
verbs: Verification of Finite State Systems
by Bounded Correctness Checking

Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

1 Introduction

verbs1 is a tool for verification of finite state systems by bounded correctness
checking (a kind of bounded model checking [2, 1]). The model is a kind of finite
state systems, and the properties are specified with CTL. The implementation
relies on solving QBF-formulas for verification of CTL properties (the reader is
referred to [10] for the details). Such an implementation has advantages over that
based on traditional symbolic model checking [6, 4] in cases where a small bound
is sufficient for verification or falsification of a property. Therefore bounded cor-
rectness checking and the traditional symbolic model checking may be considered
complementary with their own advantages. The reader is referred to Appendix
A for an experimental comparison of the efficiency of the implementations of
these two approaches. For verification of ACTL formulas, verbs also includes
an implementation based on solving SAT-formulas [2, 7–9]. This is specialized
for ACTL properties and may be more efficient than the general one relying on
solving QBF-formulas, when it is applicable.

2 Modeling and Specification

For concise representation of finite state systems, we use variables for repre-
senting system states, and logical formulas for transition relations. For property
specification, CTL is used as the specification language.

2.1 Models and the Modeling Language

Firstly, we present a theoretical definition of finite state systems and then we
discuss the modeling language with respect to the definition.

Finite State Systems A finite state system is a triple M = 〈V, I, T 〉 where

V : A finite set of typed system variables each with a finite domain.
The set of states (interpretation) over V is denoted by Σ.

I: The initial condition is an assertion (state formula) characterizing the
initial states.

T : The transition relation is an assertion T (V, V ′) relating the variables
in V of a state s ∈ Σ to the variables in V ′ of a successor state s′ ∈ Σ.

1 http://lcs.ios.ac.cn/∼zwh/verbs/

Computation A state s′ is an M-successor of s iff T (s, s′) holds. A computation
of M is an infinite sequence of states s0, s1, s2, . . . such that s0 |= I, and for each
j = 1, 2, . . ., the state sj is a M-successor of sj−1.

Modeling Language The langauge used by the verification tool verbs for mod-
eling finite state systems and specifying their properties is called VVM (verbs
verification model). An example is given as follows.

An Illustrative Example The following is a specification of a mutual exclusion
algorithm with two processes, and with properties including: mutual exclusion,
progress, and non-starvation.

VVM mutual exclusion
DEFINE critical=(p0.a=s2|p1.a=s2)
VAR x[0..1]:0..1; t:0..1;
INIT x[0]=0; x[1]=0;
PROC p0:p0m(x[],t,0); p1:p0m(x[],t,1);
SPEC

AF(((critical)));
AG(!(p0.a=s2&p1.a=s2));
AG((!p0.a=s1|AF(critical))&(!p1.a=s1|AF(critical)));
AG((!p0.a=s1|AF(p0.a=s2))&(!p1.a=s1|AF(p1.a=s2)));
AG((!p0.a=s1|EF(p0.a=s2))&(!p1.a=s2|EF(p1.a=s2)));

MODULE p0m(x[],t,i)
VAR a: {s0,s1,s2,s3};
INIT a=s0;
TRANS

a=s0: (x[1-i],t,a):=(1,1-i,s1);
a=s1&(x[i]=0|t=i): (a):=(s2);
a=s2: (x[1-i],a):=(0,s3);
a=s2: (a):=(s2);
a=s3: (x[1-i],t,a):=(1,1-i,s1);

In the program, the initial value of t is not given, this means that it can be
either 0 or 1.

Explanation The relation between the specification in the sections in the mod-
eling language and the components in a finite state system 〈V, I, T 〉 is explained
as follows.

Components Specifications in
V : VAR sections
I : INIT sections
T : TRANS sections

In order to increase the convenience of writing such a model, array vari-
ables may be used, and the transition relation represented by a set of guarded
commands may be divided into different processes.

2.2 Property Specification Language

The properties are to be specified with the Computation Tree Logic (CTL) which
is a propositional branching-time temporal logic [5] introduced by Emerson and
Clarke as a specification language for finite state systems. Let AP be a set of
propositional symbols and p range over AP . The set of CTL formulas Φ over
AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |
AX Φ |AF Φ |AG Φ |A(Φ U Φ) |A(Φ R Φ) |
EX Φ | EF Φ | EG Φ | E(Φ U Φ) | E(Φ R Φ)

For the specification of a property in VVM, a proposition is written as e1 ∼ e2

where e1, e2 are expressions and ∼ is an operator comparing the values of the
two expressions.

