ 0.

Then by (i), π0, ..., πk are ¬η6 states.

Otherwise, we have a contradiction explained as follows.

Suppose that πj is an η6 state for some 0 ≤ j ≤ k.

Then πj |= (η2 ∨ η4)R(η5 ∨ η4 ∨ η3).

Since η5 and η4 are not satisfied on any position on πj , we have πj |=
(η2)R(η3), and therefore πj |= (ϕ2)R(ϕ3) by the 2nd and 3rd premises,
which yields a contradiction to that πi satisfies ¬ϕ2U¬ϕ3 for i = 0, 1, ..., k.

This explains that π0, ..., πk are ¬η6 states, and then we have that π does
not satisfy (η0U(η1 ∨ η6)) ∨ (G(η0) ∧ FG(η3)).

This contradicts to (ii), since π0 = s is an η0 ∨ η1 ∨ η6 state.

– Case 2: π |= G¬ψ.

Then πj satisfies ¬ϕ4 for j ≥ 0, and for all i ≥ 0, we have πi satisfies ¬ϕ1

and ¬ϕ2U¬ϕ3.

Similar to the argument in Case 1, πj is a ¬η1 state and a ¬η6 state for all
j ≥ 0.

In addition, since πi satisfies ¬ϕ2U¬ϕ3 for all i ≥ 0, there are infinitely
many positions on π satisfying ¬ϕ3.

By the 3rd premise, the states on these positions are ¬η3 states, and then
we have that π does not satisfy (η0U(η1 ∨ η6)) ∨ (G(η0) ∧ FG(η3)).

This contradicts to (ii), since π0 = s is an η0 ∨ η1 ∨ η6 state.

ut

4.3 Relative Completeness

Relativeness The relative completeness1 assumes the expressiveness condition
stated in Section 3.2 and the following condition on the underlying first order
proof system.

If ϕ is a first order formulas and Γ ` ϕ is needed as a premise in the
proof, then Γ ` ϕ is provable by the underlying first order proof system
when Γ |= ϕ holds.

In the following, we prove that the proof system (with the set of RED-rules)
is relatively complete for a subset of LTL defined as follows.

1 Relative completeness is a notion for separation of concerns on techniques for ma-
nipulating programs and techniques for manipulating formulas of the underlying
logic, and there has been a lot of research work discussing completeness and relative
completeness, e.g., [9, 2, 22, 36].

Simple LTL Formulas Let φ range over LB,V . The subset of LTL, denoted
SL, and called simple LTL formulas, is defined as follows (parts of the definition
resemble that of LIN and ULIN in [6]), with UL being an auxiliary subset of SL.

SL ::= SL ∨ φ | φ ∨ SL | SL ∧ SL |X(SL) | φ R (SL, φ, φ, φ) | φ U(φ, φ, φ, φ) |UL
UL ::= φ | SL U φ | φ U (UL) |UL ∨ φ | φ ∨UL

Lemma 27. Let ϕUψ be an LTL formula. If π satisfies G(¬ψ), then π satisfies
G(¬(ϕUψ)).

Proof. This follows directly from the semantics. ut

Lemma 28. Let ψ be a UL formula. Suppose that π is an infinite path such that
starting from every position of π there is a path satisfying ¬ψ. Then π satisfies
G(¬ψ).

Proof. In case ψ is a first order formula, from every position of π there is a
path satisfying ¬ψ implies that every position of π satisfies ¬ψ, and therefore π
satisfies G(¬ψ). The rest of the cases is proved inductively as follows.

Case 1. ψ = (ϕUr) where ϕ is an SL formula and r is a first order formula.

Since from every position of π there is a path satisfying ¬r, we have that π
satisfies G(¬r). By Lemma 27, π satisfies G(¬ψ).

Case 2. ψ = (rUψ1) where r is a first order formula and ψ1 is a UL formula.

Since from every position of π there is a path satisfying ¬ψ, we have that
from every position of π there is a path satisfying ¬ψ1, and then by the inductive
hypothesis, we have π satisfies G(¬ψ1). By Lemma 27, π satisfies G(¬ψ).

Case 3. ψ = (ψ1 ∨ r) where r is a first order formula and ψ1 is a UL formula.

Since from every position of π there is a path satisfying ¬ψ, we have that
every position of π satisfies ¬r and from every position of π there is a path
satisfying ¬ψ1. The former implies that π satisfies G(¬r), and by the induc-
tion hypothesis, the latter implies that π satisfies G(¬ψ1). Therefore π satisfies
G(¬ψ).

Case 4. ψ = (r ∨ ψ1) where r is a first order formula and ψ1 is a UL formula.

This case is similar to the previous one. ut

Definition 14. Let r denote a first order formula, ϕ denote an SL formula and
ψ denote a UL formula. f0(ψ) is defined as follows.

f0(r) = r
f0(ψ0 ∨ ψ1) = f0(ψ0) ∨ f0(ψ1)
f0(ϕUψ) = f0(ψ)

f0(ψ) maps a formula to a first order formula.

Lemma 29. Let π be a path and ψ be a UL formula. If π0 |= f0(ψ), then π |= ψ.

Proof. It is easily seen this lemma holds by an application of structural in-
duction.

Separation of a Path

Lemma 30. Let π be a path and ψ be a UL formula. If π |= ψ, then π0 |= f0(ψ)
or π1 |= ψ.

Proof. In case ψ is a first order formula, we have π |= ψ iff π0 |= ψ iff
π0 |= f0(ψ). The rest of the cases is proved inductively as follows.

Case 1. ψ = (ϕUr) where ϕ is an SL formula and r is a first order formula.

If π 6|= r, we have π1 |= ϕUr. Otherwise, we have π0 |= r and therefore
π0 |= f0(ψ).

Case 2. ψ = (rUψ1) where r is a first order formula and ψ1 is a UL formula.

If π 6|= ψ1, we have π1 |= rUψ1. Otherwise, by the induction hypothesis,
either π0 |= f0(ψ1) or π1 |= ψ1. In the former case, we have π0 |= f0(ψ), since
f0(ψ) = f0(ψ1). In the latter case, we have π1 |= rUψ1.

Case 3. ψ = (ψ1 ∨ r) where r is a first order formula and ψ1 is a UL formula.

If π0 |= r, we are done. Otherwise, π |= ψ1. By the induction hypothesis,
either π0 |= f0(ψ1) or π1 |= ψ1. In the former case, we are done, since f0(ψ) =
f0(ψ1)∨ r and therefore we have π0 |= f0(ψ). Otherwise, we are also done, since
we have π1 |= ψ1 ∨ r.

Case 4. ψ = (r ∨ ψ1) where r is a first order formula and ψ1 is a UL formula.

This case is similar to the previous one. ut

Lemma 31. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ∈ SL be an SL formula with ϕ0, ..., ϕ4

being first order formulas. Let π be a path. If π |= ϕ, then π0 |= ϕ1 or π0 |=
ϕ2 ∧ ϕ3 or π0 |= ϕ4 or π1 |= ϕ.

Proof. We have three cases: π |= ϕ0Uϕ1, π |= ϕ0U(ϕ2Rϕ3) and π |= Fϕ4

– Case 1: π |= ϕ0Uϕ1.
By Lemma 30, we have π0 |= f0(ϕ0Uϕ1) or π1 |= ϕ. Since f0(ϕ0Uϕ1) =
f0(ϕ1) = ϕ1, we are done.

– Case 2: π |= ϕ0U(ϕ2Rϕ3).
Then we have π |= (ϕ2 ∧ ϕ3) ∨ (ϕ3 ∧X(ϕ2Rϕ3)) ∨ (ϕ0 ∧X(ϕ0U(ϕ2Rϕ3))).
Then we have π0 |= ϕ2∧ϕ3 or π |= (ϕ3∧X(ϕ2Rϕ3))∨(ϕ0∧X(ϕ0U(ϕ2Rϕ3))).
In the former case, we have π0 |= ϕ2 ∧ ϕ3, and in the latter case, we have
π1 |= ϕ.

– Case 3: π |= Fϕ4.
Then we have π0 |= ϕ4 or π1 |= Fϕ4, and therefore π0 |= ϕ4 or π1 |= ϕ.

ut
We provide some definitions and lemmas for dealing with formulas of the

forms ϕUψ and ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4).

Definition 15. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4). The set S∗ϕ and Sϕ are defined as
follows.

– s ∈ S∗ϕ, if s is a (ϕ2Rϕ3) ∨ Fϕ4 state.
– s ∈ Sϕ, if s is a ϕ state and not a ϕ1 state and not an S∗ϕ state.

The set Sϕ0Uϕ1 , where ϕ0Uϕ1 is a special case of ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4), is
defined according to Sϕ, that is, s ∈ Sϕ0Uϕ1 iff s is a ϕ0Uϕ1 state and there is
an s-path satisfying ¬ϕ1. It is easily seen that the following hold.

– If ϕ0, ..., ϕ4 are first order formulas, then every Sϕ state is a ϕ0 state.
– If ϕ0Uϕ1 is a UL formula, then every Sϕ0Uϕ1 state is a ϕ0 state.

This can be seen from that for a UL formula ϕ0Uϕ1 and a state s, it is
not the case that there exist s-paths π and ζ such that π |= ϕ0 ∧ ¬ϕ1 and
ζ |= ¬ϕ0 ∧ ϕ1, since at least one of ϕ0 and ϕ1 is a first order formula.

Lemma 32. Let ϕUψ be a UL formula. Then Gr(SϕUψ) is a directed graph
without infinite paths.

Proof. Suppose that there is an infinite path. We prove that there is a contra-
diction. Let π be an infinite path. Since all the states on the path are in SϕUψ,
we have that there is a path satisfying ¬ψ from every such state, and then by
Lemma 28, π satisfies G(¬ψ), contradicting to that π0 is a ϕUψ state. ut

Corollary 1. Let ϕUψ be a UL formula. Let (S,vϕUψ) = po(Gr(SϕUψ)). Then
(S,vϕUψ) is a well-founded set, and furthermore, if s, s′ ∈ SϕUψ and s → s′,
then s′ @ϕUψ s.

Proof. This follows from Lemma 32 and Lemma 8. ut

Lemma 33. Let ϕUψ be a UL formula. Then Gr(SϕUψ) is θ(ψ)-bounded.

Proof.
Firstly, it is easily seen that SϕUψ ∩ θ(ψ) = ∅ from the definition.
Secondly, suppose that s is a state of SϕUψ. Since there is a path π starting

from s such that π |= ¬ψ, by Lemma 29, s (i.e., π0) does not satisfy f0(ψ).
We have f0(ϕUψ) = f0(ψ). Since every path starting from s satisfies ϕUψ
and s does not satisfy f0(ϕUψ), by Lemma 30, for every such path π, we have
π1 |= ϕUψ. Therefore such a π1 is a state of ϕUψ. If π1 is a state of ψ, we are
done. Otherwise, π1 is a state of SϕUψ.

Therefore Gr(SϕUψ) is θ(ψ)-bounded. ut

Lemma 34. Let ϕ0Uϕ1 be a UL formula. Let η0 = z(Sϕ0Uϕ1
) be the repre-

sentation of Sϕ0Uϕ1
, and η1 = z(θ(ϕ1)) be the representation of the set of ϕ1

states. Then there are e, w and v such that they define a well-founded set and
η0 |= wex ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]).

Proof. This lemma follows from Lemma 22, with the following instantiation
of S, Y .

– S = Sϕ0Uϕ1
.

– Y = θ(ϕ1).

The conditions in Lemma 22 are ensured by Lemma 32 and Lemma 33. ut

Lemma 35. Let Fϕ1 be a UL formula. Let η0 = z(θ(¬ϕ1 ∧ Fϕ1)), and η1 =
z(θ(ϕ1)). Then there are e, w and v such that they define a well-founded set
and η0 |= wex ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]).

This is a special case of Lemma 34 with ϕ0Uϕ1 replaced by Fϕ1 and Sϕ0Uϕ1

replaced by θ(¬ϕ1 ∧ Fϕ1). ut

Lemma 36. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ∈ SL be an SL formula with ϕ0, ..., ϕ4

being first order formulas. Then Gr(Sϕ) is a θ(ϕ3)-infinite directed graph.

Proof.

(1) Suppose that there is an infinite path in Gr(Sϕ) such that ¬ϕ3 states
appears infinitely many times. We prove that there is a contradiction.

Let π be such an infinite path.

By the construction of Sϕ, ϕ2 and ϕ3 cannot be satisfied at the same time
on any position, otherwise, the state violates the condition that from the state
there is a path satisfying (¬ϕ2U¬ϕ3) ∧G(¬ϕ4).

Since on π, ¬ϕ3 is satisfied infinitely many times, and ϕ2 and ϕ3 are not
satisfied at the same time on any position, ϕ2Rϕ3 is not satisfied on any position.

In addition, since ϕ4 is a first order formulas, ϕ4 is not satisfied on πi for
any i ≥ 0, and Fϕ4 is not satisfied on π.

Since every state on π is in Sϕ, there is a path satisfying ¬ϕ1 from every such
state. Since ϕ1 is a first order formula, ϕ1 is not satisfied on πi for any i ≥ 0.

Therefore π does not satisfy ϕ, contradicting to that π0 is a ϕ-state.

(2) Suppose that there is a self-loop in Gr(Sϕ). We prove that there is a
contradiction.

Let s be a state with a self-loop. Since s ∈ Sϕ, s satisfies ϕ. Since we are
considering models with the nonstuttering condition, starting from s there is
only one infinite path repeating s infinitely many times, and therefore s must be
a ϕ1 state or an S∗ϕ state, contradicting to that s is in Sϕ.

Therefore Gr(Sϕ) is a θ(ϕ3)-infinite directed graph. ut

Corollary 2. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ∈ SL be an SL formula with ϕ0, ..., ϕ4

being first order formulas. Let (S,vϕ) = po(Gr(Sϕ)). Then (S,vϕ) is θ(ϕ3)-
well-founded, and furthermore, if s, s′ ∈ Sϕ and s→ s′, then s′ @ϕ s.

Proof. This follows from Lemma 36 and Lemma 3. ut

Lemma 37. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ∈ SL be an SL formula with ϕ0, ..., ϕ4

being first order formulas. Then Gr(Sϕ) is (θ(ϕ1) ∪ S∗ϕ)-bounded.

Proof.
Firstly, it is easily seen that Sϕ ∩ (θ(ϕ1) ∪ S∗ϕ) = ∅ from the definition.
Secondly, suppose that s is a state of Sϕ. Since there are an s-path satisfying

¬ϕ1 and an s-path satisfying (¬ϕ2U¬ϕ3)∧G¬ϕ4, we have that s satisfies none
of ϕ2 ∧ ϕ3, ϕ1 and ϕ4.

By Lemma 31, for every path π starting from s, we have π1 |= ϕ. If π1 is a
state of ϕ1, we are done. If π1 is a state of (ϕ2Rϕ3) ∨ Fϕ4, then it is a state
of S∗ϕ. Otherwise, there are an π1-path satisfying ¬ϕ1 and an π1-path satisfying
(¬ϕ2U¬ϕ3) ∧G¬ϕ4, and then π1 is a state of Sϕ.

Therefore Gr(Sϕ) is (θ(ϕ1) ∪ S∗ϕ)-bounded. ut

Lemma 38. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ∈ SL be an SL formula with ϕ0, ..., ϕ4

being first order formulas. Let η0 = z(Sϕ) and η6 = z(S∗ϕ). Then there are
e, w, u and v such that the following hold.

– η0,¬ϕ3 |= uex;
– η0 |= wex ∧ (e = v → [ϕ1 ∨ η6 ∨ (η0 ∧ e @ v)]);
– ({σ(x) | I(w)(σ)},v) is {σ(x) | I(w ∧ u)(σ)}-well-founded.

Proof. This lemma follows from Lemma 21, with the following instantiation
of S,Z, Y .

– S = Sϕ.
– Z = θ(ϕ3).
– Y = θ(ϕ1) ∪ S∗ϕ.

The conditions in Lemma 21 are ensured by Lemma 36 and Lemma 37. ut

Remark It might be tempting to consider Lemma 34 as a special case of Lemma
38. However this is not the case, since ϕ1 in the first lemma could be a UL
formula and that in the second one is a first order formula.

Completeness The proof system is relatively complete for the set of simple
LTL formulas. This is stated and proved as follows.

Theorem 2. Let ϕ be an SL formula. If Γ |= ϕ, then Γ ` ϕ.

Proof. Suppose that Γ |= ϕ holds. If ϕ is a first order formula, we have Γ ` ϕ
by the relativeness condition. The rest of cases is proved by induction on the
structure of ϕ as follows.

Case 1. ϕ = Xϕ1.

The X-rule is applicable.
We prove that there is an η1 such that the premises of the rule hold.
Let η1 = z(θ(ϕ1)).
We have η1 ` ϕ1. Since Γ |= Xϕ1, by Lemma 14, we also have Γ |= [η1].

Case 2. ϕ = ϕ0 ∧ ϕ1.

The ∧-rule is applicable.
We prove that Γ |= ϕ0 and Γ |= ϕ1 hold.
Let s be a Γ -state. Since s is a state of ϕ0 ∧ ϕ1, we have that s is a state of

ϕ0 and s is a state of ϕ1.

Case 3. ϕ = ϕ0 ∨ ϕ1.

Since ϕ is a simple LTL formula, we have the following cases: (1) ϕ0 is a first
order formula; (2) ϕ1 is a first order formula.

