
Tutorial on Specification and Verification of VERDS Models

Wenhui Zhang

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

P.O.Box 8718, Beijing 100190, China

2012-12-19

This document contains a tutorial on specification in verds models (or
verds verification models, VVMs for short) and on running the verification
tool verds.

1. Mutual Exclusion

This part of the tutorial uses the mutual exclusion algorithm to explain

how to use the verification tools verds including how to specify the
verification models.

The following figure shows a flow diagram of a simple mutual exclusion

algorithm with two processes.

Let A denote the process on the left part of the figure and B denote the

right one. The state s0 represents the initial state of A. The state s1

represents the requesting state of A. The state s2 represents that A is

at the critical state that allows A to use the exclusively shared resource.

The state s3 represents that A is at a non-critical state. The

interpretation of t0, t1, t2 and t3 is similar for the process B.

The possible state transitions of process A are as follows:

(1)at state s0: A may set (y,t) to (1,1) and proceed to state s1;

(2)at state s1: A may proceed to state s2 when (x=0|t=0) holds, or check

and go back to state s1 when the condition does not hold;

(3)at state s2: A may set y to 0 and proceed to state s3, or do some

unspecified local action and stay at state s2;

(4)at state s3: A may set (y,t) to (1,1) and proceed to state s1;

The possible state transitions of process B are similar.

Let a be a variable with values in {s0,s1,s2,s3} that keeps the local state

of A, and b be a variable with values in {t0,t1,t2,t3} that keeps the local

state of B. The initial state of the algorithm is as follows:

a=s0

b=t0

x=0

y=0

t=0

The desired properties of the algorithm include the following ones.

(1)mutual exclusion: !(a=s2&b=t2)

(2)progress: (a=s1->AF(a=s2|b=t2))&(b=t1->AF(a=s2|b=t2))

(3)non-starvation: (a=s1->AF(a=s2))&(b=t1->AF(b=t2))

(4)cooperative non-starvation: (a=s1->EF(a=s2))&(b=t1->EF(b=t2))

For the generality of the specification, the above formulas are to be

preceded with the temporal operator AG.

1.1. Specification of Mutual Exclusion in VVM

We explain how the mutual exclusion algorithm may be specified in VVM in

several different ways.

1.1.1. Specification with a Single Process

The strait forward way of specification is to put all transitions of the

processes together to make a single process. Then we have the following

specification of the mutual exclusion algorithm.

VVM me001

VAR

 x: 0..1;

 y: 0..1;

 t: 0..1;

 a: {s0,s1,s2,s3};

 b: {t0,t1,t2,t3};

INIT

 x=0;

 y=0;

 t=0;

 a=s0;

 b=t0;

TRANS

 a=s0: (y,t,a):=(1,1,s1);

 a=s1&(x=0|t=0): (a):=(s2);

 a=s1&!(x=0|t=0):(a):=(s1);

 a=s2: (y,a):=(0,s3);

 a=s2: (a):=(s2);

 a=s3: (y,t,a):=(1,1,s1);

 b=t0: (x,t,b):=(1,0,t1);

 b=t1&(y=0|t=1): (b):=(t2);

 b=t1&!(y=0|t=1):(b):=(t1);

 b=t2: (x,b):=(0,t3);

 b=t2: (b):=(t2);

 b=t3: (x,t,b):=(1,0,t1);

SPEC

 AG(!(a=s2&b=t2));

 AG((!a=s1|AF(a=s2|b=t2))&(!b=t1|AF(a=s2|b=t2)));

 AG((!a=s1|AF(a=s2))&(!b=t1|AF(b=t2)));

 AG((!a=s1|EF(a=s2))&(!b=t1|EF(b=t2)));

1.1.2. Specification with Two Modules

We may separate the specification of the processes by defining two

different modules, one for each process. Then we have the following

specification of the mutual exclusion algorithm.

