
VERDS Modeling Language

Wenhui Zhang

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

P.O.Box 8718, Beijing 100190, China

2012-11-26

This document explains the syntax of the VERDS modeling language (VML),
the language of the models (i.e., hierarchical discrete systems) for the

verification tool verds. A model specified in VML is called a VERDS
verification model (VVM).

An atom may be any sequence of characters starting with a character in

the set {a-z_} and followed by a possibly empty sequence of characters

belonging to the set {a-z0-9_}. A number is any sequence of digits. A digit

belongs to the set {0-9}.

All characters and case in a name are significant. Whitespace characters

are space (SPACE), tab (TAB) and newline (RET). Comments in verds language
is any string starting with two slashes (`//') and ending with a newline.

Any other tokens recognized by the parser are enclosed in quotes in the

syntax expressions below. Grammar productions enclosed in square brackets

(`[]') are optional.

Keywords in VML include

VVM MAIN DEFINE VAR INIT

TRANS FAIRNESS SPEC ASSUMPTION GUARANTEE

PROC MODULE PROCEDURE RETURN int

char running pid for in

Logical operators include

X F G U R

A E & | !

The empty string is denoted by ε. For simplicity, we define the operator
listof(x) and parlistof(x), that may be used in various situations for

the parameter x.

listof(x) :: ε | x ";" listof(x)

parlistof(x) :: x | x "," parlistof(x)

1. Expressions

Expressions are constructed from variables, constants, and a collection

of operators, including temporal operators, Boolean connectives, and

integer arithmetic operators.

1.1. Numeric Expressions

Numeric expressions are expressions built only from current state

variables. The syntax of numeric expressions is as follows:

numeric_expr ::

 symb_const ;; a symbolic constant

 | numb_const ;; a numeric constant

 | char_const ;; a numeric constant

 | variable_id ;; a variable identifier

 | "P" "(" variable_id ")" ;; a marked variable id

 | "(" numeric_expr ")"

 | numeric_expr "+" numeric_expr ;; integer addition

 | numeric_expr "-" numeric_expr ;; integer subtraction

 | numeric_expr "*" numeric_expr ;; integer multiplication

 | numeric_expr "/" numeric_expr ;; integer division

 | numeric_expr "%" numeric_expr ;; integer remainder

symb_const :: atom

numb_const :: number

char_const :: ‘a’| … |‘z’

|‘A’| … |‘Z’

|‘0’| … |‘9’

|‘\n’

variable_id :: atom | atom"."atom | variable_id "[" numeric _expr "]"

A symbolic constant is represented by an atom, which are predefined ones,

including the atom “pid”. Such constants are meant to be used in

particular sections of the declarations.

A numeric constant is represented by a number. A simple variable

identifier is either an atom representing a simple variable or such a

variable identifier preceded by a process identifier (represented by the

first atom in the construct atom"."atom) in order to refer a local variable

of a process. A simple variable identifier followed by a sequence of

indices represents an element of an array variable.

The order of parsing precedence for operators from high to low is:

*,/,%

+,-

Operators of equal precedence associate to the left. Parentheses may be

used to group expressions.

The marked variable identifiers are only appropriate in specifications

of guarantees.

1.2. Logic Expressions

Logic expressions are expressions built from numeric expressions. Logic

expressions can be used to specify sets of states, e.g. the initial set

of states. The syntax of logic expressions is as follows:

logic_expr ::

 "TRUE" ;; The boolean constant 1

 | "FALSE" ;; The boolean constant 0

 | logic_const ;; predefined constants

 | "(" logic _expr ")"

 | numeric_expr "=" numeric_expr ;; equality

 | numeric_expr "!=" numeric_expr ;; inequality

 | numeric_expr "<" numeric_expr ;; less than

 | numeric_expr ">" numeric_expr ;; greater than

 | numeric_expr "<=" numeric_expr ;; less than or equal

 | numeric_expr ">=" numeric_expr ;; greater than or equal

 | logic_expr "&" logic_expr ;; logical and

 | logic_expr "|" logic_expr ;; logical or

 | "!" logic_expr ;; logical not

 | "for" atom "in" range":" logic_expr ;; for all statement

logic_const :: atom

range :: number ".." number | "{" atom "," atom "," ... "," atom "}"

A logical constant is represented by an atom, which are predefined ones,

including the atom “running”. Such constants are meant to be used in

particular sections of the declarations.

