
Under consideration for publication in Math. Struct. in Comp. Science

Proving Liveness Property under a Mixture
of Strengthened Compassion and
Compassion Requirements†

TENG LONG1,2 and WENHUI ZHANG1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, P.R.China.
2 School of Information Science and Engineering,
Graduate University of China Academy of Sciences, P.R.China.

Received 12 October 2012

Liveness property is among the most important properties of programs. Many

methodologies have been proposed for proving liveness properties. This paper studies

deductive rules for proving liveness properties under different kinds of fairness

requirements (constraints). It is based on method where a program is augmented by a

non-constraining progress monitor based on a set of ranking functions, and further

abstracted by predicate abstraction in order to allow the use of algorithmic verification

techniques. The main contributions are a deductive rule under different fairness

requirements (constraints) for proving liveness properties and an algorithm for

automatically deriving deductive proof constructs. We show how the constructs

necessary for deductive proofs of liveness properties can be automatically extracted.

1. Introduction

Liveness properties are requirements that something good must eventually happen. A
counterexample to such a property is typically a loop during which the good thing never
occurs. One frequently used subtype of liveness properties is response properties. It is
an important and widely studied subtype of liveness properties (Pnueli and Sa’ar, 2008;
Manna and Pnueli, 2010). Our work focuses on this type of liveness properties that has
the form p =⇒ ¦q (abbreviating ¤(p → ¦q)), where p and q are assertions.

The systems to be analyzed may be modeled as discrete systems (Kesten et al., 1998).
For avoiding acceptance of unrealistic loops in such models, e.g., in which some process or
action is infinitely ignored, fairness is needed for imposing restrictions on accepted runs
on such models. For dealing with different situations, several different notions of fairness
have been proposed. In 1981, Lehmann, Pnueli and Stavi defined justice requirements
(Lehmann et al., 1981) to describe the situation that some states must be visited infinitely

† Supported by the National Natural Science Foundation of China under Grant Nos. 60833001,

61272135, and the CAS Innovation Program. Emails: {longteng, zwh}@ios.ac.cn. Corresponding au-
thor: Teng Long.

T. Long and W. Zhang 2

often. Compassion is a kind of generalization of justice, suggested by Pnueli and Sa’ar
(Pnueli and Sa’ar, 2008), and may be represented by a set of pairs of assertions of the
form 〈ψ, ϕ〉. This fairness condition requires that along every path, for each pair 〈ψ, ϕ〉,
either ψ is true only finitely many times or ϕ is true infinitely often.

In this paper, we study a kind of fairness named strengthened compassion, i.e., compas-
sion with some additional constraints, represented by a set of one-step pairs of assertions.
An important characteristics of this kind of fairness is the constraint of transition (in-
volving states and their successors).

For the verification of response properties of systems with strengthened compassion
constraints and a mixture of others, we present a framework based on ranking abstraction
(Kesten and Pnueli, 2000; Balaban et al., 2005; Balaban et al., 2007) and deductive
rules. Ranking abstraction is based on an augmentation of the concrete program. The
augmentation is parameterized by a set of well-founded ranking functions. Based on
these, new fairness requirements are generated, all of which are synchronously composed
with the program in a non-constraining manner. Ranking functions in this approach are
not expected to decrease with each transition of the program. The system that satisfies
the response property is guaranteed to leave non-decrease transitions (loops) by fairness
requirements.

Then since for the use of the deductive rules for proving response properties, a set
of auxiliary constructs, such as ranking functions and helpful assertions, is needed, we
present an algorithm for deriving such auxiliary constructs. Previously, invariants as a
boolean combinations of the given predicates are derived by predicate abstraction(Graf
and Säıdi, 1997; Ball et al., 2001) for proving safety properties (Manna and Pnueli,
1991), and well-founded ranking functions and assertions are extracted from a successful
application of the ranking abstraction method for a deductive proof of response properties
(Pnueli and Sa’ar, 2008).

The contribution of the paper is as follows: it suggests a formal framework, based
on abstraction methods, for proving liveness properties, including deductive rules under
different fairness, and methods for automatically deriving a global well-founded ranking
function.

The paper is organized as follows: In section 2, the definitions of different kinds of fair-
ness requirements and the computational model of fair discrete systems under strength-
ened compassion are introduced. Section 3 proposes the deductive rule under strength-
ened compassion and proves the soundness and relative completeness of the rule. It also
presents a method for extracting the auxiliary constructs necessary for a deductive proof
under strengthened compassion of a response property. These auxiliary constructs in-
clude a set of ranking functions and helpful assertions. The application of the method is
illustrated by an example in section 4. In section 5, the deductive rule and the method
are extended to deal with systems with both compassion and strengthened compassion
requirements. Finally, section 6 contains concluding remarks.

Related works: There have been several works dealing with the extraction of proofs
from successful application of a model checking run. The papers (Peled and Zuck, 2001)
and (Peled et al., 2001) show how to construct a deductive proof for verifying linear
temporal logic formulas. In (Namjoshi, 2001), a certificate that confirms the correctness

Proving Liveness Property under Strengthened Compassion Requirements 3

of a successful model checking run, can be viewed as a deductive proof of the verified
property, where the proof is presented as an automaton similar to the verification dia-
grams of (Manna and Pnueli, 1994). In (Kupferman and Vardi, 2005), it shows how to
construct an automaton certificate that confirms the correctness of the verified property,
and can be checked automatically and efficiently.

The above methods were applied to propositional properties of finite-state systems
and produced proofs (or certificates) that were propositional in nature. None of them
involved a ranking function over an unbounded domain. In (Namjoshi, 2003), the author
translated a proof of a finite-state abstraction of an infinite-state system by referring
to the proof concretization process as lifting of the proof. The limitation of the method
was that the lifting of ranking functions necessarily preserve the range of the functions.
Starting from a finite-state system, the range of the abstract ranking functions and,
therefore, the resulting range of the concrete ranking functions is necessarily bounded.
In comparison, the methods presented here in Sections 3 and 5 extract ranking functions
over unbounded domains from their finitary representation as fairness requirements.

There has been a lot of research work on fairness. In (Sun et al., 2009), a process anal-
ysis toolkit for system analysis with different kinds of fairness was presented. They took
fairness constraints into verification algorithms instead of re-formulating the property. It
considered finite-state systems only. For dealing with infinite-state system, (Kesten and
Pnueli, 2000) proposed an augmented finitary abstraction to verify properties. In (Bala-
ban et al., 2007), a method based on analysis of maximal strongly connected components
by ranking abstraction for proving safety and liveness properties was presented. It can
deal with the system under justice and additional compassion requirements (include ad-
ditional variable dec) introduced by ranking abstraction. To complement the absence
of the native compassion requirements (i.e., the compassion requirements without the
additional variable dec that comes from ranking abstraction), (Long and Zhang, 2010)
extended the method to deal with compassion requirements that are considered as one
of the components in a system. (Balaban et al., 2010) presented an automatic method
to derive deductive proofs of liveness properties from symbolic model checking under
compassion.

