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Abstract. Synchronous data flow graphs (SDFGs) are widely used to
model digital signal processing and streaming media applications. In this
paper, we present exact methods for static optimal scheduling and map-
ping of SDFGs on a heterogenous multiprocessor platform. The opti-
mization criteria we consider are throughput and energy consumption,
taking into account the combination of various constraints such as auto-
concurrency and buffer sizes. We present a concise and flexible (priced)
timed automata semantics of system models, which include an SDFG and
a multiprocessor platform, and formulate the optimization goals as tem-
poral logic formulas. The optimization and scheduling problems are then
transformed to model checking problems, which are solved by UPPAAL
(CORA). Thanks to the exhaustive exploration nature of model check-
ing and the facility of the tools, we obtain two pareto-optimal schedules,
one with an optimal throughput and a best energy consumption and an-
other with an optimal energy consumption and a best throughput. The
approach is applied to two real applications, which shows that our ap-
proach can deal with moderate models within reasonable execution time
and reveal the impacts of different constraints on optimization goals.

Keywords: Data Flow Graphs, Timed Automata, UPPAAL, Through-
put, Energy Consumption, Multi-Constraint

1 Introduction

Synchronous data flow graphs (SDFGs) [16] are widely used to represent DSP
and streaming media applications, such as a spectrum analyzer [25] and an
MPEG-4 decoder [23]. Such applications are usually operated on multiprocessor
platforms and under real-time and resource constraints. In this paper, we are
concerned with constructing efficient static (compile-time) schedules of SDFGs
on a heterogeneous multiprocessor platform.

? This work is partially supported by National Key Basic Research Program of China
(973 program) (No. 2014CB340701) and the National Natural Science Foundation
of China (Nos. 61472406, 61472474, 61272135, 61361136002 and U1435220).
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Each node (also called actor) in an SDFG represents a computation and each
edge models a FIFO channel; the sample rates of actors may differ. Homogenous
synchronous data flow graphs (HSDFGs) are a special type of SDFGs, of which
all sample rates of actors are set to 1. A static schedule arranges the actors of
an SDFG to be executed repeatedly, also called a periodic schedule. Execution
of all the actors for the required number of times is referred to as an iteration,
which may include more than one execution, also called a firing, of an actor.
Different actors may fire a different number of firings. Actor B in SDFG G1,
shown in Fig. 1(a), for example, fires twice in an iteration, while A fires once.
The average computation time per iteration is called iteration period (IP). The
IP is the reciprocal of the throughput. We use IP and throughput alternatively
in the remainder of the paper. The iteration energy consumption (IEC) is the
average energy consumption per iteration.
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Fig. 1. The system modelM1 and its schedules. (a) The SDFG G1; (b) the execution
platform P1 and the execution time of actors in G1 on different processors; (c) an
ASAP periodic schedule of G1 with IP=8; (d) a periodic schedule of G1 with IP=6; (e)
an unfolding schedule of G1 with IP= 11

2
. The sample rates in the SDFG are omitted

when they are 1; black dots on edges represent initial tokens on the edges.

For homogeneous multiprocessor scheduling of SDFGs, an as soon as possible
(ASAP) execution can be used to find schedules with minimal IP [24]. For het-
erogeneous multiprocessor scheduling, however, an ASAP schedule is not neces-
sarily throughput-optimal. The ASAP schedule shown in Fig. 1(c), for example,
arranges executions of actors of G1 on a platform including two heterogeneous
processors as shown in Fig. 1(b). It has an IP larger than the IP of another
schedule shown in Fig. 1(d), which is not ASAP.

Scheduling f iterations as one schedule cycle may lead to more options for
parallel execution and therefore may reduce the IP and the IEC of a schedule.
This is unfolding scheduling [19] and f is called unfolding factor. See Fig. 1(e)
for an example. The IP of a periodic schedule of G1 with unfolding factor 2 is 11

2 ,
smaller than that of the schedule shown in Fig. 1(d). The IEC is also improved.

In this paper, we present exact methods to schedule and map an SDFG on
a heterogeneous multiprocessor platform. The schedules are either throughput-
optimal with a best energy consumption or energy consumption-optimal with a
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best throughput. Other kinds of constraints, e.g. buffer size constraints, are also
considered and integrated into the framework of the proposed methods.

For a given platform and a given unfolding factor, even if we consider only
one optimization criterion, e.g. throughput, the scheduling and mapping problem
is already NP-complete [20]. For solving the multi-constraint and multi-criterion
problems we are considering, we use model checking, which is widely acknowl-
edged to be a powerful tool for such problems.

Actors of an SDFG can fire concurrently if the tokens and other required
resources are available. For the analysis of the time and resource constraints, it
is appropriate to model the behavior of SDFGs as networks of (priced) timed
automata [3] [4], and we choose the real-time model checking tool UPPAAL
(CORA) [15] [4] as the back-end solvers. Our contributions are as follows.

1. We present a concise (priced) timed automata (TA) semantics of system
models, which include an SDFG and a multiprocessor platform. Various
constraints can be integrated flexibly.