We prove the first case, the other is similar.
In the first case, the ∨-rule is applicable.
We prove that there are η0 and η1 such that η0 ` ϕ0, η1 ` ϕ1 and Γ ` η0∨η1

hold.
Let η0 = ϕ0 and Let η1 = z(θ(ϕ1)).
It is easily seen that η0 ` ϕ0, η1 ` ϕ1 and Γ ` η0 ∨ η1 hold.

Case 4. ϕ = ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4).

The R-rule is applicable.
We prove that there are η0, η1, η2, η3, η4, e, w and v such that the premises

of the rule hold.
Let η0 = z(θ(ϕ0)).
Let η1 = z(θ(ϕ)).
Let η2 = z(Sϕ2Uϕ3).
Let η3 = ϕ3.
Let η4 = z(θ(Gϕ4)).
Then the 1st, 2nd, 3rd, 4th and 9th premises hold trivially.
Since an η1 state satisfies ϕ2Uϕ3 and Gϕ4, it satisfies η4 and it either satisfies

η3 or satisfies η2, and therefore the 5th premise holds.
Since an η1 state is a ϕ state, if it is not an ϕ0 state, every successor state

of the state must be a ϕ state, and therefore the 6th premise holds.
Since an η4 state is a Gϕ4 state, every successor state of the state must be a

Gϕ4 state, and therefore the 7th premise holds.
By the construction of η2, we have η2 |= ϕ2, and since η3 is ϕ3, by Lemma

34, there are e, w and v such that the 8th premise of the rule hold.

Case 5. ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4).

We have two cases.

– ϕ is a UL formula, i.e., ϕ2 = ϕ3 = ϕ4 = ⊥, and ϕ = ϕ0Uϕ1.
The derived rule UU is applicable.
We prove that there are η0, η1, e, w and v such that the premises of the rule
hold.
Let η0 = z(Sϕ0Uϕ1).
Let η1 = z(θ(ϕ1)).
Then the 2nd premise holds trivially.

By the construction of η0, we have η0 |= ϕ0, and by Lemma 34, there are
e, w and v such that the 1st premise of the rule holds.

Let s be a state of Γ . Since s is a state of ϕ0Uϕ1, s is either a state of ϕ1

(i.e., a state of η1) or a state of η0. Therefore the 3rd premise holds.

– ϕ0, ϕ1, ϕ2, ϕ3, ϕ4 are all first order formulas.

The U -rule is applicable.

We prove that there are η0, η1, η2, η3, η4, η5, η6, e, w, u,v, e1, w1 and v1 such
that the premises of the rule hold.

Let η0 = z(Sϕ).

Let ηi = ϕi for i = 1, 2, 3, 4.

Let η5 = z(θ(¬ϕ4 ∧ Fϕ4)).

Let η6 = z(S∗ϕ) = z(θ((ϕ2Rϕ3) ∨ Fϕ4)).

Then the 1st, 2nd, 3rd, and 4th premises hold trivially.

By the construction of η6, if an η6 state is not an ϕ4 state and not an ϕ2

state, then the successors of such a state must still be an η6 state. Therefore
the 5th premise holds.

By the construction of η6, if an η6 state is not an ϕ3 state, then it must be
a Fϕ4 state. Therefore the 6th premise holds.

By the construction of η0, η1, η3 and η6, we have η0 |= ϕ0, and by Lemma
38, there are e, w, u and v such that the 7th and 8th premises of the rule
holds.

By the construction of η5 and η4, and Lemma 35, there are e1, w1 and v1

such that the 9th premise of the rule holds.

Let s be a state of Γ . Since s is a state of ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4), s is either a
state of η1, a state of η6, or a state of η0. Therefore the 10th premise holds.

4.4 Examples

In this subsection, we provide an example showing the use of proof rules for
satisfiability. The reader is referred to Appendix B for additional details.

Example 1. Let the program2 be the one presented in Fig. 1. The transition
relation are specified on the edges. For brevity, if a variable is not changed,
the specification is omitted. The initial location is l0 and the transition relation
specified on the ingoing edge to l0 may be interpreted as the condition (when
the primed variables are replaced by the ordinary ones) for the initial states.

The program written as a first order Kripke structure is M = (I, ρ,Θ) over
(B, V) where B = ({0, 1, 2, 3, 4,+,−}, {=,≥}), V = {z, y}, and

– I = (Int, I0) is the usual interpretation where Int is the set of integers and
I0 maps the symbols of B into integers, functions over integers and relations
over integers.

2 A program is presented as a control-flow graph, with a set of locations, a set of edges
and a set variables. The reader is referred to [30, 11] for details.

Fig. 1. The Program P1 = (L1, E1, V ars1)

– ρ is the disjunction of the following formulas.

(y = 0 ∧ y′ = 1 ∧ z′ = −z)
(y = 0 ∧ y′ = 0 ∧ z′ = z − 1)
(y = 1 ∧ (¬z = 2) ∧ y′ = 1 ∧ z′ = z − 1)
(y = 1 ∧ z = 2 ∧ y′ = 2 ∧ z′ = 0)
(y = 1 ∧ z = 1 ∧ y′ = 3 ∧ z′ = 0)
(y = 2 ∧ z > y ∧ y′ = 1 ∧ z′ = z)
(y = 2 ∧ y′ = 2 ∧ z′ = z + 1)
(y = 3 ∧ z > y ∧ y′ = 2 ∧ z′ = z)
(y = 3 ∧ y′ = 3 ∧ z′ = z + 1)

– Θ = (y = 0 ∧ z ≥ 0).

Verification Goals Suppose that the verification goals are as follows.

(1) M |= ((y = 0 ∨ y = 1) U (y = 2, z = 2, y = 3 ∨ z < 0,⊥))
(2) M |= ((y = 1) R (y = 0 ∨ y = 1, z > 0, z ≤ 0,>))

The verification goals are reformulated as follows.

(1′) y = 0 ∧ z ≥ 0 |= ((y = 0 ∨ y = 1) U (y = 2, z = 2, y = 3 ∨ z < 0,⊥))
(2′) y = 0 ∧ z ≥ 0 |= ((y = 1) R (y = 0 ∨ y = 1, z > 0, z ≤ 0,>))

Accordingly, we may try to establish the following.

(1′′) y = 0 ∧ z ≥ 0 ` ((y = 0 ∨ y = 1) U (y = 2, z = 2, y = 3 ∨ z < 0,⊥))
(2′′) y = 0 ∧ z ≥ 0 ` ((y = 1) R (y = 0 ∨ y = 1, z > 0, z ≤ 0,>))

Proof of (1) For proving (1), we use the rule U with Γ, ϕ0, ..., ϕ4 instantiated to
respectively y = 0 ∧ z ≥ 0, y = 0 ∨ y = 1, y = 2, z = 2, y = 3 ∨ z < 0, ⊥. Let

η0, ..., η6, w, u, e, w1, e1 be defined as follows.

η0 : (y = 0) ∨ (y = 1 ∧ z ≥ 0)
η1 : (y = 2)
η2 : (z = 2)
η3 : (y = 3 ∨ z < 0)
η4 : ⊥
η5 : ⊥
η6 : (y = 3 ∧ z ≤ 2) ∨ (y = 1 ∧ z < 0)
w : (even(x) ∨ x ≥ 0)
u : (even(x) ∧ x < 0)
e : (2 · z + y)
w1 : (x ≥ 0)
e1 : 0

Let v be defined as the following set of pairs.

{(a, b) | even(b− a), a ≤ b} ∪ {(a, b) | odd(a), even(b)}

It is easily seen that w, u,v define a weak-well-founded set.
let v1 be ≤. It is easily seen that w1,v1 define a well founded set.
Let ϕ(y, z) denote (y = 3 ∧ z ≤ 2) ∨ (y = 1 ∧ z < 0)), which is η6 with y, z

explicitly specified as the parameters. The computation of weakest precondition
[η6] is shown as follows.

[η6] =
[(y = 3 ∧ z ≤ 2) ∨ (y = 1 ∧ z < 0)] =
∀y′z′.(ρ→ (ϕ(y, z))′) ∧ (∃y′z′.ρ ∨ ϕ(y, z)) =
∀y′z′.(ρ→ (ϕ(y, z))′) ∧ (0 ≤ y ≤ 3 ∨ ϕ(y, z))) =
(y = 0→ ϕ(1,−z)) ∧ (y = 0→ ϕ(0, z − 1))∧
(y = 1 ∧ z 6= 2→ ϕ(1, z − 1))∧
(y = 1 ∧ z = 2→ (ϕ(2, 0)) ∧ (y = 1 ∧ z = 1→ ϕ(3, 0))∧
(y = 2 ∧ z > y → ϕ(1, z)) ∧ (y = 2→ ϕ(2, z + 1))∧
(y = 3 ∧ z > y → ϕ(2, z)) ∧ (y = 3→ ϕ(3, z + 1))∧
(0 ≤ y ≤ 3 ∨ ϕ(y, z))

Let ψ(y, z, v) denote (2 ·z+y) @ v, which is e @ v with y, z, v explicitly spec-
ified as the parameters. The result of the computation of weakest precondition
[η1 ∨ η6 ∨ (η0 ∧ e @ v)] is shown as follows.

[η1 ∨ η6 ∨ (η0 ∧ e @ v)] =
(y = 0→ (z < 0) ∨ (z ≥ 0 ∧ ψ(−z, 1, v)) ∧ (y = 0→ ψ(z − 1, 0, v))∧
(y = 1 ∧ z 6= 2→ (z < 1) ∨ (z ≥ 1 ∧ ψ(z − 1, 1, v))∧
(y = 1 ∧ z = 2→ >) ∧ (y = 1 ∧ z = 1→ >)∧
(y = 2 ∧ z > y + 1→ (z < 0) ∨ (z ≥ 0 ∧ ψ(z, 1, v))) ∧ (y = 2→ >)∧
(y = 3 ∧ z > y + 1→ >) ∧ (y = 3→ (z < 1))∧
(0 ≤ y ≤ 3 ∨ η1 ∨ η6 ∨ (η0 ∧ e @ v))

Then it is easily seen that the following hold.

ηi |= ϕi for i = 1, 2, 3, 4
η6,¬η2,¬η4 |= [η6]

η6,¬η3 |= η5 ∨ η4

η0,¬η3 |= ¬uex
η0 |= ϕ0 ∧ wex ∧ (e = v → ([η1 ∨ η6 ∨ (η0 ∧ e @ v)]))
η5 |= (w1)e1x ∧ e1 = v1 → [η4 ∨ (η5 ∧ e1 @1 v1)])
Γ |= η0 ∨ η1 ∨ η6

By the relativeness condition, we have

ηi ` ϕi for i = 1, 2, 3, 4
η6,¬η2,¬η4 ` [η6]

η6,¬η3 ` η5 ∨ η4

η0,¬η3 ` ¬uex
η0 ` ϕ0 ∧ wex ∧ (e = v → ([η1 ∨ η6 ∨ (η0 ∧ e @ v)]))
η5 ` (w1)e1x ∧ e1 = v1 → [η4 ∨ (η5 ∧ e1 @1 v1)])
Γ ` η0 ∨ η1 ∨ η6

Finally, by applying the rule U , we have the proof of the property.

Proof of (2) For proving (2), we use the rule R with Γ, ϕ0, ..., ϕ4 instantiated
to respectively y = 0 ∧ z ≥ 0, y = 1, y = 0 ∨ y = 1, z > 0, z ≤ 0, >. Let
η0, ..., η4, w, e be defined as follows.

η0 : (y = 1)
η1 : (y = 0 ∨ y = 1)
η2 : (y = 0 ∨ y = 1) ∧ (z ≥ 0)
η3 : (z ≤ 0)
η4 : >
w : (x ≥ 0)
e : z

Let v be ≤. It is easily seen that w,v define a well founded set and the
following hold.

ηi |= ϕi for i = 0, 1, 2, 3, 4
η1 |= (η2 ∨ η3) ∧ η4

η1,¬η0 |= [η1]
η4 |= [η4]
η2 |= wex ∧ (e = v → ([η3 ∨ (η2 ∧ e @ v)]))
Γ |= η1

By the relativeness condition, we have the corresponding proofs of the above
subgoals, and then by the rule R (together with the use of the rule ∧), we have
the proof of the property.

5 Proving Negative Satisfiability

In this section, a set of proof rules for negative satisfiability are developed. This
set of rules is then proved to be sound and complete for SL formulas.

Definition 16. Γ |=N ϕ, if for every Γ -state s, there is an s-path satisfying
¬ϕ.

This is the same as to say that a Γ state is not a ϕ state, and therefore the
negative satisfiability is essentially the same as applying the existential interpre-
tation to the negated LTL formula.

Proposition 2. M 6|= ϕ iff there is a satisfiable first order formula φ such that
φ |= Θ and φ |=N ϕ.

This proposition is a consequence of the definitions of M |= ϕ and Γ |=N ϕ
(with Γ instantiated to {φ}). In the following, we present a proof system for
Γ |=N ϕ.

Lemma 39. Let η0 and η1 be first order formulas. Suppose that η0 ∧ [η1]→ η1

holds. Then ¬η1 |=N η0Uη1 holds.

Proof. Let Ni = θ(¬ηi) for i = 0, 1.
By Lemma 16, Gr(N1 \N0) is an (N1 ∩N0)-weak-bounded subgraph.
Following from Lemma 13, we have ¬η1 ∧ η0 |=N η0Uη1. Since it is easily

seen that ¬η1 ∧ ¬η0 |=N η0Uη1 holds, we have ¬η1 |=N η0Uη1. ut

Lemma 40. Let η0, η1, w ∈ LB such that w is a formula with x as the only free
variable. Let e ∈ TB, v be a binary relation symbol of P , and v be a variable
not appearing in η0, η1, e, w. Let W = {σ(x) | I(w)(σ)}. Suppose that (W, I0(v))
with W ⊆ D is a well-founded set, and ∀v.(¬η0 → (wex ∧ ([(η1 ∧ (e @ v → η0)]→
e 6= v)))). Then ¬η0 ∨ ¬η1 |=N (η0Rη1) hold.

Proof. Let Ni = θ(¬ηi) for i = 0, 1.
By Lemma 20, Gr(N0 \N1) is an N1-terminating subgraph. Following from

Lemma 11, we have ¬η0∧η1 |=N X(η0Rη1). Since it implies ¬η0∧η1 |=N (η0Rη1)
and it is easily seen that ¬η0 |=N (η0Rη1) holds, we have ¬η0∨¬η1 |=N (η0Rη1).

ut

Proof Rules Let B = (F, P) be given. Let e (possibly with subscripts) denote
a term of the first order logic, w denote a first order formula with x as the only
free variable, v denote a variable, η denote a first order formula, and v denote
a binary relation symbol of P . Let φ2, φ3, φ4 denote first order formulas. A set
of reduction rules (referred to as NEG-rules) for the negative satisfiability is
provided in Table 3.

For the application of the rule involving w, it is required that w,v define a
well-founded set. Similar restriction applies to w1,v1, w2,v2 as well. In addition,
v, v1, v2 are required to be variables not appearing in any places other than those
explicitly specified in the rule.

Derived Rules For convenience, we formulate a set of derived rules for the unary
operators F,G and the binary operators U,R. The rules are presented in Table
4. The explanation of the derivation is as follow.

Rule Origin True False
R̄R R̄ φ2, φ3, φ4, η3, η5

ŪU Ū η6, η7 φ2, φ3, φ4, η5

R̄G R̄R ϕ0

ŪF ŪU ϕ0, η0

Table 3. NEG Rules

N
Γ ` ¬ϕ
Γ `N ϕ

X̄
¬η1 `N ϕ1 Γ, [η1] ` ⊥

Γ `N Xϕ1

∧̄ ¬η0 `N ϕ0 ¬η1 `N ϕ1 Γ ` ¬η0 ∨ ¬η1
Γ `N ϕ0 ∧ ϕ1

∨̄ Γ `N ϕ0 Γ `N ϕ1

Γ `N ϕ0 ∨ ϕ1

R̄

¬η0 `N ϕ0

¬η1 `N ϕ1

¬η3, φ3 ` ⊥
φ2, [η3] ` η3
¬η0 ` (w1)e1x ∧ ([η1 ∧ η3 ∧ η5 ∧ φ4 ∧ (e1 @1 v1 → η0)]→ e1 6= v1)
¬η5 ` (w2)e2x ∧ ([φ4 ∧ (e2 @2 v2 → η5)]→ e2 6= v2)

Γ, η0, η1, η3, η5, φ4 ` ⊥
Γ `N ϕ0R(ϕ1, φ2, φ3, φ4)

Ū

¬η0 `N ϕ0

¬η1 `N ϕ1

¬η1, η0, η6, φ3 ` ⊥
¬η1, η5 ` ⊥
¬η5, φ4 ` ⊥

¬η1, η7, φ3 ` ⊥
η0, [η1] ` η1

[η5] ` η5
¬η6 ` ¬(η1 ∨ φ2) ∧ (w1)e1x ∧ ([(η1 ∨ (φ3 ∧ η0)) ∧ (e1 @1 v1 → η6)]→ e1 6= v1)
¬η7 ` ¬(η5 ∨ φ2) ∧ (w2)e2x ∧ ([(η5 ∨ φ3) ∧ (e2 @2 v2 → η7)]→ e2 6= v2)
Γ, η1 ` ⊥

Γ `N ϕ0U(ϕ1, φ2, φ3, φ4)

5.1 Soundness

In the following, we prove that the proof system is sound for SL formulas.