VVM me002

VAR

 x: 0..1;

 y: 0..1;

 t: 0..1;

INIT

 x=0;

 y=0;

 t=0;

PROC

 p0: p0m();

 p1: p1m();

SPEC

 AG(!(p0.a=s2&p1.b=t2));

 AG((!p0.a=s1|AF(p0.a=s2|p1.b=t2))&(!p1.b=t1|AF(p0.a=s2|p1.b=t2)));

 AG((!p0.a=s1|AF(p0.a=s2))&(!p1.b=t1|AF(p1.b=t2)));

 AG((!p0.a=s1|EF(p0.a=s2))&(!p1.b=t1|EF(p1.b=t2)));

MODULE p0m()

VAR

 a: {s0,s1,s2,s3};

INIT

 a=s0;

TRANS

 a=s0: (y,t,a):=(1,1,s1);

 a=s1&(x=0|t=0): (a):=(s2);

 a=s1&!(x=0|t=0):(a):=(s1);

 a=s2: (y,a):=(0,s3);

 a=s2: (a):=(s2);

 a=s3: (y,t,a):=(1,1,s1);

MODULE p1m()

VAR

 b: {t0,t1,t2,t3};

INIT

 b=t0;

TRANS

 b=t0: (x,t,b):=(1,0,t1);

 b=t1&(y=0|t=1): (b):=(t2);

 b=t1&!(y=0|t=1):(b):=(t1);

 b=t2: (x,b):=(0,t3);

 b=t2: (b):=(t2);

 b=t3: (x,t,b):=(1,0,t1);

1.1.3. Specification with One module

We may combine the two modules into one, such that it can be instantiated

differently for the two processes. Then we have the following

specification of the mutual exclusion algorithm.

VVM me003

VAR

 x: 0..1;

 y: 0..1;

 t: 0..1;

INIT

 x=0;

 y=0;

 t=0;

PROC

 p0: p0m(x,y,t,0);

 p1: p0m(y,x,t,1);

SPEC

 AG(!(p0.a=s2&p1.a=s2));

 AG((!p0.a=s1|AF(p0.a=s2|p1.a=s2))&(!p1.a=s1|AF(p0.a=s2|p1.a=s2)));

 AG((!p0.a=s1|AF(p0.a=s2))&(!p1.a=s1|AF(p1.a=s2)));

 AG((!p0.a=s1|EF(p0.a=s2))&(!p1.a=s1|EF(p1.a=s2)));

MODULE p0m(x,y,t,i)

VAR

 a: {s0,s1,s2,s3};

INIT

 a=s0;

TRANS

 a=s0: (y,t,a):=(1,1-i,s1);

 a=s1&(x=0|t=i): (a):=(s2);

 a=s1&!(x=0|t=i):(a):=(s1);

 a=s2: (y,a):=(0,s3);

 a=s2: (a):=(s2);

 a=s3: (y,t,a):=(1,1-i,s1);

1.1.4. Specification with Array Variables

We may also use array variables in the specification, such that x and y

are replaced by x[0] and x[1]. Then we have the following specification

of the mutual exclusion algorithm.

VVM me004

VAR

 x[0..1]: 0..1;

 t: 0..1;

INIT

 x[0]=0;

 x[1]=0;

 t=0;

PROC

 p0: p0m(x[],t,0);

 p1: p0m(x[],t,1);

SPEC

 AG(!(p0.a=s2&p1.a=s2));

 AG((!p0.a=s1|AF(p0.a=s2|p1.a=s2))&(!p1.a=s1|AF(p0.a=s2|p1.a=s2)));

 AG((!p0.a=s1|AF(p0.a=s2))&(!p1.a=s1|AF(p1.a=s2)));

 AG((!p0.a=s1|EF(p0.a=s2))&(!p1.a=s1|EF(p1.a=s2)));

MODULE p0m(x[],t,i)

VAR

 a: {s0,s1,s2,s3};

INIT

 a=s0;

TRANS

 a=s0: (x[1-i],t,a):=(1,1-i,s1);

 a=s1&(x[i]=0|t=i): (a):=(s2);

 a=s1&!(x[i]=0|t=i): (a):=(s1);

 a=s2: (x[1-i],a):=(0,s3);

 a=s2: (a):=(s2);

 a=s3: (x[1-i],t,a):=(1,1-i,s1);

1.2. Verification with verds

Assuming that the VVM is contained in the file named “me001.vvm”. To

check whether the i-th (starting from 1) property holds, we use the command

verds –ck i me001.vvm

with a specified value of i. The result of checking the first property

is as follows:

system_prompt> verds –ck 1 me001.vvm

VVERSION: verds 1.42 - DEC 2012

FILE: me001.vvm

PROPERTY: A G ! ((a = 2)& (b = 2))

bound = 1 time = 0

---------- time = 0

bound = 2 time = 0

---------- time = 0

bound = 3 time = 0

---------- time = 0

bound = 4 time = 0

---------- time = 0

bound = 5 time = 0

---------- time = 0

bound = 6 time = 0

---------- time = 0

CONCLUSION: TRUE (time=0)

The first line is the command and the rest is the output of the verification.

