
Formal Throughput and Response Time
Analysis of MARTE Models⋆

Gaogao Yan, Xue-Yang Zhu, Rongjie Yan, and Guangyuan Li

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

{yangg,zxy,yrj,ligy}@ios.ac.cn

Abstract. UML Profile for MARTE is an extension of UML in the do-
main of real-time and embedded systems. In this paper, we present a
method to evaluate throughput and response time of systems described
in MARTE models. A MARTE model we consider includes a use case
diagram, a deployment diagram and a set of activity diagrams. We trans-
form a MARTE model into a network of timed automata in UPPAAL
and use UPPAAL to find the possible best throughput and response
time of a system, and the best solution in the worst cases for both of
them. The two case studies demonstrate our support of decision makings
for designers in analyzing models with different parameters, such as the
number of concurrent activities and the number of resources. In the first
case study, we analyze the throughput of a system deploying on multi-
processor platforms. The second analyzes the response time of an order
processing system.

Keywords: MARTE Models, Timed Automata in UPPAAL, Through-
put, Response Time

1 Introduction

Real-time and embedded systems are usually associated with limited resources
and strict real-time requirements. They are widely used in aerospace, communi-
cations and industrial control. In this paper, we focus on the model-based timing
analysis of such systems.

MARTE (Modeling and Analysis of Real Time and Embedded systems) [1]
is a UML (Unified Modeling Language) profile for modeling real-time and em-
bedded systems. It can be used to model not only system behaviors but also
other concepts such as time and resource constraints. Intuitively, MARTE mod-
els encapsulate required information for performance analysis of a given system.
However, the lack of precise semantics makes it difficult to analyze exact sys-
tem behaviors. Fortunately, formal methods can be applied to make up for the
shortage.

⋆ This work is partially supported by National Key Basic Research Program of China
(973 program) (No. 2014CB340701), the Open Project of Shanghai Key Laboratory
of Trustworthy Computing (No. 07dz22304201302), and the National Natural Science
Foundation of China (No. 61361136002 and No. 61100074).



Many works have been done for analyzing UML models using formal meth-
ods. Bernardi et al. analyze the correctness and performance of UML sequence
diagrams and state machine diagrams using Petri net based techniques [2]. Holz-
mann et al. use model checking tool SPIN [3] to analyze UML activity dia-
grams [4]. In [5], Piel et al. convert the platform-independent MPSoC model in
MARTE into a SystemC code and then validate the SystemC code via simula-
tion. Merseguer et al. propose a method to transform UML state machines with
MARTE profile into Deterministic and Stochastic Petri nets and to formalize
the dependability analysis [6]. Suryadevara et al. propose a technique to trans-
form MARTE/CCSL mode behaviors described in state machines into timed
automata [7], and verify logical and chronometric properties [8].

In this paper, we use real-time model checking tool UPPAAL [9] to analyze
throughput and response time of MARTE models. UPPAAL is a model checker
based on the theory of timed automata, which is a well-established formal model
for modeling behaviors of real-time systems. It can be used to verify various
timing properties, and has been successfully applied to many industrial case
studies [10, 11].

A MARTE model we consider includes a use case diagram, a deployment
diagram and a set of activity diagrams. We transform a MARTE model into
a network of timed automata in UPPAAL and formalize the throughput and
response time properties as temporal logic formulae. The network of timed au-
tomata and the formulae are then used as the input of UPPAAL. Based on the
results returned by the tool, we can find the possible best throughput and re-
sponse time of a MARTE model, and the best solution in the worst cases for
both of them. For the best of our knowledge, this is the first work on throughput
analysis and response time analysis of such MARTE models.

Our methods can analyze models with different parameters, such as the num-
ber of concurrent activities allowed and the number of resources. We can derive
important influence factors for system performance from the obtained results,
which can assist decision making for designers during system development. We
present two case studies to demonstrate the effectiveness of our methods. In the
first one, we analyze the throughput of a system deploying on multiprocessor
platforms. The second analyzes the response time of an order processing system.

The remainder of this paper is organized as follows. In Section 2, we introduce
the concepts on MARTE models and timed automata in UPPAAL. Section 3
provides the mapping rules from the subset of concerned MARTE models and
Section 4 explains the timing properties in UPPAAL on throughput and response
time and how they are analyzed. Implementation and case studies are presented
in Section 5. Section 6 concludes the paper and discusses the future work.