Lemma 41. Let ψ be a UL formula. If π |= ¬ψ and π′ |= ¬ψ, then π0π
′ |= ¬ψ.

Proof. In case ψ is a first order formula, we have π |= ¬ψ iff π0 |= ¬ψ iff
π0π

′ |= ¬ψ. The rest of cases is proved inductively as follows.

Table 4. NEG Derived Rules

R̄G
¬η0 ` we

x ∧ ([η1 ∧ (e @ v → η0)]→ e 6= v) ¬η1 `N ϕ1 Γ, η0, η1 ` ⊥
Γ `N Gϕ1

R̄R
¬η0 ` we

x ∧ ([η1 ∧ (e @ v → η0)]→ e 6= v) ¬η0 `N ϕ0 ¬η1 `N ϕ1 Γ, η0, η1 ` ⊥
Γ `N ϕ0Rϕ1

ŪF
¬η1 `N ϕ1 [η1] ` η1 Γ, η1 ` ⊥

Γ `N Fϕ1

ŪU
¬η0 `N ϕ0 ¬η1 `N ϕ1 η0, [η1] ` η1 Γ, η1 ` ⊥

Γ `N ϕ0Uϕ1

Case 1. ψ = (ϕUr) where ϕ is an SL formula and r is a first order formula.

By the premises, we have π |= ¬ψ and π′ |= ¬ψ. Then we have π |= ¬r and
therefore π0π

′ |= ¬r. Together with π′ |= ¬ψ, we have π0π
′ |= ¬ψ.

Case 2. ψ = (rUψ1) where r is a first order formula and ψ1 is a UL formula.

By the premises, we have π |= ¬ψ and π′ |= ¬ψ. Then we have π |= ¬ψ1 and
π′ |= ¬ψ1. By the induction hypothesis, we have π0π

′ |= ¬ψ1, and together with
π′ |= ¬ψ, we have π0π

′ |= ¬ψ.

Case 3. ψ = (ψ1 ∨ r) where r is a first order formula and ψ1 is a UL formula.

By the premises, we have π |= ¬ψ and π′ |= ¬ψ. Then we have π |= ¬ψ1∧¬r
and π′ |= ¬ψ1 ∧ ¬r. Then we have π0π

′ |= ¬r, and by the induction hypothesis,
we have π0π

′ |= ¬ψ1, and therefore π0π
′ |= ¬ψ.

Case 4. ψ = (r ∨ ψ1) where r is a first order formula and ψ1 is a UL formula.

This case is similar to the previous one. ut

Lemma 42. Let ϕUψ be a UL formula. If π |= ¬ψ and π′ |= ¬(ϕUψ), then
π0π

′ |= ¬(ϕUψ).

Proof. By the premises, we have π |= ¬ψ and π′ |= ¬ψ. Since ψ is a UL
formula, by Lemma 41, π0π

′ |= ¬ψ. Since we have π′ |= ¬(ϕUψ), we also have
π0π

′ |= ¬(ϕUψ). ut

Lemma 43. The rule ŪU is sound for SL formulas.

Proof. Suppose that the premises of the rule hold. We prove Γ |=N ϕ0Uϕ1

as follows. In this case, ϕ0Uϕ1 is a UL formula.
By the 3rd premise and Lemma 39, we have the following.

¬η1 |=N η0Uη1

Let s be a Γ state.

By the 4th premise, s is a ¬η1 state.

Then there is an s-path π such that either every state on the path is a ¬η1

state or there is a k ≥ 0 such that π0, ..., πk are ¬η1 states and πk is a ¬η0 state.

Since ϕ0Uϕ1 is an SL formula, we have the following two cases.

– (1) ϕ0 is an SL formula and ϕ1 is a first order formula.

By the 1st and 2nd premises, (i) every state on π is a ¬ϕ1 state or (ii) there
is a k ≥ 0 such that π0, ..., πk are ¬ϕ1 states and there is a πk-path π′ (not
necessarily the same as πk) such that π′ |= ¬ϕ0.

In the former case, π is an s-path satisfying ¬(ϕ0Uϕ1).

In the latter case, π0 · · ·πk−1π
′ is an s-path satisfying ¬(ϕ0Uϕ1).

– (2) ϕ0 is a first order formula and ϕ1 is a UL formula.

By the 1st and 2nd premises, (i) starting from every state on π, there is a
path (not necessarily a sub-path of π) satisfying ¬ϕ1 or (ii) there is a k ≥ 0
such that there is a πi-path satisfying ¬ϕ1 for every i = 0, ..., k and πk is a
¬ϕ0 state.

In the former case, by Lemma 28, π |= G(¬ϕ1), and therefore π |= ¬(ϕ0Uϕ1).

In the latter case, πk |= ¬(ϕ0Uϕ1). By repeatedly using Lemma 42, we have
πi |= ¬(ϕ0Uϕ1) for i = k − 1, ..., 0, and therefore π |= ¬(ϕ0Uϕ1).

ut

Soundness The proof system is sound for the set of simple LTL formulas. This
is stated and proved as follows.

Theorem 3. Let ϕ be an SL formula. If Γ `N ϕ, then Γ |=N ϕ.

Proof. We consider the NEG-rules case by case as follows.

Case 1. N .

Suppose Γ |= ¬ϕ . We prove Γ |=N ϕ as follows.

Let s be a Γ -state. Then for every s-path π we have π |= ¬ϕ. Therefore there
is an s-path π such that π |= ¬ϕ.

Case 2. ∧̄.

Suppose that ¬η0 |=N ϕ0, ¬η1 |=N ϕ1, and Γ ` ¬η0 ∨ ¬η1 hold. We prove
Γ |=N ϕ0 ∧ ϕ1 as follows.

Let s be a Γ -state. Then s is a state of ¬η0 ∨ ¬η1. Then s is a state of ¬η0

or s is a state of ¬η1. Then there is an s-path π such that π |= ¬ϕ0 or there is
an s-path π′ such that π′ |= ¬ϕ1.

Therefore there is an s-path satisfying ¬ϕ0 ∨ ¬ϕ1, i.e., ¬(ϕ0 ∧ ϕ1).

Case 3. ∨̄.

Suppose that Γ |=N ϕ0 and Γ |=N ϕ1 hold. We prove Γ |=N ϕ0 ∨ ϕ1 as
follows.

Let s be a Γ -state. Then there is an s-path π such that π |= ¬ϕ0 and there
is an s-path π′ such that π′ |= ¬ϕ1.

Since ϕ0 ∨ ϕ1 is an SL formula, ϕ0 or ϕ1 is a first order formula.
Assume that ϕ0 is a first order formula (the other case being similar). Then

π′ |= ¬ϕ0 ∧ ¬ϕ1.
Therefore there is an s-path satisfying ¬(ϕ0 ∨ ϕ1).

Case 4. X̄.

Suppose that we have ¬η1 |=N ϕ1 and Γ, [η1] |= ⊥. We prove Γ |=N Xϕ1 as
follows.

Let s be a Γ -state. Then not every s-successor is an η1 state, i.e., there is
an s-successor s′ such that s′ is a ¬η1 state. Then there is an s′-path satisfying
¬ϕ1. Therefore there is an s-path satisfying X¬ϕ1. Therefore there is an s-path
satisfying ¬Xϕ1.

Case 5. R̄.

Suppose that the premises hold. We prove Γ |=N ϕ0R(ϕ1, φ2, φ3, φ4) as fol-
lows.

By the 4th premise and Lemma 39, we have the following.

(i) ¬η3 |=N φ2Uη3

By 3rd premise and (i), we have (i’) ¬η3 |=N φ2Uφ3.
By the 5th premise, 6th premise, and Lemma 40, we have the following.

(ii) ¬η0 ∨ ¬(η1 ∧ η3 ∧ η5 ∧ φ4) |=N (η0R(η1 ∧ η3 ∧ η5 ∧ φ4))
(iii) ¬η5 ∨ ¬φ4 |=N (η5Rφ4)

Let s be a Γ -state. We create an s-path satisfying ¬ϕ0U(¬ϕ1∨ (¬φ2R¬φ3)∨
F¬φ4) as follows. By the 7th premise, we have two cases.

– s is a ¬η1 ∨ ¬η3 ∨ ¬η5 ∨ ¬φ4 state.
In case s is a ¬η1 state, by the 2nd premise, there is an s-path π satisfying
¬ϕ1. Then π is an s-path satisfying ¬ϕ.
In case s is a ¬η3 state, by (i’), there is an s-path π satisfying ¬φ2R¬φ3,
and therefore π |= ¬ϕ.
Otherwise, s is a ¬η5 ∨ ¬φ4 state.
Then by (iii), there is an s-path π satisfying (F¬φ4). Then π is an s-path
satisfying ¬ϕ.

– s is a ¬η0 state.
By (ii), there are an s-path π and a k ≥ 0 such that π0, ..., πk−1 are ¬η0

states and πk is a ¬η1 ∨ ¬η3 ∨ ¬η5 ∨ ¬φ4 state.
Similar to the previous case, we have a πk-path π′ satisfying ¬ϕ.
By the 1st premise, π0, ..., πk−1 are ¬ϕ0 states. Then π0 · · ·πk−1π

′ is an
s-path satisfying ¬ϕ (since ϕ0 is restricted to be a first order formula).

Case 6. Ū .

Suppose that the premises hold. We prove Γ |=N ϕ0U(ϕ1, φ2, φ3, φ4) as fol-
lows.

Let ϕ = ϕ0U(ϕ1, φ2, φ3, φ4).
If ϕ is a UL formula, i.e., φ2 = φ3 = φ4 = ⊥, and ϕ = ϕ0Uϕ1, then in

this case, the soundness follows from that of ŪU which has been handled by
Lemma 43. Otherwise, ϕ is an SL formula where ϕ0, ϕ1, φ2, φ3, φ4 are all first
order formulas.

By the 7th premise, 8th premise, and Lemma 39, we have the following.

(i) ¬η1 |=N η0Uη1

(ii) ¬η5 |=N >Uη5

By the 5th premise and (ii), we have (ii’) ¬η5 |=N Fφ4.
By the second part of the 9th premise, the second part of the 10th premise,

and Lemma 40, we have the following.

(iii) ¬η6 ∨ ¬(η1 ∨ (φ3 ∧ η0)) |=N (η6R(η1 ∨ (φ3 ∧ η0)))
(iv) ¬η7 ∨ ¬(φ3 ∨ η5) |=N (η7R(φ3 ∨ η5))

By the first part of the 10th premise, we have ¬η7 ∨ ¬(φ3 ∨ η5) |=N ((φ2 ∨
η5)R(φ3 ∨ η5)). By the 5th premise, ¬η7 ∨ ¬(φ3 ∨ η5) |=N ((φ2 ∨ η5)R(φ3 ∨ η5))
and ¬η5 |=N Fφ4, we have the following.

(iv’) ¬η7 ∨ ¬(φ3 ∨ η5) |=N ((φ2Rφ3) ∨ Fφ4).

Let s be a Γ state.
Let ψ denote ¬η0R(¬η1 ∧ (¬φ2U¬φ3) ∧ G¬φ4). Since ϕ0 and ϕ1 are first

order formulas, by the 1st and 2nd premises, it is sufficient to prove that there
is an s-path satisfying ψ. We create such an s-path as follows.

By the 11th premise, s is a ¬η1 state.
By (i), there is an s-path π such that either (1) there is a k ≥ 0 such that

π0, ..., πk are ¬η1 states and πk is a ¬η0 state, or (2) every state on the path is
a ¬η1 state. We have two cases.

– (1) There is a k ≥ 0 such that π0, ..., πk are ¬η1 states and πk is a ¬η0 state.
Without loss of generality, we may assume that π0, ..., πk−1 are η0 states.
By the 4th and 5th premises, π0, ..., πk are ¬φ4 states.
By the 3rd premise, π0, ..., πk−1 are ¬η6 ∨ ¬φ3 states.
Then by the first part of the 9th premise, π0, ..., πk−1 are also ¬φ2 ∨ ¬φ3

states.
It is easily seen that: if we have (a) a πk-path ζ such that ζ |= ¬φ3∧G¬φ4 or
(b) a πk-path ζ such that ζ |= ((¬φ2U¬φ3)∧G¬φ4)), then π0, ..., πk−1ζ |= ψ.
Then we consider two subcases.
(1a) πk is a ¬φ3 state.
Since πk is a ¬η1 state, by the 4th premise, πk is a ¬η5 state. By (ii’), there
is a πk-path π′ satisfying ¬Fφ4. Then π′ |= ¬φ3 ∧G¬φ4.

Since the condition (a) holds, there is an s-path satisfying ψ.
(1b) πk is a φ3 state.
By the 6th premise, πk is a ¬η7 state.
By (iv’), there is a πk-path π′ such that π′ |= ((¬φ2U¬φ3) ∧G¬φ4).
Since the condition (b) holds, there is an s-path satisfying ψ.

– (2) Every state on the path is a ¬η1 state .
Without loss of generality, we may assume that πi is an η0 state for all i ≥ 0.
By the 3rd, 4th, 5th and 9th premises, πi is also a ¬φ4 and ¬φ2 ∨¬φ3 state
for all i ≥ 0.
If ¬φ3 appears infinitely many times, we are done.
Otherwise, there is a position j such that for all i ≥ j, πi satisfies φ3.
Then by the 3rd premise, πj is a ¬η6 state.
By (iii), there are a πj-path π′ and a k′ ≥ 0 such that π′0, ..., π

′
k′−1 are

¬φ2 ∧ ¬η1 states and π′k′ is a ¬η1 ∧ ¬φ3 state or a ¬η1 ∧ ¬η0 state.
We consider two subcases.
(2a) π′k′ is a ¬η1 ∧ ¬η0 state.
Then we have an s-path π′′ = π0 · · ·πj−1π

′ such that all the states before
the position π′k′ are ¬η1 states, and in addition, π′k′ is a ¬η0 state.
This is exactly the same as the situation considered in case (1), and by the
analysis of case (1), there is an s-path satisfying ψ.
(2b) π′k′ is a ¬η1 ∧ ¬φ3 state.
Without loss of generality, we may assume that η0 is satisfied on π′1, ..., π

′
k′ .

Since π′0 = πj and πj is a φ3 state, we have that k′ ≥ 1.
Then π′k′ is used a new starting point replacing the original state s and the
process of the construction of a path satisfying ψ is repeated.
The process either stops at a step where we have an s-path π satisfying ψ
or it continues to infinity and we have an s-path π′ such that every state on
the path is a ¬η1 ∧ η0 state and ¬φ3 states appear infinitely many times.
In the former case, we are done.
In the latter case, by the 3rd, 4th, 5th and 9th premises, every state on π′

also satisfies ¬φ4 and ¬φ2∨¬φ3, and in addition ¬φ3 states appear infinitely
many times. This means that π′ is an s-path satisfying ψ.

ut

5.2 Relative Completeness

In the following, we prove that the proof system is relatively complete for SL
formulas.

Definition 17. Let ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) and ϕ′ = ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4).
Then SNϕ , SNϕ′ and SN∗ϕ′ are sets of states defined as follows.

– s ∈ SNϕ , if s is a ϕ0 state and a ϕ3 state and not a ϕ state.

– s ∈ SN∗ϕ , if s is a ϕ3 state and not an S∗ϕ state.

– s ∈ SNϕ′ , if s is a ϕ1 state, a (ϕ2Uϕ3) state, a Gϕ4 state, and not a ϕ′ state.

The set SNGϕ1
, where Gϕ1 is a special case of ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4), is defined

according to SNϕ′ , that is, SNGϕ1
iff s is a ϕ1 state and there is an s-path satisfying

¬Gϕ1. It is easily seen that the following hold.

– If s ∈ SNϕ , then s is not a ϕ2 state and not a ϕ state.

– If s ∈ SN∗ϕ , then s is not a ϕ2 state and not an Fϕ4 state.

– If s ∈ SNϕ′ , then s is not a ϕ0 state.

Lemma 44. Suppose that φ0, ..., φ4 ∈ LB,V . Let ϕ = φ0U(φ1, φ2, φ3, φ4) and
ϕ′ = φ0R(φ1, φ2, φ3, φ4).

1. Let S1 = SNϕ and Y1 = θ̄(ϕ ∨ (φ3 ∧ φ0)).

2. Let S2 = SN∗ϕ and Y2 = θ̄(φ3 ∨ Fφ4).

3. Let S3 = SNϕ′ and Y3 = θ̄(φ1) ∪ θ̄(φ2Uφ3) ∪ θ̄(Gφ4).

Then for i ∈ {1, 2, 3}, Gr(Si) is Yi-terminating.

Proof. This lemma follows from the definitions of the respective sets of states
in Definition 17. ut

Lemma 45. Suppose that ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) and ϕ0, ..., ϕ4 ∈ LB,V . Let
η6 = ¬z(SNϕ) and η1 = z(θ(ϕ)). Then there are e, w and v such that they define
a well-founded set and

¬η6 |= wex ∧ (([(η1 ∨ (ϕ3 ∧ ϕ0)) ∧ (e @ v → η6)]→ e 6= v)).

Proof. This lemma follows from Lemma 23, with the following instantiation
of S and Y .

– S = SNϕ and z(S) = z(SNϕ) = ¬η6.