In the output, the first line tells the version of the verification tool,

the second line tells the input file, the third line tells the property

been checked (note that in the output, the enumerative constants have been

replaced by numerical ones), and the last line is the conclusion and the

running time (the clock time in seconds, not the CPU time).

It is similar for checking the other three properties. In summary, the

conclusions are as follows.

Property Conclusion

AG(!(p0.a=2&p1.a=2)) true

AG((!p0.a=1|AF(p0.a=2|p1.a=2))&(!p1.a=1|AF(p0.a=2|p1.a=2))) false

AG((!p0.a=1|AF(p0.a=2))&(!p1.a=1|AF(p1.a=2))) false

AG((!p0.a=1|EF(p0.a=2))&(!p1.a=1|EF(p1.a=2))) true

This model does not satisfy the progress property and the non-starvation

property, because one process may keep trying to enter the critical region

without success while the other is ready to enter but not trying to make

a move into the critical region. For the specification of a refined model,

fairness is needed.

1.3. Specification with Fairness

The model may be specified with fairness, in order to force (the valid

executions of) a process to make a move. The complete specification of

the model is as follows.

VVM me005

VAR

 x[0..1]: 0..1;

 t: 0..1;

INIT

 x[0]=0;

 x[1]=0;

 t=0;

PROC

 p0: p0m(x[],t,0);

 p1: p0m(x[],t,1);

SPEC

 AG(!(p0.a=s2&p1.a=s2));

 AG((!p0.a=s1|AF(p0.a=s2|p1.a=s2))&(!p1.a=s1|AF(p0.a=s2|p1.a=s2)));

 AG((!p0.a=s1|AF(p0.a=s2))&(!p1.a=s1|AF(p1.a=s2)));

 AG((!p0.a=s1|EF(p0.a=s2))&(!p1.a=s1|EF(p1.a=s2)));

MODULE p0m(x[],t,i)

VAR

 a: {s0,s1,s2,s3};

INIT

 a=s0;

TRANS

 a=s0: (x[1-i],t,a):=(1,1-i,s1);

 a=s1&(x[i]=0|t=i): (a):=(s2);

 a=s1&!(x[i]=0|t=i): (a):=(s1);

 a=s2: (x[1-i],a):=(0,s3);

 a=s2: (a):=(s2);

 a=s3: (x[1-i],t,a):=(1,1-i,s1);

FAIRNESS

 running;

The keyword running specifies a special fairness requirement meaning that
the valid execution sequences are restricted to those in which the process

having this fairness requirement executes infinitely many times. In

another words, this fairness requirement tells that a process must make

a move soon or later, otherwise, the execution trace will not be considered

as a valid one and whether it satisfies a property is not interesting.

Then the verification results are as follows.

Property Conclusion

AG(!(p0.a=2&p1.a=2)) true

AG((!p0.a=1|AF(p0.a=2|p1.a=2))&(!p1.a=1|AF(p0.a=2|p1.a=2))) true

AG((!p0.a=1|AF(p0.a=2))&(!p1.a=1|AF(p1.a=2))) false

AG((!p0.a=1|EF(p0.a=2))&(!p1.a=1|EF(p1.a=2))) true

This model still does not satisfy the non-starvation property, because

a process that has entered the critical region may keep the resource

forever, such that the other process has no chance to use the property.

For avoiding this, we may add a fairness requirement a!=s2 in order to

force (the valid executions of) a process to move out of the critical

region once in a while. The modified specification of the model is as

follows.

VVM me006

VAR

 x[0..1]: 0..1;

 t: 0..1;

INIT

 x[0]=0;

 x[1]=0;

 t=0;

PROC

 p0: p0m(x[],t,0);

 p1: p0m(x[],t,1);

SPEC

 AG(!(p0.a=s2&p1.a=s2));

 AG((!p0.a=s1|AF(p0.a=s2|p1.a=s2))&(!p1.a=s1|AF(p0.a=s2|p1.a=s2)));

 AG((!p0.a=s0|AF(p0.a=s2))&(!p1.a=s0|AF(p1.a=s2)));

 AG((!p0.a=s1|EF(p0.a=s2))&(!p1.a=s1|EF(p1.a=s2)));

MODULE p0m(x[],t,i)

VAR

 a: {s0,s1,s2,s3};

INIT

 a=s0;

TRANS

 a=s0: (x[1-i],t,a):=(1,1-i,s1);

 a=s1&(x[i]=0|t=i): (a):=(s2);

 a=s1&!(x[i]=0|t=i): (a):=(s1);

 a=s2: (x[1-i],a):=(0,s3);

 a=s2: (a):=(s2);

 a=s3: (x[1-i],t,a):=(1,1-i,s1);

FAIRNESS

 running;

 a!=s2;

Then the verification results are as follows.

