
Pareto Optimal Scheduling for Synchronous Data
Flow Graphs on Heterogeneous Multiprocessor

Yu-Lei Gu∗†, Xue-Yang Zhu∗, Guangquan Zhang†, Yifan He‡
∗State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

†School of Computer Science and Technology, Soochow University, Suzhou, China
‡School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China

{guyl, zxy}@ios.ac.cn, gqzhang@suda.edu.cn and y.he@xmut.edu.cn

Abstract—Streaming applications usually run on heteroge-
neous multiprocessor platforms and are required to have a high
throughput, which in turn may increase the energy consumption.
A trade-off between these two criteria is important for a system.
Synchronous data flow graphs (SDFGs) are widely used to model
streaming applications. In this paper, we propose a paralleled
Pareto optimal scheduling method (PPOS) for SDFGs on hetero-
geneous multiprocessors. It deals with both time arrangement and
processor allocation of computations. PPOS is an exact method
to chart the Pareto space of energy consumption and throughput,
and to find all Pareto optimal schedules of a system model.
An approximation technique is presented to further increase the
scalability of our methods. Our experiments are carried out on
a practical multimedia application with different configurations
and hundreds of synthesis graphs. The results show that the
proposed methods are capable of dealing with large-scale models.

Keywords—real-time; energy consumption; throughput; paral-
lelization

I. INTRODUCTION

In embedded systems, energy efficiency is an essential
issue. A high energy consumption leads to decreased mission
duration and increased heat dissipation. An important class
of applications in these systems are streaming applications,
such as multimedia and digital signal processing applications.
For these applications, high throughput is usually required to
achieve smooth performance. Heterogeneous multiprocessor
platforms are often used to improve the performance. However,
a higher throughput is usually achieved at the cost of increased
energy consumption. For a traditional development method,
developers have to carefully tune the mapping of applications
after they are implemented on the platforms to meet the
performance and/or energy consumption requirements. When
the failure to meet the requirement is due to the design of the
application, the cost of fixing them would be high.

Synchronous data flow graphs (SDFGs) [1] are widely used
to model streaming applications. They are further analyzed,
optimized and scheduled according to different performance
criteria [2], [3], [4]. An SDFG is a directed graph. Each node
(also called actor) in an SDFG represents a computation or

This work was supported in part by National Key Basic Research Program
of China (No. 2014CB340701) and the National Natural Science Foundation
of China (Nos. 61572478, 61472406 and 61472474).

Pareto Optimal Scheduling

Optimization Criteria
(Throughput&Energy)

Performance Requirements
(Throughput &Energy)

Pareto Space

A Pareto-optimal schedule that satisfies the performance requirements

System Model
Application

(SDFG)
Execution
Platform+

Fig. 1: Overview of the goal of this work.

function and each edge models a FIFO channel; the sample
rates of actors may differ. Homogenous synchronous data flow
graphs (HSDFGs) are a special type of SDFGs. All sample
rates of actors of an HSDFG are one. Execution of all the
actors of an SDFG for the required number of times is referred
to as an iteration, which may include more than one execution,
also called a firing, of an actor. Different actors of an SDFG
may fire a different number of firings in an iteration, while each
actor of an HSDFG fires once in an iteration. The number is
decided by its repetition vector, which we will explain later.
Practical streaming applications modeled with SDFGs include
an MP3 playbacker [5], a satellite receiver [6], etc.

Streaming applications are usually nonterminating and
repetitive. Static schedules are typically used to reduce run-
time overhead because of real-time requirements and a strict
resource budget. A static schedule arranges an iteration of the
computations to be executed repeatedly in a fixed sequence.