– Y = θ̄(ϕ ∨ (ϕ3 ∧ ϕ0)) and z(Y) = ¬(η1 ∨ (ϕ3 ∧ ϕ0)).

The conditions in Lemma 23 are ensured Lemma 44(1). ut

Lemma 46. Suppose that ϕ = ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) and ϕ0, ..., ϕ4 ∈ LB,V . Let
η7 = ¬z(SN∗ϕ) and η5 = z(θ(Fϕ4)). Then there are e, w and v such that they
define a well-founded set and

¬η7 |= wex ∧ (([(η5 ∨ ϕ3) ∧ (e @ v → η7)]→ e 6= v)).

Proof. This lemma follows from Lemma 23, with the following instantiation
of S and Y .

– S = SN∗ϕ and z(S) = z(SN∗ϕ) = ¬η7.

– Y = θ̄(ϕ3 ∨ Fϕ4) and z(Y) = ¬(ϕ3 ∨ η5).

The conditions in Lemma 23 are ensured Lemma 44(2). ut

Lemma 47. Suppose that ϕ = ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4) and ϕ0, ..., ϕ4 ∈ LB,V . Let
η0 = ¬z(SNϕ), η3 = z(θ(ϕ2Uϕ3)), and η5 = z(θ(¬ϕ4 ∨ Gϕ4)). Then there are
e, w and v such that they define a well-founded set and

¬η0 |= wex ∧ (([ϕ1 ∧ η3 ∧ η5 ∧ ϕ4 ∧ (e @ v → η0)]→ e 6= v)).

Proof. This lemma follows from Lemma 23, with the following instantiation
of S and Y .

– S = SNϕ and z(S) = z(SNϕ) = ¬η0.

– Y = θ̄(ϕ1) ∪ θ̄(ϕ2Uϕ3) ∪ θ̄(Gϕ4) and z(Y) = ¬(ϕ1 ∧ η3 ∧ η5 ∧ ϕ4).

We have that η5 ∧ ϕ4 is a representation of the set of Gϕ4 states. The con-
ditions in Lemma 23 are ensured Lemma 44(3). ut

Lemma 48. Suppose that ϕ = Gϕ1 is an SL formula and ϕ1 ∈ LB,V . Let
η0 = ¬z(SNGϕ1

). Then there are e, w and v such that they define a well-founded
set and

¬η0 |= wex ∧ ([ϕ1 ∧ (e @ v → η0)]→ e 6= v).

Proof. This lemma is a special case of Lemma 47, with ϕ0, ϕ2, ϕ3, ϕ4 replaced
by >. ut

Completeness The proof system is relatively complete for the set of simple
LTL formulas. This is stated and proved as follows.

Theorem 4. Let ϕ be an SL formula. If Γ |=N ϕ, then Γ `N ϕ.

Proof by induction on the structure of ϕ. Suppose that Γ |=N ϕ holds.

Case 1. ϕ is a first order formula.

The N -rule is applicable.
We have Γ |=N ϕ iff Γ |= ¬ϕ. Then we have Γ ` ¬ϕ by the relativeness

condition.

Case 2. ϕ = Xϕ1.

The X̄-rule is applicable.
We prove that there is an η1 such that the premises of the rule hold.
Let η1 = z(θ(ϕ1)).
Then the first premise holds.
Suppose that s is a Γ state.
Then there is an s-path satisfying X¬ϕ1.
Then there is an s-successor which is not a ϕ1 state and therefore s is not

an [η1] state.
Therefore the second premise holds.

Case 3. ϕ = ϕ0 ∧ ϕ1.

The ∧̄-rule is applicable.
Let η0 = z(θ(ϕ0)) and η1 = z(θ(ϕ0)).
Then the first and the second premises hold.
Suppose that s is a Γ state.
Then there is an s-path satisfying ¬(ϕ0 ∧ ϕ1).
Then there is an s-path satisfying ¬ϕ0 or satisfying ¬ϕ1.
Then s is a state of ¬η0 or a state of ¬η1.
Therefore s is a state of ¬η0 ∨ ¬η1.
Therefore the third premise holds.

Case 4. ϕ = ϕ0 ∨ ϕ1.

The ∨̄-rule is applicable.
We prove that Γ `N ϕ0 and Γ `N ϕ1 hold.
Suppose that s is a Γ state.
Then there is an s-path satisfying ¬(ϕ0 ∨ ϕ1).
Then there is an s-path satisfying ¬ϕ0 and ¬ϕ1.
Then there is an s-path satisfying ¬ϕ0 and there is an s-path satisfying ¬ϕ1.
Therefore Γ `N ϕ0 and Γ `N ϕ1 hold.

Case 5. ϕ = ϕ0R(ϕ1, φ2, φ3, φ4).

The R̄-rule is applicable.
We prove that there are η0, η1, η3, η5, e, w and v such that the premises of

the rule hold.
Let η0 = ¬z(SNϕ).

Let η5 = ¬z(SNGφ4
) = z(θ(¬φ4 ∨Gφ4)).

Let η1 = z(θ(ϕ1)).
Let η3 = z(θ(φ2Uφ3)).
It is easily seen that the 1st, 2nd, 3rd and the 7th premises hold.
Since η3 is the representation of the set of φ2Uφ3 states, every state that is

both a φ2 state and has all the successors in η3 is also in η3. Therefore the 4th
premise holds.

Regarding the 5th premise, by Lemma 47, there are e1, w1 and v1 such that
¬η0 ` (w1)e1x ∧ ([(η1 ∧ η3 ∧ η5 ∧ φ4) ∧ (e1 @1 v1 → η0)]→ e1 6= v1).

Regarding the 6th premise, by Lemma 48, there are e2, w2 and v2 such that
¬η5 |= (w2)e2x ∧ ([φ4 ∧ (e2 @2 v2 → η5)]→ e2 6= v2).

Case 6. ϕ = ϕ0U(ϕ1, φ2, φ3, φ4).

The Ū -rule is applicable.
We prove that there are η0, η1, η5, η6, η7, e1, e2, w1, w2,v1 and v2 such that

the premises of the rule hold.
Let η0 = z(θ(ϕ0)).
Let η1 = z(θ(ϕ)).
Let η5 = z(θ(Fϕ4)).
Let η6 = ¬z(SNϕ).

Let η7 = ¬z(SN∗ϕ).
It is easily seen that the 1st, 2nd, 3rd, 4th, 5th, 6th and 11th premises hold.
Since η1 is the representation of the set of ϕ states, every state that is both an

η0 state and has all the successors in η1 is also in η1. Therefore the 7th premise
holds.

Since η5 is the representation of the set of Fφ4 states, every state that has
all the successors in η5 is also in η5. Therefore the 8th premise holds.

Regarding the 9th premise, it is easily seen that we have ¬η6 ` ¬(η1 ∨ φ2),
and by Lemma 45, there are e1, w1 and v1 such that ¬η6 ` (w1)e1x ∧ ([(η1∨ (φ3∧
η0) ∧ (e1 @1 v1 → η6)]→ e1 6= v1).

Regarding the 10th premise, it is easily seen that we have ¬η7 ` ¬(η5 ∨ φ2),
and by Lemma 46, there are e2, w2 and v2 such that ¬η7 ` (w2)e2x ∧ ([(φ3∨η5)∧
(e2 @2 v2 → η7)]→ e2 6= v2). ut

5.3 Examples

In this subsection, we provide an example showing the use of proof rules for
negative satisfiability. The reader is referred to Appendix B for additional details.

Example 2. Let the program be the one presented in Fig. 2. This program can
be considered as a simplification of the one in Example 1.

Fig. 2. The Modified Program P ′1 = (L1, E
′
1, V ars1)

Verification Goals Suppose that the verification goals are as follows.

(1) M 6|= ((y 6= 3) U (z < 0, z < 0, y 6= 2,⊥))
(2) M 6|= ((y = 2 ∨ y = 3) R (y 6= 3, y 6= z, z > y,>))

The verification goals are reformulated as follows.

(1′) y = 0 ∧ z > 0 |=N ((y 6= 3) U (z < 0, z < 0, y 6= 2,⊥))
(2′) y = 0 ∧ z > 0 |=N ((y = 2 ∨ y = 3) R (y 6= 3, y 6= z, z > y,>))

Accordingly, we may try to establish the following.

(1′′) y = 0 ∧ z > 0 `N ((y 6= 3) U (z < 0, z < 0, y 6= 2,⊥))
(2′′) y = 0 ∧ z > 0 `N ((y = 2 ∨ y = 3) R (y 6= 3, y 6= z, z > y,>))

Notice that we have Θ = (y = 0 ∧ z ≥ 0) and (y = 0 ∧ z > 0)→ Θ.

Proof of (1) For proving (1), we use the rule Ū with Γ, ϕ0, ϕ1, φ2, φ3, φ4 instan-
tiated to respectively y = 0 ∧ z > 0, y 6= 3, z < 0, z < 0, y 6= 2, ⊥. In order
to conveniently define e1, we have to extend F with a new symbol e0 with the
following interpretation (the reader is referred to Section 6.3 for a discussion on
the use of new symbols):

e0(z, y) = if (y < 3 ∨ z > 3) then 3 + z − y; else 3− z.

Let η0, η1, η5, η6, η7, w1, e1, w2, e2 be defined as follows.

η0 : (y 6= 3)
η1 : ¬(((y = 0 ∨ y = 1) ∧ (z > 0)) ∨ ((y = 3 ∨ y = 2) ∧ (z ≥ 0)))
η5 : ⊥
η6 : ¬(y = 0 ∨ y = 1) ∧ (z > 0)
η7 : ¬(((y = 0 ∨ y = 1) ∧ (z > 0)) ∨ ((y = 3) ∧ (z ≥ 0)))
w1 : x ≥ 0
e1 : z − y
w2 : x ≥ 0
e2 : e0(z, y)

Let v1 and v2 be ≤. It is easily seen that wi,vi define a well-founded set
for i = 1, 2 and the premises of the rule hold. By the relativeness condition, we
have the corresponding proofs of the premises (as subgoals), and then by the
rule Ū , we have the proof of the property.

Proof of (2) For proving (2), we use the rule R̄ with Γ, ϕ0, ϕ1, φ2, φ3, φ4 instan-
tiated to respectively y = 0 ∧ z > 0, y = 2 ∨ y = 3, y 6= 3, z 6= y, z > y, >. Let
η0, η1, η3, η5, w1, e1, w2, e2 be defined as follows.

η0 : ¬((y = 0 ∨ y = 1) ∧ (z > 0))
η1 : ¬(y 6= 3)
η3 : (z > y)
η5 : >
w1 : (x ≥ 0)
e1 : (z − y)
w2 : (x ≥ 0)
e2 : 0

Let v1 and v2 be ≤. It is easily seen that wi,vi define a well-founded set
for i = 1, 2 and the premises of the rule hold. By the relativeness condition, we
have the corresponding proofs of the premises (as subgoals), and then by the
rule R̄, we have the proof of the property.

6 CTL∗ Formulas

Let (B, V) be given. In the following, we present a first order CTL∗. The logic
was introduced in [8, 12, 13] and the following presentation is similar to the one
in [11].

Syntax Let φ range over LB,V . The set of CTL∗ formulas over (B, V) is defined
as follows.

Φ ::= φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Φ→ Φ |
X Φ | F Φ |G Φ | Φ U Φ | Φ R Φ | EΦ |AΦ

The operators X,F,G,U,R are called temporal operators, while E and A are
called path quantifiers.

Semantics Let the first order Kripke structure M = 〈I, ρ,Θ〉 over (B, V) be
given.

Definition 18. Let π denote an infinite path of M . Let ϕ (possibly with sub-
scripts) denote a CTL∗ formula. That the path π satisfies ϕ, denoted π |=M ϕ,
or simply π |= ϕ when M is understood in the context, is defined as follows.

π |= ϕ if ϕ ∈ LB,V and I(ϕ)(π0) = true
π |= ¬ϕ if π 6|= ϕ
π |= ϕ0 ∨ ϕ1 if π |= ϕ0 or π |= ϕ1

π |= ϕ0 ∧ ϕ1 if π |= ϕ0 and π |= ϕ1

π |= ϕ0 → ϕ1 if π |= ϕ0 then π |= ϕ1

π |= Xϕ if π1 |= ϕ
π |= Gϕ if ∀i ≥ 0.(πi |= ϕ))
π |= Fϕ if ∃i ≥ 0.(πi |= ϕ))
π |= ϕ0Uϕ1 if ∃i ≥ 0.((πi |= ϕ1) ∧ ∀j < i.(πj |= ϕ0))
π |= ϕ0Rϕ1 if ∀i ≥ 0.(∀j < i.(πj 6|= ϕ0)→ (πi |= ϕ1))
π |= Eϕ if ∃π′(π0).(π′ |= ϕ)
π |= Aϕ if ∀π′(π0).(π′ |= ϕ)

In addition, we may use the two quinary operators U and R, with the fol-
lowing interpretation.

ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4) ≡ ϕ0U(ϕ1 ∨ (ϕ2Rϕ3) ∨ Fϕ4)
ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4) ≡ ϕ0R(ϕ1 ∧ (ϕ2Uϕ3) ∧Gϕ4)

Definition 19. M |= ϕ, if π |= ϕ for every computation π ∈ [[M]].

The usual definition of CTL∗ has a distinction on path formulas and state
formulas. Although state formulas are special path formulas, state formulas are
used as the primary concept for specification of properties of models. In the
above definition, we consider CTL∗ as an extension of LTL and we do not make
a distinction of path formulas and state formulas.

Normal Form A CTL∗ formula is in the negation normal form (NNF), if the
negation ¬ is applied only to first order formulas and the formula does not con-
tain the symbol →. Let NNF(X,U,R,E,A) denote the set of NNF formulas with
temporal operators only in {X,U,R} where U,R are the two quaternary opera-
tors. Let φ range over LB,V . The set of NNF(X,U,R,E,A) formulas is defined as
follows.

Φ ::= φ | Φ ∧ Φ | Φ ∨ Φ |X Φ | Φ U (Φ,Φ, Φ, Φ) | Φ R (Φ,Φ, Φ, Φ) | EΦ |AΦ

Every CTL∗ formula can be transformed into an equivalent one in NN-
F(X,U,R,E,A). Then without loss of generality, we only consider NNF(X,U,R,E,A)
formulas. Formulas not in such a form are considered as an abbreviation of the
equivalent ones in NNF(X,U,R,E,A).

6.1 A Proof System

A CTL∗ formula can be viewed as a generalized LTL formula such that a place
for holding a first order formulas in LTL may be used to hold a formula of the
forms Eϕ and Aϕ. With this view, the relevant definitions regarding LTL can
be adapted for CTL∗, and we can reuse the RED-rules and NEG-rules presented
previously for proving satisfiability and negative satisfiability. That remains is
to formulate proof rules for proof goals of the following forms.

Γ |= Eϕ
Γ |= Aϕ
Γ |=N Eϕ
Γ |=N Aϕ

For this purpose, a set of reduction rules are provided in Table 5. The reduc-
tion rules are used to reduce a proof of a formula to proofs of simpler ones (by
using the rules backwards).

Table 5. Proof Rules: PATH

E
Γ `N ¬ϕ
Γ ` Eϕ A

Γ ` ϕ
Γ ` Aϕ

Ē
Γ ` ¬ϕ
Γ `N Eϕ

Ā
Γ `N ϕ

Γ `N Aϕ

The Proof System The proof system consists of the set of PATH-rules, the set
of RED-rules and the set of NEG-rules in which LTL formulas are replaced by
CTL∗ formulas.

6.2 Soundness and Completeness

Let φ range over LB,V . The subset of CTL∗, denoted SC, called simple CTL∗

formulas, is defined as follows, with UC and Φ being auxiliary subsets of SC.

SC ::= SC ∨ Φ | Φ ∨ SC | SC ∧ SC |X(SC) | Φ R (SC, Φ, Φ, Φ) | Φ U(Φ,Φ, Φ, Φ) |UC
UC ::= Φ | SC U (Φ) | Φ U (UC) |UC ∨ Φ | Φ ∨UC
Φ ::= φ | E(SC) |A(SC)

Lemma 49. The following hold.

– Γ |= Eϕ iff Γ |=N ¬ϕ.
– Γ |= Aϕ iff Γ |= ϕ.
– Γ |=N Eϕ iff Γ |= ¬ϕ.
– Γ |=N Aϕ iff Γ |=N ϕ.

Proof. These equivalences follows from the definition. ut

Soundness The proof system is sound for the set of simple CTL∗ formulas. This
is stated and proved as follows.

Theorem 5. Let ϕ be an SC formula. If Γ ` ϕ, then Γ |= ϕ.

Proof. Due to that there is an interchange between proofs of the forms Γ ` ϕ
and Γ `N ϕ caused by the use of PATH-rules, we strengthen the statement to
be the conjunction of the following.

If Γ ` ϕ then Γ |= ϕ;
If Γ `N ϕ then Γ |=N ϕ.

The strengthened statement is proved by showing that every proof rule is
sound. For the PATH-rules, the soundness follows from Lemma 49. For the RED-
rules and NEG-rules, the reasoning is similar to that of LTL formulas, and is
omitted. ut

Completeness The proof system is relatively complete for the set of simple CTL∗

formulas. This is stated and proved as follows.

Theorem 6. Let ϕ be an SC formula. If Γ |= ϕ, then Γ ` ϕ.

