
Static Rate-Optimal Scheduling of Multirate DSP
Algorithms via Retiming and Unfolding

Xue-Yang Zhu
State Key Laboratory of Computer Science

Institute of Software Chinese Academy of Sciences
Beijing, China
zxy@ios.ac.cn

Marc Geilen, Twan Basten and Sander Stuijk
Department of Electrical Engineering
Eindhoven University of Technology

Eindhoven, the Netherlands
{m.c.w.geilen, a.a.basten, s.stuijk}@tue.nl

Abstract—This paper presents an exact method and a heuristic
method for static rate-optimal multiprocessor scheduling of
real-time multirate DSP algorithms represented by synchronous
data flow graphs (SDFGs). Through exploring the state-space
generated by a self-timed execution (STE) of an SDFG, a static
rate-optimal schedule via explicit retiming and implicit unfolding
can be found by our exact method. By constraining the number of
concurrent firings of actors of an STE, the number of processors
used in a schedule can be limited. Using this, we present a heuris-
tic method for processor-constrained rate-optimal scheduling of
SDFGs. Both methods do not explicitly convert an SDFG to its
equivalent homogenous SDFG. Our experimental results show
that the exact method gives a significant improvement compared
to the existing methods; our heuristic method further reduces
the number of processors used.

I. Introduction

DSP algorithms are usually required to operate under real-
time constraints and with limited resources. In this paper, we
are concerned with constructing efficient static (compile-time)
schedules for multirate DSP algorithms. We also take into
account the number of processors used.

Dataflow models are widely used to represent DSP appli-
cations. The one often used for multirate DSP algorithms
are synchronous dataflow graphs (SDFGs) [1]. Each node
(also called actor) in an SDFG represents a computation or
function and each edge models a FIFO channel; the sample
rates of actors may differ. Practical multirate DSP applications
modeled with SDFGs include a spectrum analyzer [2], a
satellite receiver [3], etc.

DSP algorithms are nonterminating and repetitive. Static
schedules are usually used for them. A static schedule arranges
computations of an algorithm to be executed repeatedly. Ex-
ecution of all the computations for the required number of
times is referred to as an iteration. An iteration of an SDFG
may include more than one execution, often called firing in
dataflow, of an actor, and a different number of firings for
different actors. The average computation time per iteration
is called the iteration period of a schedule. DSP algorithms

This work was supported in part by the National Natural Science Founda-
tion of China under Grant No. 60833001.

with recursions (or feedbacks) have an inherent lower bound
on the iteration period, referred to as the iteration bound [4].
It is impossible to achieve an iteration period lower than the
iteration bound, even when unlimited processors are available.
A schedule whose iteration period equals the iteration bound
is called a rate-optimal schedule.

The construction of rate-optimal schedules involves explicit
or implicit retiming and unfolding. Unfolding turns f con-
secutive iterations into a cycle in the unfolded graph. f is
called the unfolding factor. Unfolding can lead to a rate-
optimal schedule, at the cost of multiplying the problem space
by the unfolding factor. An unfolding factor is called an
optimal unfolding factor if a rate-optimal schedule exists with
the factor. Combined with retiming [5], a smaller optimal
unfolding factor may be obtained [6], [7].

Much work [7], [8], [9] has been done on static rate-optimal
scheduling of homogenous synchronous dataflow graphs (HS-
DFGs), which is a special type of SDFGs. All sample rates of
actors of an HSDFG are one. In an iteration of an HSDFG,
each actor fires once. The authors of [8] prove that the least
common multiple of the delay counts in all the loops of
an HSDFG is an optimal unfolding factor and present an
algorithm for rate-optimal scheduling HSDFGs with explicit
unfolding. They do not take into account the actor execution
time. The mentioned optimal unfolding factor is usually larger
than the one that can be found when the execution times of
actors are considered. The authors of [7] prove the minimum
rate-optimal unfolding factors of an HSDFG on different
timing models and implementation styles. They also provide a
rate-optimal scheduling algorithm with implicit retiming and
unfolding that achieves these unfolding factors. The algorithm
in [9] finds a rate-optimal schedule for an HSDFG if such a
schedule exists when limiting the schedule to one iteration.

Little work, however, is concerned with general SDFGs.
Theoretically, it is always possible to convert an SDFG to its
equivalent HSDFG [10] and then use the available methods
for HSDFGs. However, converting an SDFG to an HSDFG is
very time-consuming when SDFGs scale up. The size of the
HSDFG can be exponentially larger than the original SDFG
in extreme cases [11]. To the best of our knowlege, only [12]
discusses the rate-optimal scheduling of SDFGs. It converts

an SDFG to a precedence graph, which is a reduced form
of its equivalent HSDFG, then computes the unfolding factor
and schedules the precedence graph with the same method
as [7]. A precedence graph of an SDFG has less edges than
and the same number of actors as its equivalent HSDFG. The
conversion procedure is still time and space-consuming.

All the above-mentioned methods, except for [9], are based
on the assumption that unlimited processors are available.
Besides a method based on the same assumption, we also
consider rate-optimal scheduling under processor constraints.
The static schedules we consider in this paper are the same
as the static schedules under the integral timing model and
pipelined design in [7]. The minimum optimal unfolding factor
is the denominator of the iteration bound in its irreducible
form.