2 MARTE Models and Timed Automata in UPPAAL

2.1 MARTE Models

MARTE extends UML by means of stereotypes, which allow designers to extend
the vocabulary of UML in order to create new model elements that have specific



properties that are suitable for a particular domain, and tagged values of stereo-
types. We present a running example in MARTE model in Fig. 1, describing the
starting procedure of a pulse oximeter. Fig. 1 (a) is the use case diagram, which
contains an actor named “user”, a use case named “startOximeter” and an as-
sociation between them. Fig. 1 (b) is the deployment diagram, which declares a
kind of resource named “microprocessor”. The activity diagram describing the
behavior of use case “startOximeter” is given in Fig. 1 (c). The tagged values in
annotations in the figures are the constraints added according to the MARTE
stereotype. For example, in Fig. 1 (c), action node “SetLEDInfra” is stereotyped
<<PaStep>>, which has two tags, “host” and “hostDemand”. The tagged val-
ue “host=microprocessor” means that action “SetLEDinfra” will be executed on
resource “microprocessor”, and “hostDemand=[(1469,max),(1411,min)]” defines
the execution time of “SetLEDinfra” within [1411, 1469].

(a) (b)

(c)

Fig. 1: A MARTE model for the starting procedure of a pulse oximeter. (a) The
use case diagram; (b) the deployment diagram; (c) the activity diagram of use
case “startOximeter”.

2.2 Timed Automata in UPPAAL

UPPAAL is a tool for modeling, validation and verification of real-time systems
modeled with networks of timed automata. A timed automaton (TA) is a finite
state automaton equipped with a finite set of real-valued clock variables, called
clocks. The timed automata in UPPAAL is an extension of the standard syntax
of timed automata. We first review the definition of timed automata [7].

Definition 1 (Syntax of Timed Automata). A timed automaton is a tuple
A =< L,Σ,X,E, l0, Inv > where L is a finite set of locations, Σ is a finite set



of actions, X is a finite set of clocks, E ⊆ L×C(X)×Σ×2X ×L is a transition
relation, l0 ∈ L is an initial location and Inv : L → C(X) is an invariant-
assignment function. C(X) denotes the set of clock constraints over X, where a
clock constraint over X is in the form of:

g ::= true | x < c | x ≤ c | x > c | x ≥ c | g ∧ g,

where c ∈ N, N is the set of non-negative integers, and x ∈ X.

The paths in TA are discrete representations of continuous-time“behavior”
of TA. A path consists of a set of transitions. Fig. 2 shows the timed automaton
for a simple light switch example. At location off, the light may be turned on at
any time by executing the action switch on, and at the same time clock x is reset
to 0 to record the delay since the last time the light has been switched on. The
user may switch off (by executing the action switch off ) the light at least one
time unit (required by the guard x ≥ 1 ) later after the latest switch on action.
The light can not be on for more than two time units, which is constrained by
the invariant x ≤ 2 of location on.

x 1

switch_off

x=0

switch_on

off
on

x 2

Fig. 2: The timed automaton of a simple light switch.

The components in the network of timed automata (NTA) in UPPAAL and
their relation are shown in Fig. 3. An NTA consists of three parts: ntadeclara-

Fig. 3: The main components of NTA in UPPAAL.

tion, automata templates and system definition. The ntadeclaration is global and
may contain declarations of clocks, channels and other variables. The automata
template defines a set of templates in the form of the extended TA, and a tem-
plate includes a local declaration, parameters and a set of locations and edges.



A location has four attributes: name, the mark for an initial location (isIni-
tial), the mark for an urgent location (isUrgent), and invariant. An edge may
be annotated with assignment expressions, guard expressions and synchronisa-
tion expressions. The concurrent processes of a system are described in system
definition. A path in an NTA is similar with that in TA except that the state in
the path of the NTA is defined by the locations of all TAs in the NTA.

Compared with the standard timed automata, the TA in UPPAAL have
some additional features such as urgent channels and urgent locations to facili-
tate the modeling and validation process (please refer to [12] for more details).
In UPPAAL, the types of synchronization include rendezvous and broadcast.
Additional to the regular channels to define the types of synchronization, there
are two kinds of special channels, i.e., urgent and commit channels, to restrict
the trigger condition of the corresponding synchronization. The pairs of synchro-
nization are labeled on edges, where the sender is in the form of e!, the receiver
is in the form of e?, and e is the name of the channel. Moreover, urgent locations
are supported in UPPAAL to forbid time delay in such kind of locations.