2. Based on the semantics, we present two novel exact methods: one for finding
static schedules with an optimal throughput and a best energy consump-
tion, and the other for finding static schedules with an optimal energy con-
sumption and a best throughput for SDFGs on heterogenous multiprocessor
platforms. Optimal solutions under various constraints are guaranteed.

3. We implement the methods and apply it to two real applications. Although
state explosion is inevitable as the models become larger (for checking NP-
complete problems), the experimental results show that our methods can
deal with moderate models within reasonable time and reveal the impacts
of different constraints on optimization goals.

The remainder of this paper is organized as follows. We introduce related
work in Section 2. The input models and the problems addressed are formu-
lated in Section 3 and (priced) timed automata is introduced in Section 4. Our
main contributions are illustrated in Sections 5, 6 and 7. Section 8 provides case
studies. Section 9 concludes and discusses future work.

2 Related Work

Scheduling SDFGs according to different optimization goals have been studied
extensively [16], [13], [21], and there are also many studies on real-time schedu-
lability analysis using model checking [11] [8] [1] [17] [5]. Here we review those
works most related to our methods, which solve scheduling problems of SDFGs
via model checking.

Using model checking to schedule SDFGs according to a particular opti-
mization goal was first presented by Geilen et al. [9], which targets at buffer
minimization problem on a single processor with model checker SPIN [14]. [10]
and [12] solve the same problem with NuSMV [6] and SPIN, resp.

The closest works to our method are [7] and [18]. Both use UPPAAL as a
solver to analyze or schedule SDFGs on a heterogeneous platform. The main
differences between them and our methods are summarized as follows:
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1. The problems addressed are different. [7] analyzes the schedulability for
a given timing constraint, [18] schedules an SDFG to achieve a minimal
makespan (i.e. the IP of 1-schedule in this paper), while we consider multiple
optimization goals and constraints.

2. The input models are different. In [7], actors of SDFGs are binding to some
core and edges to memories, while in our method, no binding is consid-
ered. On the contrary, we try to find bindings according to the optimization
goals. In [18], besides data dependencies between actors, task parallelism
is explicitly denoted by split and join nodes. In our method, only data de-
pendencies available in the models, task parallelism need to be explored to
decide whether two tasks can be executed concurrently.

3. The transformations are different. [7] transforms each actor to a TA and
each processor to a NTA. In [18], each possible allocation is represented by
a TA and each possible communication is also represented by a TA. In our
method, we combine the behavior of actors on processors. The conciseness
makes our method easy to be extended to deal with additional constraints.

3 Model Description and Problem Formulation

An execution platform P is a set of heterogeneous processors. A computation
may require different amounts of running time if it is executed on different
processors. The energy consumption for each processor p is defined by uEC(p)
and iEC(p), indicating the energy consumption per unit time when p is used
and when p is idle, resp.

A synchronous dataflow graph (SDFG) is a finite directed graph G = 〈V,E〉,
where V is the set of actors, modeling the computations of the system; E is the
set of directed edges, modeling interconnections between computations. Each
edge e is weighted with three properties, d(e), prd(e) and cns(e), where d(e) is
the number of initial tokens on e, prd(e) is the number of tokens produced onto
e by each firing of the source of e, and cns(e) is the number of tokens consumed
from e by each firing of the sink actor of e. These numbers are also called the
delay, production rate and consumption rate, resp. The source actor and sink
actor of e are denoted by src(e) and snk(e), resp. The set of incoming edges to
actor α is denoted by InE (α), and the set of outgoing edges from α by OutE (α).
If prd(e) = cns(e) = 1 for each e ∈ E, G is a homogeneous SDFG (HSDFG).

If execution platform P is considered, each actor α is weighted with com-
putation times t(α, p), for all p ∈ P . Normally, t(α, p) is a positive integer. For
technical reason, we also allow t(α, p) to be 0 or −1. The former is used for some
dummy actors; the latter is used when α is not allowed to run on p.

An SDFG G is sample rate consistent [16] if and only if there exists a positive
integer vector q(V ) satisfying balance equations, q(src(e))×prd(e) = q(snk(e))×
cns(e) for all e ∈ E. The smallest such q is called the repetition vector. We use
q to represent the repetition vector directly. For example, a balance equation
can be constructed for each edge of G1 in Fig. 1 (a). By solving the equations,
we have G1’s repetition vector q = [1, 2, 2]. An iteration is a firing sequence in
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which each actor α occurs exactly q(α) times. Only sample rate consistent and
deadlock-free SDFGs are meaningful in practice. We consider only such SDFGs,
which can be verified efficiently [16].

Definition 1 (System model). A system model includes an SDFG G and its
execution platform P , denoted by M = (G,P ).

A static schedule arranges computations of an algorithm to be executed re-
peatedly. An unfolding schedule of system modelM = (G,P ) is a static schedule
arranging f consecutive iterations of G running on P . The number f is called
unfolding factor and the f iterations form a schedule cycle.