In this paper, we work directly on SDFGs, without explicitly
converting an SDFG to an HSDFG or any other graphs.
We consider explicit retiming and implicit unfolding. All the
above-mentioned methods provide solutions by analyzing the
structure of dataflow graphs. We take another perspective
– analyzing the behaviors of SDFGs. [13] proves that the
iteration bound of an SDFG can be computed by exploring
the state space generated by a self-timed execution (STE,
also called as soon as possible execution). The method is
very efficient. STE analysis was used in [14] to construct
static periodic rate-optimal schedules with minimal buffer sizes
for HSDFGs. In this paper, we consider STE analysis for
SDFG scheduling. We show that the state space includes the
information of a retiming, an optimal unfolding factor and
a rate-optimal schedule of the retimed and unfolded graph.
Furthermore, the number of processors needed by the rate-
optimal schedule can be found. Based on this, we present an
exact method for rate-optimal scheduling of SDFGs. Limiting
the number of the concurrent firings of actors in an STE, we
can limit the number of processors it uses, and therefore the
number of processors used by the schedule obtained from the
STE. However, such a schedule is not always rate-optimal. We
present a heuristic method trying to find a static rate-optimal
schedule of an SDFG using as few processors as possible.

For evaluating our new methods, we implemented them
and related methods in the open source tool SDF3 [15]. We
compare the execution time of our exact method with the
method in [12], which is faster than the methods that need
to convert an SDFG to its HSDFG. While our method guar-
antees rate-optimal schedules, we do not achieve the minimum
unfolding factors in all cases. We compare the unfolding factor
obtained by our method with the minimum one proven in [7].
We show how our heuristic method improves the processor
utilization of our exact method and show its execution time.
The experiments were carried out on hundreds of synthetic
SDFGs and several models of real applications.

We first introduce the related concepts and formulate the
problems in Section II. The basic idea of our methods is
introduced by an example in Section III. Section IV describes
the definition and properties of self-timed execution of SDFGs.
We formally define our methods in Sections V and VI.

Fig. 1. (a) The SDFG G1, where the sample rates are omitted when they
are 1 and the computation time of each actor is attached inside the node; (b)
the equivalent HSDFG of G1.

Section VII provides an experimental evaluation. Finally, in
Section VIII the conclusions and future work are presented.

II. Preliminaries and Problem Formulation

A synchronous dataflow graph (SDFG) is a finite directed
graph G = 〈V, E, t, d, prd, cns〉, in which V is the set of actors,
modeling the functional elements of the system; E is the set of
directed edges, modeling interconnections between functional
elements. Each actor v is weighted with its computation time
t(v), a nonnegative integer. Each edge e is weighted with
three properties: d(e), a nonnegative integer that represents the
number of initial tokens associated with e; prd(e), a positive
integer that represents the number of tokens produced onto
e by each firing of the source actor of e; cns(e), a positive
integer that represents the number of tokens consumed from
e by each firing of the sink actor of e. These numbers are
also called the delay, production rate and consumption rate,
respectively. The source actor and sink actor of e are denoted
as src(e) and snk(e), respectively. If prd(e) = cns(e) = 1 for
each e ∈ E, then we say that G is a homogeneous SDFG
(HSDFG).

The edge e with source actor u and sink actor v is denoted
by e = 〈u, v〉. The set of incoming edges to actor v is denoted
by InE(v), and the set of outgoing edges from v by OutE(v). An
initial delay distribution of the SDFG G is a vector containing
delays on all edges of G, denoted as d(G).

An SDFG G is sample rate consistent [1] if and only if
there exists a positive integer vector q(V) such that for each
edge e in G,

q(src(e)) × prd(e) = q(snk(e)) × cns(e), (1)

where (1) is called a balance equation. The smallest q is
called the repetition vector. We use q to represent the rep-
etition vector directly. For example, a balance equation can be

constructed for each edge of G1 in Fig. 1 (a). By solving these
balance equations, we have G1’s repetition vector q = [2, 1, 1].

One iteration of an SDFG G is a firing sequence in which
each actor v occurs exactly q(v) times. An iteration of G1 in
Fig. 1(a), for example, includes two firings of actor A and one
firing of B and C, respectively.

Only sample rate consistent and deadlock-free SDFGs are
meaningful in practice. Henceforth we consider only such
SDFGs.

A static schedule is a function S , mapping a firing to its
start time. The ith firing of actor v starts at time S (v, i). DSP
algorithms are nonterminating, implying that i ∈ [1,∞). If
S (v, i + f · q(v)) = S (v, i) + T for every firing of v, we say that
the schedule S has an unfolding factor f and a cycle period
T . Each f iterations are called a cycle in the schedule. Such a
schedule S can be represented by the first f iterations, which is
the part of the schedule defined by S (v, i) with 1 ≤ i ≤ f ·q(v)
for all v.

The iteration period (IP) of a static schedule is the average
computation time of an iteration, that is, T

f . The iteration
bound (IB) is the greatest lower bound of the IP. If the IP
of an schedule equals its IB, it is a rate-optimal schedule and
f is a rate-optimal unfolding factor. The IB of an HSDFG is
given by its maximum cycle mean. That is,

IB = max
∀l∈G

t(l)
d(l)

, (2)

where l is a loop (a simple cycle) in the graph, t(l) is the sum
of the execution times of all actors in l and d(l) is the sum of
the delays in l.

A sample-rate consistent SDFG can always be converted
to an equivalent HSDFG, which captures the data depen-
dencies among firings of actors in the original SDFG in
an iteration [10]. The IB of an SDFG equals the IB of its
equivalent HSDFG. For example, the IB of G1 in Fig. 1 (a)
is 5

2 , which can be computed by using Equation (2) on it
equivalent HSDFG shown in Fig. 1 (b). [13] presents a method
to compute the IB directly on an SDFG, which we introduce
later.

An optimal unfolding factor may be reduced when retiming
is used. For example, the optimal unfolding factor of Fig. 1
(b) according to [8] is 6, while its smallest optimal unfolding
factor is 2 when the actor execution time is taken into account
and an implicit retiming is used [7].