3 Model Transformation

In this section, we illustrate the transformation rules from MARTE models to
NTAs in UPPAAL for throughput analysis. The rules for response time analysis,
a slight variant of that of throughput analysis, is introduced in Section 4.2.

MARTE specification provides rich elements for system modeling and analy-
sis. We use only a subset of the specification. The main components of a MARTE
model we consider, as shown in Fig. 4, include a use case diagram (UCD), a de-
ployment diagram (DD) and a set of activity diagrams (AD). A MARTE model is
stereotyped <<GaAnalysisContext>>, in which tagged value “concurrent=N”
specifies that the maximum concurrent activities allowed in the system is N .
The behavior of each use case of a UCD is described by an AD, which we denote

Fig. 4: The components of a MARTE model.

as the AD of the use case.
At the top level, a MARTE model, M , is mapped to an NTA of UPPAAL

with a global clock glbClk, named Mnta. The tagged value “concurrent=N” is
translated into a global variable sys conc of the NTA, initialized as N . The



detailed mapping rules for components of a MARTE model are shown in the
following sections.

3.1 Use Case Diagrams to TAs

A use case diagram contains a set of actors, use cases and associations between
them. A use case specifies a required function of the system, whose behavior is
modeled by an activity diagram, which we denote as the AD of the use case. An
actor is an external entity interacting with the system. An instance of an actor
represents a request for the system, activating the AD of a use case connected to
the actor by an association. When there are n requests being processed, there are
n concurrent active ADs, where n is limited by tagged value “concurrent=N”. An
actor is stereotyped<<GaWorkloadEvent>>, which has two tags, “population”,
specifying the number of the instances of the actor, and “extDelay”, specifying
the interval between the arriving time of each instance of the actor.

A UCD with n actors and m use cases is transformed to m+ n global vari-
ables, m channels and n TA templates in Mnta. In Mnta, there is an integer
variable A num initialized as p for each actor A to model its tagged value “pop-
ulation=p”; there is an integer variable U num and a channel trigger U for each
use case U , the former for counting the number of the requests for U and the
latter modeling the activation of the AD of U . For actor A with k associated
use cases, U1, ..., and Uk, there is a TA template, Ata, with a local clock x, a
location and 2k + 1 edges. For each Ata, there is a process in Mnta. In Ata,
there is a unique edge to keep the TA deadlock-free, denoted by liveE. For each
Ui, there are two edges, one for receiving a request from actor A, denoted by
recE Ui, and another for triggering a TA process of the AD of Ui, denoted by
triE Ui. Tagged value “extDelay=d” of A is mapped to an invariant x ≤ d on
the location and clock guards x ≥ d on edges.

The transformation from the UCD in Fig. 1(a) is shown in Fig. 5. Edges
liveE, recE startOximeter and triE startOximeter are upper, below left and
below right edges, respectively.

NTA.ntadeclaration:

{int User_num=1;

int startOximeter_num=0;

urgent chan

trigger_startOximeter;}

User_num--,
startOximeter_num++,
x=0

x=0

startOximeter_num--
trigger_startOximeter!

User

x<=1

startOximeter_num>0&&
sys_conc>0

User_num==0&&x>=1

User_num>0&&x>=1

Fig. 5: The TA template transformed from the UCD in Fig. 1(a).

3.2 Deployment Diagrams to TAs

A deployment diagram includes a set of nodes, representing different resources.
A node is stereotyped <<GaExecHost>> with tagged value “resMult=n” indi-
cating that the available number of instances of the resource is n.



A DD with m nodes is transformed to 3m global variables and m TA tem-
plates in Mnta. For node R with “resMult=n”, there are a global integer variable
R num initialized as n to count the remained number of available instances of
R, a pair of channels get R and rel R to model the request and the release of
an instance of R respectively, and a TA template, named Rta, with one location
and two edges. For each Rta, there is a process in Mnta. The transformation
from the DD in Fig. 1(b) is shown in Fig. 6.

