
verds: Verification of Hierarchical Discrete
Systems by Symbolic Techniques

Wenhui Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
P.O.Box 8718, Beijing 100190, China

1 Introduction

verds1 is a tool for the verification of hierarchical discrete systems by symbolic
methods. This tool has integrated a TBD-based model checking approach [7] (a
kind of symbolic model checking [5, 3]) and two bounded correctness checking
approaches (a kind of bounded model checking [2, 1] based on bounded semantics
of CTL [6]). The model is a kind of fair discrete systems, which may be specified
hierarchically with a recursively defined semantics.

2 Modeling and Specification

The modeling language is called VERDS modeling langauge (VML), and the
property specification langauge is CTL [4]. The reader is referred to [8] for a
description of VML. A verification model specified in VML is called a VERDS
verification model (VVM).

Checking C-Programs There is a tool for transforming (a subset of) C-programs
into VVMs. Then the C-programs may be verified by verds. Currently the spec-
ification of the properties of C-programs is of the form

(at line n): bexp

where n is a line number of the program such that the number points to a
line in the main-function, and bexp is a boolean expression. The meaning of
the specification is that whenever the program execution reaches the line, the
assertion bexp must hold.

3 Examples

This section contains an example of checking a mutual exclusion algorithm and
an example of checking a C-program.

1 http://lcs.ios.ac.cn/∼zwh/verds/

3.1 Checking a Mutual Exclusion Algorithm

The following (Fig. 1) is a specification of a mutual exclusion algorithm with two
processes in VML, and with the following properties: mutual exclusion, progress,
non-starvation, cooperative non-starvation.

VVM me005
VAR x[0..1]:0..1; t:0..1;
INIT x[0]=0; x[1]=0; t=0;
PROC p0:p0m(x[],t,0); p1:p0m(x[],t,1);
SPEC

AG(!(p0.a=s2&p1.a=s2));
AG((!p0.a=s1|AF(p0.a=s2|p1.b=s2))&(!p1.b=s1|AF(p0.a=s2|p1.b=s2)));
AG((!p0.a=s1|AF(p0.a=s2))&(!p1.b=s1|AF(p1.b=s2)));
AG((!p0.a=s1|EF(p0.a=s2))&(!p1.b=s2|EF(p1.b=s2)));

MODULE p0m(x[],t,i)
VAR a: {s0,s1,s2,s3};
INIT a=s0;
TRANS

a=s0: (x[1-i],t,a):=(1,1-i,s1);
a=s1&(x[i]=0|t=i): (a):=(s2);
a=s1&!(x[i]=0|t=i): (a):=(s1);
a=s2: (x[1-i],a):=(0,s3);
a=s2: (a):=(s2);
a=s3: (x[1-i],t,a):=(1,1-i,s1);

FAIRNESS running;

Fig. 1. The Example Mutual Exclusion Algorithm

TBD-based Model Checking Suppose that this verification model is contained
in the file me005.vvm. For verification of the two properties with TBD-based
model checking, we use the following command:

verds -ck i me005.vvm

in which i must be instantiated to one of {1, 2, 3, 4} for checking the specified
properties. The verification result shows that the first two properties and the last
property are true and the third property is false. The third property does not
hold, because a process may stay at the critical region while the other process
keep testing whether the condition for entering the critical region holds. The
property holds when the fairness specification a! = s2 (meaning that a process
cannot constantly stay at the critical region) is added to both of the processes.

Bounded Correctness Checking Verification by bounded correctness checking
can currently handle CTL formulas and models without fairness. Let the file
me004.vvm be the modification of me005.vvm such that the fairness constraint is
removed. For verification of the two properties using bounded semantics (without
fairness), we use the following command:

verds -bs -ck i me004.vvm

The verification result shows that the first property and the last property are
true while the second property and the third property are false without the
fairness constraints. In addition, it is reported that the bounds are respectively
10, 2, 2 and 10 for verification and falsification of the properties.