This paper is an extension of the work presented in TAMC 2012 (Long and Zhang,
2012). The extension includes extending the rule and the method for proving response
properties to deal with systems under a mixture of both strengthened compassion and
compassion constraints.

2. Fair Discrete Systems under Strengthened Compassion

As explained in the introduction, there are several different notions of fairness for dealing
with different situations. We consider strengthened compassion that is a kind of fairness
based on compassion with additional constraints.

Let V be a set of variables. An assignment of values to the variables of V is called a
state. A state formula (also called an assertion) is a formula ϕ over V representing the
set of states that satisfies ϕ. A state that satisfies ϕ is called a ϕ-state.

A strengthened compassion requirement is a set of pairs of assertions denoted as follows.

T. Long and W. Zhang 4

SC = {〈ri, {ui}〉 | i = 1, ..., n}.
An infinite sequence of states σ = s0s1 · · · satisfies the strengthened compassion re-

quirement SC, if for each i ∈ {1, ..., n}, σ contains only finitely many ri-states, or σ

contains infinitely many ri-states and if sm is such a state (i.e., sm |= ri), then sm+1 |= ui.

2.1. Strengthened Compassion Discrete Systems

A strengthened compassion discrete system is similar to a fair Kripke structure defined
in (Kesten et al., 1998). The difference is that the fairness requirements are different.

Definition 2.1. A strengthened compassion discrete system (SCDS) is a quadruple D
= 〈V, Θ, ρ,SC〉 where the components are as follows.

— V : A finite set of typed system variables - containing data and control variables.
A set of states (interpretation) over V is denoted by Σ. For a state s and a system
variable v ∈ V , we denote by s[v] the value assigned to v by the state s.

— Θ : The initial condition - an assertion (state formula) characterizing the initial states.
— ρ : The transition relation - an assertion ρ(V, V ′), relating the values V of the variables

in state s ∈ Σ to the values V ′ in a D-successor state s′ ∈ Σ.
If ϕ is a formula representing a set of states, then ϕ′ is the formula with each v

replaced by v′.
— SC : The fairness requirements - a set of one-step pairs of assertions SC = {〈ri, {ui}〉|i =

1, ..., n}.
Computation: A computation of D is an infinite sequence of states σ = s0s1 . . .,

satisfying the following requirements:

— s0 |= Θ.
— For each j = 0, 1, . . . , the state sj+1 is in a D-successor of the state sj . For each

v ∈ V , we interpret v as sj [v] and v′ as sj+1[v], such that 〈sj , sj+1〉 |= ρ(V, V ′).
— σ satisfies the fairness requirements.

2.2. A Discussion of Different Kinds of Fairness

Justice is a simple kind of fairness that may be represented by a set of state formulas
{ϕ1, ..., ϕn} and this fairness condition requires that each ϕi must be true infinitely often
along every path. Compassion is a kind of generalization of justice, and may be repre-
sented by a set of pairs of state formulas {〈ψ1, ϕ1〉, ..., 〈ψn, ϕn〉}. This fairness condition
requires that along every path, for each pair 〈ψ, ϕ〉, either ψ is true only finitely many
times or ϕ is true infinitely often. Justice and Compassion are regarded as weak and
strong fairness in (Lamport, 1977), both of them constrain the fairness of actions. They
can deal with actions fairly in one context. On the other hand, the correctness of many
population protocols rely on stronger fairness constraints that may constrain actions in
all contexts, e.g., self-stabilizing leader election in ring networks (Fischer and Jiang, 2006)
and token circulation in rings (Angluin et al., 2005). Strengthened Compassion may deal

Proving Liveness Property under Strengthened Compassion Requirements 5

Fig. 1. Transitions for Comparison of Compassion and Strengthened Compassion

with such situations, and an important characteristics of strengthened compassion is the
constraint of transition (involving states and their successors). Consider the transitions
in Fig. 1, the differences between compassion and strengthened compassion are explained
as follows.

— Compassion requirements constrains that infinitely enabled actions must eventually
be taken.
The compassion requirement: 〈x = 1∧y = 0, x = 0〉 constrains that if “x = 1∧y = 0”
is satisfied infinitely many times, then “x=0” must be satisfied infinitely many times.
The infinite loop (S1S2S3S2)ω satisfy this constraint. In such a loop, the action “x=x-
1” is enabled infinitely many times, and this action is taken infinitely times.
The action “x=x-1” in the figure is enabled in both S1 and S2, however, the compas-
sion requirement does not distinguish the two different transitions.

— Strengthened compassion requirements constrains that transitions with an infinitely
enabled action must eventually be taken.
The strengthened compassion requirement 〈x = 1 ∧ y = 0, {x = 0}〉 constrains that
if “x = 1 ∧ y = 0” is satisfied infinitely many times, then “x=0” must be satisfied
infinitely many times right after “x = 1 ∧ y = 0”.
The infinite loop (S1S2S3S2)ω does not satisfy this requirement. In such a loop, the
action “x=x-1” is enabled infinitely many times at S1 and S2, but the action “x=x-1”
is never taken from S1 (which satisfies x = 1 ∧ y = 0) in the loop (i.e., the transition
S1

x=x−1−−−−−→ S4 is not taken).

2.3. Soundness of the Rule

The soundness is established as follows. Suppose that the premises of the rule are valid
and the conclusion is not. We prove that this is a contradiction.

The conclusion is not valid means that there exists a computation σ = s0, s1 . . . and
a position j ≥ 0 such that sj |= p and no state sk, for k ≥ j satisfies q. Without loss of
generality, we take j = 0. According to premises of R1 and R2 and the assumptions that
no states satisfy q, then any state sw satisfies ri ∧ ϕi for some i ∈ {1, ..., n}. Since there
are only finitely many different i’s, there exists a cutoff index h ≥ 0 such that for every
i and w ≥ h, sw |= ri ∧ ϕi if and only if σ contains infinitely many (ri ∧ ϕi)-positions.

Consider position w1 = h. Choose i1 to be the index such that sw1 |= ri1 ∧ ϕi1.

T. Long and W. Zhang 6

Let p, q be assertions.

Let A = (W,Â) be a well-founded domain.