Retiming is a graph transformation technique that redis-
tributes the graph’s delays while its functionality remains un-
changed [5], [2]. Retiming an actor once means firing this actor
once. Given an SDFG G = 〈V, E, t, d, prd, cns〉, a retiming of
G is a function r : V → Z, specifying a transformation r of
G into a new SDFG r(G) = 〈V, E, t, dr, prd, cns〉, where the
delay-function dr is defined for each edge e = 〈u, v〉 by the
equation:

dr(e) = d(e) + prd(e)r(u) − cns(e)r(v). (3)

A retiming r of a sample-rate consistent and deadlock-free
SDFG is legal if the retimed graph r(G) is also sample-rate

consistent and deadlock-free. Only legal retimings are mean-
ingful. It is sufficient to check if the initial delay distribution
of the retimed graph is nonnegative to ensure that a retiming
is legal [16]. Note that retiming does not affect the iteration
bound of an SDFG.

When there are unlimited processors available, a static rate-
optimal schedule can always be found [8]. The first problem
we address is: given an SDFG G, finding a legal retiming r,
an unfolding factor f and a rate-optimal schedule S with f
of the retimed graph r(G). The second problem we address
is: given an SDFG G, trying to find a rate-optimal schedule
using as few processors as possible.

By inserting precedence constraints with a finite number of
delays between the source and sink actors of an SDFG, any
SDFG can be converted to a strongly connected graph [5], [2].
We therefore only consider strongly connected SDFGs when
developing our ideas.

III. Basic Idea by an Example

[13] proves that the IB (i.e., the reciprocal of the maximum
throughput in [13]) of an SDFG can be obtained by exploring
the state space generated by an STE, in which actors must fire
as soon as possible [10]. An STE of an SDFG ultimately goes
into a repetitive pattern, which is called the periodic phase.
The periodic phase includes one or more complete iterations.
The firing sequence before the periodic phase is called the
transient phase. The average iteration computation time in the
periodic phase is exactly the IB of the SDFG.

For example, Fig. 2 (a) gives the actor firing sequence
obtained by an STE of G1. At time 6, the delays on each
edge are the same as at time 1. Thus the firings enabled are
the same at these two time points. They are two firings of B.
The firings of actors between time 1 and 6 will be repeated
infinitely. There are two iterations in the periodic phase, which
has a duration of 5. Then the IB of G1 is 5

2 , which is exactly
the maximum cycle mean of the equivalent HSDFG of G1,
shown in Fig. 1 (b).

Take a closer look at the firing sequence generated by the
STE. After the firings of the transient phase finish, each of the
following firings will repeatedly start with time displacement
5 and the number of firings of each actor v in each repetition
is 2q(v). The firings in the periodic phase exactly form a rate-
optimal schedule with unfolding factor 2 and cycle period 5
of the SDFG transformed by executing the transient phase.
Recall that retiming an actor once means firing it once. The
firings of the transient phase form a retiming.

By the STE shown in Fig. 2 (a), the retiming r = [5, 0, 0]
is obtained. The retimed graph is shown in Fig. 2 (b). A rate-
optimal schedule of the retimed SDFG, shown in Fig. 2 (c),
is in fact the firing sequence appearing in the periodic phase
of the STE, as shown in Fig. 2 (a).

The STE also reveals the number of concurrent firings at
each time point. The maximum number of concurrent firings in
the periodic phase of the STE implies the number of processors
needed by a rate-optimal schedule, 4 in the example.

Fig. 2. (a) The actor firing sequence obtained by the STE of G1; (b) a
retimed SDFG of G1, with r(A) = 5 and r(B) = r(C) = 0; (c) a rate-optimal
schedule of the retimed SDFG with unfolding factor 2.

Limiting the number of concurrent firings in an STE may
limit the number of processors used for a rate-optimal sched-
ule. For example, when there are only 3 processors available,
we can limit the number of concurrent firings of G1 to no more
than 3 and then get a constrained STE as shown in Fig. 3 (a).
From this, we obtain a retimed SDFG as shown in Fig. 3
(b) and a schedule for the retimed graph, as shown in Fig. 3
(c). It is rate-optimal. Therefore 3 processors is feasible for a
rate-optimal schedule of a retimed G1.

For developing our method, we formalize the definition and
properties of self-timed execution in the next section.

IV. Self-Timed Execution

A. An Operational Semantics of SDFGs

We define the behavior of an SDFG G in terms of a
labeled transition system (LTS), represented by LTS(G). An
LTS includes a set of states, a set of actions, an initial state
and a set of transitions which define rules on how to change
states depending on different actions. Before defining the LTS
of an SDFG, we introduce some notations to simplify the later
illustrations.

We use a vector tn(E) to model the change of the delay
distribution of G during its execution. tn(e) is the current
number of delays on edge e. The SDFG is a concurrent model

Fig. 3. (a) The actor firing sequence obtained by a constrained STE of G1
in which the number of concurrent firings is limited to 3; (b) a retimed SDFG
of G1, with r(A) = 3 and r(B) = r(C) = 0; (c) a rate-optimal schedule with 3
processors.

of computation. It allows simultaneous firings of an actor. For
different concurrent firings of an actor, the one first to start
is the one first to end. We use a queue tr(v) to contain the
remaining times of the concurrent firings of actor v. The ith

element of tr(v) is the remaining time of the ith unfinished
firing of v.

Generally, the behavior of an SDFG can be observed on
two levels — the global behavior represented by the change
of the delay distribution and the local behavior that indicates
which actors are firing and how much time remains for each
firing. The tn(E) characterizes the global behavior and tr(V)
characterizes the local behavior.

Our purpose is to construct fast schedules, so we need to
hold a global clock, glbClk, to record the time progress.

A state of LTS(G) is a 2-tuple that consists of the values
of tn(E) and tr(V). The initial state of LTS(G) is denoted as
s0. In s0, tn(E) is the initial delay distribution d(G); no firings
have been started, so each element of tr(V) is empty.