3 Verification Methods

The verification tool implements two types of bounded correctness checking ap-
proaches: a QBF-based one for the verification of CTL properties, and a SAT-
based one specialized to the verification of ACTL properties. In the following
presentation, we assume that a finite state system is represented by M = 〈V, I, T 〉
where V is a set of Boolean variables, since every such system where V is a set
of variables of finite domain, can be represented by M ′ = 〈V ′, I ′, T ′〉 where V ′

is a set of Boolean variables.

3.1 QBF-based Bounded Correctness Checking

k-Paths A k-path is a sequence of states s0, s1, s2, . . . , sk such that for each
j = 1, . . . , k, the state sj is a M-successor of sj−1.

Symbolic Representation of k-Paths Let k ≥ 0. Let u0, ..., uk be a finite sequence
of state variables (each of the state variables is represented by a set of m propo-
sitional variables, i.e., a copy of V). The sequence u0, ..., uk (denoted by

→
u) is

intended to be used as a representation of a k-path of M . This is captured by
the following definition of Pk(

→
u).

Definition 1.

Pk(
→
u) :=

k−1∧

j=0

T (uj , uj+1)

Every assignment to the set of state variables {u0, ..., uk} satisfying Pk(
→
u)

represents a valid k-path of M . Let rsk(
→
u) denote that the k-path represented

by
→
u is a repeating state path. Formally, we have the following definition of

rsk(
→
u).

Definition 2.

rsk(
→
u) :=

k−1∨
x=0

k∨
y=x+1

ux = uy.

Let p ∈ AP be a proposition symbol and p(v) be the propositional formula
such that p(v) is true whenever v is assigned the truth value representing a state
s in which p holds.

Definition 3 (Transformation of CTL Formulas). Let k ≥ 0. Let v be a
state variable and ϕ be an CTL formula. The encoding [[ϕ, v]]k is defined as
follows.

[[p, v]]k = p(v)
[[¬p, v]]k = ¬p(v)
[[ϕ ∨ ψ, v]]k = [[ϕ, v]]k ∨ [[ψ, v]]k
[[ϕ ∧ ψ, v]]k = [[ϕ, v]]k ∧ [[ψ, v]]k
[[Aϕ, v]]k = ∀→u.(P (

→
u) ∧ v = u0 → [[ϕ,

→
u]]k)

[[Eϕ, v]]k = ∃→u.(P (
→
u) ∧ v = u0 ∧ [[ϕ,

→
u]]k)

[[Xϕ,
→
u]]k = k ≥ 1 ∧ [[ϕ, u1]]k

[[Fψ,
→
u]]k =

∨k
j=0[[ψ, uj]]k

[[Gψ,
→
u]]k =

∧k
j=0[[ψ, uj]]k ∧ rsk(

→
u))

[[ϕUψ,
→
u]]k =

∨k
j=0([[ψ, uj]]k ∧

∧j−1
t=0 [[ϕ, ut]]k)

[[ϕRψ,
→
u]]k =

∧k
j=0([[ψ, uj]]k ∨

∨j−1
t=0 [[ϕ, ut]]k) ∧ (

∨k
t=0[[ϕ, ut]]k ∨ rsk(

→
u))

Let I(v) denote the propositional formula that restricts potential values of v
to the initial states of M .

Proposition 1. Let ϕ be a CTL formula. M |= ϕ iff there is a k ≥ 0 such
that ∀v.(I(v) → [[ϕ, v]]k), and M 6|= ϕ iff there is a k ≥ 0 such that ∃v.(I(v) ∧
[[¬ϕ, v]]k).

QBF-based Bounded Correctness Checking Algorithm Let ϕ be a CTL formula.
The corresponding QBF-based bounded correctness checking algorithm for M |=
ϕ is then as follows.

for (k = 0;1;k++) if (∀v.(I(v) → [[ϕ, v]]k) or ∃v.(I(v) ∧ [[¬ϕ, v]]k)) break;
report that M |= ϕ holds iff ∀v.(I(v) → [[ϕ, v]]k) holds;

The correctness and the termination of this approach are guaranteed by
Proposition 1.

3.2 SAT-based Bounded Correctness Checking

For SAT-based bounded correctness checking , we do not need quantification
over propositional variables. However, we may need a set of k-paths. We may
use some of the symbols already defined in the previous subsection, however, for
self-containedness, we may redefine the necessary symbols in this subsection.