Let SC = {Fi | Fi = 〈ri, {ui}〉, i ∈ {1, ..., n}} be a set of strengthened compassion

requirements.

Let {ϕi | i ∈ {1, ..., n}} be a set of assertions.

Let {∆i : Σ → A | i ∈ {1, ..., n}} be a set of ranking functions.

R1 p ⇒ q ∨∨n
j=1(rj ∧ ϕj)

∀i ≤ n:

R2 ri ∧ ϕi ∧ ρ ⇒ q′ ∨∨n
j=1(r

′
j ∧ ϕ′j)

R3 ϕi ∧ ρ ⇒ q′ ∨ (ϕ′i ∧∆i = ∆′
i) ∨

∨n
j=1(r

′
j ∧ ϕ′j ∧∆i Â ∆′

j)

R4 ϕi ∧ ri ∧ ρ ∧ ϕ′i ⇒ ¬u′i

p ⇒ ¦q
Fig. 2. Deductive Rule: SC RESPONSE

According to R3 and the assumption that σ contains no q-positions, then either ϕi1

holds at all positions w ≥ w1, or there exists a position w2 ≥ w1 and index i2 such that
sw2 |= ri2 ∧ ϕi2 and ∆i1(sw1) Â ∆i2(sw2). We argue that the former case is not possible
and then the latter leads to an infinite sequence of decreasing values of ∆.

— If ϕi1 holds continuously beyond w1, then due to premise of R4, ri1 ∧ ϕi1 holding at
w1 ≥ h implies that ri1 ∧ ϕi1 (and therefore ri1) holds at infinitely many positions
without succeed infinitely many ui1-states. This violates the requirement 〈ri1, {ui1}〉.

— If there exists a position w2 ≥ w1 and index i2 such that sw2 |= ri2 ∧ ϕi2 and
∆i1(sw1) Â ∆i2(sw2), we can continuously find i3, i4, . . . , such that ∆i1(sw1) Â
∆i2(sw2) Â ∆i3(sw3) Â According to the definition of well-founded domain, it is
impossible to find infinite positions to satisfy the decrease sequence.

Therefore there cannot exist a computation σ violating the response property p ⇒ ¦q
if the premises of rule are all valid.

3. Proving Response Properties under Strengthened Compassion

For verifying response properties under the assumption of strengthened compassion re-
quirements over an SCDS, the deductive rule SC RESPONSE is presented in Fig. 2. The
premisses of the rule are explained as follows.

For proving p ⇒ ¦q, the rule deals with the pend states (all the reachable states from
p-states though ¬q-path). Helpful assertions ϕi and ranking functions ∆i where each
∆i : Σ → A is defined on a well-founded domain A are the effective premises of the rule,
and (ri∧ϕi)-states are the states in ϕi constrained by fairness requirement 〈ri, ui〉 ∈ SC.

R1 requires that any p-state is either a goal state (i.e., a q-state), or a (ri ∧ ϕi)-state
for some i ∈ {1, . . . , n}. R2 requires that any step from a (ri ∧ ϕi)-state moves either
directly to a q-state, or to another (rj ∧ ϕj)-state, or stays at a state of the same level
(i.e., a (ri ∧ ϕi)-state). R3 requires that any step from a ϕi-state moves either directly
to a q-state, or to another (rj ∧ ϕj)-state with decreasing rank (∆i Â ∆j), or stays at a

Proving Liveness Property under Strengthened Compassion Requirements 7

state with the same rank. R4 ensures that during the transitions among the states inside
of ϕi, there are no transitions from ri-states to ui-states.

R2−4 together with the definition of strengthened compassion requirements guarantee
that if an execution enters a loop (consisting of states of some ϕi) without leaving it,
then there exists strengthened compassion requirements it violates. It must get out of all
the unfair loops and finally reach q-state (the goal state).

3.1. Soundness of the Rule

The soundness is established as follows. Suppose that the premises of the rule are valid
and the conclusion is not. We prove that this is a contradiction.

The conclusion is not valid means that there exists a computation σ = s0, s1 . . . and
a position j ≥ 0 such that sj |= p and no state sk, for k ≥ j satisfies q. Without loss of
generality, we take j = 0. According to premises of R1 and R2 and the assumptions that
no states satisfy q, then any state sw satisfies ri ∧ ϕi for some i ∈ {1, ..., n}. Since there
are only finitely many different i’s, there exists a cutoff index h ≥ 0 such that for every
i and w ≥ h, sw |= ri ∧ ϕi if and only if σ contains infinitely many (ri ∧ ϕi)-positions.

Consider position w1 = h. Choose i1 to be the index such that sw1 |= ri1 ∧ ϕi1.
According to R3 and the assumption that σ contains no q-positions, then either ϕi1

holds at all positions w ≥ w1, or there exists a position w2 ≥ w1 and index i2 such that
sw2 |= ri2 ∧ ϕi2 and ∆i1(sw1) Â ∆i2(sw2). We argue that the former case is not possible
and then the latter leads to an infinite sequence of decreasing values of ∆.

— If ϕi1 holds continuously beyond w1, then due to premise of R4, ri1 ∧ ϕi1 holding at
w1 ≥ h implies that ri1 ∧ ϕi1 (and therefore ri1) holds at infinitely many positions
without succeed infinitely many ui1-states. This violates the requirement 〈ri1, {ui1}〉.

— If there exists a position w2 ≥ w1 and index i2 such that sw2 |= ri2 ∧ ϕi2 and
∆i1(sw1) Â ∆i2(sw2), we can continuously find i3, i4, . . . , such that ∆i1(sw1) Â
∆i2(sw2) Â ∆i3(sw3) Â According to the definition of well-founded domain, it is
impossible to find infinite positions to satisfy the decrease sequence.

Therefore there cannot exist a computation σ violating the response property p ⇒ ¦q
if the premises of rule are all valid.

3.2. An Algorithm for the Construction of Auxiliary Constructs

For the application of the rule SC RESPONSE, it is essential that we can construct the
auxiliary constructs used in the premisses of the rule, including ranking functions and
assertions. In the following, we provide an algorithm for the construction of the auxiliary
constructs. The algorithm works for finite state models.