Definition 2 (f-schedule). An f -schedule of system model M = (G,P ) is
a function S : V × N → N × P , where N is the set of non-negative integers,
defining the time arrangement and the processor allocation of firings of actors
in G. Schedule S with a cycle period (CP) T is defined as follows. For the ith

firing of actor α, denoted by (α, i), i ∈ [1,∞):

1. S(α, i).st is (α, i)’s start time, when there are sufficient tokens on each e ∈
InE(α) for a firing of α;

2. S(α, i).pa is the processor assigned to (α, i), which is available at the moment
S(α, i).st;

3. S(α, i+ f · q(α)).st = S(α, i).st+ T ;
4. S(α, i+ f · q(α)).pa = S(α, i).pa

Such a schedule can be represented by the first f iterations and period T .
It is the part of the schedule defined by S(α, i) with 1 ≤ i ≤ f · q(α) for all α.
From now on, we only consider the finite part of f -schedules.

The iteration period (IP) of S is the average computation time of an iteration,
that is, IP = T

f .
The energy consumption of f -schedule S can be computed as follows. For

conciseness, we omit parameters S and f when it is clear in context. Denote the
set of all firings assigned on processor p by AonP(p).

AonP(p) ≡def {(α, i)|S(α, i).pa = p ∧ i ∈ [1, f · q(α)] ∧ α ∈ V }.

The total time p occupied in S is

occT (p) =
∑

(α,i)∈AonP(p)

t((α, i), p), wheret((α, i), p) = t(α, p). (1)

Then the energy consumption of S is

EC =
∑
p∈P

occT (p) · uEC (p) + [T − occT (p)] · iEC (p). (2)

The iteration energy consumption (IEC) of S is the average energy consump-
tion per iteration, that is, IEC = EC

f .

Given a system model M = (G,P ) and an unfolding factor f , suppose the
set of all f -schedules of M is S, the problems we address are:
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1. how to find an f -schedule SoptP such that

IP(SoptP ) = min {IP(S)|S ∈ S}, and

IEC (SoptP ) = min {IEC (S)|S ∈ S ∧ IP(S) = IP(SoptIP )}

2. how to find an f -schedule SoptE such that

IEC (SoptE ) = min {IEC (S)|S ∈ S}, and

IP(SoptE ) = min {IP(S)|S ∈ S ∧ IEC (S) = IEC (SoptE )}

4 Introduction to Timed Automata

In this section we recap the concepts of syntax and semantics of timed automata
(TA) [3] and its extension with cost [4]. Let X be a set of clocks, V be a set
of bounded integer variables. We use C(X,V) and U(X,V), resp., to denote the
set of linear constraints and the set of updates over clocks and integer variables,
where updates on clocks are restricted to reset clock variables to zero.

A TA is a tuple (L,X,V, E , Inv, l0), where L is a set of locations, E ⊆ L ×
C(X,V)×U(X,V)×L is a set of edges, Inv : L→ C(X,V) assigns invariants to
locations, and l0 is the initial location. A network of n timed automata (NTA)
is a tuple of timed automata A1|| · · · ||An over X, V. A clock valuation γ for
a set X is a mapping from X to R+, where R+ is the set of non-negative real
numbers. A variable valuation u is a function from V to Z, where Z is the set of
integers. A pair of valuation (γ, u) satisfies a constraint φ over X and V, denoted
by (γ, u) |= φ, if and only if φ evaluates to true with the values γ and u. Let
γ0(x) = 0 for all x ∈ X. For δ ∈ R+, γ+δ denotes the clock valuation that maps
every clock x to the value γ(x) + δ. For an update η(Y,V ′) over a pair of (γ, u),
where Y ⊆ X and V ′ ⊆ V, (γ, u)[η(Y,V)] denotes the clock valuation that maps
all clocks in Y to zero and agrees with γ for all clocks in X \Y , and the variable
valuation that maps all integer variables in V \ V ′ agree with u.

Definition 3 (Semantics of timed automata). The semantics of a timed
automaton A = (L,X,V, E , Inv, l0) is a timed transition system T = 〈S, s0,→〉
where S ⊆ L × R+ × Z is the set of states, s0 = (l0, γ0, u0) is the initial state
and → is the transition relation such that

– delay transition. (l, γ, u)
δ−→ (l, γ + δ, u) if ∀δ′ : 0 ≤ δ′ ≤ δ ⇒ (γ + δ′, u) |=

Inv(l) where δ ∈ R+, and
– discrete transition. (l, γ, u)→ (l′, γ′, u′) if there exists e = (l, g, η(Y,V ′), l′) ∈
E such that (γ, u) |= g, (γ′, u′) = (γ, u)[η(Y,V ′)], and (γ′, u′) |= Inv(l′).

The trace of a timed automaton is a finite or infinite sequence (l0, γ0, u0)→
(l1, γ1, u1) → . . ., where → is either a delay transition or a discrete transition.
For an NTA, the discrete transitions are executed interleavingly.