In this paper, we focus on constructing throughput and
energy efficient static schedules for SDFGs on heterogeneous
multiprocessor platforms. An overview of the goal of this work
is shown in Fig. 1. Applications are modeled in SDFGs as
platform-independent models. We assume that those SDFGs
are functionally correct. A system model is a platform-specific
model, including an SDFG and a specific execution platform

A C2 B 23 1

(a) The SDFG G1

Energy Exec. Time
inuse idle A B C

p1 90 10 1 2 2
p2 30 20 2 4 4

Rep. Vector 3 2 1

(b) The execution platform P1 and
the execution time of actors in G1 on
different processors

(7,$810)$

(8,$780)$

(9,$750)$

(10,$720)$

700#

720#

740#

760#

780#

800#

820#

6# 7# 8# 9# 10# 11#

En
er
gy
$C
on

su
m
p8

on
$(E

C)
�

Itera8on$Period$(IP)$
$(the$reciprocalofthe$throughput)�

(c) The Pareto space

p1

p2

0 1 2 3 4 5 6 7 8 9 10 Time

p1

p2

p1

p2

p1

p2

� � � � �
�

� �
�

� �
�

� � � �
� �

� � �
� � �

Sch1
EC=810

Sch2

Sch3

Sch4

EC=780

EC=750

EC=720

(d) Pareto optimal schedules

Fig. 2: System model M1 and its Pareto space.

that the application uses. We analyze the system model to find
schedules with their throughput and energy consumption being
Pareto-optimal. We would like that an application executes
with a higher throughput and less energy. These two goals,
however, are usually in conflict with each other on heteroge-
neous multiprocessor platforms. Improving one may worsen
the other. In a Pareto point, it is impossible to make one
element better off without making the other worse off. These
Pareto points form a Pareto space. Developers can choose a
schedule from the Pareto space that satisfies the performance
requirements to arrange the executions of their applications.

An example SDFG G1 is shown in Fig. 2a. Actor A fires
three times, while B fires twice and C once, in an iteration.
The repetition vector of G1 is shown in the last row of the table
in Fig. 2b. A heterogeneous execution platform P1 is shown
in Fig. 2b. Different processors may have different unit energy
consumption. For example, the unit energy consumption is 90
on p1 and 30 on p2 while they are in use. An actor may
need different execution times on different processors. For
example, Actor A of G1 uses one unit of time on p1 and two
units of time on p2. A system model consists of an SDFG
and an execution platform. For example, G1 and P1 form
system modelM1. The computation time per iteration is called
iteration period (IP), or makespan. The IP is the reciprocal of
the throughput. We use IP and throughput alternatively in the
remainder of the paper. The energy consumption (EC) is the
total energy consumed during one iteration of execution. The
Pareto space and corresponding schedules of M1, are shown
in Fig. 2c and Fig. 2d, respectively.

In this paper, we chart Pareto space of throughput and
energy consumption for a system model and find a schedule
for each Pareto point. Our main contributions are as follows.

1) We define a procedure to construct a full space of
schedules step by step.

2) We prune the space at each step and deliver a much

smaller space of schedules, in which all the Pareto
points are preserved. A Pareto optimal scheduling
method (POS) is presented based on this.

3) We parallelize POS as PPOS to speed up. A fast ap-
proximation of PPOS, PPOSa is presented to improve
the scalability further.

4) We implement PPOS and PPOSa, and carry them out
on a practical multimedia application with different
configurations and a set of synthesis graphs to demon-
strate their feasibility.

The remainder of this paper is organized as follows. The
related work is discussed in the next section. The input models
and the problems addressed are formulated in Section III. Our
main contributions are illustrated in Section IV. Section V
provides an experimental evaluation. Section VI concludes.

II. RELATED WORK

Most scheduling methods reported in the literature fall
under design-time mapping [2]. The optimization goals of
the mapping includes timing, energy consumption, etc. For
a given platform, even only one optimization criterion is con-
sidered, e.g. throughput, the scheduling and mapping problem
is already NP-complete. Researchers working on this problem
usually target the solutions for particular application domain
and specific optimization goals. And there are more heuristic
methods than exact ones. We propose both exact methods and
heuristic methods in this paper.

