
Pareto Optimal Scheduling of Synchronous Data
Flow Graphs via Parallel Methods?

Yu-Lei Gu1,2, Xue-Yang Zhu1, Guangquan Zhang2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

2 School of Computer Science and Technology, Soochow University, Suzhou, China
{guyl, zxy}@ios.ac.cn and gqzhang@suda.edu.cn

Abstract. Synchronous data flow graphs (SDFGs) are widely used to
model streaming applications such as multimedia and digital signal pro-
cessing applications. They usually run on multicore processors and are
required a high throughput, which in turn may increase the energy con-
sumption. In this paper, we present a parallel framework to explore the
Pareto space of energy consumption and throughput of SDFGs and to
find the schedule of each Pareto point. The considered multicore plat-
forms are heterogeneous. We present an exact method pruning the state
space according to the properties of SDFGs and two approximate solu-
tions to make the processes faster. Our experimental results show that
our methods can deal with large scale models within reasonable execution
time, and perform better than the existing methods.

Keywords: Synchronous Data Flow Graphs, Multicore, Pareto opti-
mization, Scheduling, Parallel

1 Introduction and related work

Embedded systems are everywhere today. They are in smart phones, e-book read-
ers, portable media players and digital printers, etc. Streaming applications like
audio and video processing, usually modeled by Synchronous data flow graphs
(SDFGs) [5], are an important class of applications in these electronic devices.
Energy efficiency is an essential issue in these devices, for reasons like the in-
creasing demand for portable devices or the heat dissipation.

Streaming applications are usually required to reach a high throughput. The
use of heterogeneous multicore processors to improve the throughput of stream-
ing applications has become a feasible solution. However, a higher throughput
is usually achieved at the cost of the increase of energy consumption. Designers
have to carefully tune the mapping of applications on the platforms to meet
performance requirement.

Most mapping methods reported in the literature fall under design-time map-
ping [7]. The optimization goal of the mapping includes timing, energy consump-
tion and reliability, etc. [6] and [2] present methods to achieve significant energy

? This work is partially supported by 973 program (No. 2014CB340701) and the Na-
tional Natural Science Foundation of China (Nos. 61472406 and 61472474).



2 Y.-L. Gu, X.-Y. Zhu, and G. Zhang

savings. [1] and [4] perform optimization for both energy consumption and exe-
cution time. However, these methods only consider homogeneous architectures.
[9] works on heterogeneous architecture but only take energy consumption into
consideration.

In this paper, we are concerned with constructing throughput and energy
efficient static (compile-time) schedules of SDFGs on a heterogeneous multipro-
cessor platform. For a given platform, even we consider only one optimization
criterion, e.g. throughput, the scheduling and mapping problem is already NP-
complete [7]. [10] uses model checking to address the same problem and provides
exact solutions. In this paper, we try to prune the state space and present a
more efficient parallel algorithm which returns exact results. Two approximative
methods are provided for larger models.

2 System Model and Problem Formulation
An execution platform P is a set of heterogeneous processors. For each processor
p, the power consumption is defined by the consumption rates when p is used
and when it’s idle. The power consumption of processor p1 shown in Fig. 1(b) is
90 when it’s in use, for example.

A simple SDFG is depicted in Fig. 1(a). The nodes are called actors, mod-
eling the computations of a system. The edges are FIFO channels, transferring
the data items, called tokens. An essential property of SDFG is that when an
actor starts an execution, also called firing, it consumes the same amount of
tokens from its incoming edges, and when an actor ends a firing, it produces
the same amount of tokens to its outgoing edges. The numbers of tokens are
called consumption rate and production rate of edges, respectively. They are
labeled on each edge. Each actor is weighted with a set of computation times,
corresponding to processors. For example, actor a of G1 in Fig. 1(a) need 1 unit
of time to finish on p1 and 2 units of time on p2, respectively.