The behavior of an SDFG consists of a sequence of firings
of actors. We use actions sFiring(v) and eFiring(v) to model
the start and end of a firing of actor v, and use readyS(v) and
readyE(v) as their enabling conditions, respectively. In parallel
with actor firing, time elapses, represented by the increase of
the global clock glbClk. A time step is modeled by the action

clk.
The guard readyS(v) tests if there are sufficient tokens on

the incoming edges of actor v for a firing of v. That is,

readyS(v) ≡de f ∀e ∈ InE(v) : tn(e) ≥ cns(e).

An actor v starting a firing reduces delays of all its incoming
edges according to the consumption rates and inserts its
computation time, t(v), into queue tr(v). That is,

sFiring(v) ≡de f (∀e ∈ InE(v) : tn′(e) = tn(e) − cns(e))
∧ tr′(v) = ENQ((tr(v), t(v)),

where tn′(e) and tr′(v) refer to the value of tn(e) and tr(v) in
the new state, respectively; ENQ(tr(v), t(v)) inserts t(v) at the
end of tr(v). For conciseness, we omit the elements of states
if their values remain unchanged.

When the remaining time of a firing of v is zero, the firing
is ready to end. This is modeled by the guard readyE(v).

readyE(v) ≡de f HeadQ(tr(v)) = 0,

where HeadQ(tr(v)) returns the first element of tr(v).
An actor v ending a firing increases delays of all its outgoing

edges according to the production rates, and removes the first
element from queue tr(v). That is,

eFiring(v) ≡de f (∀e ∈ OutE(v) : tn′(e) = tn(e) + prd(e))
∧ tr′(v) = DLQ((tr(v)),

where DLQ(tr(v)) removes the first element of tr(v).
Time progresses as much as possible when no actor is ready

to end. The largest possible time step is the minimal element
of tr(v) for all v. We use mStep to represent it.

mStep = min
c∈tr(v)∧v∈V

c.

A time step reduces the remaining times of all firings by
mStep and increases the global clock by mStep. That is,

clk ≡de f (∀v ∈ V : ¬isEmpty(tr(v))
⇒ (∀x ∈ tr(v) : x′ = x − mStep))
∧ glbClk′ = glbClk + mStep,

where isEmpty(tr(v)) tests if tr(v) is empty. Its enabling
conditions guarantee that a clk action leads to a nonnegative
value in tr(v). The delay distribution remains unchanged by a
time step. In a time step, time may not progress if an actor
with zero execution time has started firings.

An action of LTS(G) is any of the sFiring, eFiring and clk
actions. A transition from state to state of LTS(G) is caused
by any of its actions constrained by their enabling conditions.

An action happens at a certain time point followed by a
state at the same time. We use a.glbClk to represent the time
when the action or state a occurs.

An execution of an SDFG G is an infinite alternating
sequence of states and transitions of LTS(G). We use actions
to represent transitions that are caused by them.

The IB can be obtained from one specific type of execution,
self-timed execution [13]. We will use the information of a

self-timed execution to deliver a rate-optimal schedule. A self-
timed execution (STE) is an execution in which the time step
only occurs when no actors are ready to start [17]. That is,
in an STE, firings of actors start immediately when they are
enabled. The time step cannot progress if there are actors ready
to end or start a firing.

B. Properties of Self-timed Execution
In an STE, between two clk actions, there can be some

interleaving of simultaneous sFiring and/or eFiring actions.
The order of these actions may differ. However, no matter what
order of these actions is selected, the sequences of actor firings
according to any STE of a strongly connected SDFG are the
same. For example, Fig. 2 (a) shows the only sequence of actor
firings of all STEs of G1. Hence we consider only one order at
each time point: end all firings that are ready to end and then
start any firing that are ready to start. The state at each time
point is therefore unique according to this order. Self-timed
SDFG behavior is deterministic if we only consider its effects
on the actor firing sequence [13]. Seen from this perspective,
there is only one STE for an SDFG.

For a strongly connected SDFG, its STE is deterministic
and the values of tn(E) and tr(V) are finite; therefore, the
STE includes finitly many states that are distinct. The STE
ultimately goes into a repetitive pattern.

Property 1: [13] Given the STE σ of a strongly connected
SDFG, we have hasCycle(σ) = true, where

hasCycle(σ) ≡de f ∃s1, s2 ∈ σ : s1 = s2.

By Property 1, it is easy to see that the state-space of the
STE includes a finite sequence of states and actions (transient
phase), followed by an infinite sequence that is periodically
repeated (periodic phase). The first pair of states of σ to make
hasCycle(σ) true is the beginning state of the periodic phase,
denoted as sb, and the end state of the periodic phase, denoted
as se. For example in the STE shown in Fig. 2 (a), sb is the
state when glbClk = 1 and se is the state when glbClk = 6.

Although an STE is infinite, we can find it in finitely many
steps of exploration by Property 1: beginning with the initial
state s0 and ending at se. We directly call such a finite state
sequence an STE in the remainder of the paper.

For an STE σ, we denote its transient phase as σt and its
periodic phase as σp. The time that passes in σp is

CP(σp) = se.glbClk − sb.glbClk.

Property 2: [13] The periodic phase of an STE consists of
a whole number of iterations.

If σp consists of n iterations, we denote it as nIter(σp) = n.
For each actor v, the numbers of sFiring(v) and eFiring(v)
actions in σp are both n · q(v).

The iteration period in the periodic phase is defined as

IP(σp) = CP(σp)/nIter(σp).

Property 3: [13] Given the STE σ of an SDFG, its iteration
bound IB = IP(σp).

V. Rate-Optimal Scheduling

In this section, we first present an algorithm to explore the
state-space of an SDFG according to self-timed execution; then
we deliver our rate-optimal scheduling algorithm based on the
state-space.

