
Ternary Boolean Diagrams and
Their Application to Model Checking

Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

Abstract. Binary decision diagrams (BDDs) are a type of data struc-
ture with associated algorithms for manipulation of Boolean functions.
It has applications in logic synthesis and formal verification. This work1

introduces ternary Boolean diagrams (TBDs) for representation and ma-
nipulation of Boolean functions. TBDs may be considered as a data struc-
ture complementary to BDDs, and may be used in certain cases where
BDDs are expensive to use. A connection of TBDs to the problem of
model checking concurrent transition systems is established. Experimen-
tal evaluation and case studies of the verification approach are discussed
with respect to BDD based model checking.

Keywords. Boolean Function Manipulation, Symbolic Model Checking,
Ternary Boolean Diagrams

1 Introduction

Binary decision diagrams (BDDs) were introduced for representation of switch-
ing circuits in [11]. The full potential for efficient algorithms based on the BDDs
was investigated in [4], in which a fixed variable ordering and shared sub-graphs
are used for compressed canonical representation. Efficient boolean function ma-
nipulation has made BDDs been extensively used in logic synthesis and formal
verification, in particular, for combating the state explosion problem of model
checking [6, 14]. However, BDD still has problems for succinctly representing
many verification problems. It is therefore of great importance to search for al-
ternative or supplementary bases for boolean function manipulation and formal
verification. This paper discuses the use of ternary boolean diagrams (TBDs).
TBDs are a kind of extension of BDDs such that each node of TBD has 3 out
edges instead of 2, and a node may be labeled by a label (representing a variable)
or a dual one. The structure is similar to ternary decision diagrams (TDDs) [10],
however, the interpretation is different. An essential difference between TBDs
and BDDs (or TDDs) is that TBDs are not decision diagrams: given a TBD

1 This work merges and extends the preliminary works presented in technical reports
[19, 20], and it was supported by the National Natural Science Foundation of China
under Grant Nos. 60833001 and 61272135, the National Basic Research Program of
China under Grant No. 2014CB340701, and the CAS Innovation Program.

representing a set of states, a path of such a TBD does not have sufficient in-
formation to decide whether a state constructed from the labels of the path is a
state in the set. The advantage of this difference is that it provides possibilities
for representing Boolean formulas more succinctly. The contents of this paper
are as follows.

– A definition of the structure and semantics of TBD is given in Section 2.
The correspondence of TBDs to Boolean formulas is established through the
semantics.
These definitions are meant to be brief, and may not be directly useful for
Boolean manipulation, and then a definition of ordered TBDs and related
issues are given in Section 2.3.
Operations including negation and conjunction are defined for TBDs. The
correspondence of these operations to Boolean operations is established.
Then for efficient TBD manipulation, a set of rewrite rules is presented for
rewriting TBDs into a kind of reduced order TBDs.

– The representation succinctness is explained through a comparison of TBDs
and BDDs in Section 2.7.
It is proved that TBDs may be more succinct than BDDs for representation
of some formulas. Experimental data are also presented to support that there
may be advantages with TBDs in average case, not only in extreme cases.

– The application of TBDs to model checking CTL formulas are presented in
Section 3.
Feasibility of such an application is studied through a comparison of an
implementation of this approach with the implementation of BDD based
model checking in the well known model checking tool NuSMV [7].
The comparison contains two parts: one uses random Boolean programs, the
other uses well-known protocols as the case studies. The first one is supposed
to show some basic properties of the computational aspects of TBDs, while
the second one is to show the feasibility of TBD based model checking for
practical applications.
The first one is helpful for reflecting the basic properties of the computational
aspects, since random problems do not posses good structures that may be
utilized by various strategies in model checking, and such problems may be
considered as hard problems to be dealt with.
The second one is helpful for showing the feasibility to practical applications,
since such a problem may involve a relatively large number of variables that
are necessary for encoding a realistic problem. For this kind of problems,
various strategies have to be used in order to make verification process suc-
cessful.
In general, we may conclude that BDD based model checking and TBD based
model checking have their own advantages, such that TBDs may be consid-
ered as a data structure complementary to BDDs, and they may be used
in different situations to achieve the optimal feasibility of model checking
approaches.

– Then a section for concluding remarks follows and finally, there are appen-
dices for establishing the correctness of the claims which are not proved in
the main sections.

2 Ternary Boolean Diagrams

Let L be a set of labels. Let L− = {−x | x ∈ L}. A boolean diagram over L is a
graph with a root node and each node is assigned a label of L ∪ L−. A ternary
boolean diagram is such a graph where the out degree of a node is either 3 or
0, and the out edges of a node is ordered such that the left, the middle and the
right out edges of a node can be identified. Formally, ternary Boolean diagrams
are defined as follows.

Definition 1 (Ternary Boolean Diagram). Let L be a set of labels. A ternary
Boolean diagram (TBD) over L is a quadruple

(N, n0, E, L)

where N is a set of nodes, n0 ∈ N is the root node, E : N → N3 is a partial
function that defines the three out edges of a node, L : N → L∪L− is a labeling
function which assigns each node a label of L or its negation.

The set of ternary Boolean diagrams over L is denoted D(L). For simplicity,
we fix an L and write D for D(L).

Notations When E(n) is not defined for a node n, the value of E(n) is denoted
by a special triple (ε, ε, ε). A TBD t with n0 as the root node may be repre-
sented by (x, a, b, c) when L(n0) = x,E(n0) = (a, b, c). For the clearness of the
presentation, additional notations to be used are as follows.

notation meaning condition
x > 0 x ∈ L
x < 0 x ∈ L−
L(t) x where t = (x, a, b, c)
−−x x where x > 0
|x| x where x > 0
|x| −x where x < 0

−(x, a, b, c) (−x, a, b, c) where x > 0 or x < 0
x · t t where x > 0
x · t −t where x < 0
τx (x, ε, ε, ε) where x > 0
τ∼x (x, ε, ε, ε) where x > 0 or x < 0

Example 1. Figure 1 shows graphic representations of (x, a, b, c) and −(x, a, b, c)
(or (−x, a, b, c)) where a, b, c are TBDs, or ε in case the node does not have
successors.

Fig. 1.

2.1 Language, Model and Equivalence

Let Σ = (L ∪ L−).

Definition 2. Let r ∈ D and σ = x1 · · ·xk ∈ Σ∗. σ is accepted by r, denoted
σ |= r, iff there is an x ∈ L such that rdx1 · · · dxk

= τx in which rdw is defined as
follows:

case rdw when w < 0 rdw when w > 0
1 r r
2 v · τ∼x v · τ∼y
3 v · −τz v · −τz

4 (v, sdw, tdw, udw) (v, sdw, tdw, udw)

in which the last rule is applied only when the other rules are not applicable, in
which the corresponding condition for each of the cases is specified as follows.

case condition
1 r = τ∼x
2 r = (v, τ∼x , τ∼y , τz) ∧ |v| = |w|
3 r = (v, τ∼x , τ∼y ,−τz) ∧ |v| = |w|
4 r = (v, s, t, u)

Cyclicity in a TBD causes non-termination in the computation of rdx1 · · · dxk

(in which the operator is left associative). In such cases, we have rdx1 · · · dxk
6= τx

for all x. On the other hand, acyclicity is ensured when using ordered TBDs (cf.
Definition 3.1).

Definition 3. Let r ∈ D and m ⊆ L. m is a model of r, denoted m |= r, iff there
is a sequence σ ∈ Σ∗ such that x ∈ σ implies x > 0∧ x ∈ m or x < 0∧−x 6∈ m,
and σ |= r.

Models can be derived from those strings in the language that do not contain
conflicting labels, by removing all negative labels for each of such strings.

Example 2. Let L = {p, q, r}. Then we have Σ = {p, q, r,−p,−q,−r}. Let τ
denote (r, ε, ε, ε). Figure 2 is a graphic representation2 of (−p,−τ, τ, (q, τ,−τ, τ)).

2 Note that the three τ nodes in the figure are the same and should be merged to one,
the figure shows three nodes for presentational clarity. Similar for the two −τ nodes.

Fig. 2.

– The language defined by this TBD is

((Σ \ {−q, q})∗ · {q} · (Σ \ {−p, p})∗ · {−p, p} ·Σ∗) ∪
((Σ \ {−q, q})∗ · {−q} · (Σ \ {−p, p})∗ · {−p} ·Σ∗).

Taking the first part in the union as an example:
(Σ \ {−q, q})∗ in the expression does not have any effect in the reduction
of the TBD, then q reduces the TBD to (−p,−τ, τ,−τ), which remains un-
changed after reduction with (Σ \ {−p, p})∗, then both −p and p reduces
(−p,−τ, τ,−τ) to τ , which remains unchanged after reduction with Σ∗.
Therefore the set (Σ \ {−q, q})∗ · {q} · (Σ \ {−p, p})∗ · {−p, p} · Σ∗ is a
part of the language of the TBD.

– Then accordingly, the set of models of the TBD is

{{p, q, r}, {q, r}, {r}, {p, q}, {q}, {}}.
Definition 4. Let s, t ∈ D be TBDs. s is equivalent to t, denoted s ≡ t, iff for
all m ⊆ L, m |= s iff m |= t.

Completeness: We say that r is complete, if for all m ⊆ L, m is a model of r.
Then r is complete iff r is equivalent to τx for an x ∈ L.

2.2 Boolean Formulas as TBDs

Let Φ(S) denote the set of boolean formulas with variables in S. Let LI ⊆ L be
a subset of L.

Definition 5. Let ϕ ∈ Φ(LI) and m ⊆ L. m |= ϕ iff ϕ evaluates to true under
the assignment such that xi = 1 iff xi ∈ m.

Definition 6. Let ϕ ∈ Φ(LI) and r ∈ D. ϕ is equivalent to r, denoted ϕ ≡ r,
iff for all m ⊆ L, m |= ϕ iff m |= r.

Then τx is equivalent to the logical constant 1, and −τx is equivalent to the
logical constant 0.

Example 3. The TBD in Example 2 is equivalent to (¬p ∨ q). It is easily seen
that both have the same set of models when the set of Boolean variables are
given as {p, q, r}.

2.3 Ordered TBDs

Let ≤ be a linear order on L. x < y iff x ≤ y and x 6= y. Let L = {p1, ..., pn, pn+1}
such that pi < pi+1 for i = 1, ..., n. Let τ = τpn+1 = (pn+1, ε, ε, ε). Then τ and
−τ = (−pn+1, ε, ε, ε) are the only terminal nodes of ordered TBDs.