The order of parsing precedence for operators from high to low is:

=,!=,<,>,<=,>=

!

&

|

Operators of equal precedence associate to the left. Parentheses may be

used to group expressions.

1.3. Temporal Logic Expressions

Temporal logic expressions are expressions built from logic expressions.

Logic expressions can be used to specify properties of the finite state

machine. The syntax of temporal logic expressions is as follows:

temporal_expr ::

 logic_expr

 | "AX" temporal_expr

 | "AG" temporal_expr

 | "AF" temporal_expr

 | "A" "(" temporal_expr "R" temporal_expr ")"

 | "A" "(" temporal_expr "U" temporal_expr ")"

 | "EX" temporal_expr

 | "EG" temporal_expr

 | "EF" temporal_expr

 | "E" "(" temporal_expr "R" temporal_expr ")"

 | "E" "(" temporal_expr "U" temporal_expr ")"

 | temporal_expr "&" temporal_expr ;; logical and

 | temporal_expr "|" temporal_expr ;; logical or

 | "!" temporal_expr ;; logical not

1.4. Assignment Expressions

Assignment expressions are built from variable identifiers and logical

expressions. The syntax of assignment expressions is as follows:

assignment ::

 "(" variable_id "," ... variable_id ")"

 ":="

 "(" ext_numeric_expr "," ... ext_numeric_expr ")"

ext_numeric_expr :: numeric_expr | "*"

Extended numeric expressions augment numeric expressions with “*”. The

meaning of this constant is “any value” of some given type in the

context.

varname :: atom ["[]"]

param :: varname | number

ext_assignment :: [procedure_call "&"] assignment ["&" logic_expr]

procedure_call :: atom "(" [parlistof(param)] ")" //**//

2. Hierarchical Discrete Systems

A hierarchical discrete system consists three parts: the variables

representing the state of the system, the initial states, and the

transition relation. In addition, property specifications may be attached

to a hierarchical discrete system, in order to check whether the system

is correct with respect to the properties. The transition relation may

be divided into different modules.

2.1. Types and State Variables

There are integers, characters, bounded numbers and enumerative types and

record types. These types are declared by the notation:

type :: range

 | "int"

 | "char"

 | "record" "{" var_declaration "}"

Two enumeration types must either be identical or with disjoint sets of

elements.

A state of the model is an assignment of values to a set of state variables.

These variables are declared by the notation:

variable :: atom | variable "[" number ".." number "]"

simple_var_declaration :: variable ":" type

var_declaration :: listof(simple_var_declaration)

A variable is either a simple variable or an array variable. The type

associated with a variable declaration can be either a scalar or an

enumeration of a set of atoms.

A variable of type Boolean may be represented by a variable of type 0..1

such that x=1 means x for the Boolean variable x, x=0 means not x, and
negating the Boolean variable x may be implemented by the arithmetic
expression 1-x.

2.2. Initial Values of State Variables

Initial values of state variables are specified by a list of formulas

constraining the state variables. As a special case, the initial values

of state variables may be specified as a list of formulas of the form x=c
where x is a variable identifier and c is a constant. The initial values
are declared by the notation:

init_declaration :: listof(logic_expr)

2.3. Transition Relations

The transition relation of a process is implemented by a list of simple

transition relations. The transition relation is declared by the

notation:

simple_trans_relation :: logic_expr ":" ext_assignment ["&" "RETURN"]

trans_relation :: listof(simple_trans_relation)

2.4. Fairness Declarations

The transition relation may be augmented with fairness requirements that

impose restrictions on the valid execution paths. The specification is

declared by the notation:

fairness_declaration :: listof(logic_expr)

The logical constant “running” is a special proposition that may be used

in a fairness declaration. The proposition is satisfied when the process

in which the fairness is declared is executed.