Proof. Due to that there is an interchange between proofs of the forms Γ ` ϕ
and Γ `N ϕ caused by the use of PATH-rules, we strengthen the statement to
be the conjunction of the following.

If Γ |= ϕ then Γ ` ϕ;
If Γ |=N ϕ then Γ `N ϕ.

The strengthened statement is proved by induction on the structure of ϕ. For
the cases where proof-goals are in the forms of Γ |= Eϕ, Γ |= Aϕ, Γ |=N Eϕ and
Γ |=N Aϕ, the PATH-rules can be used, and the completeness of using these
rules follows from Lemma 49. The other forms of proof-goals are handled by
RED-rules and NEG-rules, and the reasoning is similar to that of LTL formulas.

ut

6.3 Discussion on the Use of Symbols

Since the formulation of the auxiliary constructs for the application of the proof
rules requires the use of symbols from B, we may have to extend B and in-
terpreted the extra symbols by extending I, in order to be able to formulate
appropriate auxiliary constructs.

Let (B, V) be given. Let I be an interpretion of B.
Suppose that M = 〈I, ρ,Θ〉 is a Kripke structure over (B, V) and ϕ is a

CTL∗ formula over (B, V).
Let M ′ = 〈I ′, ρ, Θ〉 be a Kripke structure over (B′, V) where B′ = (F ′, P ′)

is an extension of B and I ′ = (D, I ′0) is an extension of I. Then the following
holds.

Proposition 3. Let ϕ be a CTL∗ formula over (B, V). M |= ϕ iff M ′ |= ϕ.

This proposition follows from an inductive argument on the structure of
formulas, and provides a basis for adding a user-defined theory to the initial first
order logic LB in order to be able to make convenient formulation of necessary
assertions.

7 CTL†

We define a subset of CTL∗ and present a customized proof system for this
subset of CTL∗.

Syntax Let φ range over LB,V . The set of CTL† formulas over (B, V) is defined
as follows.

Φ ::= φ | ¬Φ | Φ ∧ Φ |AX Φ |A(Φ U (Φ,Φ, Φ, Φ)) |A(Φ R (Φ,Φ, Φ, Φ))

Semantics Let the first order Kripke structure M = 〈I, ρ,Θ〉 over (B, V) be
given. The semantics of CTL† inherits from that of CTL∗. In addition, we have
the following definition.

Definition 20. Let s be a state. s |=M ϕ (or simply, s |= ϕ, when M is under-
stood in the context), if π |= ϕ for every s-path π of M .

Let slU (π, ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) denote the following.

∃i ≥ 0.((∀j < i.(πj |= ϕ0)) ∧ (
(πi |= ϕ1)∨
∀k ≥ i.(∀j ∈ {i, ..., k − 1}.(πj 6|= ϕ2)→ (πk |= ϕ3))∨
∃k ≥ i.(πk |= ϕ4))).

Let slR(π, ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) denote ¬slU (π,¬ϕ0,¬ϕ1,¬ϕ2,¬ϕ3,¬ϕ4).

Lemma 50. Let s be a state. Let ϕ (possibly with subscripts) denote a CTL†

formula. Then the following hold.

s |= ϕ iff I(ϕ)(s) = true, when ϕ ∈ LB,V
s |= ¬ϕ iff s 6|= ϕ
s |= ϕ0 ∧ ϕ1 iff s |= ϕ0 and s |= ϕ1

s |= AXϕ iff ∀π(s).(π1 |= ϕ)
s |= A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)) iff ∀π(s).(slU (π, ϕ0, ϕ1, ϕ2, ϕ3, ϕ4))
s |= A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)) iff ∀π(s).(slR(π, ϕ0, ϕ1, ϕ2, ϕ3, ϕ4))

Proof. This lemma follows from Definition 20 and the semantics of CTL∗

defined in Definition 18. ut

Lemma 51. M |= ϕ iff s |= ϕ for every s that satisfies s |= Θ.

Proof. This lemma follows from Definition 20 and Definition 19. ut

Remarks On Expressiveness The logic CTL† covers CTL, and it is sufficiently
expressive that it covers those CTL∗ formulas and also the formulas with past
operators in Section 8.2 of [11]. We have the following correspondences.

Formulas Corresponding CTL† Formulas
AGFϕ A(⊥R(>,>, ϕ,>))
AFGϕ A(>U(⊥,⊥, ϕ,⊥))
AG(ϕ0Uϕ1) A(⊥R(>, ϕ0, ϕ1,>))
EFGϕ ¬A(⊥R(>,>,¬ϕ,>))
EGFϕ ¬A(>U(⊥,⊥,¬ϕ,⊥))
AG(ϕ0 → X−1(¬ϕ0 U

−1 ϕ1) A(ϕ1R¬ϕ0) ∧AG(ϕ0 → AXA(ϕ1R¬ϕ0))
AG(ϕ0 → (F−1ϕ1 ∧AFϕ2)) A(¬ϕ0U(ϕ1,⊥,¬ϕ0,⊥)) ∧AG(ϕ0 → AFϕ2)

7.1 A Proof System

In the following, we use Γ and ∆ to denote sets of CTL† formulas. For brevity,
we sometimes write ϕ for {ϕ}, and Γ, ϕ for Γ ∪ {ϕ}.

– A state s is called a ϕ-state, if s |= ϕ.
– A state s is called a Γ -state, if it is a ϕ-state for every ϕ ∈ Γ .

For convenience, the set of ϕ-states is denoted θ(ϕ).

Definition 21. Γ |= ∆, if every Γ -state is a ϕ-state for some ϕ ∈ ∆.

Proposition 4. Let ϕ be a CTL† formula. M |= ϕ iff Θ |= ϕ.

This proposition is a consequence of Lemma 51 and the definition of Θ |= ϕ.

Proving First Order Formulas When Γ and ∆ are two sets of first order
formulas, Γ |= ϕ holds iff the conjunction of the formulas of Γ implies the
disjunction of the formulas of ∆. We assume that we have an underlying proof
system for proving Γ |= ∆ in this case.

Proving Temporal Formulas Let B = (F, P) be given. Let e (possibly with
subscripts) denote a term of the first order logic, w denote a first order formula
with x as the only free variable, v denote a variable, η denote a first order formula,
and v denote a binary relation symbol of P . For brevity, we use A(U4

i=0ϕi) to
denote A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)). Similarly for A(R4

i=0ϕi). A set of reduction rules
is provided in Table 6.

For the application of the rule involving both of w and u, it is required
that w, u and v define a weak-well-founded set. For the application of the rule
involving w without accompanying u, it is required that w,v define a well-
founded set. Similar restriction applies to w1,v1, w2,v2 as well. In addition,
v, v1, v2 are required to be variables not appearing in any places other than
those explicitly specified in the rule. For convenience, these rules are referred
to as CTL† rules. The first rules is named ¬-left, since it is a ¬-rule and the
principal formula is on the left of `. It is similar for other rules. There are two
∧-left rules. In this case, the first one is referred to as ∧-left-one and the other
is referred to as ∧-left-two.

Derived Rules For convenience, we formulate a set of derived rules for the bi-
nary operators U,R. The rules are presented in Table 7. The explanation of the
derivation is as follow.

Rule Origin True False
RLR R-left ϕ2, ϕ3, ϕ4, η2, η3, η4, η5

ULU U -left η6, η7 ϕ2, ϕ3, ϕ4, η2, η3, η4, η5

RRR R-right ϕ2, ϕ3, ϕ4, η3, η4 η2

URU U -right ϕ2, ϕ3, ϕ4, η2, η3, η4, η5, η6, u

Soundness and Completeness The proofs of soundness and completeness are
similar to that in the previous sections. For completeness of the presentation,
the soundness and completeness are formulated and proved in the following
subsections.

7.2 Soundness

The proof system is sound for CTL†. This is stated and proved as follows.

Theorem 7. Let Γ,∆ be two sets of CTL† formulas. If Γ ` ∆, then Γ |= ∆.

Proof by induction. If Γ and ∆ are two sets of first order formulas, by the
assumption on that the underlying proof system for the first order logic is sound,
we have Γ ` ∆ implies Γ |= ∆. In the following, we prove the soundness of each
of the CTL† rules.

Case 1. ¬-left.

Table 6. CTL† Rules

¬ Γ ` ∆,ϕ
Γ,¬ϕ ` ∆

Γ,ϕ ` ∆
Γ ` ∆,¬ϕ

∧ Γ, ϕ0 ` ∆
Γ,ϕ0 ∧ ϕ1 ` ∆

Γ,ϕ1 ` ∆
Γ,ϕ0 ∧ ϕ1 ` ∆

Γ ` ∆,ϕ0 Γ ` ∆,ϕ1

Γ ` ∆,ϕ0 ∧ ϕ1

X
ϕ1 ` η1 Γ, [η1] ` ∆

Γ,AXϕ1 ` ∆
η1 ` ϕ1 Γ ` ∆, [η1]

Γ ` ∆,AXϕ1

R

ϕi ` ηi for i ∈ {0, 1, 2, 3, 4}
η2, [η3] ` η3
¬η0 ` (w1)e1x ∧ ([η1 ∧ η3 ∧ η5 ∧ η4 ∧ (e1 @1 v1 → η0)]→ e1 6= v1)
¬η5 ` (w2)e2x ∧ ([η4 ∧ (e2 @2 v2 → η5)]→ e2 6= v2)

Γ, η0, η1, η3, η5, η4 ` ∆
Γ,A(R4

i=0ϕi) ` ∆

ηi ` ϕi for i ∈ {0, 1, 2, 3, 4}
η1 ` (η2 ∨ η3) ∧ η4

η1,¬η0 ` [η1]
η4 ` [η4]
η2 ` we

x ∧ (e = v → [η3 ∨ (η2 ∧ e @ v)])
Γ ` ∆, η1
Γ ` ∆,A(R4

i=0ϕi)

U

ϕi ` ηi for i ∈ {0, 1, 2, 3, 4}
η0, η6, η3 ` η1

η5 ` η1
η4 ` η5

η7, η3 ` η1
η0, [η1] ` η1

[η5] ` η5
¬η6 ` ¬(η1 ∨ η2) ∧ (w1)e1x ∧ ([(η1 ∨ (η3 ∧ η0)) ∧ (e1 @1 v1 → η6)]→ e1 6= v1)
¬η7 ` ¬(η5 ∨ η2) ∧ (w2)e2x ∧ ([(η5 ∨ η3) ∧ (e2 @2 v2 → η7)]→ e2 6= v2)
Γ, η1 ` ∆

Γ,A(U4
i=0ϕi) ` ∆

ηi ` ϕi for i ∈ {0, 1, 2, 3, 4}
η6,¬η2,¬η4 ` [η6]

η6 ` η3, η5, η4
η6,¬η3 ` ¬ue

x
η0 ` we

x ∧ (e = v → [η1 ∨ η6 ∨ (η0 ∧ e @ v)])
η5 ` (w1)e1x ∧ (e1 = v1 → [η4 ∨ (η5 ∧ e1 @1 v1)])
Γ ` ∆, η0, η1, η6
Γ ` ∆,A(U4

i=0ϕi)

Table 7. CTL† Derived Rules

RLR
ϕ0 ` η0 ϕ1 ` η1 ¬η0 ` we

x ∧ ([η1 ∧ (e @ v → η0)]→ e 6= v) Γ, η0, η1 ` ∆
Γ,A(ϕ0Rϕ1) ` ∆

ULU
ϕ0 ` η0 ϕ1 ` η1 η0, [η1] ` η1 Γ, η1 ` ∆

Γ,A(ϕ0Uϕ1) ` ∆

RRR
η0 ` ϕ0 η1 ` ϕ1 η1,¬η0 ` [η1] Γ ` ∆, η1

Γ ` ∆,A(ϕ0Rϕ1)

URU
η0 ` ϕ0 ∧ we

x ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]) η1 ` ϕ1 Γ ` ∆, η0 ∨ η1
Γ ` ∆,A(ϕ0Uϕ1)

Suppose Γ |= ∆,ϕ. We prove Γ,¬ϕ |= ∆ as follows.

Let s be a Γ ∪ {¬ϕ} state.

If s is a state of some formula of ∆, we are done. Otherwise, by the premise,
s is a state of ϕ, which yields a contradiction. Therefore s is a state of some
formulas of ∆.

Case 2. ¬-right.

Suppose Γ, ϕ |= ∆. We prove Γ |= ∆,¬ϕ as follows.

Let s be a Γ -state.

If s is a state of ¬ϕ, we are done. Otherwise, by the premise, s is a state of
∆. Therefore s is a state of some formulas of ∆ ∪ {¬ϕ}.

Case 3. ∧-left.

There are two ∧-left rules.

We only consider ∧-left-one, the other is similar.

Suppose Γ, ϕ0 |= ∆. We prove Γ, ϕ0 ∧ ϕ1 |= ∆ as follows.

Let s be a Γ ∪ {ϕ0 ∧ ϕ1} state.

Then s is a Γ ∪ {ϕ0}-state. By the premise, s is a state of some formulas of
∆. Therefore Γ, ϕ0 ∧ ϕ1 |= ∆.

Case 4. ∧-right.

Suppose Γ |= ∆,ϕ0 and Γ |= ∆,ϕ1. We prove Γ |= ∆,ϕ0 ∧ ϕ1 as follows.

Let s be a Γ -state.

If s is a state of some formula of ∆, we are done. Otherwise, by the premise,
s is a state of ϕ0 and s is a state of ϕ1. Then s is a state of ϕ0 ∧ ϕ1. Therefore
Γ |= ∆,ϕ0 ∧ ϕ1.

Case 5. X-left.

Suppose that the premises hold. We prove Γ,AXϕ1 |= ∆ as follows.
Let s be a state of Γ ∪ {AXϕ1}.
If s is a state of some formula of ∆, we are done. Otherwise, by the second

premise, some successor state s′ of s is not a state of η1. By the first premise, s′

is not a ϕ1 state. Therefore s is not an AXϕ1 state, which yields a contradiction.
Therefore s is a state of some formulas of ∆.

Case 6. X-right.

Suppose that the premises hold. We prove Γ |= ∆,AXϕ1 as follows.
Let s be a state of Γ .
If s is a state of some formula of ∆, we are done. Otherwise, by the second

premise, every successor state of s is an η1 state. Then by the first premise, every
successor state of s is a ϕ1 state. Therefore s is an AXϕ1 state. Therefore s is a
state of some formulas of ∆.

Case 7. R-left.

Let ϕ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)).
Suppose that the premises hold. We prove Γ, ϕ |= ∆ as follows.
Let s be a state of Γ ∪ {ϕ}.
If s is a state of some formula of ∆, we are done.
Otherwise, suppose that s is not a state of any formula of ∆.
We prove that there is a contradiction, i.e., s is not a state of ϕ, meaning

that there is an s-path satisfying ¬ϕ0U(¬ϕ1 ∨ (¬ϕ2R¬ϕ3) ∨ F (¬ϕ4)).
Let ψ denote ¬η0U(¬η1 ∨ (¬η2R¬η3) ∨ F (¬η4)). By the 1st premise, it is

sufficient to show that there is an s-path satisfying ψ.
By the 5th premise, s is a state of ¬η1∨¬η3∨ (¬η5∨¬η4)∨¬η0. We consider

four cases.

– s is a state of ¬η1.
Then any s-path satisfies ψ.

– s is a state of ¬η3.
By the 2nd premise and Lemma 39, there is an s-path π satisfying ¬η2R¬η3.
Then π is an s-path satisfying ψ.

– s is a state of ¬η5 ∨ ¬η4.
By the 4th premise and Lemma 40, there is an s-path π satisfying ¬η5U¬η4.
Then π satisfies F¬η4.
Then π is an s-path satisfying ψ.

– s is a state of ¬η0.
By the 3rd premise and Lemma 40, there is an s-path π and a k ≥ 0 such
that πi is a ¬η0 state for i = 0, ..., k − 1 and πk is a ¬(η1 ∧ η3 ∧ η5 ∧ η4).
Then similar to the reasoning in the three previous cases, we have a πk-path
π′ satisfying ψ.
Then π0 · · ·πk−1π

′ is an s-path satisfying ψ.

Case 8. R-right.

Let ϕ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)).
Suppose that the premises hold. We prove Γ |= ∆,ϕ as follows.
Let s be a state of Γ .
If s is a state of some formulas of ∆, we are done.
Otherwise, by the 6th premise, s is a state of η1.
Let ψ denote η0R(η1 ∧ (η2Uη3)∧Gη4). By the 1st premise, it is sufficient to

show that every s-path satisfies ψ.
By the 3rd premise and Lemma 24, we have for every s-path π, either every

state on the path is an η1 state or there is a k ≥ 0 such that π0, ..., πk are η1

states and πk is an η0 state. We have two cases.

– Every state on π is an η1 state.
By the 2nd premise, π0, ..., πk are η4 ∧ (η2 ∨ η3) states.
By the 5th premise, every η2 state leads to an η3 state, along every direction.
Then there are infinitely many occurrences of η3 states on π.
Therefore π |= ψ.

– π0, ..., πk are η1 states and πk is an η0 state.
By the 2nd premise, π0, ..., πk are η4 ∧ (η2 ∨ η3) states.
By the 5th premise, either πk is an η3 state or it leads to an η3 state.
By the 4th premise, every state on every πk-path satisfies η4.
Therefore π |= ψ.

Case 9. U -left.

Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)).
Suppose that the premises hold. We prove Γ, ϕ |= ∆ as follows.
Let s be a state of Γ ∪ {ϕ}.
If s is a state of some formulas of ∆, we are done. Otherwise, we prove that

there is a contradiction, i.e., s is not a state of ϕ, meaning that there is an s-path
satisfying ¬ϕ0R(¬ϕ1 ∧ (¬ϕ2U¬ϕ3) ∧G¬ϕ4).

Let ψ denote ¬η0R(¬η1 ∧ (¬η2U¬η3) ∧ G¬η5). By the 1st premise and the
4th premise, it is sufficient to show that there is an s-path satisfying ψ.

By the 10th premise, s is a state of ¬η1.
By the 6th premise and Lemma 39, we have an s-path π such that either (1)

there is a k ≥ 0 such that π0, ..., πk are ¬η1 states and πk is a ¬η0 state, or (2)
every state on the path is a ¬η1 state. We have two cases.

– Case 1:
π0, ..., πk are ¬η1 states and πk is a ¬η0 state.
Without loss of generality, we may assume that π0, ..., πk−1 are η0 states.
By the 2nd premise, π0, ..., πk−1 are ¬η6 or ¬η3 states, and then by the first
part of the 8th premise, π0, ..., πk−1 are ¬η2 or ¬η3 states.
By the 5th premise, πk is a ¬η3 state or a ¬η7 state.
We consider two subcases.
(a) πk is a ¬η3 state.
Since πk is a ¬η1 state, by the 3rd premise, πk is a ¬η5 state.
By the 7th premise and Lemma 39, there is a πk-path π′ satisfying G¬η5.

Then π′ satisfies ¬η3 ∧G¬η5.
Then π0 · · ·πk−1π

′ is an s-path satisfying ψ.
(b) πk is a ¬η7 ∧ η3 state.
Since πk is a ¬η7 ∧ η3, by the 9th premise and Lemma 40, there is a πk-path
π′ satisfying (¬η2 ∧ η5)U(¬η3 ∧ ¬η5).
Then by the 7th premise and Lemma 39, this path can be modified to a
πk-path π′′ satisfying (¬η2U¬η3) ∧G¬η5.
Then π0 · · ·πk−1π

′′ is an s-path satisfying ψ.
– Case 2:

Every state on π is a ¬η1 state.
Without loss of generality, we may assume that πi is an η0 state for all i ≥ 0.
By the 2nd premise, every state on π is a ¬η6 or ¬η3 state.
If there are infinitely many ¬η3 state on π, then π is an s-path satisfying ψ.
Otherwise, let πk be a ¬η6 ∧ η3 state.
By the 8th premise and Lemma 40, there is a πk-path satisfying (¬η2 ∧
¬η1)U((¬η3 ∧ ¬η1) ∨ (¬η0 ∧ ¬η1)).
Since by the 3rd premise, a ¬η1 state is also a ¬η5 state, and then by the
7th premise and Lemma 39, the path π can be modified to a πk-path π′

satisfying (¬η2 ∧ ¬η1)U((¬η3 ∧ ¬η1) ∨ (¬η0 ∧ ¬η1)) ∧G¬η5.
Let π′k′ be the first (¬η3 ∧ ¬η1) ∨ (¬η0 ∧ ¬η1) state on π′.
We consider two subcases.
(a) π′k′ is a (¬η0 ∧ ¬η1) state.
Since π0, ..., πk−1, π

′
0, ..., π

′
k′ are ¬η1 state and π′k′ is a ¬η0 state, by the

arguments in Case 1, we have an s-path satisfying ψ.
(b) π′k′ is a (¬η3 ∧ ¬η1) state.
Without loss of generality, we may assume that η0 is satisfied on π′1, ..., π

′
k′ .

Since π′0 = πk and πk is an η3 state, we have that k′ ≥ 1.
Then π′k′ is used a new starting point replacing the original state s and the
process of the construction of a path satisfying ψ is repeated.
Either the process stops at some step where we have an s-path satisfying
ψ as in one of the previous cases, or it continues to infinity and we have
an s-path ζ such that ¬η1 and η0 are satisfied at all positions and ¬η3 is
satisfied on infinitely many positions, and then ζ |= ψ.

Case 10. U -right.

Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)).
Suppose that the premises hold. We prove Γ |= ∆,ϕ as follows.
Let s be a state of Γ .
If s is a state of some formulas of ∆, we are done.
Otherwise, suppose that s is not a state of ϕ, i.e., there is an s-path satisfying

¬ϕ0R(¬ϕ1 ∧ (¬ϕ2U¬ϕ3) ∧G¬ϕ4).
Let ψ denote ¬η0R(¬η1 ∧ (¬η2U¬η3) ∧G¬η4).
Then by the 1st premise, there is an s-path satisfying ψ.
We prove that there is a contradiction.
By the 7th premise, s is an η0 ∨ η1 ∨ η6 state.

By the 4th and 5th premises and Lemma 25, for every s-path ζ, (i) there is
an m ≥ 0 such that ζ0, ..., ζm−1 are η0 states and ζm is an η1 ∨ η6 state, or (ii)
for all i ≥ 0 we have that ζi is an η0 state and there is a l ≥ 0 such that ζj is an
η3 state for all j ≥ l.

Suppose π is an s-path satisfying ψ. We divide the possibility of π into two
cases.

– Case 1:

There is a k ≥ 0 such that πk satisfies ¬η0, and πi satisfies ¬η1 and ¬η2U¬η3

for i = 0, 1, ..., k, and πi satisfies ¬η4 for i ≥ 0.

Let k be the least number such that the above holds.

This case is inconsistent with condition (ii), and it remains to show that it
is inconsistent with (i).

By the 6th premise, πi is a ¬η5 state for all i ≥ 0, otherwise, η4 has to hold
somewhere on the path.

By the third premise, η6 and ¬η3 cannot be satisfied at the same position
on the path.

Since πi |= ¬η2U¬η3 for i = 0, 1, ..., k, η6 cannot be satisfied at any πi for
i = 0, 1, ..., k, otherwise, suppose that πj satisfies η6, then by the 2nd premise,
η6 and η3 has to be satisfied for all i ≥ j, contradicting to πj |= ¬η2U¬η3.

This means that πi is a ¬η1 ∧ ¬η6 state for i = 0, ..., k.

This together with that πk is a ¬η0 state is inconsistent with condition (i).

– Case 2:

For all i ≥ 0, we have πi satisfies ¬η1 and ¬η2U¬η3 and ¬η4.

Since πi satisfies ¬η2U¬η3 for all i ≥ 0, there are infinitely many positions
on π satisfying ¬η3.

This is inconsistent with condition (ii).

In addition, by the arguments similar to that in Case 1, we have that πi is
a ¬η1 ∧ ¬η6 state for every i ≥ 0.

This is inconsistent with condition (i).

ut

7.3 Relative Completeness

Relativeness The relative completeness assumes the expressiveness condition
stated in Section 3.2 and the following condition on the underlying first order
proof system.

If Γ and ∆ are sets of first order formulas and Γ ` ∆ is needed as a
premise in the proof, then Γ ` ∆ is provable by the underlying first
order proof system when Γ |= ∆ holds.

In the following, we prove that the proof system is relatively complete.

Derived Rules For the first, we provide a derived rule for proving conjunctive
formulas as follows.

Γ, ϕ0, ϕ1 ` ∆
Γ,ϕ0 ∧ ϕ1 ` ∆

It is easily seen that this rule can be derived from the rules for conjunction.

Definition 22. Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)) and ϕ′ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)).
Then S∗ϕ, Sϕ, SNϕ , SN∗ϕ and SNϕ′ are sets of states defined as follows.

– s ∈ S∗ϕ, if s is an A((ϕ2Rϕ3) ∨ Fϕ4) state.
– s ∈ Sϕ, if s is a ϕ state and not a ϕ1 state and not an S∗ϕ state.

– s ∈ SNϕ , if s is a ϕ0 state and a ϕ3 state and not a ϕ state.

– s ∈ SN∗ϕ , if s is a ϕ3 state and not an S∗ϕ state.

– s ∈ SNϕ′ , if s is a ϕ1 state, an A(ϕ2Uϕ3) state, an AGϕ4 state, and not a ϕ′

state.

The set SA(ϕ0Uϕ1), whereA(ϕ0Uϕ1) is a special case ofA(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)),
is defined according to Sϕ, that is s ∈ SA(ϕ0Uϕ1) iff s is an A(ϕ0Uϕ1) s-
tate and not a ϕ1 state. The set SNAGϕ1

, where AGϕ1 is a special case of

A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)), is defined according to SNϕ′ , that is s ∈ SAGϕ1
iff s is

a ϕ1 state and not an AGϕ1 state.

Lemma 52. Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)) and ϕ′ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)).

1. Let S1 = Sϕ, Y1 = θ(ϕ1) ∪ S∗ϕ, and Z1 = θ(ϕ3).

2. Let S2 = SNϕ and Y2 = θ̄(ϕ ∨ (ϕ3 ∧ ϕ0)).

3. Let S3 = SN∗ϕ and Y3 = θ̄(ϕ3 ∨AFϕ4).

4. Let S4 = SNϕ′ and Y4 = θ̄(ϕ1) ∪ θ̄(A(ϕ2Uϕ3)) ∪ θ̄(AGϕ4).

Then Gr(S1) is a Y1-bounded Z1-infinite subgraph, and for i ∈ {2, 3, 4}, Gr(Si)
is a Yi-terminating subgraph.

Proof. The first part of this lemma corresponds to Lemma 36 and Lemma
37, and can be proved in a similar way. The second part corresponds to Lemma
44, and can be proved directly by applying the definition of the respective sets
in Definition 22. ut

In the following, we present a set of lemmas, numbered from 53 to 59, which
correspond to respectively Lemmas 38, 34, 35, 45, 46, 47, 48.

Lemma 53. Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)). Let η0 = z(Sϕ), ηi = z(θ(ϕi))
for i = 1, 3, η6 = z(S∗ϕ) states. Then there are e, w, u and v such that the
following hold.

– η0,¬η3 |= ¬uex;
– η0 |= wex ∧ (e = v → [η1 ∨ η6 ∨ (η0 ∧ e @ v)]).
– ({σ(x) | I(w)(σ)},v) is {σ(x) | I(w ∧ u)(σ)}-well-founded.

Proof. This lemma follows from Lemma 21, with the following instantiation
of S,Z, Y .

– S = Sϕ.
– Z = θ(ϕ3).
– Y = θ(ϕ1) ∪ S∗ϕ.

The conditions in Lemma 21 are ensured by Lemma 52(1). ut

Lemma 54. Let ϕ = A(ϕ0Uϕ1). Let η0 = z(Sϕ) and η1 = z(θ(ϕ1)). Then
there are e, w and v such that they define a well-founded set and

η0 |= wex ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]).

Proof. This lemma is a special case of Lemma 53, with ϕ2, ϕ3, ϕ4, η3, η6, u
replaced by ⊥. ut

Lemma 55. Let ϕ = AFϕ1. Let η0 = z(θ(ϕ1 ∧ AFϕ1)) and η1 = z(θ(ϕ1)).
Then there are e, w and v such that they define a well-founded set and

η0 |= wex ∧ (e = v → [η1 ∨ (η0 ∧ e @ v)]).

Proof. This lemma is a special case of Lemma 54, with A(ϕ0Uϕ1) replaced
by AFϕ1 and SA(ϕ0Uϕ1) replaced by θ(ϕ1 ∧AFϕ1). ut

Lemma 56. Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)). Suppose that η6 = ¬z(SNϕ), ηi =
z(θ(ϕi)) for i = 0, 3, and η1 = z(θ(ϕ)). Then there are e, w and v such that
they define a well-founded set and

¬η6 |= wex ∧ (([(η1 ∨ (η3 ∧ η0)) ∧ (e @ v → η6)]→ e 6= v)).

Proof. This lemma follows from Lemma 23, with the following instantiation
of S and Y .

– S = SNϕ and z(S) = z(SNϕ) = ¬η6.

– Y = θ̄(ϕ ∨ (ϕ3 ∧ ϕ0)) and z(Y) = ¬(η1 ∨ (η3 ∧ η0)).

The conditions in Lemma 23 are ensured by Lemma 52(2). ut

Lemma 57. Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)). Suppose that η7 = ¬z(SN∗ϕ),
η3 = z(θ(ϕ3)), and η5 = z(θ(AFϕ4)). Then there are e, w and v such that
they define a well-founded set and

¬η7 |= wex ∧ (([(η5 ∨ η3) ∧ (e @ v → η7)]→ e 6= v)).

Proof. This lemma follows from Lemma 23, with the following instantiation
of S and Y .

– S = SN∗ϕ and z(S) = z(SN∗ϕ) = ¬η7.

– Y = θ̄(ϕ3 ∨AFϕ4) and z(Y) = ¬(η3 ∨ η5).

The conditions in Lemma 23 are ensured by Lemma 52(3). ut

Lemma 58. Let ϕ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)). Suppose that η0 = ¬z(SNϕ), ηi =
z(θ(ϕi)) for i = 1, 4, η3 = z(θ(A(ϕ2Uϕ3)), and η5 = z(θ(¬ϕ4 ∨AGϕ4)). Then
there are e, w and v such that they define a well-founded set and

¬η0 |= wex ∧ (([η1 ∧ η3 ∧ η5 ∧ η4 ∧ (e @ v → η0)]→ e 6= v)).

Proof. This lemma follows from Lemma 23, with the following instantiation
of S and Y .

– S = SNϕ and z(S) = z(SNϕ) = ¬η0.

– Y = θ̄(ϕ1) ∪ θ̄(A(ϕ2Uϕ3)) ∪ θ̄(AGϕ4) and z(Y) = ¬(η1 ∧ η3 ∧ η5 ∧ η4).

The conditions in Lemma 23 are ensured by Lemma 52(4). ut

Lemma 59. Let ϕ = AGϕ1. Suppose that η0 = ¬z(SNAGϕ1
), and η1 = z(θ(ϕ1)).

Then there are e, w and v such that they define a well-founded set and

η0 |= wex ∧ ([η1 ∧ (e @ v → ¬η0)]→ e 6= v).

Proof. This lemma is a special case of Lemma 58, with ϕ0, ϕ2, ϕ3, ϕ4 replaced
by >. ut

Completeness The proof system is relatively complete for CTL†. This is stated
and proved as follows.

Theorem 8. Let Γ,∆ be two sets of CTL† formulas. If Γ |= ∆, then Γ ` ∆.

Proof. Suppose that Γ |= ∆ holds. If Γ and ∆ are two sets of first order
formulas, we have Γ ` ∆ by the relativeness condition. The rest of cases is
proved by induction on the structure of Γ and ∆ as follows.

Case 1. Γ = Γ ′ ∪ {¬ϕ}.

The rule ¬-left is applicable.
We have to prove Γ ′ |= ∆,ϕ under the supposition Γ ′,¬ϕ |= ∆.
Let s be a state of Γ ′ .
If s is a state of ϕ, we are done. Otherwise, s is state of Γ ′ ∪ {¬ϕ}. Then by

the supposition, s is a state of some formula of ∆.

Case 2. Γ = Γ ′ ∪ {ϕ0 ∧ ϕ1}.

The rule ∧-left is applicable.
Since we have the derived rule for conjunction, it is sufficient to prove Γ ′, ϕ0, ϕ1 |=

∆ under the supposition Γ ′, ϕ0 ∧ ϕ1 |= ∆.
Let s be a state of Γ ′ ∪ {ϕ0, ϕ1}.
Then s is a state of Γ ′ ∪ {ϕ0 ∧ ϕ1}. By the supposition, s is a state of some

formula of ∆.

Case 3. Γ = Γ ′ ∪ {AXϕ1}.

The rule X-left is applicable.
We have to prove that there is an η1 such that the premises the rule hold

under the supposition Γ,AXϕ1 |= ∆.
Let η1 be the representation of the set of ϕ1-states. It is easily seen that the

premises hold.

Case 4. Γ = Γ ′ ∪ {A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4))}.

The rule R-left is applicable.
Let ϕ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)).
We have to prove that there are η0, ..., η5, e1, e2, w1, w2,v1 and v2 such that

the premises of the rule hold under the supposition Γ ′, ϕ |= ∆.
Let ηi = z(θ(ϕi)) for i = 1, 2, 4.
Let η3 = z(θ(A(ϕ2Uϕ3))).
Let η0 = ¬z(SNϕ).

Let η5 = ¬z(SNAGϕ4
) = z(θ(¬ϕ4 ∨AGϕ4)).

It is easily seen that the 1st premise holds.
Since η3 is the representation of the set of A(ϕ2Uϕ3) states, every state that

is both a ϕ2 state and has all the successors in η3 is also in η3. Therefore the
2ns premise holds.

Regarding the 3rd premise, by Lemma 58, there are e1, w1 and v1 such that
¬η0 |= (w1)e1x ∧ ([(η1 ∧ η3 ∧ η5 ∧ η4) ∧ (e1 @1 v1 → η0)]→ e1 6= v1).

Regarding the 4th premise, by Lemma 59, there are e2, w2 and v2 such that
¬η5 |= (w2)e2x ∧ ([η4 ∧ (e2 @2 v2 → η5)]→ e2 6= v2).