Definition 7. The set DO ⊆ D of ordered TBDs is defined as follows. s ∈ DO
iff s ∈ {τ,−τ}, or s = (x, n0, n1, n2) ∈ D with |x| < |L(ni)| and ni ordered for
all i ∈ {0, 1, 2}.

Negation: Let s = (x, a, b, c) ∈ DO. The negation of s, denoted ¬s, is computed
by ¬s = (−x, a, b, c).

Conjunction: Let s = (x, a, b, c), t = (x′, a′, b′, c′) be ordered TBDs. The con-
junction of s and t, denoted s ∧ t, is computed as follows.

(1) One of s and t is in {τ,−τ}. Then

τ ∧ t = t ∧ τ = t
−τ ∧ t = t ∧ −τ = −τ

(2) None of s and t are in {τ,−τ}. Let u ∨ v denote ¬(¬u ∧ ¬v). Then

case s ∧ t
1 (x, a ∧ a′, b ∧ b′, c ∧ c′)
2 (x, ((a ∧ c) ∨ (a′ ∧ c′)), ((b ∧ c) ∨ (b′ ∧ c′)), τ)
3 (x, a ∧ ¬(a′ ∧ c′), b ∧ ¬(b′ ∧ c′), c)
4 (x, a, b, c ∧ t)
5 (x,¬(¬a ∧ t),¬(¬b ∧ t),¬(¬c ∧ t))

The corresponding condition for each of the cases is specified as follows.

case condition
1 x = x′ ∧ x > 0
2 x = x′ ∧ x < 0
3 |x| = |x′| ∧ x > x′

4 |x| < |x′| ∧ x > 0
5 |x| < |x′| ∧ x < 0

The cases where |x| > |x′| (with two subcases, one with x > 0 and the other
with x < 0) or |x| = |x′| ∧ x < x′ are computed by s ∧ t = t ∧ s.

Proposition 1. Let s, t ∈ DO be TBDs. Then s ∧ t = t ∧ s.

The commutativity of conjunction follows from the definition of the operator.

Abstraction: Let r ∈ {τ,−τ, (v, s, t, u)} be an element of DO. The abstraction of
r on x, denoted abs(x)(r), is computed by abs(x)(r) = r|−x ∧ r|x in which r|w
is computed as follows:

case r|w when w < 0 r|w when w > 0
1 r r
2 v · (s ∧ u) v · (t ∧ u)
3 (v, s|w, t|w, u|w) (v, s|w, t|w, u|w)

The corresponding condition for each of the cases is specified as follows.

case condition
1 r ∈ {τ,−τ}
2 r = (v, s, t, u) ∧ |v| = |w|
3 r = (v, s, t, u) ∧ |v| 6= |w|

Abstraction corresponds to the application of the universal quantification in a
Boolean formula. The existential abstraction of r on x, is defined by ¬abs(x)(¬r).

Proposition 2. Let s1, s2, t1, t2 ∈ DO and x ∈ L. If s1 ≡ s2 and t1 ≡ t2, then
¬s1 ≡ ¬s2, s1 ∧ t1 ≡ s2 ∧ t2 and abs(x)(s1) ≡ abs(x)(s2).

The proof is presented in Appendix A.1.

On Completeness: The predicate comp on DO for observation of whether a TBD
is complete is defined as follows: comp(r) = (abs(p1)abs(p2) · · · abs(pn)(r) = τ).

Proposition 3. Let r ∈ DO. r is complete iff comp(r) holds.

The proof is presented in Appendix A.2.

2.4 Boolean Formulas as Ordered TBDs

Let LI be restricted to a subset of L \ {pn+1}.

Proposition 4. Let x, ϕ0, ϕ1 ∈ Φ(LI) and s, t ∈ DO. If x ∈ LI is an atomic
formula, then x ≡ (x,−τ, τ, τ), and if ϕ0 ≡ s and ϕ1 ≡ t, then ¬ϕ0 ≡ ¬s and
ϕ0 ∧ ϕ1 ≡ s ∧ t.

The proof is presented in Appendix A.3.

Example 4. Let ϕ be ¬(p ∧ ¬q) ∧ ¬(¬p ∧ q). Let L = {p, q, z} with p < q < z
such that LI = {p, q}. Let τ = (z, ε, ε, ε) and −τ = (−z, ε, ε, ε). Following the
definitions of negation and conjunction, ϕ can be transformed to a TBD as
follows, with the graphical representation of the final resulting TBD shown in
Figure 3.

p ≡ (p,−τ, τ, τ)
¬p ≡ (−p,−τ, τ, τ)
q ≡ (q,−τ, τ, τ)
¬q ≡ (−q,−τ, τ, τ)
p ∧ ¬q ≡ (p,−τ, τ, (q, τ,−τ, τ))
¬p ∧ q ≡ (−p, (q, τ,−τ, τ), τ, τ)
¬(p ∧ ¬q) ≡ (−p,−τ, τ, (q, τ,−τ, τ))
¬(¬p ∧ q) ≡ (p, (q, τ,−τ, τ), τ, τ)
ϕ ≡ (p, (q, τ,−τ, τ), (−q, τ,−τ, τ), τ)

Fig. 3.

Proposition 5. Let ϕ ∈ Φ(LI) and s ∈ DO. If ϕ ≡ s, then ∀x.ϕ ≡ abs(x)(s).

The proof is presented in Appendix A.4.

Proposition 6. Let ϕ ∈ Φ(LI) and s ∈ DO. If ϕ ≡ s, then ϕ is valid iff s is
complete.

This follows from the definition of validity (i.e, every set m ∈ 2L is a model
of ϕ) and that of completeness (every set m ∈ 2L is a model of s).

2.5 Reduced Ordered TBDs

Definition 8. The set of reduced ordered TBDs, denoted DR, is a subset of DO
defined as follows. {τ,−τ} ⊆ DR, and (x, a, b, c) ∈ DR iff a, b, c ∈ DR and the
following conditions hold:

c 6= −τ
b = −τ ∧ c = τ ⇒ a = τ
a = −τ ∧ c = τ ⇒ b = τ
a = b ⇒ a, c 6∈ {τ,−τ}
c ∈ {a, b} ⇒ c = τ ∧ x > 0
a, b ∈ {τ,−τ} ⇒ x > 0

Proposition 7. For every s ∈ DO, there exists t ∈ DR such that s ≡ t.

This follows from Proposition 9 that states that every TBD not in DR can
be rewritten into an equivalent one in DR.

Rewrite Rules Let x ∈ L ∪ L− and y ∈ L. Let R be a rewrite system with the
following set of rules.

(x,−τ,−τ, c) → (x · −τ)
(x, a, b,−τ) → (x · −τ)
(x, τ, τ, c) → (x · c)
(x, a, a, τ) → (x · a)
(x, a,−τ, τ) → (x, τ,−τ, a)
(x,−τ, b, τ) → (x,−τ, τ, b)
(x, a, c, c) → (x, a, τ, c)
(x, c, b, c) → (x, τ, b, c)
(−y, τ, b, τ) → (y,−τ,−b, τ)
(−y, a, τ, τ) → (y,−a,−τ, τ)
(−y, τ,−τ, c) → (y,−c, τ, τ)
(−y,−τ, τ, c) → (y, τ,−c, τ)

Regarding the operation ·, we remind that according to the notation defined
at the beginning of this section, x · τ is −τ when x ∈ L− and x · τ is τ when
x ∈ L. It is similar for other TBDs. Let s

∗→t denotes that s rewrites to t in 0 or
more steps.

Proposition 8. For every s, t ∈ DO, if s
∗→t, then s ≡ t.

The proof is presented in Appendix A.5.

Proposition 9. For every s ∈ DO, there exists one and only one t ∈ DR such
that s

∗→t.

This follows from the fact that if an s ∈ DO is not in DR, then the rewrite
rules can be repeatedly applied until a TBD in DR is obtained. On the other
hand, the rewrite rules does not interfere with each other, such that the order
of the applications of the rules does not affect the result of the rewriting.

Example 5. Let ϕ = ¬(p ∧ ¬q) ∧ ¬(¬p ∧ q) be the same as that of Example 4.
Let L = {p, q, z} with p < q < z such that LI = {p, q}. Following the definitions
of negation and conjunction, and the application of the rewrite rules, ϕ can be
transformed to a TBD as follows, with the graphical representation of the final
resulting TBD shown in Figure 4.

p ≡ (p,−τ, τ, τ)
¬p ≡ (p, τ,−τ, τ)
q ≡ (q,−τ, τ, τ)
¬q ≡ (q, τ,−τ, τ)
p ∧ ¬q ≡ (p,−τ, τ, (q, τ,−τ, τ))
¬p ∧ q ≡ (p, τ,−τ, (q,−τ, τ, τ))
¬(p ∧ ¬q) ≡ (p, τ, (q,−τ, τ, τ), τ)
¬(¬p ∧ q) ≡ (p, (q, τ,−τ, τ), τ, τ)
ϕ ≡ (p, (q, τ,−τ, τ), (q,−τ, τ, τ), τ)

Fig. 4.

The TBD for ϕ has 10 nodes when it is considered as a tree, and it has 5
nodes when it is considered as a graph with shared nodes (in this case, only the
7 terminal nodes are merged into 2 nodes).

2.6 Reordering of Variables

Suppose that we have a TBD t with variable order x1, ..., xn, xn+1. We may
obtain a TBD t′ with variable order x1, ..., xk−1, xk+1, xk, xk+2, ..., xn, xn+1 (in
which 1 ≤ k ≤ n− 1) by replacing sub-TBDs starting at variable xk.

Proposition 10. Let p > 0 and q > 0. Each of the following pairs represent the
same formula with different variable orderings on p and q.

(p, (q, a, b, c), c′, c′′)
(q, (p, a, τ, τ), (p, b, τ, τ), (p, c, c′, c′′))
(p, c, (q, a′, b′, c′), c′′)
(q, (p, τ, a′, τ), (p, τ, b′, τ), (p, c, c′, c′′))
(p, c, c′, (q, a′′, b′′, c′′))
(q, (p, τ, τ, a′′), (p, τ, τ, b′′), (p, c, c′, c′′))
(p, (q, a, b, c), (q, a′, b′, c′), c′′)
(q, (p, a, a′, τ), (p, b, b′, τ), (p, c, c′, c′′))
(p, (q, a, b, c), c′, (q, a′′, b′′, c′′))
(q, (p, a, τ, a′′), (p, b, τ, b′′), (p, c, c′, c′′))
(p, c, (q, a′, b′, c′), (q, a′′, b′′, c′′))
(q, (p, τ, a′, a′′), (p, τ, b′, b′′), (p, c, c′, c′′))
(p, (q, a, b, c), (q, a′, b′, c′), (q, a′′, b′′, c′′))
(q, (p, a, a′, a′′), (p, b, b′, b′′), (p, c, c′, c′′))

The proof is presented in Appendix A.6. These equivalences are useful for
reordering of variables.