Scheduling SDFGs according to different optimization
goals have been studied extensively [1], [7], [8], on both
single processor platforms and mutilprocessor platforms. Many
have been done on HSDFGs, while much less on the general
SDFGs. Theoretically, it is always possible to convert an SDFG
to its equivalent HSDFG [9] and then use the available methods
for HSDFGs. However, converting an SDFG to an HSDFG
is very time-consuming, especially when SDFGs scale up.
The size of the HSDFG can be exponentially larger than the
original SDFG in extreme cases [10]. Our methods in this
paper work directly on SDFGs without converting them to any
other kind of graphs.

Dynamic Frequency Voltage Scaling (DFVS) is a technique
to reduce the power consumption of embedded systems. It
dynamically scales the supply voltage and operational fre-
quency of system components during run-time in accordance
with the temporal performance requirement of the application.
[11] proposes an energy efficient design exploration flow for
streaming applications with guaranteed throughput. It slows
down the frequency of the processor to reduce the energy
consumption at the cost of the larger execution time of the
application. D. Zhu et al. [12] focus on reducing the energy
consumption based on the idea of slack sharing among pro-
cessors. It reclaimed the time unused by a task to reduce the
execution speed of future tasks. A Genetic Algorithm based
approach is introduced in [13]. It uses DFVS to reduce the
energy consumption on heterogeneous architectures to meet
a deadline constraint. The DFVS technique is used when
the mapping of tasks on each processor is given, while the
mapping itself is what our methods try to find.

Authors of [14] present a heuristic method for HSDFGs
on heterogeneous platforms to minimize the total cost while

the time constraint is satisfied. Energy consumption can be
seen as a specific kind of cost. A mapping methodology is
proposed in [15] to reduce power consumption by decreasing
the energy consumption in communication while guaranteeing
the required performance. A method to reduce the energy
consumption under time constraint is presented in [16]. In
the design-time scheduling phase, it uses a genetic algorithm
to find an energy consumption and time Pareto-optimal set
represented by a Pareto Curve.

There are exact methods that consider time and energy
consumption constraints using model checking techniques,
which explore state spaces of problems exhaustively. Authors
of [17] use time automata as a common semantic model
to represent embedded systems to guarantee the worst case
response time of every actor. Authors of [18] use the concept
of Voltage and Frequency Islands and encode the optimization
problem as a query over priced timed automata to save the
energy consumption of the system under time constraint. The
methods in [19] find two Pareto optimal schedules using the
same input models as our methods. None of them focus on ex-
ploring full Pareto space and find all Pareto optimal schedules
considering both energy consumption and throughput, although
it is possible to use those methods iteratively to find the Pareto
space. We revise the method in [19] to produce Pareto space
of system models and compare its results with our methods to
evaluate the exactness of the proposed methods in Section V.

III. SYSTEM MODEL AND PROBLEM FOMULATION

An execution platform P is a set of heterogeneous pro-
cessors. A computation may require different amounts of
running time when it is executed on different processors. The
energy consumption per unit time for each processor p is
defined by uEC(p) and iEC(p). uEC(p) indicates the energy
consumption when p is used for some tasks, and iEC(p)
indicates the energy consumption when p is idle. The unit
energy consumption of processor p1 shown in Fig. 2b is 90
when it’s in use and 10 when it’s idle, for example.

An SDFG is a finite directed graph G = (V,E). V is the
set of actors, modeling the functional elements of the system;
E is the set of directed edges, modeling interconnections
between functional elements. Each edge e is weighted with
three properties, d(e), prd(e) and cns(e). Property d(e) is
the number of initial tokens on e, prd(e) is the number of
tokens produced onto e by each firing of the source actor
of e, and cns(e) is the number of tokens consumed from
e by each firing of the sink actor of e. These numbers are
also called the delay, production rate and consumption rate,
respectively. The source actor and sink actor of e are denoted
by src(e) and snk(e), respectively. The set of incoming edges
to actor α is denoted by InE (α), and the set of outgoing
edges from α by OutE (α). For a given execution platform
P , each actor α is weighted with computation times t(α, p),
for all p ∈ P . Normally, t(α, p) is a nonnegative integer. If
prd(e) = cns(e) = 1 for each e ∈ E, G is an HSDFG.