Property Conclusion

AG(!(p0.a=2&p1.a=2)) true

AG((!p0.a=1|AF(p0.a=2|p1.a=2))&(!p1.a=1|AF(p0.a=2|p1.a=2))) true

AG((!p0.a=1|AF(p0.a=2))&(!p1.a=1|AF(p1.a=2))) true

AG((!p0.a=1|EF(p0.a=2))&(!p1.a=1|EF(p1.a=2))) true

1.4. Verification with the -bcc Option

This option is for the use of verification based on bounded semantics.

The verification approach is currently implemented without taking

fairness specification into consideration. To check whether the i-th

property holds in the model specified in “me001.vvm”with bounded model

checking, we may use the command

verds –bcc –ck i me001.vvm

with a specified value of i. The result of checking the first property

is as follows:

system_prompt> verds -bcc -ck 1 me001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: me001.vvm

PROPERTY: A G ! ((a = 2)& (b = 2))

INFO: applying an internal SAT-solver

bound = 0 time = 1

---------- time = 1

bound = 1 time = 1

---------- time = 1

bound = 2 time = 1

---------- time = 1

bound = 3 time = 1

---------- time = 1

bound = 4 time = 1

---------- time = 1

bound = 5 time = 1

---------- time = 1

bound = 6 time = 1

---------- time = 1

bound = 7 time = 1

---------- time = 1

bound = 8 time = 1

---------- time = 1

bound = 9 time = 1

---------- time = 1

bound = 10 time = 1

CONCLUSION: TRUE (time=1 bound=10)

In the output, the two warning messages remind that there is a possibility

to specify a qbf-solver or sat-solver (the latter for verification of ACTL

properties) in order to increase the efficiency of the verification. Then

the progress is reported, and conclusion is presented with the information

on the total time and the bound reached in the bounded model checking.

The verification data for the other three properties are presented as

follows.

system_prompt> verds -bcc -ck 2 me001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: me001.vvm

PROPERTY: A G ((! (a = 1)| A F ((a = 2)| (b = 2)))& (! (b = 1)| A F ((a =

2)| (b = 2))))

INFO: applying an internal SAT-solver

bound = 0 time = 0

---------- time = 0

bound = 1 time = 0

---------- time = 0

bound = 2 time = 0

---------- time = 0

CONCLUSION: FALSE (time=0 bound=2)

system_prompt> verds -bcc -ck 3 me001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: me001.vvm

PROPERTY: A G ((! (a = 1)| A F (a = 2))& (! (b = 1)| A F (b = 2)))

INFO: applying an internal SAT-solver

bound = 0 time = 0

---------- time = 0

bound = 1 time = 0

---------- time = 0

bound = 2 time = 0

---------- time = 0

CONCLUSION: FALSE (time=0 bound=2)

system_prompt> verds -bcc -ck 4 me001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: me001.vvm

PROPERTY: A G ((! (a = 1)| E F (a = 2))& (! (b = 1)| E F (b = 2)))

INFO: applying an internal QBF-solver

bound = 0 time = 0

---------- time = 0

bound = 1 time = 0

---------- time = 0

bound = 2 time = 0

---------- time = 0

bound = 3 time = 0

---------- time = 0

bound = 4 time = 0

---------- time = 0

bound = 5 time = 0

---------- time = 0

bound = 6 time = 0

---------- time = 2

bound = 7 time = 2

---------- time = 9

bound = 8 time = 11

---------- time = 35

bound = 9 time = 39

---------- time = 124

bound = 10 time = 291

CONCLUSION: TRUE (time=291 bound=10)

All properties except the last one are ACTL properties. The complexity

of verification of ACTL properties is much lower, since it uses

SAT-solving techniques instead of QBF-solving techniques. The efficiency

can be enhanced by using more efficient external QBF and SAT solvers.