2.7 Complexity Issues

The representation succinctness is explained through a comparison of TBDs and
BDDs. The node size of t, denoted |t|, is the number of different nodes of t that
may use shared nodes. The tree size of t, denoted ||t||, is the number of nodes
of t where t is expanded as a tree. For TBDs, a TBD tree t has (2||t|| + 1)/3
terminal nodes, and therefore |t| ≤ (||t|| − 1)/3 + 2.

Variable Order Let v = v1 · · · vm denote the partial order ({v1, ..., vm, z},≤)
with vi < vj iff i < j and vi < z for all i. An ordering v of variables of ψ is such
an ordering where {v1, ..., vm} is a permutation of variables appearing in ψ (the
special variable z is needed for TBDs, it is not necessary for BDDs, however
adding this special variable to an ordering of variables would not cause any
trouble for BDDs). Let v[x → 1] denote the ordering v′ where the first element
of v′ is x, and the rest of the elements of v′ is the same as v with x removed
from v.

Definition 9. Let p ↔ q denote ¬(p∧¬q)∧¬(¬p∧q). Let ai, bi with i ∈ {1, ..., n}
be propositional variables.

ϕi = ai ↔ bi

ϕ =
∧n

i=1 ϕi

Proposition 11. There is some variable ordering, such that the reduced ordered
BDD representation of ϕ has node size ≥ 2n, while for all variable orderings, we
can construct a TBD representation for ϕ with tree size and node size linear in
n.

The proof is presented in Appendix B.1.

Definition 10. Let p∨ q denote ¬(¬p∧¬q). Let ai,j with i, j ∈ {1, ..., n} and b
be propositional variables.

ϕi = ai,1 ↔ · · · ↔ ai,n

ϕ′j = a1,j ↔ · · · ↔ an,j

ϕ =
∧n

i=1 ϕi

ϕ′ =
∧n

j=1 ϕ′j
ψ = (b ∧ ϕ) ∨ (¬b ∧ ϕ′)

Proposition 12. For all variable orderings, the reduced ordered BDD represen-
tation of ψ has node size ≥ 2n, while we can construct a TBD representation
for ψ with node size polynomial in n.

This proposition follows from Proposition 13 and Proposition 14, which are
to be stated as follows.

Proposition 13. For any ordering of variables of ψ, if d is a BDD for ψ with
such an ordering, then |d| ≥ 3 · 2n−1 − 1.

The proof is presented in Appendix B.2.

Proposition 14. For any ordering v of variables of ψ, we can construct a TBD
t for ψ with |t| ≤ 256 · (n + 1)12.

The proof is presented in Appendix B.3.

2.8 Experimental Data

For practical application of TBDs, the average complexity is in many cases more
important than best case complexity. This subsection provides experimental data
on average complexity for selected types and sizes of random Boolean formulas.

Types of Boolean Formulas Consider Boolean formulas in CNF (conjunctive
normal form) and DNF (disjunctive normal form). The number of variables
is set to 30. The length of clauses in {10, 20, 30} and the number of clauses
in {100, 200, 300}. This makes 9 types of CNF formulas and 9 types of DNF
formulas. For each type, we randomly choose 20 formulas, and for each formula,
we randomly choose 20 different variable orders.

Experimental Data for CNF Formulas The experimental data for the size of
TBDs are presented in Table 1, where cll is the clause length, cln is the number
of clauses in a formula, min is the minimum size of the TBD obtained among the
400 TBDs (20 instances with 20 different variable orders), max is the maximum
size of the TBDs, and average is the average size of the TBDs. The TBDs are
created according to the computation rules implicitly provided by Proposition
4 and Proposition 9. The experimental data for the size of BDDs are presented
in Table 2. In addition, the ratio between the average size of BDDs (in Table
2) and that of TBDs (in Table 1) is calculated for each case. These ratios show
that TBDs has significant advantage over BDDs for representing some of the
formulas.

cll cln min max average

10 100 709 756 732.59
200 1321 1389 1354.85
300 1893 1977 1934.85

20 100 1472 1560 1516.81
200 2808 2921 2865.39
300 4088 4223 4149.23

30 100 1743 1847 1794.53
200 3104 3252 3187.11
300 4333 4514 4430.60

Table 1. Size of TBDs for CNF formulas

Remarks The number of variables is 30. When the clause length is 30, each
clause represents 230 − 1 states. Then TBDs and BDDs have the same size for
the representation of the whole state space of 230 states except a few hundreds
of states. Among the 9 tested types of formulas, TBDs are relatively best when
the number of states decreases to roughly 73 percent of a total of 230 states. For
such a set of states, there is a huge difference between the sizes of the BDD and
TBD representations.

cll cln min max average ratio

10 100 82729 215897 136146.64 186.35
200 577533 1035169 768347.00 567.95
300 1516800 2512466 1973997.62 1021.29

20 100 2606 3848 3173.77 2.09
200 6715 9036 7634.59 2.67
300 11380 15282 12916.41 3.11

30 100 1743 1847 1794.53 1.00
200 3104 3252 3187.11 1.00
300 4333 4514 4430.60 1.00

Table 2. Size of BDDs for CNF formulas

Experimental Data for DNF Formulas The experimental data for the size of
TBDs and BDDs for the types of DNF formulas are shown in Table 3 and
Table 4. These data are similar to those presented in Table 1 and Table 2, and
the ratios between size of TBDs and size of BDDs also show that TBDs has
significant advantage over BDDs for representing some of the formulas.

cll cln min max average

10 100 709 758 731.39
200 1325 1391 1353.56
300 1893 1964 1933.90

20 100 1478 1551 1518.05
200 2812 2918 2864.66
300 4061 4212 4148.40

30 100 1738 1842 1793.01
200 3107 3267 3186.71
300 4299 4543 4427.99

Table 3. Size of TBDs for DNF formulas

3 Application to Model Checking

This section concerns the application of TBDs to model checking of finite state
concurrent transition system. Given a set of proposition symbols AP . A finite
state concurrent transition system may be represented by a Kripke structure
〈S,R, I, L〉 where S is a set of states, R ⊆ S × S is a total transition relation,
I ⊆ S is the set of initial states, and L : S → 2AP is the labeling function
which assigns each state a set of propositions that are true on the state. The
properties of such a system may be specified by Computation Tree Logic (CTL),
a propositional branching-time temporal logic [9] introduced by Emerson and
Clarke as a specification language for finite state systems.

cll cln min max average ratio

10 100 80947 223120 135831.05 186.22
200 576519 1050933 765908.19 566.68
300 1561373 2481051 1966855.62 1018.09

20 100 2743 3728 3171.91 2.09
200 6386 9028 7596.83 2.65
300 11067 14691 12866.37 3.10

30 100 1738 1842 1793.01 1.00
200 3107 3267 3186.71 1.00
300 4299 4543 4427.99 1.00

Table 4. Size of BDDs for DNF formulas

For symbolic representation of a finite state concurrent transition system, a
state can be represented by an assignment of a set of boolean variables. Suppose
that V = {v1, ..., vm} is such a set of variables. Let Φ(x1, ..., xk) denote the set
of boolean formulas with variables in {x1, ..., xk}. Then a finite state transition
system can be represented by 〈V, ζI , ζR, Lζ〉, where ζI ∈ Φ(v1, ..., vm) is a formula
representing the set of initial states I, ζR ∈ Φ(v1, ..., vm, v′1, ..., v

′
m) a formula

representing the transition relation R, and Lζ : AP → Φ(v1, ..., vm) a function
that assigns each proposition a formula representing the set of states in which
the proposition is true according to the labeling function L.

Let
→
v and

→
v
′
denote respectively v1, ..., vm and v′1, ..., v

′
m. Let ex : Φ(v1, ..., vm) →

Φ(v1, ..., vm) be a function defined by ex(A) = ∃→v ′.(ζR ∧A
→
v
′

→
v

).
Let ϕ,ψ be CTL formulas. By interpreting a CTL formula ϕ as a set of states,

represented by the Boolean formula [[ϕ]], the set of states of the transition system
〈S,R, I, L〉 satisfying a CTL formula can be computed3 as follows [8]:

[[p]] = Lζ(p) for p ∈ AP
[[ϕ ∧ ψ]] = [[ϕ]] ∧ [[ψ]]
[[¬ϕ]] = ¬[[ϕ]]
[[EXϕ]] = ex([[ϕ]])
[[EGϕ]] = νZ([[ϕ]] ∧ ex(Z))
[[E(ϕUψ)]] = µZ([[ψ]] ∨ ([[ϕ]] ∧ ex(Z)))

By transforming CTL formulas into the ones that only use the above logical
connectives and temporal operators, every CTL property can be computed by
applying the above equations, together with the transformation rules [8]. Then
checking whether 〈S,R, I, L〉 satisfies a CTL formula ϕ is the same as checking
the implication ζI → [[ϕ]].

3 The computation of fixpoints requires a partial order on Φ(v1, ..., vm) which is defined
by ϕ ≤ ψ iff ϕ → ψ.

3.1 TBD Manipulations

Let L = {v1, ..., vm, v′1, ..., v
′
m, z}. Let ≤ be a linear order on L such that z is the

largest element of L. Let LI = {v1, ..., vm, v′1, ..., v
′
m}. Then we can transform

the problem of checking whether the finite state transition system (S,R, I, L)
satisfies a CTL formula into the problem of manipulation of ordered TBDs as
follows.

Proposition 4 provides a way to represent a formula of Φ(v1, ..., vm, v′1, ..., v
′
m)

by an equivalent ordered TBD of D(L); Proposition 5 establishes the relation
between quantified boolean formulas and TBD abstraction; Proposition 6 to-
gether with Proposition 3 provides a way for checking whether the set of states
represented by a formula is empty. This is sufficient for the transformation of
the problem.

For efficient manipulation of TBDs, Proposition 7, Proposition 8, and Propo-
sition 9 established the relation between ordered TBDs and reduced ordered
TBDs, and together with Proposition 2, they provide the possibility for the use
of reduced ordered TBDs instead of ordered TBDs.