Symbolic Representation of k-Paths Let k ≥ 0. Let ui,0, ..., ui,k be a finite se-
quence of state variables for each i ∈ {1, ..., b} for a given b. The sequence
ui,0, ..., ui,k is intended to be used as a representation of a k-path of M . This is
captured by the following definition of Pk(i).

Definition 4.

Pk(i) :=
k−1∧

j=0

T (ui,j , ui,j+1)

Definition 5 (Transition Relation). Let k ≥ 0.

[[M]]bk :=
b∧

i=1

Pk(i)

This is a collection of Pk(l) for l = 1, ..., b. Therefore we have [[M]]bk → Pk(l)
for l = 1, ..., b. Let rsk(i) denote that there are same states appearing in different
positions in path Pk(i). Formally, we have the following definition of rsk(i).

Definition 6.

rsk(i) :=
k−1∨
x=0

k∨
y=x+1

ui,x = ui,y.

Let p ∈ AP be a proposition symbol and p(v) be the propositional formula
such that p(v) is true whenever v is assigned the truth value representing a state
s in which p holds.

Definition 7 (Translation of ACTL and ECTL formulas). Let k ≥ 0. Let
v be a state variable and ϕ be an ACTL or ECTL formula. The encoding [[ϕ, v]]bk
is defined as follows.

[[p, v]]bk = p(v)
[[¬p, v]]bk = ¬p(v)
[[ϕ ∨ ψ, v]]bk = [[ϕ, v]]bk ∨ [[ψ, v]]bk
[[ϕ ∧ ψ, v]]bk = [[ϕ, v]]bk ∧ [[ψ, v]]bk
[[Aϕ, v]]bk =

∧b
i=1(v = ui,0 → [[ϕ, i]]bk)

[[Eϕ, v]]bk =
∨b

i=1(v = ui,0 ∧ [[ϕ, i]]bk)
[[Xϕ, i]]bk = k ≥ 1 ∧ [[ϕ, ui,1]]bk
[[Fψ, i]]bk =

∨k
j=0[[ψ, ui,j]]bk

[[Gψ, i]]bk =
∧k

j=0[[ψ, ui,j]]bk ∧ rsk(i)
[[ϕUψ, i]]bk =

∨k
j=0([[ψ, ui,j]]bk ∧

∧j−1
t=0 [[ϕ, ui,t]]bk)

[[ϕRψ, i]]bk =
∧k

j=0([[ψ, ui,j]]bk ∨
∨j−1

t=0 [[ϕ, ui,t]]bk) ∧ (
∨k

t=0[[ϕ, ui,t]]bk ∨ rsk(i))

Definition 8. Let ϕ be an ACTL formula. nk(ϕ) is defined as follows.

nk(p) = 0 if p ∈ AP
nk(¬p) = 0 if p ∈ AP
nk(ϕ ∧ ψ) = max(nk(ϕ), nk(ψ))
nk(ϕ ∨ ψ) = nk(ϕ) + nk(ψ)
nk(AXϕ) = nk(ϕ) + 1
nk(AFϕ) = (k + 1) · nk(ϕ) + 1
nk(AGϕ) = nk(ϕ) + 1
nk(A(ϕUψ)) = k ·max(nk(ϕ), nk(ψ)) + nk(ψ) + nk(ϕ) + 1
nk(A(ϕRψ)) = k · nk(ϕ) + max(nk(ϕ), nk(ψ)) + 1

Let I(v) denote the propositional formula that restricts potential values of v
to the initial states of M .

Proposition 2. Let ϕ be an ACTL formula. Let a = nk(ϕ). M |= ϕ iff there
is a k ≥ 0 such that I(v) ∧ [[M]]ak → [[ϕ, v]]ak is valid, and M 6|= ϕ iff there is a
k ≥ 0 such that I(v) ∧ [[M]]ak ∧ [[¬ϕ, v]]ak is satisfiable.

SAT-based Bounded Correctness Checking Algorithm Let ϕ be an ACTL formula.
The corresponding SAT-based bounded correctness checking algorithm for M |=
ϕ is then as follows.

for (k = 0;1;k++)
{
a = nk(ϕ);
if (I(v) ∧ [[M]]ak ∧ ¬[[ϕ, v]]ak is unsat or I(v) ∧ [[M]]ak ∧ [[¬ϕ, v]]ak is sat) break;
}
report that M |= ϕ holds iff I(v) ∧ [[M]]ak ∧ ¬[[ϕ, v]]ak is unsat;

The correctness and the termination of this approach are guaranteed by
Proposition 2.