1.5. Examples of Actual Executions

The following is an example of verifying property 1 of the model contained

in the file me004.vvm located in the subdirectory named examples.

The following is an example of verifying the same property with the–bcc
option.

2. Leader Election

This part of the tutorial uses the leader election protocol to explain

how to use the verification tools verds including how to specify the
verification models.

To begin with, we have N people sitting in a ring, each with an

identification number. Each one is allowed to communicate to the people

in the right hand side by sending a message. The state of a person may

be characterized by whether he knows (the id of) the leader. An

illustration is as follows.

A person acts as follows:

A person is initially in an active state where the leader is not known,

and works towards an inactive state where the leader is known to him. In

the active state:

(1)In case no messages are received, he may send his id to the next person.

(2)In case a message is received:

a) If the message tells him that a leader (with the id encoded in the

message) has already been declared, he records this information

and sends the same message to the next person.

b) If the message contains only an id, he may discard it, send it to

the next person, or declared that he is the leader and tells the

next person this information, according respectively to whether

the received id is greater than, less than, or equal to his id.

In the inactive state, he may read a message and discard it.

Let id be a variable recording the id of a person. The id is initially

a random number in {1,...,N}, different for different person.

Let k be a variable (initially 0) recording that whether the leader is

known.

Let m,n be two variables representing the content of the message channel,

such that m=0 means that there are no new messages in the message channel,

m ∈{1,..., N} is an id of a person and n ∈{0,1} indicate whether the leader
is not declared or is declared (in the latter case, m is the id of the

leader). Let r.m and r.n be the message variables of the right hand side

person, and r.m!=0 represent that there is a message in the buffer which

has not been read yet.

The process of a person is illustrated as follows for N=3.

Let p0, p1 and p2 denote the three processes. The interesting properties

of the protocol include the following ones.

(5) AG(!(p0.k=1) |(AF(p1.n=1)|(p1.k=1)));

(6) AF(p0.k=0 U AG(p0.k=1));

The first property is that if p0 knows the leader, then a message telling

that the leader is known must be send to p1, unless p1 also knows the leader;

the second is that in all execution paths, p0 will eventually know the

leader and remain in this state forever.

2.1. Specification of the Protocol in VVM

We explain how the leader election protocol may be specified in VVM in

two different ways.

2.1.1. Specification with the Message Variable as the Parameter

A process may involve two message variables, one his own and the other

the message variable of his right hand side process. The latter may be

passed as a parameter to the process. Then we have the following

specification.

VVM le001

VAR

INIT

 p0.i!=p1.i;

 p0.i!=p2.i;

 p1.i!=p2.i;

PROC

 p0:p0m(p1.m,p1.n);

 p1:p0m(p2.m,p2.n);

 p2:p0m(p0.m,p0.n);

SPEC

 AG(!(p0.k=1)|(AF(p1.n=1)|(p1.k=1)));

 A(p0.k=0 U AG(p0.k=1));

MODULE p0m(rm,rn)

VAR

 k:0..1;

 i:0..3;

 m:0..3;

 n:0..1;

INIT

 k=0;

 m=0;

 n=0;

 i>=1;

 i<=3;

TRANS

 k=0&m=0&rm=0: (rm,rn):=(i,0);

 k=0&m!=0&n=0&m>i: (m,n):=(0,0);

 k=0&m!=0&n=0&m<i&rm=0: (rm,rn,m,n):=(m,0,0,0);

 k=0&m!=0&n=0&m=i&rm=0: (rm,rn,m,n,k):=(i,1,0,0,1);

 k=0&m!=0&n=1&rm=0: (rm,rn,m,n,k):=(m,1,0,0,1);

 k=1&m!=0: (m,n):=(0,0);

2.1.2. Specification using Array Variables with pid

We may an array variable m[0..2], n[0..2] such that m[i], n[i] are the

message variable for the i-th process. The keyword pid represents the

built-in constant recording the pid of the process using this keyword,

and (pid+1)%3 is the pid of the next process. Then we may specify the leader

election protocol as follows.