3.2 Experimental Evaluation

This subsection contains selected data and a summary of an experimental eval-
uation of the TBD based model checking implemented in VERDS version 1.304.
The experimental evaluation compares this implementation with NuSMV version
2.5.05, and is based on two types of random boolean programs6.

Types of Random Programs Two sets of random programs and 24 CTL
properties are formulated for the experimental evaluation.

Programs with Concurrent Processes The parameters of the first set of random
boolean programs are as follows:

a: number of processes
b: number of all variables
c: number of share variables
d: number of local variables in a process

The shared variables are initially set to a random value in {0, 1}, and the
local variables are initially set to 0. For each process, the shared variables and
the local variables are assigned the negation of a variable randomly chosen from
these variables.

4 http://lcs.ios.ac.cn/∼zwh/verds/
5 http://nusmv.irst.itc.it/
6 Details at http://lcs.ios.ac.cn/∼zwh/verds/files/randombp12.rar

Programs with Concurrent Sequential Processes The parameters of the second
set of random boolean programs are as follows, in addition to a, b, c, d specified
above.

t: number of transitions in a process
p: number of parallel assignment in each transition

Besides the b boolean variables, for each process, there is a local variable
representing program locations, with e possible values. The shared variables are
initially set to a random value in {0, 1}, and the local variables are initially set to
0. For each transition of a process, p pairs of shared variables and local variables
are randomly chosen among the shared variables and the local variables, such
that the first element of such a pair is assigned the negation of the second
element of the pair. Transitions are numbered from 0 to t− 1, and are executed
consecutively, and when the end of the sequence of the transitions is reached, it
loops back to the execution of the transition numbered 0.

Types of Properties The properties are specified by CTL formulas. 24 prop-
erties are formulated for testing. These properties involve AG, AF properties
and properties specified with different combinations of the 10 CTL operators
with one or two levels of nesting (with two levels of nesting when AX or EX is
involved). Properties p01 to p12 are as follows, in which vi are global variables.

p01 : AG(
∨c

i=1 vi)
p02 : AF (

∨c
i=1 vi)

p03 : AG(v1 → AF (v2 ∧
∨c

i=3 vi))
p04 : AG(v1 → EF (v2 ∧

∨c
i=3 vi))

p05 : EG(v1 → AF (v2 ∧
∨c

i=3 vi))
p06 : EG(v1 → EF (v2 ∧

∨c
i=3 vi))

p07 : A(v1 U A(v2 U
∨c

i=3 vi)
p08 : A(v1 U E(v2 U

∨c
i=3 vi)

p09 : A(v1 U A(v2 R
∨c

i=3 vi)
p10 : A(v1 U E(v2 R

∨c
i=3 vi)

p11 : A(AXv1 R AX A(v2 U
∨c

i=3 vi)
p12 : A(EXv1 R EX E(v2 U

∨c
i=3 vi)

Properties p13 to p24 are similar to p01 to p12 with the difference of ∧ and
∨

replaced by respectively ∨ and
∧

.

Experimental Data For the programs with concurrent processes, we let b
vary over the set of values {12, 24, 36}, a = 3, c = b/2, and d = c/a. We
use cp12, cp24, cp36 to denote respectively these subtypes of models for later
references.

For the programs with concurrent sequential processes,we let b vary over the
set of values {12, 16, 20}, a = 2, c = b/2, t = c, p = 4, and d = c/a. We use
sp12, sp16, sp20 to denote respectively these subtypes.

Then each of the 20 properties is tested on 20 test cases for each of the
subtypes. For brevity, we chose to present the experimental data for two prop-
erties for each type of the random programs. The two properties are selected
by looking at the one NuSMV performs relatively best, and at the one VERDS
performs relatively best, with respect to the ratios of the average times of their
performance on the 20 test cases.

The data are shown in Table 3, in which the numbers represent times in
seconds. The table is a summary of the data obtained for testing of 240 cases. The
leftmost 2 columns of the table indicates the subtype of models, and the selected
property. Then the left part of the table is the data obtained for model checking
with NuSMV running on a Linux platform, using the command “NuSMV -dcx
filename” in which the option means that counter example generation is not to
be performed. The right part of the table is the data obtained for model checking
with VERDS, using the command “verds filename”.

m b p max aver max aver ratio

cp 12 p11 0.0 0.0 0.1 0.0 0.83
cp 24 p11 20.4 4.6 33.6 5.0 0.92
cp 36 p11 1038.1 326.0 1028.7 175.7 1.86

cp 12 p02 0.0 0.0 0.0 0.0 4.21
cp 24 p02 15.7 3.8 0.1 0.1 61.43
cp 36 p02 945.7 282.3 2.6 0.8 356.56

sp 12 p11 0.6 0.2 5.8 2.0 0.11
sp 16 p11 7.4 2.7 107.9 16.3 0.16
sp 20 p11 192.0 62.8 644.7 176.4 0.36

sp 12 p02 0.2 0.1 0.0 0.0 4.09
sp 16 p02 3.7 1.8 0.1 0.1 15.78
sp 20 p02 82.1 37.8 0.8 0.6 65.20

Table 5. Selected Experimental Data

Let T (b, i) be the time for verification of the i-th (i ∈ {1, ..., 20}) test case
with b variables for each of the cp or sp models, and let lt.aver and rt.aver
denote the aver value in respectively the left part and the right part of the
table. The explanation of max, aver, ratio is as follows.

max(b) = max1≤i≤20 T (b, i)
aver(b) =

∑
1≤i≤20 T (b, i)/20

ratio(b) = lt.aver(b)/rt.aver(b)

Summary Comparing with the BDD based model checking algorithm imple-
mented in NuSMV, VERDS has advantages in the evaluation with both types
of random programs combined with a set of 24 CTL properties: with respect

to the first type of programs, VERDS has advantages in all 24 cases; with re-
spect to the second type of programs, VERDS has advantages in 20 of the 24
cases. In total, VERDS has advantages in 44 of the 48 cases. Although NuSMV
still has advantages in 4 of 24 cases with the second type of random programs,
the advantages decrease when the size of the problem increases7. On the other
hand, in most cases where VERDS has advantages, the differences seem to yield
a coefficient of an exponential factor in the number of boolean variables (when
testing a property with a set of models of different sizes).

3.3 Experimental Case Studies

Experimental case studies and comparisons of VERDS with NuSMV have al-
ready been reported in [13]. It was reported that one has advantages in some of
the cases, while the other one has advantage in the other cases. This is a reason-
able conclusion, since it is expected that BDD is very efficient, if a problem can
be represented compactly (such problems certainly exist), while TBD may be
more efficient when BDD is not able to represent a problem compactly. In this
subsection, we provided in addition, two case studies, one on a mutual exclusion
algorithm, and another on a cache coherent protocol referred to as GERMAN
2004 that has been used for case studies in various situations [16, 1, 12, 3].

Case Study with a Mutual Exclusion Algorithm

This subsection provides experimental data on model checking a mutual exclu-
sion algorithm for N + 1 pairs of processes with N ∈ {6, 7, 8, 9, 10}.

Description of the Model There are three global variables s0[0..N], s1[0..N] and
turn[0..N]. These are arrays of length N + 1, the first two are of enumeration
type {noncr, trying, cr}, and the last is of type Boolean. The algorithm in the
input format of NuSMV is as follows, in which N is to be replaced by a number
in {6, 7, 8, 9, 10} and “...” is to be replaced by the corresponding statements.

MODULE main
VAR
s0: array 0..N of {noncr,trying,cr};
s1: array 0..N of {noncr,trying,cr};
turn: array 0..N of boolean;
p0_0: process prc(0,s0,s1,turn,0);
p1_0: process prc(0,s1,s0,turn,1);
.
.
.
p0_N: process prc(N,s0,s1,turn,0);
p1_N: process prc(N,s1,s0,turn,1);

7 Details at http://lcs.ios.ac.cn/∼zwh/verds/files/ex130.pdf

ASSIGN
init(turn[0]):=0; init(turn[N]):=0;

MODULE prc(i,s0,s1,turn,t0)
ASSIGN
init(s0[i]):=noncr;
next(s0[i]):=
case
(s0[i]=noncr): {trying,noncr};
(s0[i]=trying)&(s1[i]=noncr): cr;
(s0[i]=trying)&(s1[i]=trying)&(turn[i]=t0): cr;
(s0[i]=cr): {cr,noncr};
1: s0[i];

esac;
next(turn[i]):=
case turn[i]=t0&s0[i]=cr:!turn[i]; 1:turn[i]; esac;
FAIRNESS running
FAIRNESS !(s0[i]=cr)

Property Specification The CTL properties to be verified are shown as follows,
of which the first one is not valid (indicating that the mutual exclusion property
is valid), the second and the third are valid, while the last two are not valid.

p1 EF (
∨N

i=0((s0[i] = cr)&(s1[i] = cr)))
p2 AG(

∧N
i=0((s0[i] = trying) → AF (s0[i] = cr)))

p3 AG(
∧N

i=0((s1[i] = trying) → AF (s1[i] = cr)))
p4 AG(

∧N
i=0((s0[i] = cr) → A[(s0[i] = cr)U

(!(s0[i] = cr)&A[!(s0[i] = cr)U(s1[i] = cr)])]))
p5 AG(

∧N
i=0((s1[i] = cr) → A[(s1[i] = cr)U

(!(s1[i] = cr)&A[!(s1[i] = cr)U(s0[i] = cr)])]))

Experimental Data The experimental data for the time of model checking the
mutual exclusion algorithm by NuSMV, VERDS and the ratio between the times
are presented in Table 13 for N = 8 (with 18 processes). In order to have an
idea on asymptotic behavior, we choose two properties: the one NuSMV performs
relatively best (i.e., property p4), and the one VERDS performs relatively best
(i.e., property p1), and present experimental data for N ∈ {6, 7, 8, 9, 10} with
time-out (denoted t.o.) set to 1 day (86400 seconds) in Table 14. The left part
of the table is data for p1 and the right part of the table is data for p4.

Summary The ratios show that in both cases, the advantage of VERDS increases
(or the disadvantage decreases) as the size of the problem instances increases,
and VERDS has significant advantage over NuSMV when N is large for this
kind of model checking problem instances.