3.2.1. Algorithm SC Auxiliary Constructs Considering an SCDS D and a response prop-
erty p ⇒ ¦q, we present an algorithm which extracts a deductive proof according to the
rule of a response property p ⇒ ¦q. It defines the values δ1, . . . , δm of the respective
ranking functions ∆1, . . . ,∆m on different sets of states, a helpful assertion ϕi and a

T. Long and W. Zhang 8

Algorithm 1 SC Auxiliary Constructs

1: m := 0
2: accessibleD := E(trueSΘ)
3: pend := accessibleD ∧ E(¬qS(p ∧ ¬q))
4: rank SC(pend, [])

where the procedure rank SC is defined as follows.
procedure rank SC(subpart ,prefix)
d:integer
Y :assertion

5: Let d := 0
6: Let Y := subpart
7: FIX (Y)
8: Forall (〈r, {u}〉 ∈ SC) do
9: Let ψ = Y ∧ ¬(Y ∧ r ∧ EX(Y ∧ u))

10: if ψ ∧ r 6= ∅ then
11: Let m = m + 1
12: Let d = d + 1
13: Let ϕm := E(ψS(ψ ∧ r))
14: Let hm:= 〈r, {u}〉
15: Let δm := prefix ∗ [d]
16: Let Y := Y ∧ ¬ϕm

17: Let rem := ϕm ∧ ¬r

18: if (rem 6= ∅) then
19: rank SC(rem, prefix ∗ [d])
20: end if
21: end if
22: end for
23: if (Y 6= ∅) then
24: report “fail”
25: end if
26: end-Fix

fairness requirement hi = 〈r, {u}〉, which can constraint ϕi for each i ∈ {1, .., m}. The
algorithm Auxiliary constructs is presented as Algorithm 1 and is explained as follows.

For assertions p and q, the formula E(p S q) captures the set of states that are reachable
from a q-state by a p-path all of whose states, except possibly the first, satisfy p. In this
expression we use the since temporal operator S. The formula EX(p) captures the set
of states that are the immediate predecessors of p-states.

The expression accessibleD captures the set of all accessible states with D. The ex-
pression of pend describes pend states: all states which are reachable from any accessible
p-state by a finite q-free path. prefix is a list that is supposed to be a prefix of the value
of ranking function. The list operation ∗ denotes the concatenation of two lists. ψ is the

Proving Liveness Property under Strengthened Compassion Requirements 9

set of Y -states without r-states which are the predecessors of uj-states. ϕ is the set of
ψ-states which can be reached by r, i.e. ϕ-states are those that form a strongly connected
subgraph of ψ. rem is the set of ϕ-states that are not r-states. The new Y is the set of
remaining states.

For each i, ϕi, hi, δi where ∆i(s) = δi for s ∈ ϕi, are the auxiliary constructs discov-
ered at the respective stages of the execution of the algorithm. For each strengthened
compassion hi = 〈r, {u}〉, we construct ϕi (the set of states that formed an unfair loop
that contains r-states which are not the predecessor of u-states for some j) with its own
δi to measure the distance between the loop to the goal states. The construction is as
follows:

— S1: To start with, we deal with the pend states (line 4), i.e. Y0 = pend. By the
definition of pend, we know that there are no goal states in pend. The first unfair
loop we can find, is the one nearest to goal states (under the strengthened compassion
for the transition to goal states).

— S2: For each m, after removing an unfair loop ϕm, the new set of states we will be
dealing with is Y ′ = Y −ϕm (line 16). In Y ′, by calling rank SC (line 19) recursively,
we construct ϕm+1 and δm+1.

— S3: According to the definition of strengthened compassion, the reason of unfairness
is the “bad”states (the r-states) in the loop (line 10). Therefore we remove r-sates
from each ϕi (line 17), and then we deal with the remaining part of ϕi recursively
(line 18, 19). The ranks of states in ϕi are with the same prefix δi.

— S4: If all the pend states consist of unfair loops which can be constrained by strength-
ened compassion to leave the pend states, then the liveness property can be guaran-
teed. Otherwise, the liveness property fails (line 23, 24).

Additional explanation of the algorithm is as follows.

— Line 7: FIX Y terminates when Y does not change after the specified computation.
After termination, it is at line 23 which prepares the final result for S4.

— Line 9: Constructing ψ by removing the r states that enable the transition r → u

from Y . Then there are no transitions of the form r → u in ψi. Then if r is part of
a loop in ψ, then this loop must be unfair violating the fairness requirement under
consideration.

— Line 10: Checking whether there may exist such unfair loop by checking whether there
exist r-states in ψi.

— Line 11: Constructing assertion ϕ which consists of all of the reachable states from
r-states in ψi.

— Line 13-15: Constructing the helpful assertion ϕm, the strengthened compassion con-
straint hm and the distance measure δm, respectively.

— Line 18-22: Constructing the new Y for the use by S2, and preparing the recursive
call for S3.

3.2.2. Validity of the Algorithm For every Y at different levels of the recursive calls of the
algorithm, if there exist a fairness constraint 〈r, {u}〉 such that there is no 〈sj , sj+1〉 |=
ρ(V, V ′) such that sj |= r and sj+1 |= u, exists at least one r-state which is not the

T. Long and W. Zhang 10

predecessor of u-states, then this fairness constraint is sufficient to guarantee that it
is not possible to stay at ϕ-states (the reachable states from r-states) infinitely often.
Otherwise, if during all fairness constraints, there is no such j exist, the execution of the
model are not required to leave these r-states†, and hence the response property is not
valid.

3.3. Completeness of the Rule

The above arguments implies that if the response property is valid, the algorithm will
terminate properly without reporting “fail”, i.e. Y is decreased to the empty set at each
levels of the algorithm in the recursive computation of ϕi, Fi and ∆i. We consider in turn
each of the premises and show that it holds for the extracted constructs ϕi, Fi and ∆i

with i ≤ m.

1 Premise of R1 claims that every p-state s satisfies q or rj ∧ ϕj , for some j ∈ [1..n].
Indeed, if s does not satisfy q, it belongs to the pend states (i.e., the initial Y , denoted
hereafter by Y0), and since all Y0-states are divided and removed after the algorithm,
s must be a part of the removed ones, it means that s belongs to some rj ∧ ϕj .

2 Premise of R2 requires that every immediate successor of s that satisfies ri ∧ϕi must
satisfy q or rj ∧ ϕj for some j ∈ [1..n]. As mentioned before, s belongs to Y0, and its
successor sb must satisfy q or belong to Y0. Similar to the situation in premise of R1,
we can get that sb must belong to some rj ∧ ϕj .

3 Premise of R3 considers a state sa that satisfies ϕi. Consider a successor sb. It requires
that sb satisfies q, or ϕi and has the same value as ∆i(sa), or satisfies rj ∧ ϕj for
some j and has ∆j(sb) ≺ ∆i(sa). According to the construction, every ϕi-state s has
a rank ∆i(s) and ϕi-state can be reached from a ri-state by a finite ϕi-path π.