4 Running the Verification Tool

Some basic verification options are discussed in the following. Suppose that the
model is contained in the file mutex01.vvm.

Verification without Options The following command checks the first property
specified in the file. The verification method used in the verification depends
on the property to be checked. If it is an ACTL formula, SAT-based bounded
correctness checking is used, otherwise, QBF-based one is used.

verds mutex01.vvm

Verification Option -ck The following command checks the i-th property speci-
fied in the file, in which i must be instantiated to some number ≥ 1.

verds -ck i mutex01.vvm

Verification Option -QBF The following command uses QBF-based bounded
correctness checking for check the given property.

verds -QBF -ck i mutex01.vvm

Verification Option -SAT The following command uses QBF-based bounded
correctness checking for check the given property. In case the property is not an
ACTL formula, the program signals an error.

verds -SAT -ck i mutex01.vvm

External QBF and SAT-Solvers The efficiency depends very much on the effi-
ciency of QBF-solvers and SAT-solvers. External QBF-solver may be provided
by using the option “-qbfsolver solver” and external SAT-solver may be pro-
vided by using the option ”-satsolver solver” where solver is the name (possibly
necessary with path information) of the solver.

Summary of the Basic Options The following table is a summary of the basic
options discussed above.

no option checks the first property in the file.
-ck i checks the i-th property in the file.
-QBF uses QBF-based bounded correctness checking
-SAT uses SAT-based bounded correctness checking
-qbfsolver solver uses solver for QBF-solving
-satsolver solver uses solver for SAT-solving

Output of the Verification The output of the verification provides among others,
information on whether the property is true, and the value of k indicating the
bound that is sufficient for verification or falsification. Considering the 5 prop-
erties in the example in subsection 2.1, the verification results show that the 4th
property is false, while the ones are true. It is also reported that the bounds are
respectively 3, 10, 10, 2, and 10 for verification and falsification of the properties.

5 Concluding Remarks

The verification tool verbs with its modeling and specification language and
its verification methods has been presented. A simple example has also been
presented to show the use of the languages and the verification tool. Two distin-
guished features of verbs are that it implements QBF-based bounded correctness
checking for the verification of CTL properties, and a SAT-based one specialized
to the verification of ACTL properties.

Experimental Evaluation An experimental evaluation2 of the relative efficiency
of the QBF-based bounded correctness checking implemented in verbs and the
BDD-based symbolic model checking implemented in NuSMV [3] version 2.5.0
has been done based on the used of two types of random boolean programs and a
set of CTL properties. Based on the test cases, the experimental evaluation shows
that each of the approaches has advantages in a significantly large subset of the
test cases, and moreover, the advantages and disadvantages are well distributed
among verification and falsification of universal properties. Although the test
cases may not be typical in practical applications, the test cases have shown
that bounded correctness checking and the traditional symbolic model checking
may be considered complementary with their own advantages in different types
of verification problems.

References

1. A. Biere, A. Cimmatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. Advances in Computers 58, Academic Press, 2003.

2. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

3. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A New Symbolic
Model Verifier. CAV 1999: 495-499.

4. E. M. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT Press. 1999.
5. E. Allen Emerson and E. M. Clarke. Using Branching-time Temporal Logics to

Synthesize Synchronization Skeletons. Science of Computer Programming 2(3): 241-
266. 1982.

6. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher,1993.
7. W. Penczek, B. Wozna, and A. Zbrzezny. Bounded Model Checking for the Uni-

versal Fragment of CTL. Fundamenta Informaticae 51:135-156. 2002.
8. W. Zhang. Model Checking with SAT-Based Characterization of ACTL Formulas.

Lecture Notes in Computer Science 4789 (ICFEM 2007):191-211.
9. W. Zhang. Bounded Semantics of CTL and SAT-based Verification. ICFEM 2009:

286-305.
10. W. Zhang. Bounded Semantics of CTL. Technical Report ISCAS-SKLCS-16, In-

stitute of Software, Chinese Academy of Sciences. 2010.

2 The report is available at http://lcs.ios.ac.cn/∼zwh/verbs/docfiles/verbs1ee1.pdf