NuMSV VERDS ratio

p1 26399.4 130.4 202.43
p2 15557.2 4372.3 3.56
p3 14261.5 3090.8 4.61
p4 14205.5 9868.8 1.44
p5 20075.9 9193.1 2.18

Table 6. Mutual Exclusion, N = 8

N NuSMV VERDS ratio NuSMV VERDS ratio

6 85.9 25.9 3.31 90.8 1672.6 0.05
7 973.1 55.9 17.42 979.5 4173.1 0.23
8 26399.4 130.4 202.43 14205.5 9868.8 1.44
9 t.o. 279.8 - t.o. 56880.3 -

10 t.o. 600.5 - t.o. t.o. -

Table 7. Mutual Exclusion, p1 and p4

Case Study with a Cache Coherent Protocol

This subsection provides experimental data on model checking a cache coherent
protocol referred to as GERMAN 2004 for N processes with N ∈ {2, 3, 4}. For
verification of such a complicated protocol, plain implementations of BDD based
techniques or TBD based techniques are not sufficiently efficient8. Therefore, in
the case of NuSMV, we use the option -coi for removing the variables not relevant
to the given properties, and -AG for the use of the specially designed algorithm
for checking AG properties; in the case of VERDS, corresponding techniques are
also applied.

Property Specification Let N [i].cs denote the the cache state of node i, cex denote
the constant cache exclusive, csh denote cache shared, cin denote cache invalid.
The properties considered are safety ones as follows.

1 AG!(N [0].cs = cex & N [1].cs = cex)
2 AG!(N [0].cs = cex & N [1].cs = csh)
3 AG!(N [0].cs = csh & N [1].cs = cex)
4 AG(N [0].cs = cex → N [1].cs = cin)
5 AG(N [1].cs = cex → N [0].cs = cin)

These properties represent relations between cache state of one node and
that of another node. The average time (in seconds) for checking each property
separately for models with different number of nodes by NuSMV and VERDS
are as follows.

8 For the case with 4 nodes, both programs run a week without reaching a conclusion.

nodes NuSMV VERDS variables
2 0.67 16.01 94
3 33.78 154.72 134
4 8376.43 2288.47 195

The number of variables in the table represents that of Boolean variables
involved in VERDS after removing the variables not relevant to the given prop-
erties. The increase of Boolean variables for each node is not a constant, since
adding a node both adds a set of enumerative variables and increases the range
of some enumeration types.

Summary In this case study, the verification times for both NuSMV and VERDS
increase roughly exponentially in the number of Boolean variables (not in the
number of nodes). However, the increase rate of NuSMV is higher (with the base
of the exponential being 1.10 versus 1.05), and VERDS has advantage when the
number of nodes reaches 4.

4 Concluding Remarks

Ternary Boolean diagrams are introduced and their connection to boolean for-
mulas has been established. Complexity analysis has shown that there are cases
TBDs can be more compact than BDDs for representation of Boolean functions.
Experimental data are also reported, and support that there may be advantages
with TBDs.

A connection of ternary Boolean diagrams to the problem of verification
of finite state concurrent transition systems is established. The feasibility of
such a verification approach has been demonstrated on two types of random
boolean programs and experimental case studies. While in general, BDD based
model checking and TBD based model checking have their own advantages.
Experimental data in Section 3 have provided evidence that TBD based model
checking may be more efficient in the given types of model checking problems.
Apparently, such advantage is due to the compact representation of formulas
and verification problems.

Regarding the efficiency of model checking, in the recent years, there is a lot
of work on SAT based bounded model checking [2, 15, 17, 18] as an alternative
to BDD based symbolic model checking. SAT based bounded model checking
and BDD based model checking have their own advantages, i.e., SAT based one
may be quick when the validity or falsity of a property can be determined with
a relatively small bound, otherwise, BDD based one is still better when a large
bound is necessary to reach a conclusion. Therefore all these approaches, includ-
ing SAT-based model checking, BDD-based model checking and the proposed
one, may be considered complementary, for enhancing the applicability of model
checking to formal verification purposes.

Acknowledgement The author would like to thank Yi Lv and Ming Ma for
providing sources of the case-study protocol, and Huimin Lin, Guangyuan Li
and Zhilin Wu for helpful discussions and comments on this work.

A Proofs of Propositions of Section 2.3-2.6.

Before presenting the proofs, we define some notations as follows. We use 2L

to denote the power set of L; use Y to denote the set of elements such that
a ∈ Y iff the size of a is the same as that of L and if pi ∈ L then either pi

or −pi is in a, i.e., an elements of Y is of the form {y1,, yn, yn+1} such that
{y1,, yn, yn+1} ⊆ Σ and yi ∈ {pi,−pi}; use ps(Y) to denote the set of positive
elements of Y for Y ∈ Y, such that ps(Y) ∈ 2L for Y ∈ Y. Additional notations
to be used are as follows.

notation meaning
[[s]] the set of models of s
[[s]]⊕ x {a ∪ {x} | a ∈ [[s]]}
[[s]]ª x {a \ {x} | a ∈ [[s]]}
[[s]] d W {a ∪ w′ | a ∈ [[s]], w ⊆ W}
2L⊕x (2L⊕x)
2Lªx (2Lªx)

Then [[s]]⊕ x denotes the set of models obtained by adding x to each model
of the set of models [[s]], and [[s]] ª x denotes the set of models obtained by
removing x from each model of [[s]]. The precedence of the above operators is
defined to be the lowest in an expression (to avoid excessive use of parenthesis).

Properties of ª and ⊕ Let C ⊆ 2L. Let x ∈ L. Let A,B ⊆ 2L such that
Y ª x ∈ A iff Y ⊕ x ∈ A and Y ª x ∈ B iff Y ⊕ x ∈ B for every Y ∈ Y. The
following are properties of ª and ⊕.

(A ∩B)ª x = (Aª x) ∩ (B ª x)
(A ∩B)⊕ x = (A⊕ x) ∩ (B ⊕ x)
(C ⊕ x) ∩ (C ª x) = ∅
(C ⊕ x) ∪ (C) = C d {x}
((C ∩ 2L⊕x ª x) ∩ C) d {x} = 2L ⇔ C = 2L

A.1 Proof of Proposition 2

Proposition 2 Let s1, s2, t1, t2 ∈ DO and x ∈ L. If s1 ≡ s2 and t1 ≡ t2, then
¬s1 ≡ ¬s2, s1 ∧ t1 ≡ s2 ∧ t2 and abs(x)(s1) ≡ abs(x)(s2).

Proof: This proposition follows from the Lemma 4, Lemma 8 and Lemma 11.

Lemma 1. Let s ∈ DO. Let {y1,, yn, yn+1} ∈ Y. Then sdyn+1 · · · dy1∈ {τ,−τ}
Proof: Since s ∈ DO, in general, we obtain that the labels remain in the
sdyn+1 · · · dyk

is a subset of
{p1, ..., pk−1, pn+1,−p1, ...,−pk−1,−pn+1}. When k is 1, the labels remain in
sdyn+1 · · · dy1 is a subset of {pn+1,−pn+1}, which is the same as {τ,−τ}. The
lemma follows from this fact.

Lemma 2. Let s ∈ DO. Let Y = {y1,, yn, yn+1} ∈ Y. Then ps(Y) ∈ [[s]] iff
sdyn+1 · · · dy1= τ .

Proof: By definition, we have sdyn+1 · · · dy1= τ implies ps(Y) ∈ [[s]]. We only need
to show that ps(Y) ∈ [[s]] implies sdyn+1 · · · dy1= τ . Suppose that this does not
hold. Then we have ps(Y) ∈ [[s]] and sdyn+1 · · · dy1 6= τ . According to Lemma 1,
we have ps(Y) ∈ [[s]] and sdyn+1 · · · dy1= −τ . This means that there is a sequence
of elements of Y (allowing an element of Y appear 0 or more times in different
places of the sequence) reducing s to τ and another sequence of elements of Y
reducing s to−τ . This is not possible, since in the reduction process, reduction on
one element does not interfere with the reduction on another element (although if
the sequence is not selected properly, we may not be able to reduce s completely
to τ or −τ).

Lemma 3. Let s ∈ DO. Then we have sdz1 · · · dzk
= τ iff ¬sdz1 · · · dzk

= −τ .

Proof: The reduction process of sdz1 · · · dzk
and that of ¬sdz1 · · · dzk

are the same
except the last step in which the sign of the result is calculated according to the
sign of the topmost label of s and that of ¬s.

Lemma 4. Let s ∈ DO. Then [[¬s]] = 2L \ [[s]].

Proof: Let Y = {y1,, yn, yn+1} ∈ Y. Then the following holds.
[[s]] = {ps(Y) | sdyn+1 · · · dy1= τ}

[[¬s]] = {ps(Y) | ¬sdyn+1 · · · dy1= τ}
= {ps(Y) | sdyn+1 · · · dy1= −τ}
= 2L \ [[s]]

The first and the second equalities hold, according to Lemma 2. The third
holds, according to Lemma 3. The fourth holds, according to Lemma 1.

Lemma 5. Let s = (x, a, b, c) ∈ DO. Let y > |x|. Let m ∈ 2L. m ∪ {y} ∈ [[s]]
iff m \ {y} ∈ [[s]].

Proof: This follows from the definition of models, since y does affect the evalu-
ation of s in the process of deciding whether m is a model of s.

Lemma 6. [[τ]] = 2L and [[−τ]] = ∅.

Proof: This follows from the definition of models.

Lemma 7. Let s = (x, a, b, c) ∈ DO \ {τ,−τ}. Then

[[s]] =
{([[a]] ∩ [[c])ª x) ∪ ([[b]] ∩ [[c]]⊕ x) for x > 0
2L \ ([[a]] ∩ [[c])ª−x) ∪ ([[b]] ∩ [[c]]⊕−x) for x < 0

Proof: We prove the case with x > 0. The other case follows from this case and
Lemma 4, since (x, a, b, c) = ¬(−x, a, b, c).

Suppose that s = (pi, a, b, c) with 1 ≤ i ≤ n.
Considered any given Y = {y1,, yn, yn+1} ∈ Y.
Then ps(Y) ∈ [[s]] iff ps(Y) ∈ ([[b]] ∧ [[c]]) ⊕ pi or ps(Y) ∈ ([[a]] ∧ [[c]]) ª pi

is proved as follows.