Let s be a state of Γ .
If it is a state of ∆, then the 5th premise holds. Otherwise, since s is not a

state of ϕ, s is either a state of ¬η0, a state of ¬η1, a state of ¬η3,a state of ¬η5,
or a state of ¬η4. Therefore the 5th premise holds. ut

Case 5. Γ = Γ ′ ∪ {A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4))}.

The rule U -left is applicable.
Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)).
We have to prove that there are η0, ..., η7, e1, w1, e2, w2 and v1,v2 such that

the premises of the rule hold under the supposition Γ ′, ϕ |= ∆.
Let ηi = z(θ(ϕi)) for i = 0, 2, 3, 4.
Let η1 = z(θ(ϕ)).
Let η5 = z(θ(AFϕ4)).
Let η6 = ¬z(SNϕ).

Let η7 = ¬z(SN∗ϕ).
It is easily seen that the 1st, 2nd, 3rd, 4th, 5th and 10th premises hold.
Since η1 is the representation of the set of ϕ states, every state that is both an

η0 state and has all the successors in η1 is also in η1. Therefore the 6th premise
holds.

Since η5 is the representation of the set of AFϕ4 states, every state that has
all the successors in η5 is also in η5. Therefore the 7th premise holds.

Regarding the 8th premise, it is easily seen that we have ¬η6 |= ¬(η1 ∨ η2),
and by Lemma 56, there are e1, w1 and v1 such that ¬η6 |= (w1)e1x ∧ ([(η1∨ (η3∧
η0) ∧ (e1 @1 v1 → η6)]→ e1 6= v1).

Regarding the 9th premise, it is easily seen that we have ¬η7 |= ¬(η5∨η2), and
by Lemma 57, there are e2, w2 and v2 such that ¬η7 |= (w2)e2x ∧([(η3∨η5)∧(e2 @2

v2 → η7)]→ e2 6= v2).

Case 6. ∆ = ∆′ ∪ {¬ϕ}.

The rule ¬-right is applicable.
We have to prove Γ, ϕ |= ∆′ under the supposition Γ |= ∆′,¬ϕ.
Let s be a state of Γ∪{ϕ}. Since s cannot be a state of ¬ϕ, by the supposition,

s is a state of some formula of ∆′.

Case 7. ∆ = ∆′ ∪ {ϕ0 ∧ ϕ1}.

The rule ∧-right is applicable.
We have to prove Γ |= ∆′, ϕ0 and Γ |= ∆′, ϕ1 under the supposition Γ |=

∆′, ϕ0 ∧ ϕ1.
Let s be a state of Γ .
If s is a state of some formula of ∆′, we are done. Otherwise, by the suppo-

sition, s is a state ϕ0 ∧ ϕ1. Then s is a state of both ϕ0 and ϕ1.

Case 8. ∆ = ∆′ ∪ {AXϕ1}.

The rule X-right is applicable.
We have to prove that there is an η1 such that the premises of the rule hold

under the supposition Γ |= ∆′, AXϕ1.
Let η1 be the representation of the set of ϕ1-states.
It is easily seen that the premises hold.

Case 9. ∆ = ∆′ ∪ {A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4))}.

The rule R-right is applicable.
Let ϕ = A(ϕ0R(ϕ1, ϕ2, ϕ3, ϕ4)).
We have to prove that there are η0, ..., η4, e, w and v such that the premises

of the rule hold under the supposition Γ |= ∆′, ϕ.
Let ηi = z(θ(ϕi)) for i = 0, 3.
Let η1 = z(θ(ϕ)).
Let η2 = z(SA(ϕ2Uϕ3)).
Let η4 = z(θ(AGϕ4)).
It is easily seen that the 1st and 6th premises hold.
Since an η1 state satisfies A((ϕ2Uϕ3) ∧ Gϕ4), it satisfies ϕ4 and it either

satisfies η3 or satisfies η2, and therefore the 2nd premise holds.
Since an η1 state is a ϕ state, if it is not an ϕ0 state, every successor state

of the state must be a ϕ state, and therefore the 3rd premise holds.

Since an η4 state is an AGϕ4 state, every successor state of the state must
be an AGϕ4 state, and therefore the 4th premise holds.

By the construction of η2, we have η2 |= ϕ2, and by Lemma 54, there are
e, w and v such that the 5th premise of the rule hold.

Case 10. ∆ = ∆′ ∪ {A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4))}.

The rule U -right is applicable.
Let ϕ = A(ϕ0U(ϕ1, ϕ2, ϕ3, ϕ4)).
We have to prove that there are η0, ..., η6, e, w, u,v, e1, w1 and v1 such that

the premises of the rule hold under the supposition Γ |= ∆′, ϕ.
Let η0 = z(Sϕ).
Let ηi = z(θ(ϕi)) for i = 1, 2, 3, 4.
Let η5 = z(θ(¬ϕ4 ∧AFϕ4)).
Let η6 = z(S∗ϕ) = z(θ(A((ϕ2Rϕ3) ∨ Fϕ4)).
It is easily seen that the 1st premise holds.
By the construction of η6, if an η6 state is not a ϕ4 state and not an ϕ2 state,

then the successors of such a state must still be a η6 state. Therefore the 2nd
premise holds.

By the construction of η6, if an η6 state is not a ϕ3 state, then it must be an
AFϕ4 state. Therefore the 3rd premise holds.

By the construction of η0 and by Lemma 53, there are e, w, u and v such
that the 4th and 5th premises of the rule hold.

By the construction of η5 and η4, and Lemma 55, there are e1, w1 and v1

such that the 6th premise of the rule holds.
Let s be a state of Γ .
If it is a state of ∆′, then the 7th premise holds. Otherwise, since s is a state

of ϕ, s is either a state of η1, a state of η6, or a state of η0. Therefore the 7th
premise holds. ut

8 Verification Condition Generation

The verification condition generation process may be supported by a verification
condition generation tool. For experimental purpose, such a tool, denoted vcgtp,
has been developed based on the deduction rules. By providing the necessary
auxiliary constructs, the functionality of the tool is to generate premises of proof
goals, and to some extend, make simplifications of the premises. In this section,
we use Lamport’s bakery algorithm for mutual exclusion for two processes [23]
as an example to demonstrate the process of proving temporal properties using
the verification condition generation approach. The tool and the files contain-
ing the model and auxiliary constructs for illustrating the verification condition
generation process described in this section are available3, and the reader may
refer to Appendix B for details of the formulation of the algorithm, properties,
auxiliary constructs, and axioms in the input language of the tool.

3 http://lcs.ios.ac.cn/~zwh/vcgtp/

Mutual Exclusion The transition relation of the model (i.e. the algorithm) is
shown in Fig. 3, in which the constant symbols, function symbols, and predicate
symbols are interpreted over natural numbers as usual, and the three constants
s0, s1, s2 are interpreted as different numbers.

Fig. 3. Lamport’s Mutual Exclusion Algorithm

The initial states of the model are characterized by the following formula.

(p1 = s0 ∧ p2 = s0 ∧ y1 = 0 ∧ y2 = 0).

Properties We consider the following properties. Of these properties, the third
one is not satisfied by the algorithm.

(1) G(¬(p1 = s2 ∧ p2 = s2))
(2) G(p1 = s1 → F (p1 = s2))
(3) G(p1 = s0 → F (p1 = s2))
(4) G(p1 = s0 ∧ (FG(p1 = s0)→ ⊥)→ F (p1 = s2))

Notations For convenience, we write ϕ0(p2, y2) for the following formula (which
can be proven to be a safety property of the model).

(p2 = s0 ∨ y2 > 0) ∧ (p2 = s1 ∨ p2 = s2 ∨ y2 = 0).

Some of the proof rules require that we have binary relation symbols such as
v, v1 and v2. In the following, for brevity, if nothing is explicitly said about
these symbols, they are taken to be ≤.

Property 1 For proving the property, it is rewritten to be as follows.

(p1 = s0 ∧ p2 = s0 ∧ y1 = 0 ∧ y2 = 0) ` G(¬(p1 = s2 ∧ p2 = s2)).

Let η1 be the conjunction of the following formulas.

(p1 = s1) ∨ (p1 = s2)→ (y1 > 0)
(p2 = s1) ∨ (p2 = s2)→ (y2 > 0)
¬((p2 = s1) ∧ (p2 = s2) ∧ (y2 = 0 ∨ y1 ≤ y2))
¬((p2 = s2) ∧ (p2 = s1) ∧ (y1 = 0 ∨ ¬(y1 ≤ y2)))
¬(p1 = s2 ∧ p2 = s2)

According to the proof rule for G, initially, three verification conditions are
generated, and these conditions can be simplified to true using first order rea-
soning. Therefore the property holds.

Property 2 For proving the property, it is rewritten to be as follows.

(p1 = s0 ∧ p2 = s0 ∧ y1 = 0 ∧ y2 = 0) ` G(p1 = s1 → F (p1 = s2)).

(Step 1) Let η1 be (p1 = s1 → y1 > 0) ∧ ϕ0(p2, y2).
According to the proof rule for G, three verification subgoals are generated,

two of which are first order proof goals that can be simplified to true using first
order reasoning. There remains the following proof goal.

(p1 = s1 → y1 > 0) ∧ ϕ0(p2, y2) ` (p1 = s1)→ F (p1 = s2).

(Step 2) Let η0, η1 (for proving the subgoal) be defined as follows.

η0 : ¬(p1 = s1)
η1 : (p1 = s1 ∧ y1 > 0) ∧ ϕ0(p2, y2)

According to the proof rule for ∨, three verification subgoals are generated,
two of which are first order proof goals that can be simplified to true using first
order reasoning. There remains the following proof goal.

(p1 = s1 ∧ y1 > 0) ∧ ϕ0(p2, y2) ` F (p1 = s2).

This step can be skipped by using the option “-skip”, i.e., the use of this
option in Step 1 would directly produce the above subgoal. In general, if it is
possible to automatically construct the auxiliary construct4, we may be able to
skip the intermediate steps.

(Step 3) Let e0(p2, y1, y2) denote a term with the following interpretation.

e0(s0, y1, y2) = 1
e0(s2, y1, y2) = 2
e0(s1, y1, y2) = 3, if y2 < y1

e0(s1, y1, y2) = 0, if y2 ≥ y1

4 There has been a lot of research work on automated construction of invariants and
ranking functions over well-founded domains, e.g., [27, 3, 4, 1, 18], for automating
the verification process. Automated construction of ranking functions over weak
well-founded domains may as well help automating the use of some of the proof
rules.

Let η0, η1, w, e be defined as follows.

η0 : (p1 = s1 ∧ y1 > 0) ∧ ϕ0(p2, y2)
η1 : (p1 = s2)
w : x ≥ 0
e : e0(p2, y1, y2)

It is easily seen that w and ≤ define a well-founded set.

According to the proof rule for F , three verification conditions are gener-
ated, and these conditions can be simplified to true using the usual first order
reasoning with additionally the following axioms for e0.

e0(s2, y1, y2) > e0(s0, y1, 0)
e0(s0, y1, 0) > e0(s1, y1, y1 + 1)

y1 > y2 → e0(s1, y1, y2) > e0(s2, y1, y2)

Property 3 In this case, we prove that property 3 does not hold. The proof goal
is rewritten to be as follows.

(p1 = s0 ∧ p2 = s0 ∧ y1 = 0 ∧ y2 = 0) `N G(p1 = s0 → F (p1 = s2)).

(Step 1) Let η0, η1, w, e be defined as follows.

η0 : >
η1 : ¬((p1 = s0 ∧ y1 = 0) ∧ ϕ0(p2, y2))
w : x ≥ 0
e : 0

According to the proof rule for Ḡ, three verification subgoals are generated,
two of which are first order proof goals that can be simplified to true using first
order reasoning. There remains the following proof goal.

((p1 = s0 ∧ y1 = 0) ∧ ϕ0(p2, y2)) `N (p1 = s0)→ F (p1 = s2).

With the use of the option “-skip”, instead of the above proof goal, the
following is obtained (the rule ∨̄ is automatically applied in this case).

((p1 = s0 ∧ y1 = 0) ∧ ϕ0(p2, y2)) `N F (p1 = s2).

(Step 2) Let η1 (for proving the subgoal) be the following.

¬(p1 = s0 ∧ y1 = 0) ∧ ϕ0(p2, y2).

According to the proof rule for F̄ , three verification conditions are generated,
and these conditions can be simplified to true using first order reasoning.

Property 4 For proving the property, it is rewritten to be as follows.

(p1 = s0∧p2 = s0∧y1 = 0∧y2 = 0) ` G(p1 = s0 → (>U(p1 = s2,⊥, p1 = s0,⊥))).

(Step 1) Let η1 = ϕ0(p2, y2).
According to the proof rule for G (and with the rule ∨ automatically applied),

three verification subgoals are generated, two of which are first order proof goals
that can be simplified to true using first order reasoning. After simplification,
there remains the following proof goal.

(p1 = s0) ∧ ϕ0(p2, y2) ` (>U(p1 = s2,⊥, p1 = s0,⊥)).

(Step 2) Let e0(p1, p2, y1, y2) denote a term with the following interpretation.

e′0(s0, y1, y2) = 1
e′0(s2, y1, y2) = 2
e′0(s1, y1, y2) = 3, if y2 < y1

e′0(s1, y1, y2) = 0, if y2 ≥ y1

e0(si, sj , y1, y2) = 4(1− i) + e′0(sj , y1, y2)

Let η0, ..., η6, w, u, e, w1, e1 be defined as follows.

η0 : ((p1 = s0) ∨ (p1 = s1 ∧ y1 > 0)) ∧ ϕ0(p2, y2)
η1 : (p1 = s2)
η2, η4, η5, η6 : ⊥
η3 : (p1 = s0)
w : x ≥ 0
u : x > 3
e : e0(p1, p2, y1, y2)
w1 : x ≥ 0
e1 : 0

Let v be the following set of pairs.

{(a, b) | b ≥ 4} ∪ {(a, b) | a ≤ b ≤ 3}

It is easily seen that w, u,v define a weak-well-founded set.
According to the proof rule for U , ten verification conditions are generat-

ed, and these conditions can be simplified to true using the usual first order
reasoning with an appropriate set of axioms characterizing e0.

Summary Numbers of steps for the verification of the 4 properties are shown as
follows.

Property T/F Steps
(1) G(¬(p1 = s2 ∧ p2 = s2)) T 1
(2) G(p1 = s1 → F (p1 = s2)) T 3(2)
(3) G(p1 = s0 → F (p1 = s2)) F 3(2)
(4) G(p1 = s0 ∧ (FG(p1 = s0)→ ⊥)→ F (p1 = s2)) T 3(2)

For each of the 2nd, 3rd and 4th properties, there are 3 steps when we follow
the steps of the proof rules, and one of the steps may be skipped automatically. At
each step, a number of verification subgoals are generated according to the proof
rules, and simplified according to first order reasoning with possibly additional
axioms for characterizing the user-defined symbols. Regarding the above steps
in this example, either all verification subgoals are dismissed automatically in
a step, or there remains one verification subgoal that is used as the verification
goal for the next step.

A On Related Works

For reasoning of LTL properties, proof rules have been developed by Manna and
Pnueli in [28]. With the proof rules, one may reduce the verification problem to
first order reasoning, by providing necessary auxiliary constructs. In the general
case, when a verification problem is not handled by these proof rules, a transfor-
mation scheme is provided for transforming the problem into a validity problem
of a kind of LTL formulas. Although this approach reduces a program verifica-
tion problem to a validity checking problem of logic formulas, the underlying
logic is too strong in the general case, and may not be very much helpful for
reducing the complexity of the reasoning. An example of such a transformation
is provided in Section A.1.

For reasoning of CTL properties, proof rules have been proposed by Fix and
Grumberg in [15], for reducing the verification problem to first order reasoning
with provided necessary auxiliary constructs. However, the completeness issue
might be a problem. An example is provided in Section A.2.

In [34, 21, 17], Pnueli, Kesten and Gabbay have worked on deductive proof
systems for CTL∗. The main techniques used in the approach are decomposition
and reduction. The use of the rules (backwards) makes a simplification of the
property to be proved by increasing the complexity of the program, and there-
fore it requires more effort to understand the new program in order to be able
to construct useful auxiliary constructs for proving a property (the approach re-
minds the automata-theoretic approach of verification [35] in a way that we first
have to make a composition of the program and the property in some way and
then check a simpler property of the composition). In addition, the completeness
issue might also be a problem. An example is provided in Section A.3.

In [11], Cook et. al. have put the emphasis on automated verification of CTL∗

properties, and as stated in the paper, it provides a fully automated tool for sym-
bolically proving CTL∗ properties of infinite-state integer programs, and it has
been reported that a set of interesting CTL∗ properties can be automatically
verified in the given case studies. Due to the use of determinization and ap-
proximation techniques, not every problem instance can be solved successfully,
and the incompleteness due to determinization has been pointed out in [11]. An
example is provided in Section A.4.

A.1 Example 1

In this subsection, we provide an example showing how a program verification
problem is transformed into a problem of checking the validity of a temporal
logic formula, by using the approach provided in [28]. Let the program be the
one in Fig. 1.

Property Let ψ1
4
= (y = 0∨y = 1)U (y = 2∨ (z = 2R (y = 3∨z < 0))). Suppose

that we are trying to prove P1 |= ψ1.

Problem Transformation Let X denote the next operator such that Xz is the
value of z at the next state. Let ρ denote the disjunction of the following formulas.