NTA.ntadeclaration:

{int microprocessor_num=1;

urgent chan get_microprocessor;

chan rel_microprocessor;}

get_microprocessor?

microprocessor_num++
rel_microprocessor?

microprocessor

microprocessor_num--

microprocessor_num>0

Fig. 6: The TA template transformed from the DD in Fig. 1(b).

3.3 Activity Diagrams to TAs

Each use case in the UCD employs an activity diagram to describe its behav-
ior. An activity diagram consists of a set of activity nodes and control flows.
The activity nodes we consider includes: initial node, action node, decision n-
ode, merge node, fork node, join node, and final node. An AD is stereotyped
<<TimedProcessing>>. An action node is stereotyped <<PaStep>> with two
tagged values, “host=R”, indicating the resource it requires is R in the DD, and
“hostDemand”, recording the execution time of the action on R.

The AD of use case U in the UCD is mapped to a TA template, Uta, with a
local clock x. Let A.p be the population of actor A and A be the set of actors
associated with U . Then there are

∑
A∈A A.p processes of Uta in Mnta. Fig. 7

presents the transformation rules. The initial node is the start point of the AD.
The node and its outgoing control flow are translated into the initial location
and an outgoing edge of Uta, as shown in Fig. 7(a). Channel trigger U is used
to synchronize with Atas which are transformed by the actors associated with
U .

As the final node defines the end of an AD and takes no time, we map it to
an urgent location, as shown in Fig. 7(b). We add an outgoing edge from the
location to the initial location, to model the termination of an execution of the
AD.

The decision node and merge node are used in pairs. A pair of decision and
merge nodes are mapped to a pair of urgent locations, as shown in Fig. 7(c).
The guards on the outgoing edges of decision node are abstracted as non-
determination.

An action node requiring resource R keeps waiting until the number of re-
mained R is larger than one. The action node and its outgoing edge are mapped
to two locations to express the waiting and executing states, respectively, as



trigger_U?

x=0,sys_conc--

(a)

U
sys_conc++

x=0

(b)

U U

(c)

<<paStep>>

Action

host=R

hostDemand=[a,b]
U U

Action_waitingres
get_R!

x=0

Action

x<=b
x=0

x>=a

rel_R!

(d)

name:ForkN name:JoinN

U U

U

U

main template:

subtemplate1:

subtemplate2:

ForkN ForkN_waiting1 ForkN_waiting2 JoinN
x=0

x=0 x=0

x=0x=0

UC_ForkN_start! UC_ForkN_end?

UC_ForkN_start?

UC_ForkN_end?

ForkN_p1Init

UC_ForkN_start?

ForkN_p2Init

JoinN_p1

JoinN_p2

UC_ForkN_end?

UC_ForkN_end?

(e)

Fig. 7: The transformation rules from AD to TA. (a) The initial node; (b) the
final node; (c) the decision and merge nodes; (d) the action node; (e) the fork
and join nodes.

shown in Fig. 7(d). The execution time of the action on R, represented as tagged
value “hostDemand=[a,b]” is mapped to an invariant of the location for execut-
ing the action and a guard on its outgoing edge. Channels get R and rel R are
used to synchronize with Rta.

The fork node and join node are also used in pairs. A pair of fork and join
nodes with n concurrent subprocesses are mapped to n+ 2 locations and n TA
templates, as shown in Fig. 7(e). The broadcast channel UC ForkN start and
the regular channel UC ForkN end are used to synchronize between the original
TA and the new TAs for subprocesses.

The TA template transformed from the AD in Fig. 1 (c) is shown in Fig. 8.
The number of concurrently active processes of Utas in Mnta is limited by the
value of tag “concurrent” in M . Here, an active process of Uta means that the
process currently is not at the initial location.

4 Model Analysis

Throughput and response time are two important timing properties of real-
time systems. The throughput defines the number of requests that the system
can process per time unit. The response time is the time the system responds



get_microprocessor! get_microprocessor!

get_microprocessor!get_microprocessor!

rel_microprocessor!

rel_microprocessor!

rel_microprocessor!

rel_microprocessor!

rel_microprocessor!

x=0 x=0

x=0

get_microprocessor!

get_microprocessor!
x=0

x=0,sys_conc--

x=0x=0

l_NotRunCalibration

l_NotRunCalibration_waitingres

l_SetLEDGuard_waitingres l_SetLEDGuard

l_MergeNode1

l_RunCalibration

l_DecisionNode1

l_RunCalibration_waitingres

rel_microprocessor!