Priced timed automata (PTA) [4] is an extension of TA to allow the ac-
cumulation of costs during behaviour. The extension from timed automata is
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Ac = (L,X,V, E , Inv, l0,P), where P : L∪E → N assigns cost rates and costs to
locations and edges, resp. The semantics of priced timed automata is similar to
the version without price, except that the cost in a delay transition is in direct
proportion to the time elapsed, and the cost in a discrete transition is the cost
of the edge. For a network of PTAs, which is defined similarly to a NTA, we use
vectors of locations and the cost rate of a vector of locations is the sum of cost
rates in the locations of the vector. For a finite trace of a PTA, the cost is the
sum of the cost for all discrete and delay transitions.

5 A Timed Automata Semantics of System Models

α2

3

1 α2

3

1 α2

3

1

sFiring(α) eFiring(α)
���

Fig. 2. The effect of sFiring and eFiring .

The behavior of an SDFG consists of
a sequence of firings. We use updates
sFiring(α) and eFiring(α) to encode
the start and the end of a firing of
α, and use readyS (α) to describe the
enabling condition of sFiring(α). Ad-
ditionally, we introduce sets of vari-
ables tn(E) and numF (V ), to record
the current number of tokens on edges
in E and the firing times of actors in
V , resp. Testing and updating the value of numF (V ) are not really a part of
the behavior of SDFGs, which are used to facilitate the construction of an f -
schedule.

Guard readyS (α) tests if there are sufficient tokens on the incoming edges
of actor α to enable a firing. If the firing number of α reaches f · q(α), no new
firing of α is allowed, because α has finished its firings in f iterations.

readyS (α) ≡def ∀e ∈ InE (α) : tn(e) ≥ cns(e) ∧ numF (α) < f · q(α).

When a firing of α starts, it reduces the number of tokens of its incoming edges
according to the consumption rates.

sFiring(α) ≡def ∀e ∈ InE (α) : tn ′(e) = tn(e)−cns(e)∧numF ′(α) = numF (α)+1,

where x′ refers to the value of x in the new state. For conciseness, we omit the
elements of states if their values remain unchanged.

If a firing of α runs on processor p, it will finish after t(α, p) units of time.
And update eFiring(α) increases tokens of α ’s outgoing edges according to their
production rates.

eFiring(α) ≡def ∀e ∈ OutE (α) : tn ′(e) = tn(e) + prd(e)

The effects of sFiring and eFiring are demonstrated in Fig. 2.
At a first glance, it seems natural to model each actor as a TA with status

idle and firing, and each processors as a TA with status idle and running and
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then to model the allocation as synchronization between these TAs to form an
NTA. Having a closer look, however, we observe that once an actor is firing, it
must be running on some processor. Hence, we can represent the behavior of the
system model only by the behavior of processors.

The behavior of actor α running on processor p can be modeled in a TA
tap(α); and the behavior of p can be modeled by tap(α) with non-deterministically
selecting actor α from V .

Definition 4 (TA of the behavior of processors). A TA of the behavior
of processor p is tap = ∃α ∈ V : tap(α), and tap(α) = (L,X,V, E , Inv, l0),
where L = {idle, running}, X = {x}, V = {tn(E), numF (V )}, l0 = idle, Inv =
{running : x ≤ t(a, p)}, and E = {ir, ri}, where ir = (idle, readyS, sF iring(α);x :=
0, running), and ri = (running, x == t(α, p), eF iring(α), idle).

The locations of tap indicate the status of processor p. That is, tap.idle means
p is idle and therefore is available for a firing of actors to run, and tap.running
means p is occupied by some firing. The graphical representation of tap is shown
in Fig. 3. When the guard readyS (α) is satisfied, the transition from location idle
to running is enabled. Once the transition is triggered, updates on clock x := 0
and other integer variables in sFiring(α) are executed. The invariant x ≤ t(α, p)
of location running restricts the allowed maximal delay.

running

Inv:    x ≤ t(α,p)

idle

g:    readyS(α)
up:  sFiring(α), x:=0

g:   x==t(α,p)
up:  eFiring(α)

ir

ri

Fig. 3. The timed automaton tap.

Actors of SDFG G can fire in parallel only
if they are ready and there are available pro-
cessors. Subsequently, system model M can
be modeled in a NTA ntaM, which has |P |
concurrent processes and a global clock, where
|P | is the size of P . The global clock is used
to measure the execution time of the system.

Definition 5 (NTA of the behavior of system models). The behavior of
system modelM = (G,P ) is a NTA ntaM = ||p∈P tap with a global clock glbClk.

The above-mentioned semantics are the standard timed automata descrip-
tion, which can be translated into the input of UPPAAL straightforwardly. Quan-
tification ∃α ∈ V can be implemented by the ‘Selections’ feature of UPPAAL.

Above defined tap and ntaM implicatively include f as a parameter. We
omit it in the notations for conciseness. The semantics we present is much more
concise than those in related works. For example, [7] transforms a system model
to a NTA with more than |V | + 3|P | TAs, and [18] more than |V | · |P | + |E|
TAs, while our method uses |P | TAs. This provides our methods the flexibility
to deal with various constraints as shown in Section 7.