3.2 Checking a C-Program

The following (Fig. 2) is a specification of a program that read a number between
0 and 9, call the function f91() with this number as the argument, and print
the result returned from this function.

#include <stdio.h>
/**/
main(int argc,char **argv) {

int n=0,m=0;
printf("INFO: system is now active\n",0);
while (1) {

n=in(); m=f91(n);
printf("RESULT: %i\n\n",m);

}
}
/**/
int in() {

char c=0;
char d=0;
while (1) {

putc(’N’,stdout); putc(’:’,stdout); putc(9,stdout); c=getc(stdin);
if (c<’0’||c>’9’) {

while (1) { c=getc(stdin); if (c==’\n’) break; }
printf("INFO: the input must be a digit\n\n"); continue;

}
d=getc(stdin); if (d==’\n’) { return c-’0’; }
printf("INFO: the input must be 1 digit\n\n");

}
}
/**/
int f91(int x) {

int y1=x; int y2=1; int z=0;
while (1) {

if (y1>100) {if (y2!=1) { y1=y1-10; y2=y2-1; } else { z=y1-10; break; }}
else { y1=y1+11; y2=y2+1; }

}
return z;

}
/**/

Fig. 2. The Example C-Program

Model Checking Let the property of the program be specified as follows

(at line 9): m==91

Assume that this specification is contained in the file f091.sp and the program
is contained in the file f091.c. For verification of whether the program is correct
against this specification, we use the following command:

verds -c f091.c -sp f091.sp

The verification result shows that the property holds.

4 Compositional Reasoning

Compositional reasoning may be applied to replace a function with what the
function call guarantees. Take the C-program as an example. Let the assumption-
guarantee pair of the function in() be specified by

FUNCTION r=in()
ASSUMPTION TRUE;
GUARANTEE 0<=r&&r<=9;

Assume that this specification is contained in the file f091.fsp. For the verifica-
tion of whether the program is correct against the specification in f091.sp with
this assumption-guarantee specification, we use the following command:

verds -c f091.c -sp f091.sp -fsp f091.fsp

The verification result shows that the property holds with the assumption-
guarantee specification, and with improved efficiency of the verification. This
command also produces the file f091.vvm which contains the model (VERDS
verification model) used in the verification. Then we may verify whether the
function in() satisfies the assumption-guarantee specification with the following
command:

verds -ck in f091.vvm

The verification result shows that this also holds.

Remarks For this simple example, the compositional reasoning approach may
not have advantage (considering the total time of verifying both the assumption-
guarantee specification and the C-program with this specification), since there is
a lot overhead involved in the application of the compositional reasoning. Gen-
erally, it is useful and increases the scalability of the model checking approach.

5 Concluding Remarks

The verification tool verds with its modeling langauge and specification language
has been presented. A simple example has also been presented to show the use
of the languages and the verification tool. Two distinguished features of verds
are that it implements TBD-based model checking and QBF-based bounded
correctness checking, and for some applications, it complies with compositional
reasoning.

References

1. A. Biere, A. Cimmatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. Advances in Computers 58, Academic Press, 2003.

2. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

3. E. M. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT Press. 1999.
4. E. Allen Emerson and E. M. Clarke. Using Branching-time Temporal Logics to

Synthesize Synchronization Skeletons. Science of Computer Programming 2(3): 241-
266. 1982.

5. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher,1993.
6. W. Zhang. Bounded Semantics of CTL. Technical Report ISCAS-LCS-16, Institute

of Software, Chinese Academy of Sciences. 2010.
7. W. Zhang. Ternary Boolean Diagrams. Technical Report ISCAS-LCS-10-24, Insti-

tute of Software, Chinese Academy of Sciences. 2010.
8. W. Zhang. VERDS Modeling Language. Manuscript, SKLCS, Institute of Software,

Chinese Academy of Sciences. 2012.