VVM le002

VAR

 m[0..2]:0..3;

 n[0..2]:0..1;

INIT

 p0.i!=p1.i;

 p0.i!=p2.i;

 p1.i!=p2.i;

PROC

 p0:p0m();

 p1:p0m();

 p2:p0m();

SPEC

 AG(!(p0.k=1)|(AF(n[1]=1)|(p1.k=1)));

 A(p0.k=0 U AG(p0.k=1));

MODULE p0m()

VAR

 k:0..1;

 i:0..3;

INIT

 k=0;

 m[pid]=0;

 n[pid]=0;

 i>=1;

 i<=3;

TRANS

 k=0&m[pid]=0&n[pid]=0&m[(pid+1)%3]=0:

(m[(pid+1)%3],n[(pid+1)%3]):=(i,0);

 k=0&m[pid]!=0&n[pid]=0&m[pid]>i: (m[pid],n[pid]):=(0,0);

 k=0&m[pid]!=0&n[pid]=0&m[pid]<i&m[(pid+1)%3]=0:

(m[(pid+1)%3],n[(pid+1)%3],m[pid],n[pid]):=(m[pid],0,0,0);

 k=0&m[pid]!=0&n[pid]=0&m[pid]=i&m[(pid+1)%3]=0:

(m[(pid+1)%3],n[(pid+1)%3],m[pid],n[pid],k):=(i,1,0,0,1);

 k=0&m[pid]!=0&n[pid]=1&m[(pid+1)%3]=0:

(m[(pid+1)%3],n[(pid+1)%3],m[pid],n[pid],k):=(m[pid],1,0,0,1);

 k=1&m[pid]!=0: (m[pid],n[pid]):=(0,0);

2.1.3. Specification with Macros for Readability

We may enhance the readability of the program by defining macros.

Let nid=(pid+1)%3 denote the pid of the next person at the right hand side.

Let ms=(m[nid]=0) denote that one may send a message.

Let mr=(m[pid]!=0) denote that one may read a message (there is some

message to read),

Let nk=(n[pid]=0) denote that the leader is not known yet. Then we may

specify the leader election protocol as follows with a section that

defines nid, ms, mr, and nk.

VVM le003

DEFINE

 nid =(pid+1)%3

 mr =(m[pid]!=0)

 ms =(m[nid]=0)

 nk =(n[pid]=0)

VAR

 m[0..2]:0..3;

 n[0..2]:0..1;

INIT

 p0.i!=p1.i;

 p0.i!=p2.i;

 p1.i!=p2.i;

PROC

 p0:p0m();

 p1:p0m();

 p2:p0m();

SPEC

 AG(!(p0.k=1)|(AF(n[1]=1)|(p1.k=1)));

 A(p0.k=0 U AG(p0.k=1));

MODULE p0m()

VAR

 k:0..1;

 i:0..3;

INIT

 k=0;

 m[pid]=0;

 n[pid]=0;

 i>=1;

 i<=3;

TRANS

 k=0&!mr&ms: (m[nid],n[nid]):=(i,0);

 k=0&mr&nk&m[pid]>i: (m[pid],n[pid]):=(0,0);

 k=0&mr&nk&m[pid]<i&ms: (m[nid],n[nid],m[pid],n[pid]):=(m[pid],0,0,0);

 k=0&mr&nk&m[pid]=i&ms: (m[nid],n[nid],m[pid],n[pid],k):=(i,1,0,0,1);

 k=0&mr&!nk&ms: (m[nid],n[nid],m[pid],n[pid],k):=(m[pid],1,0,0,1);

 k=1&mr: (m[pid],n[pid]):=(0,0);

2.2. Verification with verds

Assuming that the VVM is contained in the file named “le001.vvm”. To

check whether the i-th property holds in the model, we use the command

verds –ck i le001.vvm

with a specified value of i. The result of checking the first property

is as follows:

system_prompt> verds –ck 1 le001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: le001.vvm

PROPERTY: A G (! (p0.k = 1)| (A F (p1.n = 1)| (p1.k = 1)))

bound = 1 time = 0

---------- time = 0

bound = 2 time = 0

---------- time = 0

bound = 3 time = 0

---------- time = 0

bound = 4 time = 0

---------- time = 0

bound = 5 time = 0

---------- time = 0

bound = 6 time = 0

---------- time = 0

bound = 7 time = 0

---------- time = 0

bound = 8 time = 0

---------- time = 0

bound = 9 time = 0

---------- time = 0

bound = 10 time = 0

---------- time = 0

CONCLUSION: TRUE (time=0)

It is similar for checking A(p0.k=0 U AG(p0.k=1)). In summary, the

conclusions are as follows.