A System model M = (G,P ) includes an SDFG G and its execution plat-
form P . A simple system model M1 is shown in Fig. 1(a) and Fig. 1(b).

An SDFG G is sample rate consistent [5] if and only if there exists a positive
integer vector q. After any sequence of actor firings conforming to q, the number
of tokens in the channels are equal to their initial state values. The repetition
vector of G1 is q = [3, 2, 1] for example. An iteration is a firing sequence in which
each actor α occurs exactly q(α) times. We consider only sample rate consistent
SDFGs. Only such SDFGs are meaningful in practice. A static schedule arranges
computations of an algorithm to be executed repeatedly. An f -schedule of system
model M = (G,P ) is a static schedule arranging f consecutive iterations of G
running on P .

The throughput (denoted by thr) of f -schedule S is the average number of
iterations per unit time, that is, thr = f

T , where T is the total execution time of
S. The throughput of schedule S1 shown in Fig. 1(c) is 1/8 = 0.125 for example.
The total energy consumption(denoted by tec) of f -schedule S is the sum energy
of all processors. For each processor, it includes the energy consumed while it’s
in idle and in use. The energy consumption(denoted by ec) of S is ec = tec

f . For

schedule S1, for example, ec = [(2 ∗ 10 + 6 ∗ 90) + (2 ∗ 20 + 6 ∗ 30)]/1 = 780. A



Pareto Optimal Scheduling of SDFGs via Parallel Methods 3

Pareto point is a tuple (thr, ec) of S in which one element (thr or ec) becomes
better must make another element worse. Fig. 1(d) shows two Pareto points of
the system model M1, which are (0.1, 720) and (0.125, 780). Schedule S is a
Pareto schedule when (thr, ec) of S is a Pareto point.

ch1
2

3

1
2
ch2

a

c
b

(a)

power time
inuse idle a b c

p1 90 10 1 2 2
p2 30 20 2 4 4

(b) (c) (d)

Fig. 1. The system modelM1 and its schedules. (a) The SDFG G1; (b) the execution
platform P1 and the execution time of actors in G1 on different processors; (c) a periodic
schedule S1 with thr=0.125 and ec=780;(d)Pareto points diagrams of M1

Given a system model M = (G,P ) and the number of iterations f , the
problems we address are to find all Pareto f -schedules.

3 Pareto Optimal Scheduling and Mapping

Fig. 2. The framework of our parallel method

We use a parallel framework to find all Pareto f -schedules from a system
model. We use a map table to store the constructing schedules at each step.
Initially, a constructing schedule includes one firing. The number of firings of
schedules in the map table is increased by one at each step until all f ∗ qSum
firings have been allocated, where qSum is the sum of elements of the repetition
vector q. That means the execution of f iterations of an SDFG has been mapped
and scheduled. A map table is created by producer-consumer threads extending
its previous map table.

Taking Pareto 1-schedules of M1 for example, we show our method frame-
work in Fig. 2. The key of a map table is a vector contains the scheduled number
of firings of each actor. Taking key < 1, 0, 0 > in mapTable1 for example, it means
actor a has already be executed once while other actors none. The value of a
map table is a set of constructing schedules. The number of firings of each ac-
tor of each schedule equals the corresponding element of the key. Taking value
with key < 1, 0, 0 > in mapTable1 for example, it contains two constructing
schedules, in which a firing of actor a is allocated on p1 and p2, respectively. We



4 Y.-L. Gu, X.-Y. Zhu, and G. Zhang

allocate one enable actor on one processor each time, called extension, based on
the constructing schedules in previous map table. It finally stores all the Pareto
schedules when the algorithm finishes. And we finally get two Pareto schedules
in the mapTable6.