(y = 0 ∧Xy = 1 ∧Xz = −z)
(y = 0 ∧Xy = 0 ∧Xz = z − 1)
(y = 1 ∧ (¬z = 2) ∧Xy = 1 ∧Xz = z − 1)
(y = 1 ∧ z = 2 ∧Xy = 2 ∧Xz = 0)
(y = 1 ∧ z = 1 ∧Xy = 3 ∧Xz = 0)
(y = 2 ∧ z > y ∧Xy = 1 ∧Xz = z)
(y = 2 ∧Xy = 2 ∧Xz = z + 1)
(y = 3 ∧ z > y ∧Xy = 2 ∧Xz = z)
(y = 3 ∧Xy = 3 ∧Xz = z + 1)

Then the task of proving P1 |= ψ1 may be reduced to proving the validity of
the following formula, under the usual interpretation of integers and operations
on integers.

z ≥ 0 ∧ y = 0 ∧G(ρ)→ ψ1.

Then it would be desirable to have an approach for reducing such a validity
checking problem to first order reasoning. Although in general there is a lack of
this kind of approaches, for this particular instance of the problem, there is way
to do it (cf. Section 1).

A.2 Example 2

In this subsection, we provide an example showing that there are problem in-
stances that are not handled by the approach provided in [15]. Let the program
P2 = P1 be the one presented in Fig. 1.

Property Let ψ2
4
= ¬E(¬((y = 3 ∨ y = 2) ∧ z = 0) U ¬(y = 0 ∨ y = 1 ∨ z = 0)).

Suppose that we are trying to prove P2 |= ψ2.

Verification Approach For proving that P2 |= ψ2, we have to prove that P2

satisfies y = 0 ∧ z ≥ 0 → ψ2. The only rule that is applicable is the ¬EU rule,
with f1 and f2 instantiated to respectively ¬((y = 3 ∨ y = 2) ∧ z = 0) and
¬(y = 0 ∨ y = 1 ∨ z = 0). This means that either we have to establish (1) or we
have to find a first order formula η such that (2) holds.

(1) y = 0 ∧ z ≥ 0→ ¬f1 ∧ ¬f2

(2) y = 0 ∧ z ≥ 0→ η and η → ¬f2 ∧AX(η ∨ (¬f1 ∧ ¬f2)

It is easily seen that neither of the cases holds.

A.3 Example 3

In this subsection, we provide an example showing that there are problem in-
stances that are not handled by the approach provided in [17]. For this example,
a program has five components, a set of variables, a formula representing the
initial states, a transition relation, a set of justice conditions and a set of com-
passion conditions. For brevity, we present the program P3 we are considering as
a graph shown in Fig. 4. The program P3 can be considered as a simplification
of P1.

Fig. 4. The Program P3 = (V,Θ, ρ, ∅, ∅)

Property Let ψ3
4
= AXEF (y = 1 ∧ G(y = 1 ∨ y = 2)). Suppose that we are

trying to prove P3 |= ψ3.

Verification Approach For proving that P3 |= ψ3, we have to handle the path
formula G(y = 1 ∨ y = 2). The only rule we can use is the Basic-Path rule.
The use of this rule reduces the proof of P3 |= (y = 0) ⇒ ψ3 to a proof of
P3 ||| T [G(y = 1 ∨ y = 2)] |= (y = 0) ⇒ AXEF (y = 1 ∧ xG(y=1∨y=2)), where
T [G(y = 1 ∨ y = 2)] is the tester for G(y = 1 ∨ y = 2).

The Tester The tester is presented in Fig. 5. For brevity, the Boolean variable
xG(y=1∨y=2) is written as x.

The Parallel Composition The parallel composition P3 ||| T [G(y = 1 ∨ y = 2)]
has 16 states, i.e., there are 4 possibilities for the values of y, and 2 possibilities
for each of the two Boolean variables. The 8 states that satisfy Er are not fair
ones. The other 8 states that satisfy ¬Er and the transitions between these states
are presented in Fig. 6.

Fig. 5. T [G(y = 1 ∨ y = 2)] = (V ∪ {Er, x}, Θ′, ρ′, {x ∨ ¬(y = 1 ∨ y = 2),¬Er}, ∅)

Fig. 6. Parts of P3 ||| T [G(y = 1 ∨ y = 2)]

We have two fair paths: one looping on l′2 and one looping on l′′3 . Since l′′1
does not satisfy EF (y = 1∧ xG(y=1∨y=2)), it is easily verified that the following
does not hold.

P3 ||| T [G(y = 1 ∨ y = 2)] |= (y = 0)⇒ AXEF (y = 1 ∧ xG(y=1∨y=2)).

Therefore P3 |= ψ3 cannot be proved by reduction to the above verification
goal.

A.4 Example 4

In this subsection, we provide an example showing that there are problem in-
stances that are not well-handled by the approach provided in [11]. The incom-
pleteness has already been discussed in [11]. The purpose of this subsection is
to provide a simple example demonstrating the problem. Let the program P4 be
the one in Fig. 7. This is the same as P3 in the previous subsection, presented
in a slightly different form.

The determinized program PD is shown in Fig. 8 with varsD = V ars ∪
{n1, n2}. The two new variables are introduced for the determinization of the
program.

Then for checking a property, we have to restrict the attention to the states
that satisfy EG true. The set of states that satisfied EG true is specified as

Fig. 7. The Program P4 = (L, E, V ars)

Fig. 8. The Program PD = (L, ED, V arsD)

follows.

CTL(PD, EG true) =
(y = 0 ∨ y = 1) ∧ (n1 < 0 ∨ n2 < 0) ∨ (y = 2 ∧ n1 < 0) ∨ (y = 3 ∧ n2 < 0).

Property Let ψ4
4
= AXEF (y = 1 ∧ G(y = 1 ∨ y = 2)). Suppose that we are

trying to prove P4 |= ψ4.

Verification Approach For each subformula ϕ of ψ4, we calculate ProveCTL∗(ϕ, P, PD),
and obtain the following.

ϕ ProveCTL∗(ϕ, P, PD)
y = 1 (y = 1, false)
y = 1 ∨ y = 2 (y = 1 ∨ y = 2, false)
G(y = 1 ∨ y = 2) (y = 2, false)
y = 1 ∧G(y = 1 ∨ y = 2) (false, true)
EF (y = 1 ∧G(y = 1 ∨ y = 2)) (false, true)
AXEF (y = 1 ∧G(y = 1 ∨ y = 2)) (false, false)

The calculation implies that we have not found any state that satisfies ψ4.
On the other hand, the set of states that satisfy ψ4, in fact, include the state
specified by y = 0 when the program under the consideration is P4, and the
states specified by y = 0 ∧ n1 < 0 when the program under the consideration is
PD.

B Details of Verification using VCGTP

In this section, we present the input to the tool for Example 1 in Section 4,
Example 2 in Section 5 and the mutual exclusion example in Section 8.

B.1 Example 1

The model of the transition system in the example in Section 4 is as follows.

VAR

y:int;

z:int;

TRANS

y=0: (y,z):=(1,0-z);

y=0: (y,z):=(0,z-1);

y=1&!(z=2): (y,z):=(1,z-1);

y=1&z=2: (y,z):=(2,0);

y=1&z=1: (y,z):=(3,0);

y=2&z>y: (y,z):=(1,z);

y=2: (y,z):=(2,z+1);

y=3&z>y: (y,z):=(2,z);

y=3: (y,z):=(3,z+1);

Proving the 1st Property For this purpose, the transition system is appended by
the following that contains the specification of the property, auxiliary constructs
and axioms for characterizing the user-defined function symbol.

SPEC

y=0&z>=0 |- ((y=0|y=1)U(y=2,z=2,(y=3|z<0),FALSE));

AUX

eta0: (y=0)|(y=1&z>=0);

eta1: (y=2);

eta2: (z=2);

eta3: (y=3|z<0);

eta4: FALSE;

eta5: FALSE;

eta6: (y=3&z<=2)|(y=1&z<0);

w: ((even(x)=1)|x>=0);

u: ((even(x)=1)&x<0);

e: e0(z,y);

w1: (x>=0);

e1: 0;

AXIOM

!(z>=0)|e0(z,1)>=0;

!(z>=0)|e0(z,0)>=0;

(e0(z-1,1)<e0(z,1));

(e0(z-1,0)<e0(z,0));

(e0(0-z,1)<e0(z,0));

(even:e0(z,0))=1;

Suppose that the name of the input file is “me1p1s1.vvm”, then the command
for verification condition generation is as follows.

./vcgtp me1p1s1.vvm

The output indicates that all subgoals have been dismissed and therefore the
property holds.

Proving the 2nd Property For this purpose, the transition system is appended
by the following that contains the specification of the property, and auxiliary
constructs.

SPEC

y=0&z>=0 |- (y=1)R((y=0|y=1),z>0,z<=0,TRUE);

AUX

eta0: (y=1);

eta1: (y=0|y=1);

eta2: (y=0|y=1)&z>0;

eta3: (z<=0);

eta4: (TRUE);

w: (x>=0);

e: (z);

B.2 Example 2

The model of the transition system in the example in Section 5 is as follows.

VAR

y:int;

z:int;

TRANS

y=0: (y,z):=(1,z);

y=1&!(z=2): (y,z):=(1,z-1);

y=1&z=2: (y,z):=(2,0);

y=1&z=1: (y,z):=(3,0);

y=2&z>y: (y,z):=(1,z);

y=2: (y,z):=(2,z+1);

y=3&z>y: (y,z):=(2,z);

y=3: (y,z):=(3,z+1);

Falsifying the 1st Property For this purpose, the transition system is appended
by the following that contains the specification of the property (for negative
satisfiability), auxiliary constructs and axioms for characterizing the user-defined
function symbol.

SPEC

y=0&z>0 |# ((y!=3)U(z<0,z<0,y!=2,FALSE));

AUX

eta0: (y!=3);

eta1: !(((y=0|y=1)&z>0)|((y=3|y=2)&z>=0));

eta5: (FALSE);

eta6: !(((y=0|y=1)&z>0));

eta7: !(((y=0|y=1)&z>0)|(y=3&z>=0));

w1: (x>=0);

e1: (z-y);

w2: (x>=0);

e2: (e0(z,y));

AXIOM

!(z>=0)|e0(z,0)>=0;

!(z>=0)|e0(z,1)>=0;

!(z>=0)|e0(z,3)>=0;

!(z>=0&z<=3)|(e0(z+1,3)<e0(z,3));

e0(z,1)<e0(z,0);

e0(z-1,1)<e0(z,1);

e0(0,3)<e0(1,1);

Falsifying the 2nd Property For this purpose, the transition system is appended
by the following that contains the specification of the property (for negative
satisfiability), and auxiliary constructs.

SPEC

y=0&z>0 |# ((y=2|y=3)R(y!=3,z!=y,(z>y),TRUE);

AUX

eta0: !((y=0|y=1)&z>0);

eta1: !(y=3);

eta3: (z>y);

eta5: (TRUE);

w1: (x>=0);

e1: (z-y);

w2: (x>=0);

e2: 0;

B.3 Mutual Exclusion

The model of the transition system in the example in Section 8 is as follows.

VAR

p1: {s0,s1,s2};

p2: {s0,s1,s2};

y1: nat;

y2: nat;

TRANS

p1=s0: (p1,y1):=(s1,y2+1);

p1=s1&(y2=0|y1<=y2): (p1):=(s2);

p1=s2: (p1,y1):=(s0,0);

p2=s0: (p2,y2):=(s1,y1+1);

p2=s1&(y1=0|!(y1<=y2)): (p2):=(s2);

p2=s2: (p2,y2):=(s0,0);

Preparation of the rest of the contents for input to the verification condition
generation tool is in accordance with the description in Section 8 using the format
presented in the previous subsections for verification and falsification of temporal
properties. A characterization of the function symbol e0 used for proving the 4th
property, which was not explicitly given in Section 8, is presented as follows.

e0(s1, s0, y1, 0) @ 4
e0(s1, s1, y1, y2) @ 4
e0(s1, s2, y1, y2) @ 4
e0(s0, s1, y1, y1 + 1) @ e0(s0, s0, y1, 0)
e0(s0, s2, 0, y2) @ e0(s0, s1, 0, y2)
e0(s0, s0, y1, 0) @ e0(s0, s2, y1, y2)
e0(s0, s2, y1, y2) @ e0(s0, s1, y1, y2)
e0(s1, s0, 1, 0) @ e0(s0, s0, y1, 0)
e0(s1, s2, y2 + 1, y2) @ e0(s0, s2, y1, y2)
e0(s1, s1, y2 + 1, y2) @ e0(s0, s1, y1, y2)
e0(s1, s0, y1, 0) @ e0(s1, s2, y1, y2)
e0(s1, s1, y1, y1 + 1) @ e0(s1, s0, y1, 0)

y1 > y2 → e0(s1, s2, y1, y2) @ e0(s1, s1, y1, y2)

Notice that if the domain is specified as integers instead of natural numbers,
we may need additional axioms for dismissing the verification conditions.

References

1. R. Bagnara, F. Mesnard, A. Pescetti and E. Zaffanella. A new look at the automatic
synthesis of linear ranking functions. Information and Computation (2012) 215: 47-
67.

2. J. A. Bergstra and J. V. Tucker. Expressiveness and the completeness of Hoares
logic, J. Comput. System Sci. (1982) 25: 267-284.

3. D. Beyer, T. A. Henzinger, R. Majumdar and A. Rybalchenko. Invariant synthesis
for combined theories. VMCAI 2007: 378-394.

4. A. Bradley and Z. Manna. Property-directed incremental invariant generation. For-
m Asp Comp (2008) 20(4-5): 379-405.

5. M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf and N. Piterman. T2: Temporal
property verification. TACAS 2016: 387-393.

6. F. Buccafurri, T. Eiter, G. Gottlob and N. Leone. On ACTL formulas having linear
counterexamples. Journal of Computer and System Sciences (2001) 62: 463-515.

7. C.-L. Chang and R. C.-T. Lee. Symbolic logic and mechanical theorem proving.
Academic Press. 1973.

8. E. M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. Logic of Programs 1981: 52-71.

9. S. A. Cook. Soundness and completeness of an axiom system for program verifica-
tion, SIAM J. Comput. (1978) 7: 70-90.

10. B. Cook, H. Khlaaf and N. Piterman. On automation of CTL* verification for
infinite-state systems. CAV (1) 2015: 13-29.

11. B. Cook, H. Khlaaf and N. Piterman. Verifying increasingly expressive temporal
logics for infinite-state systems. J. ACM (2017) 64, 2, Article 15.

12. E. Allen Emerson and E. M. Clarke. Using branching time temporal logic to syn-
thesize synchronization skeletons. Sci. Comput. Program. (1982) 2(3): 241-266.

13. E. Allen Emerson and J. Y. Halpern. ”Sometimes” and ”Not Never” revisited: on
branching versus linear time temporal logic. J. ACM (1986) 33(1): 151-178.

14. M. Fitting. First-order logic and automated theorem proving. Springer. 1996.
15. L. Fix and O. Grumberg. Verification of temporal properties. J. Log. Comput.

(1996) 6(3): 343-361.
16. R. W. Floyd. Assigning meanings to programs. Proceedings of the American Math-

ematical Society Symposia on Applied Mathematics, 1967, Vol. 19, pp. 19-31.
17. D. M. Gabbay and A. Pnueli. A sound and complete deductive system for CTL∗

verification. Logic Journal of the IGPL (2008) 16(6): 499-536.
18. L. Gonnord, D. Monniaux and G. Radanne. Synthesis of ranking functions using

extremal counterexamples. PLDI 2015: 608-618.
19. E. Pascal Gribomont. A programming logic for formal concurrent systems. CON-

CUR 1990: 298-313.
20. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM (1969) 12(10): 576-580.
21. Y. Kestena and A. Pnueli. A compositional approach to CTL∗ verification. Theo-

retical Computer Science (2005) 331: 397-428.
22. D. Kozen and J. Tiuryn. On the completeness of propositional Hoare logic, Inform.

Sci. (2001) 139: 187-195.
23. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-

mun. ACM (1974) 17(8): 453-455.
24. J. Loeckx and K. Sieber. The foundation of program verification. John Wiley &

Sons Ltd. 1984.
25. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic

approach. Commun. ACM (1976) 19(5): 279-285.
26. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.

Acta Informatica (1976) 6(4): 319-340.
27. A. Podelski and A. Rybalchenko: A complete method for the synthesis of linear

ranking functions. VMCAI 2004: 239-251.
28. Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet lan-

guage. Acm Sigact-sigplan Symposium on Principles of Programming Languages,
1983, pp. 141-154.

29. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science (1991) 83(1): 97-130.

30. Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety.
Springer. 1995.

31. Z. Manna and A. Pnueli. Temporal verification of reactive systems: Response.
Essays in Memory of Amir Pnueli 2010: 279-361.

32. D. A. Peled. Deductive software verification. In: Software Reliability Methods, pp.
179-214. Springer. 2001.

33. A. Pnueli. The temporal logic of programs. FOCS 1977: 46-57.
34. A. Pnueli and Y. Kesten. A deductive proof system for CTL∗. CONCUR 2002,

LNCS 2421, pp. 24-40.
35. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. LICS 1986: 332-344.
36. Z. Xu, Y. Sui and W. Zhang. Completeness of Hoare logic with inputs over the

standard model. Theoretical Computer Science (2016) 612: 23-28.

	02cover
	2019tr