Since (pi, a, b, c) is an ordered TBD,
adyn+1 · · · dyi+1= adyn+1 · · · dy1 ,
bdyn+1 · · · dyi+1= bdyn+1 · · · dy1 ,
cdyn+1 · · · dyi+1= cdyn+1 · · · dy1 .
Let u′ denote udyn+1 · · · dyi+1 where u denotes one of a, b, c.
Then a′, b′, c′ ∈ {τ,−τ} and sdyn+1 · · · dyi+1= (pi, a

′, b′, c′).
Therefore
ps(Y) ∈ [[s]]
iff pi ∈ Y and b′ = c′ = τ or −pi ∈ Y and a′ = c′ = τ

iff ps(Y) ∈ ([[b]] ∧ [[c]])⊕ pi or ps(Y) ∈ ([[a]] ∧ [[c]])ª pi.

Lemma 8. Let s, t ∈ DO. Then [[s ∧ t]] = [[s]] ∩ [[t]].

Proof: Proof by induction on the structure of t.

– Base case:
There are 4 cases with t ∈ {τ,−τ} or s ∈ {τ,−τ}. We only consider the first
two cases. The other cases are similar.
Subcase 1: t = τ .
[[s ∧ t]] = [[s ∧ τ]] = [[s]] = [[s]] ∩ [[τ]] = [[s]] ∩ [[t]].
Subcase 2: t = −τ .
[[s ∧ t]] = [[s ∧ −τ]] = [[−τ]] = [[s]] ∩ [[−τ]] = [[s]] ∩ [[t]].

– Inductive step: s = (x, a, b, c), t = (x′, a′, b′, c′), and s, t 6∈ {τ,−τ}.
Conjunction is defined with 8 cases (5 explicitly defined and 3 implicitly).
We only consider the first 2 cases. The other cases are similar.
Subcase 1: x = x′ ∧ x > 0.
[[s ∧ t]]
= [[(x, a ∧ a′, b ∧ b′, c ∧ c′)]]
= ([[a ∧ a′]] ∩ [[c ∧ c′]]ª x) ∪ ([[b ∧ b′]] ∩ [[c ∧ c′]]⊕ x)
= (([[a]] ∩ [[a′]]) ∩ ([[c]] ∩ [[c′]])ª x) ∪ (([[b]] ∩ [[b′]]) ∩ ([[c]] ∩ [[c′]])⊕ x)
= (([[a]] ∩ [[c]]) ∩ ([[a′]] ∩ [[c′]])ª x) ∪ (([[b]] ∩ [[c]]) ∩ ([[b′]] ∩ [[c′]))⊕ x)
= (([[a]] ∩ [[c]]ª x) ∩ ([[a′]] ∩ [[c′]]ª x)) ∪ (([[b]] ∩ [[c]])⊕ x) ∩ ([[b′]] ∩ [[c′]]⊕ x)
= (([[a]] ∩ [[c]]ª x) ∪ ([[b]] ∩ [[c]]⊕ x)) ∩ (([[a′]] ∩ [[c′]]ª x) ∪ ([[b′]] ∩ [[c′]]⊕ x))
= [[s]] ∩ [[t]]
The second equality holds, according to Lemma 7. The fourth holds, accord-
ing to the induction hypothesis. The fifth holds, according to Lemma 5 and
the properties of ª and ⊕. The sixth holds, according to the properties of
ª and ⊕.
Subcase 2: x = x′ ∧ x < 0.
Let y = −x.
[[s ∧ t]]

= [[(x, ((a ∧ c) ∨ (a′ ∧ c′)), ((b ∧ c) ∨ (b′ ∧ c′)), τ)]]
= 2L\

(([[((a ∧ c) ∨ (a′ ∧ c′))]] ∩ [[τ]])ª y)∪
(([[((b ∧ c) ∨ (b′ ∧ c′))]] ∩ [[τ]])⊕ y)

= 2L\
(([[a]] ∩ [[c]]) ∪ ([[a′]] ∩ [[c′]])ª y)∪
(([[b]] ∩ [[c]]) ∪ ([[b′]] ∩ [[c′]])⊕ y)

= 2L\
(([[a]] ∩ [[c]]ª y) ∪ ([[a′]] ∩ [[c′]]ª y))∪
(([[b]] ∩ [[c]]⊕ y) ∪ ([[b′]] ∩ [[c′]]⊕ y))

= 2L\
(([[a]] ∩ [[c]]ª y) ∪ ([[b]] ∩ [[c]]ª y))∪
(([[a′]] ∩ [[c′]]ª y) ∪ ([[b′]] ∩ [[c′]]⊕ y))

= (((2L \ [[a]] ∩ [[c]])ª y) ∪ ([[b]] ∩ [[c]]⊕ y))∩
(((2L \ [[a′]] ∩ [[c′]]ª y) ∪ ([[b′]] ∩ [[c′]])⊕ y))

= [[s]] ∩ [[t]]

Lemma 9. Let s = (x, a, b, c) ∈ DO \ {τ,−τ}. Let x > 0. Then [[s]] ∩ 2L⊕x =
[[b ∧ c]]⊕ x and [[s]] ∩ 2Lªx = [[a ∧ c]]ª x.

Proof: The proof is as follows.

– Case 1:
[[s]] ∩ 2L⊕x

= (([[a]] ∩ [[c]]ª x) ∪ ([[b]] ∩ [[c]]⊕ x)) ∩ 2L⊕x

= ([[b]] ∩ [[c]]⊕ x) ∩ 2L⊕x

= ([[b]] ∩ [[c]]⊕ x)
= ([[b ∧ c]]⊕ x)
The second equality holds, according to Lemma 7.

– Case 2:
[[s]] ∩ 2Lªx

= (([[a]] ∩ [[c]]ª x) ∪ ([[b]] ∩ [[c]]⊕ x)) ∩ 2Lªx

= ([[a]] ∩ [[c]])ª x) ∩ 2Lªx

= ([[a]] ∩ [[c]]ª x)
= ([[a ∧ c]]ª x)

Lemma 10. Let s ∈ DO. Let w ∈ Σ. Then

[[s|w]] =
{([[s]] ∩ 2L⊕w ª w) d {w} for w > 0
([[s]] ∩ 2Lª−w) d {−w} for w < 0

Proof: Proof by induction on the structure of s.

– Base case: s ∈ {τ,−τ}.
Subcase 1: w > 0.

[[τ |w]] = [[τ]] = 2L = ([[τ]] ∩ 2L⊕w ª w) d {w}
[[(−τ)|w]] = [[−τ]] = ∅ = ([[−τ]] ∩ 2L⊕w ª w) d {w}
Subcase 2: w < 0.

[[τ |w]] = [[τ]] = 2L = ([[τ]] ∩ 2Lª−w) d {−w}
[[(−τ)|w]] = [[−τ]] = ∅ = ([[−τ]] ∩ 2Lª−w) d {−w}

– Inductive step: s = (x, a, b, c) and s 6∈ {τ,−τ}.
Subcase 1: |x| = |w|.
Subcase 1a: w > 0 and x > 0. Note that x = w.
[[s|w]] = [[b ∧ c]]

= ([[b ∧ c]]⊕ w) ∪ ([[b ∧ c]]ª w)
= ([[b ∧ c]]⊕ w) ∪ (([[b ∧ c]]⊕ w)ª w)
= ([[s]] ∩ 2L⊕w) ∪ (([[s]] ∩ 2L⊕w)ª w)
= (([[s]] ∩ 2L⊕w)ª w) d {w}

The second equality holds, according to Lemma 5 and the properties of ª
and ⊕. The fourth holds, according to Lemma 9.
Subcase 1b: w < 0 and x > 0. Note that x = −w.
[[s|w]] = [[a ∧ c]]

= ([[a ∧ c]]ª−w) ∪ ([[a ∧ c]]⊕−w)
= ([[a ∧ c]]ª−w) ∪ (([[a ∧ c]]ª−w)⊕−w)
= ([[s]] ∩ 2Lª−w) ∪ (([[s]] ∩ 2Lª−w)⊕−w)
= ([[s]] ∩ 2Lª−w) d {−w}

Subcase 1c: w > 0 and x < 0. Let t = −s = (w, a, b, c).
[[s|w]] = [[x · (b ∧ c)]]

= 2L \ [[b ∧ c]]
= 2L \ (([[t]] ∩ 2L⊕w ª w) d {w})
= ((2L \ [[t]]) ∩ 2L⊕w ª w) d {w}
= ([[s]] ∩ 2L⊕w ª w) d {w}

Subcase 1d: w < 0 and x < 0. Let t = −s = (−w, a, b, c).
[[s|w]] = [[x · (a ∧ c)]]

= 2L \ [[a ∧ c]]
= 2L \ (([[t]] ∩ 2Lª−w d {−w})
= (((2L \ [[t]]) ∩ 2Lª−w) d {−w}
= ([[s]] ∩ 2Lª−w) d {−w}

Subcase 2: |x| 6= |w|. Then s|w = (x, a|w, b|w, c|w).
According to the induction hypothesis, we have the following equality for
u ∈ {a, b, c}.
[[u|w]] =

{([[u]] ∩ 2L⊕w ª w) d {w} for w > 0
([[u]] ∩ 2Lª−w) d {−w} for w < 0

Subcase 2a: w > 0 and x > 0.
[[s|w]]
= ([[a|w]] ∩ [[c|w]]ª x) ∪ ([[b|w]] ∩ [[c|w]]⊕ x)
= ((([[a ∧ c]] ∩ 2L⊕w ª w) d {w})ª x) ∪ ((([[b ∧ c]] ∩ 2L⊕w ª w) d {w})⊕ x)
= (((([[a ∧ c]]ª x) ∪ ([[b ∧ c]]⊕ x)) ∩ 2L⊕w)ª w) d {w}
= ([[s]] ∩ 2L⊕w)ª w) d {w}
Subcase 2b: w < 0 and x > 0.
[[s|w]]
= ([[a|w]] ∩ [[c|w]]ª x) ∪ ([[b|w]] ∩ [[c|w]]⊕ x))
= ((([[a ∧ c]] ∩ 2Lª−w) d {∅,−w})ª x) ∪ ((([[b ∧ c]] ∩ 2Lª−w) d {−w})⊕ x)
= ((([[a ∧ c]]ª x) ∪ ([[b ∧ c]]⊕ x)) ∩ 2Lª−w) d {−w}
= ([[s]] ∩ 2Lª−w) d {−w}
Subcase 2c: w > 0 and x < 0.