Property Conclusion

AG(!(p0.k=1)|(AF(p1.n=1)|(p1.k=1))) true

A(p0.k=0 U AG(p0.k=1)) false

This model does not satisfy the second property, because not all processes

are obligated to send messages to the next one. A fairness condition may

be added to exclude some sequence of actions as invalid ones.

2.3. Specification with Fairness

The model may be specified with fairness, in order to force (the valid

executions of) a process to send a message unless it is in the state of

inactiveness (k=1). The specification is as follows.

VVM le004

DEFINE

 nid =(pid+1)%3

 mr =(m[pid]!=0)

 ms =(m[nid]=0)

 nk =(n[pid]=0)

VAR

 m[0..2]:0..3;

 n[0..2]:0..1;

INIT

 p0.i!=p1.i;

 p0.i!=p2.i;

 p1.i!=p2.i;

PROC

 p0:p0m();

 p1:p0m();

 p2:p0m();

SPEC

 AG(!(p0.k=1)|(AF(n[1]=1)|(p1.k=1)));

 A(p0.k=0 U AG(p0.k=1));

MODULE p0m()

VAR

 k:0..1;

 i:0..3;

INIT

 k=0;

 m[pid]=0;

 n[pid]=0;

 i>=1;

 i<=3;

TRANS

 k=0&!mr&ms: (m[nid],n[nid]):=(i,0);

 k=0&mr&nk&m[pid]>i: (m[pid],n[pid]):=(0,0);

 k=0&mr&nk&m[pid]<i&ms: (m[nid],n[nid],m[pid],n[pid]):=(m[pid],0,0,0);

 k=0&mr&nk&m[pid]=i&ms: (m[nid],n[nid],m[pid],n[pid],k):=(i,1,0,0,1);

 k=0&mr&!nk&ms: (m[nid],n[nid],m[pid],n[pid],k):=(m[pid],1,0,0,1);

 k=1&mr: (m[pid],n[pid]):=(0,0);

FAIRNESS

 k=1|m[nid]!=0;

The fairness property tells that a process cannot stay active (k=0) while

letting the message variable of the next process be empty forever. With

this additional requirement, the verification results are as follows.

Property Conclusion

AG(!(p1.k=1)|(AF(p2.n=1)|(p2.k=1))) true

A(p1.k=0 U AG(p1.k=1)) true

It must be careful of choosing fairness conditions. If it is too strong

or inappropriate, then the verification results will be meaningless. For

instance, if we put m[(pid+1)%3]!=0, then the verification results will not

be useful, since no infinite execution sequences (a finite execution is

regarded as infinite with the last state repeated forever, if none of the

conditions of the transition rules is satisfiable) satisfy the fairness

requirement.

2.4. Specifying Parameterized Systems

To specify a parameterized system where a set of processes are identical,

one may use a parameter to represent the number of such processes, as well

as parameters to represent the size of array variables and ranges of

variables, such that only few changes need to be made for specification

of a parameterized systems with different sizes.

The leader election protocol with 3 processes may be specified as follows.

VVM le005

DEFINE

 N =3

 NL =2

 ic =(p[0].i!=p[1].i)&(p[0].i!=p[2].i)&(p[1].i!=p[2].i)

 nid =(pid+1)%N

 mr =(m[pid]!=0)

 ms =(m[nid]=0)

 nk =(n[pid]=0)

VAR

 m[0..NL]:0..N;

 n[0..NL]:0..1;

INIT

 ic;

PROC

 p[0..NL]:p0m();

SPEC

 AG(!(p[0].k=1)|(AF(n[1]=1)|(p[1].k=1)));

 A(p[0].k=0 U AG p[0].k=1);

MODULE p0m()

VAR

 k:0..1;

 i:0..N;

INIT

 k=0;

 m[pid]=0;

 n[pid]=0;

 i>=1;

 i<=N;

TRANS

 k=0&!mr&ms: (m[nid],n[nid]):=(i,0);

 k=0&mr&nk&m[pid]>i: (m[pid],n[pid]):=(0,0);

 k=0&mr&nk&m[pid]<i&ms: (m[nid],n[nid],m[pid],n[pid]):=(m[pid],0,0,0);

 k=0&mr&nk&m[pid]=i&ms: (m[nid],n[nid],m[pid],n[pid],k):=(i,1,0,0,1);

 k=0&mr&!nk&ms: (m[nid],n[nid],m[pid],n[pid],k):=(m[pid],1,0,0,1);

 k=1&mr: (m[pid],n[pid]):=(0,0);

FAIRNESS

 k=1|m[nid]!=0;

For the specification of the leader election protocol with 4 processes,

we only need to change the values of N, NL and the definition of ic in

the DEFINE section in the VVM declaration as shown below.