6 Static Optimal Scheduling and Mapping

6.1 Traces and Schedules
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Algorithm 1 Sch(M,σ)

Input: A trace σ of ntaM
Output: An f -schedule of M, S
1: for all e ∈ Eσ do
2: if ∃α ∈ V : e == p.sf(α) then
3: S(α, sp−α.numF (α)).st = sp−α.glbClk
4: S(α, sp−α.numF (α)).pa = p
5: end if
6: end for
7: return S

An f -schedule of M can be
constructed from a trace of ntaM
as follows.

Let p.sf(α) and p.ef(α) be
discrete transitions, representing
the transition caused by up-
date sFiring(α) of edge ir of
tap and the transition caused by
eFiring(α) of edge ri. The use of
numF (α) < f · q(α) as a guard in
readyS (α) will force ntaM to be
deadlocked after the firings of f -iterations of G are finished. Therefore a trace
of ntaM includes finitely many discrete transitions.

||
s0:  glbClk=0     a     

  tn=[0,0,2,3] a  
numF=[0,0,0]

tap1 tap2

p1.sf(A)

||
δ=1

p1.ef(A)

||
p1.sf(B)

||
p2.sf(B)

||

p1.ef(C)

||

||

s1:  glbClk=0     a     
  tn=[0,0,1,2] a  
numF=[1,0,0]

s2:  glbClk=1     a     
  tn=[2,0,1,2] a  
numF=[1,0,0]

s3:  glbClk=1     a     
  tn=[1,0,1,1] a  
numF=[1,1,0]

s4:  glbClk=1     a     
  tn=[0,0,1,0] a  
numF=[1,2,0]

s10:  glbClk=8     a     
  tn=[0,0,3,2] a  
numF=[1,2,2]

Discrete transition

Delay transitioni
r

 p.l=idle

 p.l=running

Legend:

i r i r

i ri r

i r i r

i ri r

i r i r

i r i r

Fig. 4. A part of a trace of system model
M1 shown in Fig. 1, where circles in blue
show the current location.

Hence we consider only the finite
part of a trace that includes all finite
discrete transitions. Denote the set of
transitions of trace σ as Eσ and the
state caused by p.sf(α) as sp−α.

Theorem 1. In a trace σ of ntaM,
for each actor α:

1. @sp−α such that sp−α.numF (α) >
f · q(α);

2. ∀i ∈ [1, f · q(α)], there is a unique
sp−α such that sp−α.numF (α) =
i;

3. when p.sf(α) occurs, there are
sufficient tokens on each e ∈
InE(α) for one firing of α and
processor p is available.

Proof. 1) is guaranteed by readyS (α);
2) is guaranteed by sFiring(α); ac-
cording to the definition of tap, only
when tap.idle and readyS (α) are sat-
isfied, p may select α to fire and there-
fore 3) is guaranteed.

Algorithm 1 presents the procedure of finding a f -schedule from a trace. Its
correctness is ensured by Theorem 1. The schedule in Fig. 1(c), for example, is
a 1-schedule of system model M1. It can be found in a trace of ntaM1 , part of
which is shown in Fig. 4.
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6.2 Throughput-Optimal Solution

We denote the f -schedule derived by trace σ as Sσ. The cycle period of Sσ is
the time when the last firing terminates, that is:

CP (Sσ) = max {sp−α.glbClk + t(α, p)|sp−α ∈ σ}.

Suppose the set of traces of ntaM is Σ, the optimal IP of f -schedules of M is

optIP(M) = min
{CP (Sσ)

f

∣∣∣σ ∈ Σ}
For given model M and unfolding factor f , ntaM will be deadlocked after

the firings of f -iterations of G terminate. This property can be formalized by
a CTL (Computation Tree Logic) formula EF deadlock. CTL formula EFφ is
true when φ is eventually true at some states of some traces of ntaM, denoted
by ntaM |= EFφ.

A binary search can be used to find the minimal t that makes EF deadlock∧
glbClk ≤ t true; then the minimal t is f · optIP . By the returned trace, we find
a throughput-optimal f -schedule. A better, we can ask UPPAAL to check EF
deadlock and to return a fastest trace, which is a trace with the shortest accu-
mulated time delay. The latter way returns the same results as the binary search
but only checks the property once. In the following discussion, we always apply
UPPAAL to return a fastest trace, implemented by function trace(ntaM, ψ).
From the trace returned by trace(ntaM,EF deadlock), we obtain a throughput-
optimal f -schedule of M, denoted by SoptIP , i.e.,

SoptIP = Sch(M, trace(ntaM,EF deadlock)).

The energy consumption of the schedule, EC(SoptIP ), can be computed accord-
ing to Eqn. (2).