Let y = −x. Let t = −s = (y, a, b, c).
[[s|w]]
= 2L \ ([[a|w]] ∩ [[c|w]]ª y) ∪ ([[b|w]] ∩ [[c|w]]⊕ y)
= 2L \ (([[t]] ∩ 2L⊕w ª w) d {w})
= (((2L \ [[t]]) ∩ 2L⊕w)ª w) d {w}
= ([[s]] ∩ 2L⊕w ª w) d {w}
Subcase 2d: w < 0 and x < 0.
Let y = −x. Let t = −s = (y, a, b, c).
[[s|w]]
= 2L \ ([[a|w]] ∩ [[c|w]]ª y) ∪ ([[b|w]] ∩ [[c|w]]⊕ y)
= 2L \ (([[t]] ∩ 2Lª−w) d {−w})
= (((2L \ [[t]]) ∩ 2Lª−w) d {−w}
= ([[s]] ∩ 2Lª−w) d {−w}

Lemma 11. Let s ∈ DO. Let w > 0. Then
[[abs(w)(s)]] = (([[s]] ∩ 2L⊕w ª w) ∩ [[s]]) d {w}.

Proof: The proof is as follows.
[[abs(w)(s)]]
= [[s|w]] ∩ [[s|−w]]
= (([[s]] ∩ 2L⊕w ª w) d {w}) ∩ (([[s]] ∩ 2Lªw) d {w})
= (([[s]] ∩ 2L⊕w ª w) ∩ [[s]]) d {w}
The second equality holds, according to Lemma 10.

A.2 Proof of Proposition 3

Proposition 3 Let r ∈ DO. r is complete iff comp(r) holds.

Proof: This follows from Lemma 12.

Lemma 12. Let r ∈ DO. [[r]] = 2L iff comp(r) holds.

Proof: The proof is as follows.
comp(r)
⇔ abs(p1) · · · abs(pn)(r) = τ
⇔ [[abs(p1) · · · abs(pn)(r)]] = 2L

⇔ [[r]] = 2L

The last equivalence holds, according to the properties of ª and ⊕, and the
repeated use of Lemma 11.

A.3 Proof of Proposition 4

Proposition 4 Let x, ϕ0, ϕ1 ∈ Φ(LI) and s, t ∈ DO. If x ∈ LI is an atomic
formula, then x ≡ (x,−τ, τ, τ), and if ϕ0 ≡ s and ϕ1 ≡ t, then ¬ϕ0 ≡ ¬s and
ϕ0 ∧ ϕ1 ≡ s ∧ t.

Proof: Let [[ϕ]] denote the set of models of ϕ.

– Let pi ∈ LI be an atomic formula, then [[pi]] = 2L ⊕ pi.
On the other hand, according to Lemma 7,
[[(pi,−τ, τ, τ)]]
= (([[−τ]] ∧ [[τ]])ª pi) ∪ (([[τ]] ∧ [[τ]])⊕ pi)
= 2L ⊕ pi.

– ¬ϕ0 ≡ ¬s follows from that [[¬ϕ0]] = 2L \ [[ϕ0]] and [[¬s]] = 2L \ [[s]] by
inductive arguments.

– ϕ0 ∧ ϕ1 ≡ s ∧ t follows from that [[ϕ0 ∧ ϕ1]] = [[ϕ0]] ∧ [[ϕ1]] and [[s ∧ t]] =
[[s]] ∧ [[t]] by inductive arguments.

A.4 Proof of Proposition 5

Proposition 5 Let ϕ ∈ Φ(LI) and s ∈ DO. If ϕ ≡ s, then ∀x.ϕ ≡ abs(x)(s).

Proof: The proof is as follows.
[[∀x.ϕ]]
= ([[ϕ]] ∩ ([[ϕ]] ∩ (2L⊕x)ª x)) d {x}
= ([[s]] ∩ ([[s]] ∩ (2L⊕x)ª x)) d {x}
= [[abs(x)(s)]]
The first equality holds, according to the semantics of ∀x.ϕ and the last

equivalence holds, according to Lemma 11.

A.5 Proof of Proposition 8

Proposition 8 For every s, t ∈ DO, if s
∗→t, then s ≡ t.

Proof: For each rewrite rule, the equivalence follows from Lemma 6 and Lemma
7. As an example, we prove (x,−τ,−τ, c) ≡ (x · −τ).

– Case 1: x > 0.
[[(x,−τ,−τ, c)]]
= ([[−τ]] ∩ [[c]]ª x) ∪ ([[−τ]] ∩ [[c]]⊕ x) = ∅ = [[−τ]] = [[x · −τ]]

– Case 2: x < 0.
[[(x,−τ,−τ, c)]]
= 2L \ ([[−τ]] ∩ [[c]]ª x) ∪ ([[−τ]] ∩ [[c]]⊕ x) = 2L = [[τ]] = [[−x · −τ]]

A.6 Proof of Proposition 10

Proposition 10 Let p > 0 and q > 0. Each of the following pairs represent the
same formula with different variable orderings on p and q.

(p, (q, a, b, c), c′, c′′)
(q, (p, a, τ, τ), (p, b, τ, τ), (p, c, c′, c′′))
(p, c, (q, a′, b′, c′), c′′)
(q, (p, τ, a′, τ), (p, τ, b′, τ), (p, c, c′, c′′))
(p, c, c′, (q, a′′, b′′, c′′))
(q, (p, τ, τ, a′′), (p, τ, τ, b′′), (p, c, c′, c′′))
(p, (q, a, b, c), (q, a′, b′, c′), c′′)
(q, (p, a, a′, τ), (p, b, b′, τ), (p, c, c′, c′′))
(p, (q, a, b, c), c′, (q, a′′, b′′, c′′))
(q, (p, a, τ, a′′), (p, b, τ, b′′), (p, c, c′, c′′))
(p, c, (q, a′, b′, c′), (q, a′′, b′′, c′′))
(q, (p, τ, a′, a′′), (p, τ, b′, b′′), (p, c, c′, c′′))
(p, (q, a, b, c), (q, a′, b′, c′), (q, a′′, b′′, c′′))
(q, (p, a, a′, a′′), (p, b, b′, b′′), (p, c, c′, c′′))

Proof: This follows from Lemma 6 and Lemma 7. As an example, we prove the
first equivalence as follows.

[[p, (q, a, b, c), c′, c′′)]]
= ([[(q, a, b, c)]] ∩ [[c′′]]ª p) ∪ ([[c′]] ∩ [[c′′]]⊕ p)
= (((([[a]] ∩ [[c]]ª q) ∪ ([[b]] ∩ [[c]]⊕ q)) ∩ [[c′′]])ª p) ∪ ([[c′]] ∩ [[c′′]]⊕ p)
= (([[a]] ∩ [[c]]ª q) ∩ [[c′′]]ª p) ∪ (([[b]] ∩ [[c]]⊕ q) ∩ [[c′′]]ª p)∪

([[c′]] ∩ [[c′′]]⊕ p)
= (([[a]] ∩ [[c]] ∩ [[c′′]]ª p)ª q) ∪ (([[b]] ∩ [[c]] ∩ [[c′′]]ª p)⊕ q)∪

([[c′]] ∩ [[c′′]]⊕ p)
= ((([[a]] ∩ [[c]] ∩ [[c′′]]ª p) ∪ ([[c′]] ∩ [[c′′]]⊕ p))ª q)∪

((([[b]] ∩ [[c]] ∩ [[c′′]]ª p) ∪ ([[c′]] ∩ [[c′′]]⊕ p))⊕ q)
= ((([[a]]ª p) ∪ (2L ⊕ p)) ∩ (([[c]] ∩ [[c′′]]ª p) ∪ ([[c′]] ∩ [[c′′]]⊕ p))ª q)∪

((([[b]]ª p) ∪ (2L ⊕ p)) ∩ (([[c]] ∩ [[c′′]]ª p) ∪ ([[c′]] ∩ [[c′′]]⊕ p))⊕ q)
= ([[(p, a, τ, τ)]] ∩ [[(p, c, c′, c′′)]]ª q) ∪ ([[(p, b, τ, τ)]] ∩ [[(p, c, c′, c′′)]]⊕ q)
= [[(q, (p, a, τ, τ), (p, b, τ, τ), (p, c, c′, c′′))]]

B Proofs of Propositions of Section 2.7

Before presenting the proofs, we define some notations as follows. bddv(ϕ) de-
notes the reduced ordered BDD of ϕ with the variable order specified in v.
positive(t) denotes that the TBD t is an ordered TBD where all non-terminal
nodes are marked by positive labels. A TBD t is said to be positive, if positive(t)
holds.

B.1 Proof of Proposition 11

Proposition 11 There is some variable ordering, such that the reduced ordered
BDD representation of ϕ has node size ≥ 2n, while for all variable orderings, we
can construct a TBD representation for ϕ with tree size and node size linear in
n.

Proof: It is known that representations of ϕ by reduced ordered BDDs varies
from 3 · n + 2 to 3 · 2n − 1 depending on the ordering of the variables [8]. The
second part of this proposition follows from Lemma 15, which is to be established
as follows.

Lemma 13. Let s, t be positive TBDs. Then we can construct a positive TBD
for s ∧ t such that ||s ∧ t|| ≤ ||s||+ ||t|| − 1.

Proof: Since τ ∧ u = u ∧ τ = u and −τ ∧ u = u ∧ −τ = −τ for any TBD
u, this lemma holds when one of s and t is τ or −τ . Let s = (x, a, b, c) and
t = (x′, a′, b′, c′). We have three cases x < x′, x = x′ or x > x′.

– If x < x′, we have s ∧ t = (x, a, b, c ∧ t).
Then ||s∧t|| ≤ ((||s||−||a||−||b||−1)+||t||−1)+||a||+||b||+1 = ||s||+||t||−1.

– If x = x′, we have s ∧ t = (x, a ∧ a′, b ∧ b′, c ∧ c′).
Then ||s∧ t|| ≤ (||a||+ ||a′|| − 1) + (||b||+ ||b′|| − 1) + (||c||+ ||c′|| − 1) + 1 <
||s||+ ||t|| − 1.

– If x > x′, we have s ∧ t = (x′, a′, b′, c′ ∧ s).
Similar to the first case, ||s ∧ t|| ≤ ||s||+ ||t|| − 1.

Lemma 14. For any ordering v of variables of ϕ, we can construct a positive
TBD for ϕi with tree size 10.

Proof: This follows from the construction demonstrated in Example 5 in Section
2.5.

Lemma 15. For any ordering v of variables of ϕ, we can construct a positive
TBD t for ϕ with ||t|| ≤ 9n + 1 and |t| ≤ 3n + 2.

Proof: According to Lemma 14, for each ϕi, we construct a positive TBD with
tree size 10. Then according to Lemma 13, for ϕ, we construct a positive TBD
t with ||t|| ≤ n · 10− (n− 1) = 9n + 1. This implies |t| ≤ 3n + 2.