— If sb is a q-state, then it is acceptable.
— If sb is in Y , by the definition of Y = ϕi + Y ′ (Y ′ is not reachable from states in

ϕi) and the construction of ϕi, we know that sb is in ϕi.
— If sb is in Y0 - Y , such that sb must have been removed from Y0 in some earlier

stage, satisfy rj ∧ ϕj with ∆j(sb) ≺ ∆i(sa) for some j < i.

4 Premise of R4 requires that there is no transition from ri-states to ui-states can be
taken in ϕi. By the definition of strengthened compassion , it satisfies this condition.

The above arguments proves the completeness, i.e., whenever a response property is
valid, there exist auxiliary constructs for proving the property.

3.4. Dealing with Systems with Infinite Number of States

For dealing with infinite state systems, in addition to the above algorithm for constructing
helpful assertions and ranks, we have to apply abstraction and concretization. The basic
steps for proving the property is as follows

† Following the tradition of (Balaban et al., 2007), every state is assumed to have a loop to itself,

and every state must be constrained by some fairness requirement in order to force the progress of
computations of such a system model.

Proving Liveness Property under Strengthened Compassion Requirements 11

x : natural;

init x > 2;

l0 : while : (x > 0)

l1 : x:=2 or x:=x-1

l2

Fig. 3. Non-Deterministic Choice

Fig. 4. Pend Graph of

Non-Deterministic Choice

— Abstracting the program to a finite state one
— Extracting Auxiliary Constructs including the helpful assertions and ranking func-

tions
— Concretizing the auxiliary constructs
— Applying the rule that uses the auxiliary constructs for proving the property

An example to demonstrate the above steps is shown in the next section.

4. An Example with Non-Deterministic Choice

Consider the program (which appeared also in (Main, 1993)) with a non-deterministic
choice of the values of variable x in Figure 3.

At location l1 there is a non-deterministic choice, and we may denote the first transition
as l1a and the second as l1b. Let x′ denote the next state variable of x.

The property we wish to establish is at l0 ⇒ ¦at l2, and the strengthened compassion
requirements are:

Fc0: 〈at l0, {¬at l0}〉
Fc1: 〈at l1, {at l0 ∧ x 6= 2}〉
Fc2: 〈at l1, {at l0 ∧ x = 2}〉
Fc3: 〈at l1 ∧ x = 1, {at l0 ∧ x 6= 2}〉

The basic fairness requirement (constraining self-loop) of location 0 is Fc0. Fc1 and Fc2

implies that if it is at location 1 infinitely times, the action “x=x-1”must be taken from

T. Long and W. Zhang 12

x̃ =

{ 0 x = 0

1 x = 1

2 x = 2

3 x > 2

location 1 infinitely times, so does action “x=2”. Fc3 implies that if it is at location 1
with x equals 1 infinitely times, the action “x=x-1” must be taken from location 1 with
x equals 1 infinitely times.

For proving the property, the four steps described in the previous section are explained
in the subsections as follows.

4.1. Abstraction

We apply the following abstraction α :

α : Π = π, X = x̃

where the assertion π = i stands for at program location li. x̃ is defined as follows.
The response property after applying the abstraction is now Π = 0 ⇒ ¦Π = 2, and the

strengthened compassion requirements are as follows:

F0 : 〈Π = 0, {Π 6= 0}〉
F1 : 〈Π = 1, {Π = 0 ∧ (X 6= 2)}〉
F2 : 〈Π = 1, {Π = 0 ∧ (X = 2)}〉
F3 : 〈Π = 1 ∧ (X = 1), {Π = 0 ∧ (X 6= 2)}〉

F0, F1, F2 and F3 are respectively the abstract version of Fc0, Fc1, Fc2 and Fc3.

4.2. Extracting Auxiliary Constructs

The pend graph (containing all reachable states from p by ¬q-path and the transitions
among them) of the finite state transition system after applying the abstraction is shown
in Fig. 4. The abstracted helpful assertions Φi consisted by abstracted states Si, values
δi of ranking functions ∆i on set of states S ∈ Φi and abstracted fairness requirements
Hi which constraint Φi we get by algorithm SC Auxiliary Constructs are in Table. 1,
and the process of the calculation is explained as follows.

1 We start with rank SC(pend, []), and set Y = pend={S1, ..., S7}, d=0, m=0.
2 Neither of F1, F2 and F3 satisfies the assumption ψ ∧ r at line 10. This means that

these three strengthened compassion requirements may be fair to Y .
3 Then F0 is chosen at line 8, and we get ψ = {S1, S2, S4, S6}.
4 At line 10, (Y ∧Π = 0) 6= ∅, and we get ϕ = {S1} at line 13.
5 Set m = 1, d = 1, ϕ1 = {S1}, h1= F0, δ1 = [1], Y ′= {S2, ..., S7} and rem = 0.
6 rem = 0 does not satisfy the condition at line 18, back to line 8 to choose another

strengthened compassion requirement.
7 F3 is chosen at line 8, and we get ψ = Y = {S2, ..., S7}.

Proving Liveness Property under Strengthened Compassion Requirements 13

Φi Si δi = ∆i(S) Hi

Φ7 Π = 0 ∧X = 3 [3, 1] F0

Φ6 Π = {0, 1} ∧X = 3 [3] F2

Φ5 Π = 0 ∧X = 2 [2, 2, 1] F0

Φ4 Π = {0, 1} ∧X = 2 [2, 2] F1

Φ3 Π = 0 ∧X = 1 [2, 1] F0

Φ2 Π = {0, 1} ∧X = 2 [2] F3

∨Π = {0, 1} ∧X = 1

Φ1 Π = 0 ∧X = 0 [1] F0

Table 1. Abstract Assertions and Ranks of Non-Deterministic Choice

8 At line 10, (Y ∧Π = 1 ∧X = 1) 6= ∅, and we get ϕ = {S2, ..., S5} at line 13.

9 Set m = 2, d = 2, ϕ2 = {S2, ..., S5}, h2= F3, δ2 = [2], Y ′= {S6, S7} and rem =
{S3, ..., S5}.

10 Then call rank SC({S3, ..., S5}, [2]) in which the following is done.

— Set Y = {S3, ..., S5}, d=0.
— Choose F0 at line 8, we get ψ = {S3, S4}.
— At line 10, (Y ∧Π = 0) 6= ∅, and we get ϕ = {S3} at line 13.
— Set m=3, d=1, ϕ3 = {S3}, h3= F0, δ3 = [2, 1], Y ′= {S4, S5} and rem = 0.
— This continues until we have constructed ϕ4, ϕ5 and the respective ranks as shown

in the table, and then Y in this recursion is empty.