Since self-timed execution is deterministic, we can explore
its state space according to macro steps that enforce an order
of actions. A macro step includes: starting all firings ready to
start, then a time step, and at last ending all firings ready to
end. Algorithm 1 returns the STE of an SDFG according to
macro steps.

Algorithm 1 STE(G)
Require: A strongly connected SDFG G
Ensure: The STE σ of G

1: ts = LTS(G)
2: s = ts.s0
3: while not hasCycle(σ) do
4: for all v ∈ G do
5: while readyE(v) do
6: eFiring(v)
7: σ← σ + eFiring(v)
8: end while
9: end for

10: for all v ∈ G do
11: while readyS(v) do
12: sFiring(v)
13: σ← σ + sFiring(v)
14: end while
15: end for
16: σ← σ + s
17: clk
18: end while
19: return σ

The termination of Algorithm 1 is guaranteed by Property 1.
Only one state is stored in each macro step as we explained be-
fore. The information of start firings is related with scheduling,
so at each moment we store the state after all enabled firings
have been started.

According to the operational semantics, the delay distri-
bution decreases only after an sFiring action. The enabling
condition of sFiring guarantees that the delay distribution
never goes negative in an execution. Hence, the transient phase
of the STE forms a legal retiming.

Theorem 4: Given the STE σ of an SDFG G, the retiming
r defined as below is legal. For each v,

r(v) = the number of sFiring(v) actions in σt.

By Properties 2 and 3, in the periodic phase of an STE σ,
the average computation time for each iteration equals the IB.
If the SDFG is equivalently transformed to a new graph whose
initial delay distribution is the same as the delay distribution
of a state in σp, then the sFiring actions in σp, combined

with the times they happen shifted by sb.glbClk, form a rate-
optimal schedule of the new graph. It is obvious that a retiming
obtained from σt transforms the SDFG to such a new graph.

Theorem 5: Given the STE σ of an SDFG G and the
retiming obtained from σt, r, a rate-optimal schedule S of
r(G) with the unfolding factor f = nIter(σp) is defined as:

S (v, i) = sFiring(v).glbClk − sb.glbClk,

where sFiring(v) is the ith firing of v in σp and 1 ≤ i ≤ f ·q(v).

For SDFG G1, shown in Fig. 1 (a), its STE is shown in Fig. 2
(a). The retiming obtained by the STE is r(A) = 5, r(B) =

r(C) = 0; the retimed graph is shown in Fig. 2 (b). The optimal
unfolding factor is 2 and the rate-optimal schedule for the
retimed graph is shown in Fig. 2 (c).

See the rate-optimal schedule shown in Fig. 2 (c). Concur-
rent firings need to occupy different processors. When there
are 4 concurrent firings, 4 processors are needed. This is the
number of processors needed for the schedule obtained from
the periodic phase of the STE shown in Fig. 2 (a). If we can
find the maximal number of concurrent firings in the periodic
phase of an STE, we know how many processors are needed
in a rate-optimal schedule.

The vector tr(V) contains the remaining times of concurrent
firings of all actors. Then the number of concurrent firings at
a state s is the sum of all |s.tr(v)|, where |s.tr(v)| represents
the size of queue s.tr(v).

Theorem 6: Given the STE σ of an SDFG G and the
retiming obtained from σt, r, the number of processors needed
by a rate-optimal schedule of r(G) is

numP = max
s∈σp

∑
v∈V

|s.tr(v)|.

An algorithm for rate-optimal scheduling SDFGs is shown
in Algorithm 2. Lines 2 - 6 accumulate the number of start
firing actions in the transient phase to form the retiming.
Lines 8 - 13 record the time when each start firing action of
the periodic phase happens as the schedule. The correctness
of the algorithm is guaranteed by Theorems 4, 5, and 6.

The schedule computed using our method is static. It
schedules f iterations of the actors in an SDFG as a cycle and
it executes this cycle repeatedly. The use of retiming allows
our algorithm to construct a rate-optimal schedule in which the
start time of all firings in the first cycle are not larger than T ,
i.e., S (v, i) ≤ T for i ≤ f ·q(v). This implies that all firings that
belong to the one iteration of the cycle will be started before
the first firing in the next iteration of the cycle. Alternative
rate-optimal scheduling techniques presented in [7] and [12]
do not have such a property.

VI. Rate-Optimal Scheduling under Processor Constraints

Static rate-optimal Scheduling of data flow graphs is usu-
ally discussed under the assumption that there are unlimited
processors available [8], [18], [7]. The paper addressing rate-
optimal scheduling of SDFGs [12] also does not consider the

Algorithm 2 optSch(G)
Require: A strongly connected SDFG G
Ensure: A legal retiming r, a rate-optimal schedule S of r(G)

with unfolding factor f and a cycle period T , and the
number of processors needed by S , numP

1: σ = STE(G)
2: for all actions a ∈ σt do
3: if a = sFiring(v) then
4: r(v) = r(v) + 1
5: end if
6: end for
7: set i(v) = 1 for all v ∈ G
8: for all actions a ∈ σp do
9: if a = sFiring(v) then

10: S (v, i(v)) = a.glbClk − sb.glbClk
11: i(v) = i(v) + 1
12: end if
13: end for
14: f = nIter(σp)
15: T = CP(σp)
16: numP = maxs∈σp

∑
v∈V |s.tr(v)|

17: return r, f , T , S and numP

processor constraints. We present in this section a heuristic
method trying to find a static rate-optimal schedule of an
SDFG using as few processors as possible.

By Theorem 6, we know that the number of concurrent
firings affects the number of processors used in a schedule.
Then, if we limit the number of concurrent firings in an STE
of an SDFG to an integer P, may we find a rate-optimal
schedule of the SDFG or its retimed graph using no more
than P processors? It depends.