VVM le006

DEFINE

 N =4

 NL =3

 ic =(p[0].i!=p[1].i)&(p[0].i!=p[2].i)&(p[1].i!=p[2].i)&\

 (p[0].i!=p[3].i)&(p[1].i!=p[3].i)&(p[2].i!=p[3].i)

 nid =(pid+1)%N

 mr =(m[pid]!=0)

 ms =(m[nid]=0)

 nk =(n[pid]=0)

VAR

 m[0..NL]:0..N;

 n[0..NL]:0..1;

INIT

 ic;

PROC

 p[0..NL]:p0m();

SPEC

 AG(!(p[0].k=1)|(AF(n[1]=1)|(p[1].k=1)));

 A(p[0].k=0 U AG p[0].k=1);

MODULE p0m()

VAR

 k:0..1;

 i:0..N;

INIT

 k=0;

 m[pid]=0;

 n[pid]=0;

 i>=1;

 i<=N;

TRANS

 k=0&!mr&ms: (m[nid],n[nid]):=(i,0);

 k=0&mr&nk&m[pid]>i: (m[pid],n[pid]):=(0,0);

 k=0&mr&nk&m[pid]<i&ms: (m[nid],n[nid],m[pid],n[pid]):=(m[pid],0,0,0);

 k=0&mr&nk&m[pid]=i&ms: (m[nid],n[nid],m[pid],n[pid],k):=(i,1,0,0,1);

 k=0&mr&!nk&ms: (m[nid],n[nid],m[pid],n[pid],k):=(m[pid],1,0,0,1);

 k=1&mr: (m[pid],n[pid]):=(0,0);

FAIRNESS

 k=1|m[nid]!=0;

2.5. Verification with the –bcc Option

This option is for the use of bounded model checking. It is currently used

for checking CTL formulas for models without fairness constraints. To

check whether the i-th property holds in the model specified in

“le001.vvm”with bounded model checking in which minisat is used as the
SAT-solver, we may use the command

verds -bcc -ck i -satsolver /home/zwh/bin/minisat le001.vvm

with a specified value of i. The output of checking the first property

is as follows:

system_prompt> verds -bcc -ck 1 -satsolver /home/zwh/bin/minisat le001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: le001.vvm

PROPERTY: A G (! (p0.k = 1)| (A F (p1.n = 1)| (p1.k = 1)))

SATSOLVER: /home/zwh/bin/minisat

INFO: applying /home/zwh/bin/minisat

bound = 0 time = 1

---------- time = 1

bound = 1 time = 1

---------- time = 1

bound = 2 time = 1

---------- time = 1

bound = 3 time = 1

---------- time = 1

bound = 4 time = 1

---------- time = 1

bound = 5 time = 1

---------- time = 1

bound = 6 time = 1

---------- time = 1

bound = 7 time = 1

---------- time = 2

bound = 8 time = 2

---------- time = 2

bound = 9 time = 2

---------- time = 2

bound = 10 time = 2

---------- time = 2

bound = 11 time = 3

---------- time = 3

bound = 12 time = 3

---------- time = 3

bound = 13 time = 4

---------- time = 4

bound = 14 time = 4

---------- time = 5

bound = 15 time = 5

---------- time = 6

bound = 16 time = 6

---------- time = 7

bound = 17 time = 7

---------- time = 8

bound = 18 time = 9

---------- time = 10

bound = 19 time = 11

---------- time = 12

bound = 20 time = 14

---------- time = 15

bound = 21 time = 17

CONCLUSION: TRUE (time=17 bound=21)

It is similar with checking the second property, and the result is as

follows:

system_prompt> verds -bcc -ck 2 -satsolver /home/zwh/bin/minisat le001.vvm

VERSION: verds 1.42 - DEC 2012

FILE: le001.vvm

PROPERTY: A ((p0.k = 0)U A G (p0.k = 1))

SATSOLVER: /home/zwh/bin/minisat

INFO: applying /home/zwh/bin/minisat

bound = 0 time = 0

---------- time = 0

bound = 1 time = 1

---------- time = 1

bound = 2 time = 1

---------- time = 1

CONCLUSION: FALSE (time=1 bound=2)