Algorithm 1 Judge

Input: two compared schedule A,B
Output: judge result of A and B
1: if A � B then
2: return -1 // A is not worse than B
3: else
4: if B � A then
5: return 1 // A is worse than B
6: else
7: return 0 // can’t judge
8: end if
9: end if

Producer-consumer mode is used
in each extension. Producer threads
take each constructing schedule from
previous table, extend the schedule
and put the extended schedule set
into buffer queue. The start time of
each actor can be obtained via max-
plus algebra [3] by simply calculating
max(maxT,maxP ), where maxT is
the max produced time of tokens that
actors need to consume and maxP is
the max end time of the last actor on
each processor. Taking the extension
between mapTable2 and mapTable3 for example, one producer thread may take
schedule sch2 1 in mapTable2, and extend it to two schedules by allocating a
third firing of actor a on p1 and p2, respectively. This producer thread puts the
two schedules into buffer. Then one consumer thread takes these two schedules
and put them into mapTable3 which are sch3 1 and sch3 2, respectively.

Consumer threads take schedules from buffer queues and insert them into
the next map tables. For pruning the state space, we compare the new schedule
with those in the map table to decide whether to insert it. By judging schedule
B in buffer queue with each schedule A with same key in that next map table
via Algorithm 1, we insert B when we can’t judge, discard it when A is not
worse , insert B and remove A when A is worse. Taking the extension between
mapTable1 and mapTable2 for example, sch2 2 is extended by sch1 1 through
allocating a firing of a on processor p2. We discard sch2 3 because it’s the same
as sch2 2.

Let sch[p] be the end time of the last firing on processor p and occT [p] be
the total occupied time of processor p. Schedule A dominate(�) schedule B is
defined as following.

1. A.sch[p] ≤ B.sch[p],
2. A.occT [p] ≤ B.occT [p], and
3. the start time of each next enable actor of A is earlier than that of B.

Proposition: Method above is an exact pruning policy. We can always find a
schedule extended by A which is not worse than that of B if A � B.

Proof : According to condition 1 and 3, for any f -schedule B′ extended by
the constructing schedule B, we can move the firings after B to extend A. The
procedure is illustrated in Fig. 3 with shadow boxes. The resulting f -schedule
A′ has the same thr as B′. According to condition 2, ec of A is apparently not
worse than B. So it’s proved.



Pareto Optimal Scheduling of SDFGs via Parallel Methods 5

Fig. 3. dominate (�) illustration

The state space of scheduling an
SDFG can be very large. To further
prune the state space, approximate
methods can be obtained by replacing
the definition of dominate(�) but may lose accuracy at different degree. The first
approximate method we proposed , named appr1, is obtained by removing the
third condition in the accurate dominate(�) definition. The second approximate
method, named appr2, is less accurate than appr1. Its dominate(�) definition
is defined as: both of the temporary throughput and energy consumption of
constructing schedule A are not greater than that of B.

4 Experiments
We have implemented our algorithms and tested them on two sets of system
models on a 2.9GHz server with 32 logical cores, 24M Cache and 384GB RAM.
The platforms in system models we considered are 2 processors with different
type and 4 processors with two processors per type.

Table 1. Experimental results for MPEG-4 Decoder

info P5 P10 P30 P5 P10 P30
f #P model checking [10] parallel(exact)

1
2 2/0.1a 2/0.2 3/8.1 2/0.3 2/0.3 3/0.5

4 1/17.8 1/1221 0/Nb 1/0.4 1/5.5 0/N

2
2 2/1.2 3/8.3 2/235.5 2/0.4 3/0.6 2/4.3
4 1/1902 0/N 0/N 1/55.6 2/28479 0/N

parallel(appr1) parallel(appr2)

1
2 2/0.2 2/0.3 3/0.5 2/0.3 2/0.3 3/0.5
4 1/0.4 1/2.1 2/6978 1/0.3 1/0.3 2/0.5

2
2 2/0.4 3/0.5 2/3.1 2/0.3 3/0.5 2/2.5
4 1/3.9 2/270 0/N 1/0.3 2/0.5 1/2.6

a number of Pareto points/execution time(s).
b not finished after 10 hours or running out of memory.