The constraint can be put on the guard of sFiring actions.
We denote the new guard as readySP(v).

readySP(v) ≡de f readyS(v) ∧ (
∑
v∈V

|tr(v)| < P).

The procedure to obtain such a constrained STE of G,
conSTE(G, P), is a variation of Algorithm 1, in which
readyS(v) is replaced with readySP(v). For example, Fig. 3
(a) is a constrained STE of G1 with P = 3. By a procedure
similar to Algorithm 2, we get the retimed graph in Fig. 3 (b)
and a rate-optimal schedule of it in Fig. 3 (c). We call this
procedure conSch(G, P). It is a variation of Algorithm 2, in
which STE(G) is replaced with conSTE(G, P).

For an STE, at each macro step, all the firings start if they
are ready to start, so the order of sFiring actions does not
matter. In a constrained STE with P processors, at a macro
step, the sum of simultaneously ready firings and already
active concurrent firings may be more than P and these ready
firings may be of different actors. Then, which ones are chosen
to start may affect the state space of the constrained STE
and therefore the T and f of a schedule gotten from it.
Therefore, a constrained STE no longer always leads to the IP
of its periodic phase being equal to the IB; and the schedule

Fig. 4. (a) The STE of G1 with the number of concurrent firings limited to
2; (b) a retimed SDFG of G1, with r(A) = 2 and r(B) = r(C) = 0; (c) a fastest
schedule with 2 processors.

obtained by conSch(G, P) is not always rate-optimal. We use
a fixed random order to select the firings. A smarter selection
mechanism, i.e. the method used in [19], may improve the
results, but that is left for future work.

There is a lower bound on the number of processors for
a rate-optimal schedule. If an SDFG is scheduled on a single
processor, the total time used by an iteration is the sum of t(v)
times q(v) for all v, denoted as sumT. In a multi-processor
schedule, an iteration may be folded and set onto different
processors. If the schedule is rate-optimal, the number of
processors it needs is at least the quotient of the sumT and
the IB. That is, the lower bound on the number of processors
for a rate-optimal schedule is

minP =

⌈∑
v∈V t(v)q(v)

IB

⌉
.

For example, minP for G1 is 3. This means that with 2
processors available, no rate-optimal schedules exist for G1 or
any retimed graph of it. When P = 2, the constrained STE of
G1 is shown in Fig. 4 (a). The IP of its periodic phase is 3
and 2 processors are fully used.

Suppose a rate-optimal schedule uses nP processors. The
closer nP to minP, the fuller processors are used. We define
the rate of processors used by a schedule as minP

nP . The fewer
processors used by a rate-optimal schedule, the higher the rate
is. We use this rate in Section VII to measure the processor
utilization of a scheduling algorithm.

If the T , f and numP obtained from conSch(G, P) meet
T
f = IB, then we say that numP is feasible for a rate-optimal

schedule of G. A feasible numP does not linearly decrease
with P. When T

f > IB, there still may exist an integer P′

less than P such that conSch(G, P′) returns a feasible numP.
Furthermore, for two integers P1 and P2 with P1 > P2, a
feasilbe numP returned by conSch(G, P1) may be less than a
feasible numP returned by conSch(G, P2).

Nevertheless, a constrained STE does help to reduce the
number of processors used by a rate-optimal schedule, as our
experimental results show in the next section. Algorithm 3 is a
heuristic algorithm trying to find a rate-optimal schedule using
as few processors as possible.

Algorithm 3 minOptSch(G)
Require: A strongly connected SDFG G
Ensure: A legal retiming r, a rate-optimal schedule S of r(G)

with the number of processors
1: Get the IB and numP from STE(G)
{According to Property 3 and Theorem 6}

2: Perform a binary search over [minP, numP] ; assuming P′

is the number of processors considered, use conSch(G, P′)
to test whether the T and f returned by conSch(G, P′)
satisfy T

f = IB
{ Tf = IB implies that numP obtained by conSch(G, P′) is
feasible for a rate-optimal schedule}

3: return r, S and numP obtained by conSch(G, P′)

Because the feasibility check for P′ in the binary search
in Line 2 might result in a false negative, Algorithm 3 might
lead to a suboptimal result. The binary search can be replaced
with a linear search starting from minP in an attempt to get
a further reduction of the number of processors at the cost of
a longer execution time, as shown in our experimental results
in the next section.

VII. Experimental Evaluation

A. Experimental Setup

We implemented optSch (opt), minOptSch (min), minOptSch
with linear search (minLS), and the scheduling algorithm for
SDFGs in [12] (GG95) in SDF3 [15]. We also implemented the
method to compute the smallest unfolding factor for HSDFGs
in [7] (CS95). Converting an SDFG to its equivalent HSDFG,
we compute the smallest unfolding factor of the SDFG by
CS95. We performed experiments on two sets of SDFGs, run-
ning on a 2.67GHz CPU with 12MB cache. The experimental
results of these two sets are shown in Tables II, III, IV and V.
All execution times are measured in milliseconds (ms).

The first set of SDFGs consists of five practical DSP
applications, including a sample rate converter (SaRate) [20], a
satellite receiver (Satellite) [3], a maximum entropy spectrum
analyzer (MaxES) (http://ptolemy.eecs.berkeley.edu/), an Mp3
playback application (Mp3) (http://www.es.ele.tue.nl/sdf3/)
and a channel equalizer (CEer) [21]. Adopting the method
in [2], by introducing to each model a dummy actor with
computation time zero and edges with proper rates and delays
to connect the dummy actor to the actors that have no
incoming edges or no outgoing edges, we convert these models
to strongly connected graphs.