Ini_InitialNode1l_Timer

trigger_startOximeter?

l_SetLEDRed_waitingres l_SetLEDRed

l_Timer_waitingres

l_SetLEDInfra_waitingres

l_SetLEDInfra

l_ActivityFinalNode1
x<=0 x=0,sys_conc++

x>=745

x>=1411

x>=1411

x>=186

x<=194

x>=0

x<=187

x<=1469

x=0

x=0

x=0

x>=179

x=0

x=0

x=0

x<=1469

x<=775

Fig. 8: The TA template transformed from the AD in Fig. 1(c).

to a user’s request. In this section, we describe how to formalize them as the
properties of UPPAAL.

Given a MARTE model M , in this section, we explain how to use UPPAAL,
which deals with Mnta, to analyze throughput and response time of M .

4.1 Throughput Analysis

Let A and U be the sets of actors and use cases of the UCD in M , respectively.
Let A.p represents the value of “population” of actor A. The number of service
requests is k =

∑
A∈A A.p. Assume T is the processing time for all the k requests,

the throughput of M is defined as TP = k/T .
Recall that sys conc of Mnta is initialized as N , the value of “concurrent”.

It records the remained number of allowed concurrently active TA processes.
sys conc = N means no process is running in the system, that is to say, there is
no active processes. For an actor A in M , global variable A num in Mnta repre-
sents the number of remained requests of A, initialized as A.p. It is decreased by
1 when an instance of A arrives. A num = 0 means that all the requests from
A have arrived. For a use case U in M , U num in Mnta is used for counting the
number of the requests of U . U num is increased by 1 when an instance of actor
associated with U arrives and is decreased by 1 when it triggers its AD once.
U num = 0 means that there is no request from actors. Then the fact that, at
some time points, all the requests of M have been processed, can be formulated
as f using variables in Mnta.

f ≡def sys conc = N ∧ ∀A ∈ A : A num = 0 ∧ ∀U ∈ U : U num = 0

CTL (Computation Tree Logic) formula AFf is true when f is eventually
true on all the paths of Mnta, denoted by Mnta |= AFf . Then the question
whether all the requests of M have been processed in time t, no matter how to
schedule M to run, can be formulated as:

f∀(t) ≡def AF(f ∧ glbClk ≤ t),



where glbClk is a global clock of Mnta.
Similarly, CTL formula EFf is true when f is eventually true on some path

of Mnta. Then the question whether there are schedules of M to make sure that
all the requests have been processed in time t, can be formulated as:

f∃(t) ≡def EF(f ∧ glbClk ≤ t)

Two lower bounds of the processing times of M can be formulated as follows.

T∀ = min {t | t ∈ N and Mnta |= f∀(t)}

T∃ = min {t | t ∈ N and Mnta |= f∃(t)}

A throughput larger than k
T∃

can never be reached and the throughput no larger

than k
T∀

can always be achieved. Therefore, the possible maximal throughput

of M is k
T∃

, denoted by TPmax. In the worst case, M can at least achieve the

throughput k
T∀

, denoted by TPmin.

Using Mnta and f∀(t) (or f∃(t)) as the input of UPPAAL, we can get TPmin

(or TPmax).
The procedure to find TPmin is as follows: estimate the upper bound of t,

T1, as the execution time when only one resource is available; perform a binary
search on [1, T1], and assuming t is the time considered, use UPPAAL to check
whether Mnta |= f∀(t) is satisfied.

To find TPmax, we can use the similar procedure as that of TPmin. A better,
we can ask UPPAAL to return the fastest trace, and T∃ is the value of glbClk
in the last state of the trace.

4.2 Response Time Analysis

Response time is a criterion about how fast a use case reacts to a request of an
actor. Denote the actor and the use case under analysis as A and U , respectively.
The set of instances of A is denoted by {A1, ..., AP }, where P is the value of
“population” of A. Tag “extDelay” defines the arriving interval of each instance.

The time when Ai arrives is denoted by Ai.Ta and the time when Ai gets
the required return is denoted by Ai.Tf . The response time of Ai is defined as
Ai.rt = Ai.Tf −Ai.Ta.

Suppose the required response time of A is D, i.e., ∀i ∈ [1, P ] : Ai.rt ≤ D.
Next, we explain the way to answer whether the requirement is satisfied.