2.5. Specification Declarations

The specification of system and process properties is represented by a

temporal logic expression. The specification is declared by the notation:

spec_declaration :: listof(temporal_expr)

Procedure Declarations

A procedure is an encapsulated collection of declarations. Once defined,

a procedure can be reused as many times as necessary.

The syntax of a procedure declaration is as follows.

procedure ::

 "PROCEDURE" atom "(" [parlistof(varname)] ")"

 "VAR" var_declaration

 "INIT" init_declaration

 "TRANS" trans_declaration

 [

 "ASSUMPTION" [var_declaration] listof(logic_expr)

 "GUARANTEE" listof(logic_expr)

]

The atom immediately following the keyword "PROCEDURE" is the name
associated with the procedure. The optional par_list in parentheses is

the list of the formal parameters of the procedure. The symbols "[]"

indicates that the atom preceding the symbols represents an array variable.

Whenever these parameters occur in expressions within the procedure, they

are replaced by the actual parameters which are supplied when the

procedure is instantiated.

2.6. Module Declarations

A module is an encapsulated collection of declarations. Once defined, a

module can be reused as many times as necessary. Modules can also be so

that each instance of a module can refer to different data values.

The syntax of a module declaration is as follows.

module ::

 "MODULE" atom "(" [parlistof(varname)] ")"

 "VAR" var_declaration

 "INIT" init_declaration

 "TRANS" trans_declaration

 ["FAIRNESS" fairness_declaration]

The atom immediately following the keyword "MODULE" is the name associated
with the module. The optional par_list in parentheses is the list of the

formal parameters of the module. The symbols "[]" indicates that the atom

preceding the symbols represents an array variable. Whenever these

parameters occur in expressions within the module, they are replaced by

the actual parameters which are supplied when the module is instantiated.

The symbolic constant “pid” is a special constant that may be used in

a module declaration. The constant is interpreted as the numerical

constant representing the id of the process (the first process has id=0),

which is an instance of the module.

2.7. Multi-Process System Declarations

A hierarchical discrete system may have one or more processes that are

instances of one or more module declarations. The syntax of a hierarchical

discrete system (called a verds verification model) declaration is as

follows.

verds_verification_model ::

 "VVM" [atom]

 ["DEFINE" definition_declaration]

 "VAR" var_declaration

 "INIT" init_declaration

 "PROC" process_declaration

 ["FAIRNESS" fairness_declaration]

 ["SPEC" spec_declaration]

definition_declaration ::

 string_latin_letters "=" string_visible_characters "\n"

 ...

 string_latin_letters "=" string_visible_characters "\n"

simple_process_declaration :: atom ":" atom "("[parlistof(param)]")"

 | "for" atom "in" range":" atom ":" atom "("[parlistof(param)]")"

process_declaration :: listof(simple_process_declaration)

The optional atom after the keyword VVM is the name of the hierarchical

discrete system.

A list of definitions may be provided. A defined word (which is a string

of Latin letters) is an abbreviation of the defining string of visible

characters, and the end-line symbol indicates the end of the definition.

If a defining string is long, a backslash ‘\’ may be used to ignore the

end-line character immediately after this backslash.

A process is an instance of a module. The first atom in the process

declaration is the name of the process (or the module instance), the second

atom is the name of a module and the atoms in the optional list are

parameters passed to the module.

The variables in the var_declaration section are global variables that

can be used in all modules.

The complete verification model consists of a verds_verification_model

declaration followed by a list of module declarations that are referred

to in the process declaration.

2.8. Single Process System Declarations

For simplicity, a single process hierarchical discrete system may be

declared by the following syntax as well.

single_process_verds_verification_model ::

 "VVM" [atom]

 "VAR" var_declaration

 "INIT" init_declaration

 "TRANS" trans_declaration

 ["FAIRNESS" fairness_declaration]

 ["SPEC" spec_declaration]

This declaration is similar to the previous declaration of a VVM with the

difference that the process declaration is replaced by a transition

declaration.