The second set of test models consists of 540 synthetic
strongly connected SDFGs generated by SDF3, mimicking real
DSP applications. The number of actors in an SDFG, denoted
as nA, and the sum of the elements in the repetition vector,
denoted as nQ, have significant impact on the performance
of the various methods. We distinguish three different ranges
of nA: 10-15, 20-25, and 50-65; and three different ranges of
nQ: 1000-1500, 2000-2500, and 4000-6000. The state-space
of an SDFG may increase with the increase of its delay
count. A large delay count may slowdown the STE procedure
and therefore our scheduling methods. The SDF3 parameter
‘initialTokens prop’, denoted as nD, is used to control the
amount of delays in a generated SDFG in SDF3. The delay
count changes from small to large when it is set to be from
0 to 1. To measure the worst cases we may deal with, we
choose two values of nD: 0 and 0.9. Then we generate SDFGs
according to different combinations of nA, nQ and nD to
form 18 groups. Each group includes 30 SDFGs. The explicit
difference in nA, nQ and nD among these groups is helpful for
showing how the performance of each method changes with
them.

TABLE I
Acronyms and symbols

Acronym Meaning

nA The number of actors

nQ The sum of the elements in the repetition vector

nD The SDF3 parameter ‘initialTokens prop’

IB The iteration bound

opt The result returned by optSch

min The result returned by minOptSch

minLS The result returned by minOptSch with linear search

GG95 The result returned by [12]

CS95 The result returned by [7]

Mp3 The Mp3 playback application

SaRate The sample rate converter [20]

MaxES The maximum entropy spectrum analyzer

CEer The channel equalizer [21]

Satellite The satellite receiver [3]

B. Experimental Results

Table II gives the information about and results for the prac-
tical DSP examples. There are four parts in Table II. The first
part is the information on the graphs, including the number
of actors in an SDFG (nA), the sum of the elements in the
repetition vector (nQ), and the iteration bound (IB); the second
part shows the optimal unfolding factor our method obtained
(opt) and the the smallest one proven in [7] (CS95); the third
part measures the rates of processors used by the schedules
returned by optSch (opt), minOptSch (min) and the procedure
when a linear search is used in minOptSch (minLS); the last
part includes the execution times of different methods. The

information in the first part of Table II includes the dummy
actors introduced for strong connectedness. Tables III, IV
and V give the results for the synthetic examples. Each point
in Tables III and IV is an average of 30 graphs in the same
group. Each point in Table V is an average of 270 graphs with
the same value of nD.

TABLE II
Experimental results for practical DSP examples

Graph Information

name Mp3 SaRate MaxES CEer Satellite

nA 5 7 14 23 23

nQ 10602 613 1289 43 4516

IB 116424 5.25 5764 47128 1.83

Unfolding Factor

CS95 N 4 1 1 6

opt 1 4 2 1 6

Rate of Processors Used

opt 24.0% 72.6% 0.5% 14.6% 19.4%

min 24.0% 77.3% 0.5% 43.7% 68.4%

minLS 24.0% 82.2% 0.5% 43.7% 67.5%

Execution Time (ms)

GG95 N 2,024 580 38,459 3,558,957

opt 6.7 0.7 1.0 0.3 4.0

min 38.3 15.3 3.3 2.0 127.3

minLS 85 341 255 2 33,513

For the practical DSP examples, CS95 and GG95 cannot
finish on the Mp3 playback model in ten hours. For other
examples, the optimal unfolding factors obtained by optSch
reach the ones computed by CS95. optSch is much faster than
GG95 for all examples, as shown in the last part of Table II.
As shown in the third part of Table II, in three examples,
minOptSch improves the rate of processors used of optSch.
Using a linear search further improves the rate of processors
used in one case at the cost of more execution time as shown
in the last part. Interestingly, the rate of processors used drops
for the Satellite receiver. This is due to the fact that the linear
search terminates for a tested P1 that is lower than the P2
tested successfully by the binary search, whereas the numP
returned by conSch(G, P1) is greater than the numP returned
by conSch(G, P2). This effect is rare; it only occurs for this one
example among all the evaluted cases, including the synthetic
cases.

From the results for the practical DSP examples, it seems
that the larger the difference between nA and nQ, the more
efficient optSch is in comparison to GG95. Our experiments
on the synthetic examples confirm this conclusion, as shown
in Tables III. The execution time of GG95 is affected more
by the growth of nQ than the growth of nA. Both nA and
nQ affect the speed of our methods, but not as much as nD
does, as the difference between the results shown in Tables III

TABLE III
Execution times (ms) for synthetic examples with nD = 0

10-15 20-25 50-65
��

��nA
nQ

GG95 51,018 58,034 45,263

1k-1.5k*opt 0.3 0.5 2.0

min 4.1 6.8 31.7

minLS 307 290 1,420

GG95 493,385 520,603 644,658

2k-2.5k
opt 0.5 0.7 2.5

min 6.8 12.1 40.2

minLS 748 879 2,477

GG95 6,446,939 7,388,939 6,875,761

4k-6k
opt 0.9 1.7 4.1

min 14.7 24.0 57.0

minLS 2,720 5,547 8,969
* 1k=1000.

and IV, especially for the linear search method of minOptSch.
nD has almost no effect on the speed of GG95, so we don’t
show its execution time in Tables IV.

TABLE IV
Execution times (ms) for synthetic examples with nD = 0.9

10-15 20-25 50-65
������nA

nQ

opt 1.3 1.8 3.4

1k-1.5kmin 45 60 61

minLS 2,036 1,213 2,577

opt 9.2 3.3 3.6

2k-2.5kmin 119 104 120.8

minLS 14,109 8,235 8,240

opt 6.7 2.6 7.6

4k-6kmin 287 50.4 510.5

minLS 22,397 12,663 30,148

Both nA and nQ have no significant impact on the optimal
unfolding factors and the rate of processors used, but nD does.
We show the average results of all graphs with nD = 0 (d0)
and nD = 0.9 (d9) in Table V, respectively. When the delay
count is large, the optimal unfolding factor and the rate of
processors used is generally large. minOptSch increases the
rate of processors used of optSch by about 90 percent. A linear
search strategy takes much more time than the binary search
of minOptSch, while the rate of processors used is not quite
much improved.