11 After the recursive function call, we deal with Y = {S6, S7}, d=2 (equals the value
of d before the recursion), m=5 (equals the value of m at the end of the recursion).
Choose F2 at line 8, and we get ψ = {S6, S7}.

12 At line 10, (Y ∧Π = 1) 6= ∅, and we get ϕ = {S6, S7} at line 13.

13 Set m=6, d=3, ϕ6 = {S6, S7}, h6= F2, δ6 = [3], Y ′= {∅} and rem = {S7}.
14 Then call rank SC({S7}, [3]) in which the following is done.

— Set Y = {S7}, d=0.
— Choose F0 at line 8, we get ψ = {S7}.
— At line 10, (Y ∧Π = 0) 6= 0, and we get ϕ = S7 at line 13.
— Set m=7, d=1, ϕ7 = {S7}, h7= F0, δ7 = [3, 1], Y ′= {∅} and rem = 0.
— In this recursion, Y is empty, back to the previous level.

15 Finally, Y is empty. The algorithm terminates successfully.

T. Long and W. Zhang 14

4.3. Concretization

The concrete helpful assertions ϕi consists by concrete states si and value of concrete
states in ranking function ∆i(s), and concrete fairness requirements hi which constraint
ϕi after concretization are shown in Table 2. The processes of concretization are as
follows.

— Concretizing Assertions: This process changes the abstract variables back to the
concrete ones by reversing the abstraction.

— Concretizing Requirements: This process changes the abstract requirements back to
the corresponding concrete ones.

ϕi si ∆i(s) hi

ϕ7 at l0 ∧ x > 2 [3, 1] Fc0

ϕ6 at l0,1 ∧ x > 2 [3] Fc2

ϕ5 at l0 ∧ x = 2 [2, 2, 1] Fc0

ϕ4 at l0,1 ∧ x = 2 [2, 2] Fc1

ϕ3 at l0 ∧ (x = 1) [2, 1] Fc0

ϕ2 at l0,1 ∧ (0 < x ≤ 2) [2] Fc3

ϕ1 at l0 ∧ (x = 0) [1] Fc0

Table 2. Concretized Assertions and Ranks of Non-Deterministic Choice

4.4. Application of the Rule

The concrete helpful assertions ϕi and ranking functions ∆i are the effective premises
of the deductive rule SC RESPONSE. They satisfy R1-R4, and therefore the property is
proved to be true following the deductive rule. The readers are referred to the technical
report (Long and Zhang, 2012) for the details on how to carry out such a proof.

5. Extending the Approach

The strengthened compassion requirements are very strong requirements. In some cases,
when ranking abstraction is used, compassion requirements may be introduced, and we
need a mixture of strengthened compassion requirements and compassion requirements
for constraining the behavior in a system model. Therefore it needs deductive rules that
can deal with such a mixture of fairness requirements.

Proving Liveness Property under Strengthened Compassion Requirements 15

5.1. Fairness Discrete Systems

A fairness discrete system (FDS) is quadruple D = 〈V, Θ, ρ,F〉 where the components
are as follows.

— V : A finite set of typed system variables - containing data and control variables.
A set of states (interpretation) over V is denoted by Σ. For a state s and a system
variable v ∈ V , we denote by s[v] the value assigned to v by the state s.

— Θ : The initial condition - an assertion (state formula) characterizing the initial states.
— ρ : The transition relation - an assertion ρ(V, V ′), relating the values V of the variables

in state s ∈ Σ to the values V ′ in a D-successor state s′ ∈ Σ.
If ϕ is a formula representing a set of states, then ϕ′ is the formula with each v

replaced by v′.
— F = {Fi |i = 1, ..., n}: The fairness requirements - a set of pairs of assertions where Fi

is either an strengthened compassion requirement of the form (ri, {ui}) or a compas-
sion requirement of the form (ri, ui). Let C denote the subset of F that contains the
compassion requirements and SC denote the subset of F that contains the strength-
ened compassion requirements. The fairness requires that for each i ∈ {1, ..., n}, σ

contains only finitely many ri-states, or σ contains infinitely many ri-states and if
sm is such a state (i.e., sm |= ri), then ∃ t = m + 1 such that st |= ui (when
Fi = (ri, {ui}) ∈ SC is a strengthened compassion requirement), or ∃ t > m such
that st |= ui (when Fi = (ri, ui) ∈ C is a compassion requirement).

5.2. Ranking Abstraction

Ranking abstraction is a method of augmenting the concrete program by a non-constraining
progress monitor, which measures the progress of program execution, relative to a given
ranking function. In order to distinguish this kind of ranking functions from the ranking
functions in the deductive rule, we call this kind of ranking functions ARFs (augmenting
ranking functions) in the sequel. Once a program is augmented, a conventional state
abstraction can be used. In such a way, the state abstraction can preserve the ability to
monitor progress in the abstract system.

For a system FDS D = 〈V, Θ, ρ,F〉 and a well-founded domain (W,Â), let δ be an
ARF over W, let decδ be a fresh variable, the augmentation of D by δ is

D + δ : 〈V ∪ {decδ},Θ, ρ ∧ ρδ, F ∪ {〈decδ > 0, decδ < 0〉}〉
where decδ is defined by

decδ =
{ 1 δ Â δ′

0 δ = δ′

−1 otherwise

A system may be augmented with a set of ARFs {δ1, ..., δk}. Then predicate abstraction
may be applied. In the predicate abstraction, it is not necessary to abstract variables
of the form decδ since it ranges over the finite domain {−1, 0, 1}, and the abstraction
preserves the compassion requirement 〈decδ > 0, decδ < 0〉.

T. Long and W. Zhang 16

Let p, q be assertions.

Let A = (W,Â) be a well-founded domain.

Let {Fi | i ∈ {1, ..., n}} ∈ C ∪ SC be a set of fairness requirements.

Let {ϕi | i ∈ {1, ..., n}} be a set of assertions.

Let {∆i : Σ → A | i ∈ {1, ..., n}} be a set of ranking functions.

R1 p ⇒ q ∨∨n
j=1(rj ∧ ϕj)

∀i ≤ n:

R2 ri ∧ ϕi ∧ ρ ⇒ q′ ∨∨n
j=1(r

′
j ∧ ϕ′j)

R3 ϕi ∧ ρ ⇒ q′ ∨ (ϕ′i ∧∆i = ∆′
i) ∨

∨n
j=1(r

′
j ∧ ϕ′j ∧∆i Â ∆′

j)

R4 case Fi = 〈ri, ui〉 ∈ C:
ϕi ⇒ ¬ui

case Fi = 〈ri, {ui}〉 ∈ SC:
ϕi ∧ ri ∧ ρ ∧ ϕ′i ⇒ ¬u′i

p ⇒ ¦q
Fig. 5. Deductive Rule: ESC RESPONSE

5.3. Deductive Rule: ESC RESPONSE

For dealing with both strengthened compassion and compassion, a deductive rule denoted
ESC RESPONSE is provided in Fig. 5. This rule extends SC RESPONSE of Fig. 2 and
is a combination of this and the rule RESPONSE of (Pnueli and Sa’ar, 2008) for dealing
with compassion requirements. The correctness follows from the correctness of these two
rules.