To find an f -schedule with optIP and a best energy consumption, we need to
add a constraint on energy consumption. Therefore, we add an update occT (p) =
occT (p) + t(α, p) to edge ri in tap, and the subsequent model is ntaM′ . When
deadlock occurs, glbClk is the CP of the schedule. Then according to Eqn. (2),
the property that the energy consumption at time glbClk is no more than a
given ec is defined as

con(ec) ≡def glbClk ≤
ec−

∑
p∈P occT (p) · [uEC (p)− iEC (p)]∑

p∈P iEC (p)

With con(ec) as the additional constraint, we decrease ec gradually to check
whether we can reach a smaller energy consumption with optIP . The details on
computing an f -schedule SoptP with optIP and a best energy consumption are
explained in Algorithm 2.
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6.3 Energy-Optimal Solution

Decreasing ec in Algorithm 2 until φ is not satisfied, we can obtain an f -schedule
with an optimal energy consumption and a best throughput. We can answer
our second problem formulated in Section 3 by this way. The experiments we
performed reveal that this method is inefficient, however. A more efficient way
is to integrate the use of PTA.

Algorithm 2 optPSch(M)

Input: M
Output: An f -schedule SoptP of M
1: SoptIP = Sch(M, trace(ntaM,EF deadlock))
2: ec = EC (SoptIP )
3: SoptP = SoptIP

4: repeat
5: φ = EF deadlock ∧ con(ec− 1)
6: SIP = Sch(M, trace(ntaM′ , φ))
7: if IP == optIP then
8: ec = EC (SIP )
9: SoptP = SIP

10: end if
11: until IP > optIP
12: return SoptP

By adding cost iEC (p) and
uEC (p) to locations idle and
running of tap, resp., we obtain
a priced timed automaton ptap
for processor p. Consequently, we
use nptaM = ||p∈P ptap with
a global clock glbClk to de-
scribe system model M. With
this formalization, by apply-
ing UPPAAL CORA to check
nptaM |= EF deadlock, we can
obtain an energy consumption-
optimal f -schedule of M with
optEC , denoted by SoptEC . Tak-
ing con(optEC ) as the additional
constraint, we can apply UP-
PAAL to check ntaM |= EF deadlock ∧ con(optEC), and obtain an f -schedule
SoptE with an optimal energy consumption and a best throughput.

7 Dealing with More Constraints

In this section, we show how various kinds of constraints can be integrated
into our method. We first introduce the general framework of our method, then
discuss the details of the three kinds of constraints, auto-concurrency constraints,
buffer size constraints and processor constraints.

The effects of constraints on the behavior of an SDFG are summarized in
Table 1. The first column lists the corresponding names of readyS , sFiring and
eFiring for constraint con. The second column includes guard and updates we
defined before. The 3-5 columns give the extra guard and updates for different
constraints, auto-concurrency (ac), buffer size (bs) and both of them, resp. Com-
bining any of them with the second column forms the corresponding readyS con,
sFiringcon and eFiringcon. For example, the enable condition of starting firing
for an auto-concurrency constraint is represented as:

readySac ≡def readyS ∧ hasF .

Replacing readyS , sFiring and eFiring in tap and ptap defined in Section 5
with readyS con, sFiringcon and eFiringcon, resp., we get NTA and NPTA of a
system model with constraint con. The ways to find f -schedules SoptP and SoptE
are the same as the system without these constraints.
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Table 1. Constrained Behavior of actor α

Constrained NO Constraints (con)
Behavior of α Con. auto-conc. (ac) buffer size (bs) both

readyS con readyS hasF sufB hasF ∧ sufB
sFiringcon sFiring addF claB addF ∧ claB
eFiringcon eFiring delF relB delF ∧ relB

7.1 Auto-concurrency constraints

When there are no limitation on auto-concurrency, at the same time, there can
be unlimited number of concurrent firings of the same actor. Suppose the number
of auto-concurrent actors is limited to conN . At each moment, only conN firings
allowed for each actor. We use a set conC(V ) to control the number of concurrent
firings of each actor α ∈ V . The extra condition for readyS , updates for sFiring
and eFiring are formulated as hasF (α), addF (α) and delF (α), resp.

hasF (α) ≡def conC(α) ≤ conN
addF (α) ≡def conC ′(α) = conC(α) + 1

delF (α) ≡def conC ′(α) = conC(α)− 1

Non-auto-concurrency, which can be used to model stateful actor [18], is a special
case, which can be specified by conN = 1. Our method can also be used in a
generalized case in which there is a constraint for each actor. For the generalized
case, a set conN(V ) is used and above conN are replace by conN(α).

7.2 Buffer size constraints

In practice, the storage space of a system must be bounded. The storage used by
edges may be shared or separate. Firstly, we consider a relatively conservative
separate buffer storage abstraction. That is, when an actor starts firing, it claims
the space of the tokens it will produce, and it releases the space of the tokens it
consumes only when the firing ends. A set tnb(E) is added to capture the buffer
space used by each e ∈ E.