VIII. Conclusion

In this paper, we have presented an exact method and a
heuristic method for static rate-optimal scheduling of SDFGs,
using explicit retiming and implicit unfolding. Both methods

TABLE V
Unfolding factor and rate of processors used for synthetic examples

Unfolding Factor Rate of Processors Used

CS95 opt opt min minLS

d0 1.11 1.18 10.5% 20.1% 20.1%

d9 2.18 2.73 21.7% 40.4% 45.0%

do not explicitly convert an SDFG to its equivalent HSDFG.
The heuristic method takes into account a constraint on the
number of processors.

Our exact method guarantees to get a static rate-optimal
schedule with unfolding factor close to the smallest one proven
in [7]. The number of processors used can be obtained as
well. Our heuristic method further reduces the number of
processors used by a rate-optimal schedule. Our experimental
results show that the first method is 4-7 orders of magnitude
faster than the existing method [12]; our second method further
reduces the number of processors needed for a rate-optimal
schedule by about 90 percent.

The work we reported in this paper used a fixed random
order of firings to generate a constrained STE in the heuristic
method. Smarter ways, i.e., the method in [19], might lead
to better results for the heuristic. Finding a rate-optimal
schedule with minimal buffer sizes of an SDFG seems also
interesting.We will invesgate these in the future.

References

[1] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” IEEE Trans. Comput,
vol. 36, no. 1, pp. 24–35, 1987.

[2] V. Zivojnovic, S. Ritz, and H. Meyr, “Optimizing DSP programs using
the multirate retiming transformation,” Proc. EUSIPCO Signal Process.
VII, Theories Applicat, 1994.

[3] S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,” in
Proc. of the 1995 Acoustics, Speech, and Signal Processing Conf. IEEE,
1995, pp. 2651–2654.

[4] R. Reiter, “Scheduling parallel computations,” Journal of the ACM
(JACM), vol. 15, no. 4, pp. 590–599, 1968.

[5] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorith-
mica, vol. 6, no. 1, pp. 5–35, 1991.

[6] L. Lucke, A. Brown, and K. Parhi, “Unfolding and retiming for high-
level DSP synthesis,” in Circuits and Systems, 1991., IEEE International
Sympoisum on. IEEE, 1991, pp. 2351–2354.

[7] L. Chao and E. Hsing-Mean Sha, “Static scheduling for synthesis of DSP
algorithms on various models,” The Journal of VLSI Signal Processing,
vol. 10, no. 3, pp. 207–223, 1995.

[8] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding,” Computers, IEEE
Transactions on, vol. 40, no. 2, pp. 178–195, 1991.

[9] A. Bonfietti, M. Lombardi, M. Milano, and L. Benini, “Throughput
constraint for synchronous data flow graphs,” Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 26–40, 2009.

[10] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: schedul-
ing and synchronization. CRC Press, 2009.

[11] V. Zivojnovic and R. Schoenen, “On retiming of multirate DSP al-
gorithms,” in Proceedings of the Acoustics, Speech, and Signal Pro-
cessing, 1996. on Conference Proceedings., 1996 IEEE International
Conference-Volume 06. IEEE Computer Society, 1996, pp. 3310–3313.

[12] R. Govindarajan and G. Gao, “Rate-optimal schedule for multi-rate DSP
computations,” The Journal of VLSI Signal Processing, vol. 9, no. 3, pp.
211–232, 1995.

[13] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij,
B. Theelen, and M. Mousavi, “Throughput analysis of synchronous data
flow graphs,” in Application of Concurrency to System Design, 2006.
ACSD 2006. Sixth International Conference on. IEEE, 2006, pp. 25–
36.

[14] O. Moreira, T. Basten, M. Geilen, and S. Stuijk, “Buffer sizing for rate-
optimal single-rate data-flow scheduling revisited,” Computers, IEEE
Transactions on, vol. 59, no. 2, pp. 188–201, 2010.

[15] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Proc.
of the 6th Int. Conf. on Application of Concurrency to System Design.
IEEE, 2006. http://www.es.ele.tue.nl/sdf3/, pp. 276–278.

[16] X. Y. Zhu, “Retiming multi-rate DSP algorithms to meet real-time
requirement,” in Proc. of the 13th Design, Automation and Test in
Europe. IEEE, 2010, pp. 1785–1790.

[17] E. Lee and S. Ha, “Scheduling strategies for multiprocessor real-
time DSP,” in IEEE Global Telecommunications Conf. and Exhibition,
GLOBECOM’89. Communications Technology for the 1990s and Be-
yond., 1989, pp. 1279–1283.

[18] L. Jeng and L. Chen, “Rate-optimal DSP synthesis by pipeline and
minimum unfolding,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 2, no. 1, pp. 81–88, 1994.

[19] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Ex-
ploring trade-offs between performance and resource requirements for
synchronous dataflow graphs,” in Embedded Systems for Real-Time
Multimedia, 2009. ESTIMedia 2009. IEEE/ACM/IFIP 7th Workshop on.
IEEE, 2009, pp. 96–105.

[20] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Joint minimization
of code and data for synchronous dataflow programs,” Formal Methods
in System Design, vol. 11, no. 1, pp. 41–70, 1997.

[21] A. Moonen, M. Bekooij, R. van den Berg, and J. van Meerbergen,
“Practical and accurate throughput analysis with the cyclo static dataflow
model,” in Proc. of the 15th Int. Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems. IEEE, 2007,
pp. 238–245.