5.4. Extended Algorithm

Considering an FDS D with both compassion and strengthened compassion , we present
an extended algorithm which extracts a deductive proof according to the rule ESC RESPONSE
of a response property p ⇒ ¦q. The algorithm E Auxiliary Constructs is presented as
Algorithm 2. The formulation of the algorithm involves a new operator E(p U q) with
the following meaning: the formula E(p U q) captures the set of states that originate a
path leading to any q-state, such that all the states in the path, except possibly the last,
satisfy p. In this expression, the until temporal operator U is used.

Correctness The algorithm is a combination of the algorithm SC Auxilary Constructs

for dealing with strengthened compassion constraints in SC and the algorithm in (Long
and Zhang, 2010) for dealing with compassion constraints in C. The correctness follows
from that of the two algorithms, and can be proved similarly.

5.5. Extended Example

We consider the same example as that of section 4. With the use of ranking abstraction,
a weaker fairness requirement is sufficient for proving the response property. We remove
the strengthened compassion constraint 〈at l1, {at l0 ∧ x = 2}〉 from the original set

Proving Liveness Property under Strengthened Compassion Requirements 17

Algorithm 2 E Auxiliary Constructs

1: m := 0
2: accessibleD := E(trueSΘ)
3: pend := accessibleD ∧ E(¬qS(p ∧ ¬q))
4: rank M(pend, [])

where procedure rank ESC is defined by:
procedure rank ESC(subpart ,prefix)
d:integer
Y :assertion

5: Let d := 0
6: Let Y := subpart
7: FIX (Y)
8: Forall (〈r, u〉 ∈ F) do
9: if 〈r, u〉 ∈ C then

10: Let ψ = Y ∧ ¬(E(Y U(Y ∧ u)))
11: else if 〈r, u〉 ∈ SC then
12: Let ψ = Y ∧ ¬(Y ∧ r ∧ EX(Y ∧ u))
13: end if
14: if ψ ∧ r 6= ∅ then
15: Let m = m + 1
16: Let d = d + 1
17: Let ϕm := E(ψS(ψ ∧ r))
18: Let hm:= 〈r, u〉k
19: Let δm := prefix ∗ [d]
20: Let Y := Y ∧ ¬ϕm

21: Let rem := ϕm ∧ ¬r

22: if (rem 6= ∅) then
23: rank ESC(rem, prefix ∗ [d])
24: end if
25: end if
26: end for
27: if (Y 6= ∅) then
28: report “fail”
29: end if
30: end-Fix

of fairness requirements. The property we wish to establish is at l0 ⇒ ¦at l2, and the
fairness requirements are:

Fec0: 〈at l0, {¬at l0}〉
Fec1: 〈at l1, {at l0 ∧ x 6= 2}〉
Fec3: 〈at l1 ∧ x = 1, {at l0 ∧ x 6= 2}〉

T. Long and W. Zhang 18

Fig. 6. Pend Graph of Non-Deterministic Choice with the Variable Decx

5.5.1. Ranking Abstraction The mapping for the abstraction is shown as follows.

α : Π = π, X = x̃,Decx = decx

x̃ =
{ 0 x = 0

1 x = 1
2 x = 2
3 x > 2

decx =
{ 1 x Â x′

0 x = x′

−1 otherwise

The response property after applying the abstraction is now Π = 0 ⇒ ¦Π = 2, and the
fairness requirements are as follows:

Fe0 : 〈Π = 0, {Π 6= 0}〉
Fe1 : 〈Π = 1, {Π = 0 ∧ (X 6= 2)}〉
Fe3 : 〈Π = 1 ∧ (X = 1), {Π = 0 ∧ (X 6= 2)}〉
FDec : 〈Decx > 0, Decx < 0〉

After removing a stronger constraint from concrete ones, instead, we add a weaker
additional compassion requirement FDec : 〈Decx > 0, Decx < 0〉 (introduced by ranking
abstraction) into the set of abstract requirements. Fe0, Fe1 and Fe3 are respectively the
abstract version of Fec0, Fec1 and Fec3. The ranking abstraction introduces an extra
fairness requirement, i.e., the compassion requirement FDec〈Decx > 0, Decx < 0〉 which
constraint that the value of x can not decrease infinitely times without increasing. The
pend graph after the abstraction is shown in Fig. 6

Proving Liveness Property under Strengthened Compassion Requirements 19

5.5.2. Extracting Auxiliary Constructs By applying Algorithm 2 to the pend graph, we
obtain the abstract auxiliary constructs in Table 3.

Φi Si δi = ∆i(S) Hi

Φ7 Π = 0 ∧X = 3 ∧Decx = 0 [3, 1] Fe0

Φ6 Π = 0 ∧X = 3 ∧Decx = 0 [3] FDec

∨Π = 1 ∧X = 3 ∧Decx = 1

Φ5 Π = 0 ∧X = 2 ∧Decx = 0 [2, 2, 1] Fe0

Φ4 Π = 1 ∧X = 2 ∧Decx = {0, 1} [2, 2] Fe1

∨Π = 0 ∧X = 2 ∧Decx = 0

Φ3 Π = 0 ∧X = 1 ∧Decx = 0 [2, 1] Fe0

Φ2 Π = 1 ∧X = 2 ∧Decx = {0, 1} [2] Fe3

∨Π = 1 ∧X = 1 ∧Decx = {−1, 1}
∨Π = 0 ∧X = 1 ∧Decx = 0
∨Π = 0 ∧X = 2 ∧Decx = 0

Φ1 Π = 0 ∧X = 0 ∧Decx = 0 [1] Fe0

Table 3. Abstract Auxiliary Constructs of Non-Deterministic Choice with Decx

5.5.3. Concretization Because Decx is an additional variable by ranking abstraction and
must be remove after concretization, we should make sure that the requirement that
includes Dec is reflected in the definition of ranks. The way to deal with this aspect is to
append the value of variable x to corresponding ranking tuples (Balaban et al., 2007).

If a rank is associated with FDec requirement 〈Decx > 0, Decx < 0〉 then the rank ∆i

is to be modified as follows.