Suppose a schedule is constrained by a set B(E), which limits the buffer usage
of each edge, an enabled firing can not start when there is no sufficient space
on its outgoing edges. The extra condition for readyS is formulated as sufB(α).
When an actor starts a firing, it claims the required space on its outgoing edges.
The update is formulated as claB(α). Only when a firing ends, it releases the
space of its incoming edges. The update is formulated as relB(α).

sufB(α) ≡def ∀e ∈ OutE (α) : prd(e) ≤ B(e)− tnb(e)

claB(α) ≡def ∀e ∈ OutE (α) : tnb′(e) = tnb(e) + prd(e)

relB(α) ≡def ∀e ∈ InE (α) : tnb′(e) = tnb(e)− cns(e)
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A separate storage with other abstraction is even easier to be integrated. For
example, suppose an actor releases the space of its incoming edges when it starts
a firing and claims and occupies the space of its outgoing edges only when it
ends a firing, we do not need the extra set tnb(E) and updates claB and relB .
In sufB(α), tnb(e) is simply replaced by tn(e).

A shared memory usage can be easily integrated in the framework by modi-
fying sufB(α) as ∀e ∈ OutE (α) : prd(e) ≤ sM −

∑
e∈E tnb(e), where sM is the

bound of the shared memory.

7.3 Constraints on processors

The situation that an actor is not allowed to be allocated on some processors
can be modeled by adding extra condition t(α, p) ≥ 0 to the enable condition of
starting firing. That is, readyS (α) ∧ t(α, p) ≥ 0. The constraint that actor α is
not allowed to run on processor p can be represented by t(α, p) = −1.

The constraint that a processor has a higher priority than another can be
modeled by the ‘Priorities’ feature of UPPAAL.

8 Case Studies

We have implemented the translation from system models with different con-
straints to input models of UPPAAL and UPPAAL CORA and the procedure
to extract f -schedules from the returned traces. The approach has been applied
to two practical applications with different parameters, running on a 2.90GHz
CPU with 24M Cache and 384GB RAM. If not marked specially, the units of
execution time and memory in performance evaluation are in second (s) and
megabyte (MB), resp.

The execution platforms for all SDFGs includes two types of processors, PT1
with uEC = 90W and iEC = 10W and PT2 with uEC = 30W and iEC = 20W.
PT1 is faster than PT2. We consider 2 processors, including one PT1 processor
and one PT2 processor, and 4 processors, including two PT1 processors and
two PT2 processors. We use the first buffer storage abstraction described in
Section 7.2. The units of time and energy consumption used in system models
are in picosecond and nanojoule, resp.

8.1 MPEG-4 Decoder

The first case is an MPEG-4 decoder [23] with different parameters. The MPEG-
4 decoder supports various kinds of frames. It is modeled as a Scenario-aware
dataflow (SADF) model in [23]. Each scenario in an SADF model is actually an
SDFG. We consider three scenarios, P30, P70 and P99. The system models of
the MPEG-4 decoder are shown in Fig. 5. The parameterized SDFG is shown in
Fig. 5 (a), the value of x corresponding to Px. The repetition vector and the sum
of its elements (nQ) of each Px and the execution times of actors on different
processors are shown in Fig. 5 (b). This case is used to evaluate our method
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when different parameters are considered: the sum of the repetition vector, the
unfolding factor, the number of processors, and the buffer size constraints. Auto-
concurrency are not allowed in all models.

To evaluate the impact of the buffer size constraints, we consider two cases:
a model with a low buffer size bound and a high bound. The low bound is
computed according to the method described in [2] to guarantee deadlock-free
of an SDFG. The high bound is a minimal buffer size requirement to guarantee
throughput-optimal of an SDFG when it is scheduled in an infinite number of
homogeneous processors [22]. The sum of buffer size bounds of all edges of Px
are shown in the last two columns of Fig. 5 (b).

FD

IDCTVLD

x

RCMC

x

x x

(a)

frame x
Repetition Vector

nQ
Buffer Bound

FD VLD IDCT MC RC Low High
P30 30 1 30 30 1 1 63 128 149
P70 70 1 70 70 1 1 143 288 309
P99 99 1 99 99 1 1 201 404 425

The Execution Times Of Actors On Different Processors
PT1 - 0 1 1 9 15 - - -
PT2 - 0 3 2 18 25 - - -

(b)

Fig. 5. System models of the MPEG-4 decoder. (a) Its SDFG; (b) the repetition vector
of each Px, the sums of the vectors, the considered bound of buffer size, and the
execution times of actors on different processors.

We show the experimental results for the MPEG-4 decoder in Table 2, in
which the parameters are shown in the first two rows and the first two columns.
The others are the results. The first column is the unfolding factor f . We con-
sider 1-schedule and 2-schedule of models. The second column is the number
of processors #P . The other 6 columns are the results for SDFG Px under a
low buffer size bound and a high buffer size bound. The results include three
parts. The first part shows the optimal iteration period (optIP) and the best
iteration energy consumption under optIP (bestIEC). The second part is the
optimal iteration energy consumption (optIEC) and the best IP under optIEC
(bestIP). The third part shows the execution times and memory consumptions
of the procedure finding optIP.

When a low buffer size bound is used, the increasing of unfolding factor and
number of processors have no improvement on the four values we have evaluated.
Therefore, small unfolding factor and a few of processors are good enough for an
optimal schedule of Px with a low buffer size constraint. A high bound provides
more room for the improvement of iteration period and energy consumption at
the cost of longer execution time and larger memory consumption.