The first case is an MPEG-4 decoder [8] with different parameters. We con-
sider three scenarios, P5, P10 and P30. For each scenario Px, the sum of elements
of their q is 3 + 2x, which means the problem scale grows when x is larger. We
compare the model checking methods in [10] with our parallel methods. The
results are shown in Table 1. Each cell is filled with the number of Pareto points
the corresponding method returns and its execution time in seconds. For small
scale problems, model checking method performs as well as the parallel method,
while it takes a lot of time or even can’t work when problem scale grows. The
results show that even our approximate methods hit all the Pareto points while
the execution time is much less than the model checking methods for large scale
problems.

Fig. 4. Experimental results for large models

The second set of case includes
some large SDFGs. It is mainly
used to show the scalability of
our methods. We randomly gen-
erate 30 SDFGs using SDF3 tool



6 Y.-L. Gu, X.-Y. Zhu, and G. Zhang

(http://www.es.ele.tue.nl/sdf3) with the sum of elements of their q nearly 1000.
The system models we considered are these 30 SDFGs with a platform with two
processors. The experimental results illustrated in Fig. 4 present the execution
time of the model checking method and our parallel method appr2. The number
in cell indicates the number of cases solved within these duration. Method appr2
can solve 7 cases in 500∼5000 seconds, for example. The results show method
appr2 can solve 24 of the 30 cases while model checking method solves only 6
cases.

5 Conclusion
In this paper, we have presented a parallel framework for scheduling SDFGs
on heterogenous multiprocessor platforms considering the optimization of both
throughput and energy consumption. An exact method can be used to obtain all
exact Pareto-optimal schedules and two approximate methods have provided a
trade-off between accuracy and execution time. Our experimental results show
that the execution time of our algorithm is much less than the existing methods
for large models while hits all Pareto points for the MPEG-4 decoder case.
We will conduct more comparative studies, comparing our methods with other
heuristics like list scheduling, in the future.

References

1. Ascia, G., Catania, V., Palesi, M.: Multi-objective mapping for mesh-based noc
architectures. pp. 182–187. IEEE (2004)

2. Chen, G., Li, F., Son, S., Kandemir, M.: Application mapping for chip multipro-
cessors. pp. 620–625. IEEE (2008)

3. Heidergott, B., Olsder, G.J., Woude, J.v.d.: Max Plus at Work: Modeling and
Analysis of Synchronized Systems. Princeton University Press (2005)

4. Hu, J., Marculescu, R.: Energy- and performance-aware mapping for regular noc
architectures. Computer-Aided Design of Integrated Circuits and Systems 4(24),
551–562 (2005)

5. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Trans. Comput 36(1), 24–35 (1987)

6. Murali, S., Coenen, M., Radulescu, A., Goossens, K., Micheli, G.D.: A methodology
for mapping multiple use-cases onto networks on chips. In: DATE. pp. 118–123.
IEEE (2006)

7. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: Survey of current and emerging trends. In: Proc. of the 50th Ann. Design
Automation Conf. (DAC). pp. 1–10 (2013)

8. Theelen, B., Katoen, J.P., Wu, H.: Model checking of scenario-aware dataflow
with CADP. In: Proceedings of the Conference on Design, Automation and Test
in Europe. pp. 653–658 (2012)

9. Wu, D., Al-Hashimi, B., Else, P.: Scheduling and mapping of conditional task
graph for the synthesis of low power embedded systems. Computers and Digital
Techniques 150(5), 262–273 (2003)

10. Zhu, X.Y., Yan, R., Gu, Y.L., Zhang, J., Zhang, W., Zhang, G.: Static optimal
scheduling for synchronous data flow graphs with model checking. In: Bjørner,
N., de Boer, F. (eds.) FM 2015: Formal Methods. LNCS, vol. 9109, pp. 551–569.
Springer International Publishing (2015)