— If an assertion Φi is associated with an abstract fairness requirement 〈Decx > 0, Decx <

0〉, we get the concrete assertion ϕi = α−1(Φi ∧Decx > 0) and change the hi as the
fairness requirement that ϕi |= ri.

— If δi = [β] is obtained with an FDec requirement involving Decx, then we insert the
value of variable x and 0 after β in δi. Then for δj = [β, γ] with the same prefix β, it
will be modified to [β, xs, γ], i.e., ∆j(s) = [β, xs, γ] where xs denotes the value of x
at state s.
For instance, in Table 3, FDec is used to constrain ϕ6 with rank [β] = [4]. Then
δ6 = [β] = [4] is modified to ∆6(s) = [β, xs, 0] = [4, xs, 0]. For δ7 = [β, γ] = [4, 1] with
the same prefix “4”, it is modified to ∆7(s) = [4, xs, 1].

After concretization, we obtain the concrete auxiliary constructs shown in Table. 4.
For states satisfying the same helpful assertions, the value of ranking functions depends

T. Long and W. Zhang 20

ϕi si ∆i(s) hi

ϕ7 at l0 ∧ x > 2 [4, xs, 1] Fec0

ϕ6 at l1 ∧ x > 2 [4, xs, 0] Fec1

ϕ5 at l0 ∧ x = 2 [2, 2, 1] Fec0

ϕ4 at l0,1 ∧ x = 2 [2, 2, 0] Fec1

ϕ3 at l0 ∧ (x = 1) [2, 1] Fec0

ϕ2 at l0,1 ∧ (0 < x ≤ 2) [2] Fec3

ϕ1 at l0 ∧ (x = 0) [1] Fec0

Table 4. Concretized Auxiliary Constructs of Non-Deterministic Choice with Decx

on the value of x in the states, and the value of x cannot decrease infinitely without
increasing (constraint by FDec requirement).

5.5.4. Application of the Rule The concrete helpful assertions ϕi and ranking functions
∆i are the effective premises of deductive proof rule ESC RESPONSE. They satisfy R1-
R4, and therefore the property is proved to be true following the deductive rule. The
readers are referred to the technical report (Long and Zhang, 2012) for the details of
such a proof.

6. Concluding Remarks

Strengthened compassion requirements have been studied in this paper. This kind of
requirements has been compared with compassion requirements, and it shows the dif-
ferences between the use of these two kinds of fairness requirements. A deductive rule
SC RESPONSE for proving response properties with such requirements has been pre-
sented. Proofs of the soundness and the relative completeness of the rule have also been
provided, and the application of the rule has been illustrated. Furthermore, an extended
rule ESC RESPONSE has been provided for dealing with system models with a mix-
ture of both compassion requirements and strengthened compassion requirements. The
necessity and the use of such a rule have been demonstrated by an example.

References

Angluin, D., Aspnes, J., Fischer, M. J., and Jiang, H. (2005). Self-stabilizing population proto-

cols. In OPODIS, pages 103–117.

Balaban, I., Pnueli, A., and Zuck, L. D. (2005). Ranking abstraction as companion to predicate

abstraction. In FORTE, pages 1–12.

Proving Liveness Property under Strengthened Compassion Requirements 21

Balaban, I., Pnueli, A., and Zuck, L. D. (2007). Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44.

Balaban, I., Pnueli, A., and Zuck, L. D. (2010). Proving the refuted: Symbolic model checkers

as proof generators. In Concurrency, Compositionality, and Correctness, pages 221–236.

Ball, T., Majumdar, R., Millstein, T. D., and Rajamani, S. K. (2001). Automatic predicate

abstraction of c programs. In PLDI, pages 203–213.

Fischer, M. J. and Jiang, H. (2006). Self-stabilizing leader election in networks of finite-state

anonymous agents. In OPODIS, pages 395–409.

Graf, S. and Säıdi, H. (1997). Construction of abstract state graphs with pvs. In CAV, pages

72–83.

Kesten, Y., Pnueli, A., and on Raviv, L. (1998). Algorithmic verification of linear temporal logic

specifications. In ICALP, pages 1–16.

Kesten, Y. and Pnueli, A. (2000). Verification by augmented finitary abstraction. Inf. Comput.,

163(1):203–243.

Kupferman, O. and Vardi, M. Y. (2005). From complementation to certification. Theor. Comput.

Sci., 345(1):83–100.

Lamport, L. (1977). Proving the correctness of multiprocess programs. IEEE Trans. Software

Eng., 3(2):125–143.

Lehmann, D. J., Pnueli, A., and Stavi, J. (1981). Impartiality, justice and fairness: The ethics

of concurrent termination. In ICALP, pages 264–277.

Long, T. and Zhang, W. (2010). Auxiliary constructs for proving liveness in compassion discrete

systems. In ATVA, pages 276–290.

Long, T. and Zhang, W. (2012). Proving liveness property under strengthened compassion

requirements. In TAMC, pages 498–508.

Long, T. and Zhang, W. (2012). Proving Liveness Property under Strengthened Compassion

Requirements. Technical Report, SKL–2012–01, Institute of Sofware, Chinese Academy of

Sciences. Available at “http://lcs.ios.ac.cn/∼zwh/tr/”.

Main, M. G. (1993). Complete proof rules for strong fairness and strong extreme fairness. Theor.

Comput. Sci., 111(1&2):125–143.

Manna, Z. and Pnueli, A. (1991). Completing the temporal picture. Theor. Comput. Sci.,

83(1):91–130.

Manna, Z. and Pnueli, A. (1994). Temporal verification diagrams. In TACS, pages 726–765.

Manna, Z. and Pnueli, A. (2010). Temporal verification of reactive systems: Response. In Essays

in Memory of Amir Pnueli, pages 279–361.

Namjoshi, K. S. (2001). Certifying model checkers. In CAV, pages 2–13.

Namjoshi, K. S. (2003). Lifting temporal proofs through abstractions. In VMCAI, pages 174–

188.

Peled, D., Pnueli, A., and Zuck, L. D. (2001). From falsification to verification. In FSTTCS,

pages 292–304.

Peled, D. and Zuck, L. D. (2001). From model checking to a temporal proof. In SPIN, pages

1–14.

Pnueli, A. (1983). On the extremely fair treatment of probabilistic algorithms. In STOC, pages

278–290.

Pnueli, A. and Sa’ar, Y. (2008). All you need is compassion. In VMCAI, pages 233–247.

Sun, J., Liu, Y., Dong, J. S., and Pang, J. (2009). Pat: Towards flexible verification under

fairness. In CAV, pages 709–714.