When two processors are considered, our method performs well on all cases.
When four processors, 2-schedule and IEC are considered, state explosion occurs
and hence our method performs poorly. Another reason is that we only find 32bit
version of UPPAAL CORA, which uses no more than 4GB memory. Besides the
number of processors, the nQ seems affecting the performance of our method
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Table 2. Experimental results for MPEG-4 Decoder

info
Low Bound High Bound

P30 P70 P99 P30 P70 P99
f #P optIP/bestIEC

1
2 83/9.2 163/18.0 221/24.3 82/7.4 162/13.8 220/18.4
4 83/11.6 163/N 221/N 54/N 94/N 123/N

2
2 83/9.2 163/18.0 221/24.3 74/7.0 154/13.4 212/18.0
4 83/N 163/N 221/N 48/N 88/N 117/N

optIEC/bestIP

1
2 7.4/131 15.0/251 20.5/338 6.6/102 13.0/182 17.6/240
4 11.3/93 22.5/N 30.6/N 9.5/64 18.3/N 24.7/N

2
2 7.4/131 15.0/251 20.5/338 6.5/89.5 12.9/169.5 17.6/227.5
4 11.3/N 22.5/N 30.6/N 8.6/N 17.4/N 23.8/N

Execution Time (s)/Memory Consumed (MB) of optIP

1
2 0.0/4.7 0.0/4.8 0.0/4.9 0.0/4.8 0.0/5.0 0.0/5.2
4 0.1/5.6 0.1/6.8 0.2/7.7 0.2/7.1 0.5/10.6 0.6/13.7

2
2 0.0/4.9 0.0/5.2 0.1/5.5 0.1/5.6 0.1/6.3 0.2/7.0
4 0.3/11.9 0.8/18.8 0.9/26.8 2.8/34.3 3.9/54.0 4.3/70.8

* N: not finished after 3 hours or running out of memory.

mostly. Note that nQ is also the number of actors of the equivalent HSDFG of
an SDFG, and the number of jobs in a task graph [1]. It is an important factor
affecting the performance of almost all algorithms on SDFGs.

8.2 Computation Example

The second case study is mainly used to measure the impact of the unfolding
factor. We consider a computation example, which is described in a task graph
in [5]. Its system model is shown in Fig. 6(a). Actor ctrl connecting with original
source and sink actors is added to limit the total latency. We have computed
the results of unfolding factor from 1 to 10, and taken into account different
combinations of values of three parameters: with and without a buffer bound,
with and without auto-concurrency, 2 processors and 4 processors.

The experimental results are illustrated in Fig. 6 (b) and (c). The through-
put and energy consumption of schedules are improved by increasing unfolding
factor; the degree of improvement decreasing accordingly. The buffer size bound
and auto-concurrency constraints have larger impact on the cases with 4 pro-
cessors than that with 2 processors. Some lines stop at the point that unfolding
factor reaches 4 or 5, because the corresponding procedures for larger unfolding
factors run out of memory.

9 Conclusion

In this paper, we have presented exact methods for scheduling SDFGs on het-
erogenous multiprocessor platforms considering both throughput and energy
consumption. Various parameters, including unfolding factors, constraints on
auto-concurrency, buffer sizes and processors, can be integrated into the meth-
ods. Our experimental results show that our methods can deal with moderate
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Legend:

Fig. 6. (a) System model of the computation example; (b) the optimal throughput and
the best energy consumption under the optimal throughput; (c) the optimal energy
consumption and the best throughput under the optimal energy consumption.

scale models within reasonable execution time, and can find how different pa-
rameters impact on the results of different optimization goals.

We have used model checking as backend technique to solve the scheduling
problems. While enjoying the benefits it provides, we encountered state explo-
sion inevitably. As a future work, we will explore further the features of the
considered models to reduce the state space. On the one hand, we will try to
provide more domain insight when encoding the considered problems to model
checking problems; on the other hand, we may tailor model checking techniques
to deal with specialized tasks, instead of using a model checker directly. We have
not considered the communications between processors based on the assumption
that its cost is much smaller than the execution times of actors. In practical de-
signs, the cost may be large in some situations. Then the communication needs
to be taken into account. This can be integrated into our approach straightfor-
wardly by modeling communications as actors that use special processors which
model the connections between processors. But this method enlarges the scale
of system models accordingly. A more efficient way to deal with communications
is also an interesting topic for our further study.
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1. Abdeddäım, Y., Asarin, E., Maler, O., et al.: Scheduling with timed automata.
Theor. Comput. Sci. 354(2), 272–300 (2006)

2. Adé, M., Lauwereins, R., Peperstraete, J.: Data memory minimisation for syn-
chronous data flow graphs emulated on DSP-FPGA targets. In: Proc. of the 34th
Ann. Design Automation Conf. (DAC). pp. 64–69 (1997)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: Formal Methods for Components and Objects. pp. 162–182.
Springer (2005)

5. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of
real-time systems using priced timed automata. Comm. of the ACM 54(9), 78–87
(2011)

6. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2(4), 410–
425 (2000)
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