In Section 3, We have illustrated the transformation from MARTE models
to NTAs mainly for the throughput analysis. A slight variant is necessary for the
response time analysis. The difference is introduced below and shown in Fig. 9.
In M , one more stereotype <<SaStep>> is added to A, with a tagged value
“deadline=D”, specifying the required response time of A.

Suppose the TA templates of A and the AD of U are Ata and Uta, respectively.
We add a global channel arrive to Mnta. A constant integer variable dl with the
value of “deadline”, a boolean variable finished and a local clock y are added to



<<SaStep>>

deadline=D

UC

<<gaWorkloadEvent>>

...

(a)

U

start waitingstartarrive?

trigger_UC?

sys_conc--,x=0

finished=false,

y=0

...

...

...
arrive!

NTA.ntadeclaration:

{ ;chan arrive;}

UC.declaration:

{ ;clock y; bool finished;

const int dl=D;}

y<=dl

finished=true

(b)

Fig. 9: The difference of models and transformation for response time analysis.
(a) The difference in actor A of M ; (b) the difference in TA templates Ata and
Uta in Mnta.

Uta. Channel arrive is used to synchronize betweenAta and Uta. A sender arrive!
is added to the edge recE U of Ata. To facilitate the analysis process, an edge
and a location are inserted between the initial location and its original successor,
and a guard y ≤ dl and an update of finished are added to the incoming edge of
the initial location. Each actor instance Ai will trigger a process of Uta, named
Uta i. Local clock y of Uta i is used to measure the response time of Ai. The
guard y ≤ dl is used to model constraint Ai.rt ≤ D. Only when the guard is
true, can finished become true. Then whether all the requests from A can be
responded in time D, no matter how to schedule M to run, is formulated as
formula r∀.

r∀(dl) ≡def AF(∀i ∈ [1, P ] : Uta i.finished = true)

The question whether there are schedules of M to make sure that all the
requests from A can be responded in time D is formulated as formula r∃.

r∃(dl) ≡def EF(∀i ∈ [1, P ] : Uta i.finished = true)

With Mnta and r∀(dl) (or r∃(dl)) as the input of UPPAAL, we can answer
above-mentioned questions.

A possible minimal response time RTmin can be found by a procedure similar
to that of TPmax, using r∃. In the worst case, the response time is at most
RTmax, which can be computed by a procedure like that of TPmin, using r∀.

5 Case Studies

We implement our approaches in the toolkit FMPAer (Formal Models based
Performance Analyzer) [13]. Modeling tool Papyrus [14] is used for creating a
MARTE model. The transformation rules from MARTE models to NTAs in UP-
PAAL are written by model transformation language ATL (Atlas Transformation
Language) [15]. The CTL formulae are generated according to the formulae in-
troduced in Section 4 by searching the NTAs. The generated NTA and formulae
are then checked by UPPAAL.



In this section, we present two case studies to demonstrate the effectiveness
of our methods. In the first case study, we analyze the throughput of a system
deploying on a platform with heterogeneous processors. The second case study
analyzes the response time of an order processing system.

5.1 Throughput of a System Mapping on Multiprocessor

Consider a multiprocessor mapping problem from [1], as shown in Fig. 10. There
are two different kinds of processors, P1 and P2. The task includes 5 subtasks,
which may be mapped on P1 or P2. Subtasks inpC and oper2 can use either
one; oper1 and outW can use only P1 and outZ only P2. oper1 and outW can
run in parallel with oper2 and outZ, as shown in Fig. 10(a). The time consump-
tions when they are assigned to different processors are shown in Fig. 10(b).
Since the execution time may be different when a subtask is assigned to dif-
ferent processors, different assignment will affect the throughput of the system.
It is interesting to ask what is the maximal reachable throughput and what a
throughput we can get even in the worst situation. That is, what are the values
of TPmax and TPmin of the system. We answer these questions below.

inpC

oper1

oper2

outW

outZ

P1

P2

(a)

P1 P2

inpC 4ms 6ms

oper1 10ms

oper2 10ms 8ms

outW 4ms

outZ 6ms

(b)

Fig. 10: A System Mapping on Multiprocessor. (a) The task and processors; (b)
the execution time of each action on different processors.