B.2 Proof of Proposition 13

Before presenting the proof of Proposition 13, we introduce two lemmas.

Lemma 16. Let φ be a formula.
Then |bddv(φ)| ≥ max(|bddv(φ|x=0)|, |bddv(φ|x=1)|) for any x and any ordering
v of variables.

Proof: Starting with bddv(φ), in order to create bddv(φ|x=0), all pointers to the
node labeled with x in bddv(φ) are redirected to the left branch of the node (with
possibly further reductions). This modification will not increase the number of
nodes.

Lemma 17. Let φ be (a1 ↔ b1) ∧ · · · ∧ (an ↔ bn).
Let (x1, ..., xn) and (y1, ..., yn) be permutations of respectively {a1, ..., an} and
{b1, ..., bn}. Let v = x1...xny1...yn. Then |bddv(φ)| = 3 · 2n − 1.

Proof: A similar result is known when v = a1...anb1...bn [8]. For v = x1...xny1...yn,
the reasoning is as follows.

– Expanding x1, ..., xn we have 2n − 1 nodes and 2n different cases (of type
0). 2n−1 of the cases (where the variable corresponding with y1 is assigned
false) of type 0 point to false when y1 assigns false, creating 2n−1 new y1

nodes. 2n−1 of the cases (where the variable corresponding with y1 is assigned
true) of type 0 point to false when y1 assigns true, creating another 2n−1

new y1 nodes. There remains 2n undecided cases. Half of the cases are the
same as (or symmetric with respect to the truth assignments of y1 and the
corresponding x-variable) to the other half of the cases. Therefore there
remain 2n−1 different cases (of type 1).

– 2n−2 of the cases (where the variable corresponding with y2 is assigned false)
of type 1 point to false when y2 assigns false, creating 2n−2 new y2 nodes.
2n−2 of the cases (where the variable corresponding with y2 is assigned true)
of type 1 point to false when y2 assigns true, creating another 2n−2 new y2

nodes. Similarly, there remain 2n−2 different cases (of type 2).
– Generally, at the i-th round, there remains 2n−i different cases of types i.

Half of the cases point to false when yi+1 assigns false, creating 2n−i new
yi+1 nodes, and half of the cases point to false when yi+1 assigns true, also
creating 2n−i new yi+1 nodes. This process continues until there remains 2
different cases, requiring two new yn nodes.

– Therefore there are 2n−i+1 yi nodes, by looking backward, we know that
they must be different, and in total, there are 2n+1 − 2 different nodes for
y1, ..., yn. Summing up the number of nodes for x1, ..., xn, y1, ..., yn and the
two terminal nodes, we have |bddv(φ)| = 3 · 2n − 1.

Proposition 13 For any ordering of variables of ψ, if d is a BDD for ψ with such
an ordering, then |d| ≥ 3 · 2n−1 − 1.

Proof: Let o = c1 · · · cm be an ordering of variables of ψ. We prove that |bddo(ψ)| ≥
3 · 2n−1 − 1. Let o = c1 · · · cm such that (c1, ..., cm) is a permutation of {ai,j |1 ≤
i, j ≤ n} ∪ {b}. Let v(ϕ) denote the set of variables appearing in ϕ. Let oi =
{c1, ..., ci}. Let k be the least number such that |v(ϕi)∩ om| = n− 1 or |v(ϕ′i)∩
om| = n− 1 for some 0 ≤ 1 ≤ n. The proof is as follows.

– Either |v(ϕl) ∩ ok| = n− 1 or |v(ϕ′l) ∩ ok| = n− 1 for some l.
– Suppose that the former is the case (the latter is symmetric). Let

S = v(ϕl) ∩ ok = {a1,l, ..., ax−1,l, ax+1,l, ..., ai,l}.
– For each ai,j ∈ S, we select an ai,yi

6∈ ok. Let S′ denote the set of these
variables, and ϕ′′ denote ϕ′ with every variable not in S ∪ S′ replaced by 1.

– Then ϕ′′ is a formula corresponding to the one in Lemma 17 with 2(n − 1)
variables.

– According to Lemma 16 and Lemma 17,
|bddo(ψ)| ≥ |bddo(ψ|b=0)| = |bddo(ϕ′)| ≥ |bddo(ϕ′′)| = 3 · 2n−1 − 1.

B.3 Proof of Proposition 14

Before presenting the proof of Proposition 14, we introduce some lemmas.

Lemma 18. Let s, t be positive TBDs. Let [t] denote the height of the TBD
t with [τ] = [−τ] = 0. If s and t have no variables in common, then we can
construct a positive TBD for s ∧ t with at most [s] + [t] new nodes.

Proof: By induction. This lemma holds when one of s and t is τ or −τ . Let
s = (x, a, b, c) and t = (x′, a′, b′, c′). We have two cases x < x′ or x > x′.

– If x < x′, we have s ∧ t = (x, a, b, c ∧ t).
According to the induction hypothesis, c ∧ t requires at most [c] + [t] new
nodes, therefore s ∧ t requires at most [c] + [t] + 1 ≤ [s] + [t] new nodes.

– If x > x′, we have s ∧ t = (x′, a′, b′, c′ ∧ s).
Similarly, s ∧ t requires at most [c′] + [s] + 1 ≤ [s] + [t] new nodes.

Lemma 19. Let φi be (a1 ↔ · · · ↔ ai). We can construct a positive TBD t for
φn with |t| ≤ 2(n + 1) for any ordering of variables.

Proof: In fact, we can create a positive TBD for φn and a positive TBD for ¬φn

such that the total number of different nodes in the two TBDs is 2(n + 1). The
reasoning by induction is as follows. The statement is true when n = 1. Then
we can use the TBD t0 for φn−1 and the TBD t1 for ¬φn−1 to build a positive
TBD t′0 = (an, t1, t0, τ) for φn and a positive TBD t′1 = (an, t0, t1, τ) for ¬φn

with only two additional new nodes. The construction assumes variable order
v = an · · · a1. Since the variables in φi are all symmetric, this construction can
be done for any variable order by rearranging the position of the variables in the
formula.

Lemma 20. For any ordering v of variables of ψ, we can construct a positive
TBD t for ψ with |t| ≤ 4n2(n+1)+1 for the modified variable ordering v[b → 1].

Proof: The proof is as follows.

– According to Lemma 19, for each ϕi, we can construct a corresponding TBD
with 2(n + 1) nodes. According to Lemma 18, for ϕ, we can construct a
corresponding TBD t with |t| ≤ 2(n + 1) · n + (n− 1) · 2 · n2 = 2n2(n + 1).

– Similarly, for ϕ′, we can construct a corresponding TBD t′ with |t′| ≤ 2n2(n+
1).

– Then t′′ = (b, t, t′, τ) is a TBD for ψ with |t′′| ≤ 4n2(n + 1) + 1 different
nodes (where τ is not counted, since it must have appeared in t or t′) with b
as the label of the top node of the TBD compatible with the order v[b → 1].

Lemma 21. Let v be a given ordering of variables, and t be a positive TBD
with variable ordering v[b → 1]. Then we can construct a TBD t′ with variable
ordering v such that t and t′ represent the same formula and |t′| ≤ |t|4.

Proof: By moving b down 1 level in the reordering of the variables (applying the
equivalences in Proposition 10 for reordering), the nodes of the form (b, x, y, z)
at the current level is replaced, and the number of such nodes at each level is at
most (|t|−1)3 in the replacement process, since x, y, z are chosen among the |t|−1
nodes (all of the nodes of t except the top one). Therefore it may create at most
(|t| − 1)3 · t new nodes for all of the levels of t. Then |t′| ≤ t + (|t| − 1)3 · t ≤ |t|4.

Proposition 14 For any ordering v of variables of ψ, we can construct a TBD t
for ψ with |t| ≤ 256 · (n + 1)12.

Proof: This follows from Lemma 20 and Lemma 21.

References

1. K. Baukus, Y. Lakhnech, K. Stahl. Parameterized Verification of a Cache Coherence
Protocol: Safety and Liveness. VMCAI 2002: 317-330. 2002.

2. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

3. B. Bingham, J. Bingham, M. Greenstreet. Parameterized Verification of Deadlock
Freedom in Symmetric Cache Coherence Protocols. FMCAD 2011.

4. R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transaction on Computers 35(8):677-691. 1986.

5. R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv. 24(3): 293-318. 1992.

6. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. LICS 1990: 428-439.

7. A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri. NuSMV: A New Symbolic
Model Verifier. CAV 1999: 495-499.

8. E. M. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT Press. 1999.
9. E. Allen Emerson and E. M. Clarke. Using Branching-time Temporal Logics to

Synthesize Synchronization Skeletons. Science of Computer Programming 2(3):241-
266. 1982.

10. G. Jennings, J. Isaksson, P. Lindgren. Ordered ternary decision diagrams and the
multivalued compiled simulation of unmapped logic. 27th Annual Simulation Sym-
posium:99 - 105. 1994.

11. C. Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell
Systems Technical Journal 38: 985-999. 1959.

12. Yi Lv, Huimin Lin, Hong Pan: Computing Invariants for Parameter Abstraction.
MEMOCODE 2007: 29-38.

13. M. Ma: Model Checking for Protocols Using VERDS. TASE 2011:231-234.
14. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher,1993.
15. W. Penczek, B. Wozna, and A. Zbrzezny. Bounded Model Checking for the Uni-

versal Fragment of CTL. Fundamenta Informaticae 51:135-156. 2002.
16. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible

invariants. TACAS 2001:82-97.
17. W. Zhang. Verification of ACTL Properties by Bounded Model Checking. LNCS

4739 (EUROCAST 2007): 556-563. Springer-Verlag. 2007.
18. W. Zhang. Bounded Semantics of CTL and SAT-based Verification. LNCS 5885

(ICFEM 2009): 286-305. Springer-Verlag. 2009.

19. W. Zhang. Ternary Boolean Diagrams. Technical Report ISCAS-LCS-10-
24, Institute of Software, Chinese Academy of Sciences. 2010. Available at
http://lcs.ios.ac.cn/∼zwh/tr/2010tr24.pdf.

20. W. Zhang. Complexity Issues of Ternary Boolean Diagrams. Technical Report
ISCAS-SKLCS-11-17, Institute of Software, Chinese Academy of Sciences. 2011.
Available at http://lcs.ios.ac.cn/∼zwh/tr/2011tr17.pdf.