Suppose there are two processors, one of P1 and one of P2. Totally there
are 5 users arriving one by one in an interval of 1 millisecond, and 2 concurrent
active tasks are allowed. The MARTE model of this system is shown in Fig. 11.
The number of processors are represented by the tagged value “resMult=1” in
DD, shown in Fig. 11 (b); the number of users and their arrival pattern are
represented by the tagged values “population=5” and “extDelay=(1,ms)” in
UCD, shown in Fig. 11 (a); and the number of allowed concurrent active tasks is
represented by the tagged value “concurrent=2” of the model. In the AD shown
in Fig. 11 (c), the parallel subtasks are modeled by fork and join nodes; and an
alternative assignment of a subtask is modeled by decision and merge nodes.

The NTA transformed from Fig. 11 is shown in Fig. 12. By checking the NTA
and formulae f∀(t) and f∃(t) using UPPAAL, we get TPmax = 5/69 = 0.0549
and TPmin = 5/141 = 0.0355.

Furthermore, with the change of the parameters of a MARTE model, e.g., the
number of processors, the throughput of a system may be different. In Fig. 13,
we show the impacts of the number of processors and the number of allowed



(a) (b)

(c)

Fig. 11: The MARTE model for deploying different operations on multiprocessor
issue. (a) The use case diagram; (b) the deployment diagram; (c) the activity
diagram that describes the task in Fig. 10(a).
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Fig. 12: The NTA transformed from Fig. 11. (a) TA template of the actor; (b)
TA template of the resource; (c) TA template of the activity; (d) and (e) the
forked TA templates of (c).



concurrent activities on throughput. In Fig. 13 (a), the throughput improves
when the number of P1 is increased to 2, and then it keeps the same when
further increasing the number of P1. The case for P2 is similar. These attempts
show that when 5 users and 2 concurrent activities are allowed, 2 P1s and 2
P2s are sufficient for the best throughput performance. We show the impact of
concurrent numbers in Fig. 13 (b), which has more distinct effect on TPmax

than on TPmin.

(a) (b)

Fig. 13: The impact of different parameters on throughput. (a) The impact of
the number of processors; (b) the impact of the number of allowed concurrent
activities.

5.2 Response Time of an Order Processing System

In an order processing system [16], when a request of a user arrives, the system
first sets up an order for the user, then carries out different operations according
to whether the user is a VIP or not and sends a message to the user after the
whole procedure is finished. We present the AD of the MARTE model describing
this system in Fig. 14. It is interesting to know whether the user’s request can
be processed in time.

Fig. 14: The activity diagram of an order processing system.



The transformed NTA of this system is shown in Fig. 15. Let the response
time requirements be Ds. The transformed NTAs for different Ds are differen-
t only on values of constant variable dl = D according to the requirements.
Suppose the number of users is 3, the number of resource “PC” is 2 and the
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Fig. 15: The NTA of the order processing system.

number of allowed concurrent activities is 3. The values of D are 13s, 14s, 20s,
45s and 46s, respectively. The results returned by checking the NTAs and for-
mulae r∀(dl) and r∃(dl) using UPPAAL are shown in Table 1, from which we
can conclude that all the 3 requests can be responded in 46s, no matter how to
schedule the system to run. There are no schedulers of the system to make all
the 3 requests being responded in 13s. Table 1 also reveals that RTmin = 14 and
RTmax = 46.

Table 1: Response time analysis of the order processing system

dl 13 14 20 45 46

r∀ false false false false true
r∃ false true true true true



6 Conclusions and Future Work

In this paper, we have presented methods to analyze the throughput and response
time of systems described in MARTE models, which include a use case diagram,
a deployment diagram and a set of activity diagrams. We transform a MARTE
model into an NTA and compile the concerned properties into CTL formulae,
then use UPPAAL to check whether the NTA satisfies the formulae. According
to the results returned by UPPAAL, we find the possible best throughput and
response time of MARTE models, and the best solution in the worst cases for
both of them. Two case studies we have conducted to demonstrate our support
of decision makings for designers in analyzing models with different parameters,
such as the number of concurrent activities and the number of resources.

The MARTE models we use in this paper only involve a small subset of
elements of the MARTE specification. As the future work, we will consider more
elements, such as sequence diagrams and state machines, to make our models
more expressive. We will also integrate more valuable and verifiable properties
into our method.
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