A simple SDFG G1 is depicted in Fig. 2a. Actor A needs
1 unit of time to finish on p1 and 2 units of time on p2,
respectively. The production rate and consumption rate of edge
〈A,B〉 are 2 and 3, respectively, and there is one initial token
on 〈A,B〉. A firing of actor A will produce 2 tokens on 〈A,B〉

A
B

C
B

A

A

Fig. 3: The equivalent HSDFG of G1.

and actor B can fire only when there are at least 3 tokens on
〈A,B〉. The actor without any incoming edge is free to fire at
any time point, e.g. actor A.

SDFG G = (V,E) is sample rate consistent [1] if and only
if there exists a positive integer vector q(V) satisfying balance
equations, q(src(e))×prd(e) = q(snk(e))×cns(e) for all e ∈
E. The smallest such q is called the repetition vector. We use q
to represent the repetition vector directly. The repetition vector
of G1 is q = [3, 2, 1], for example. A sample rate consistent
SDFG is deadlock-free if there is no zero-delay cycle in its
equivalent HSDFG. Only sample rate consistent and deadlock-
free SDFGs are meaningful in practice. Therefore we consider
only such SDFGs.

Definition 1. A System modelM = (G,P) includes an SDFG
G and its execution platform P .

A simple system modelM1 = (G1, P1) is shown in Fig. 2a
and Fig. 2b.

An iteration is a firing sequence in which each actor α
occurs exactly q(α) times. An iteration of G1 (Fig. 2a), for
example, includes three firings of actor A, two firings of B
and one of C. A sample rate consistent SDFG can always
be converted to an equivalent HSDFG, which captures the
data dependencies among firings of actors in the SDFG in
an iteration [9]. Fig. 3 is the equivalent HSDFG of G1, for
example. After execution of an iteration, the number of tokens
in the channels are equal to their initial state values.

Definition 2. A schedule of system model M = (G,P)
is a function S : V × N → N × P , where N is the set of
non-negative integers, defining the time arrangement and the
processor allocation of firings of actors in G. Schedule S with
an iteration period T is defined as follows. For the ith firing
of actor α, denoted by (α, i), i ∈ [1,∞):

1) S(α, i).st is (α, i)’s start time, when there are suffi-
cient tokens on each e ∈ InE (α) for a firing of α,
and S(α, i).st ≤ S(α, i+ 1).st ;

2) S(α, i).pa is the processor assigned to (α, i), which
is available at the moment S(α, i).st ;

3) S(α, i+ q(α)).st = S(α, i).st + T ;
4) S(α, i+ q(α)).pa = S(α, i).pa .

Such a schedule can be represented by the first iteration
and period T . It is the part of the schedule defined by S(α, i)
with 1 ≤ i ≤ q(α) for all α. From now on, we only consider
the finite part of schedules.

The Iteration period (IP) of schedule S is the computation
time of an iteration. For example, the IPs of schedules Sch1

and Sch4 in Fig. 2d are 7 and 10, respectively.

CSs0

CSs'1

CSs2 CSsi CSsi+1 CSsnQ

CSs''1

CSs'2

CSs''2

CSs'i

CSs''i

CSs'i+1

CSs''i+1

CSs'nQ

CSs''nQ

...

...

...

...

extend
prune

=S

=subS

CSs1

Constructing Scheduels with Extension

Constructing Scheduels with Extension and Pruning

... ...

Fig. 4: The framework of POS

For conciseness, we omit parameter S when it is clear in
context. Denote the set of all firings assigned on processor p
by AonP(p).

AonP(p) ≡def {(α, i)|S(α, i).pa = p ∧ i ∈ [1, q(α)] ∧ α ∈ V }.

The total time p occupied in S is

ocT (p) =
∑

(α,i)∈AonP(p)

t((α, i), p), (1)

where t((α, i), p) = t(α, p).

The energy consumption (EC) of schedule S is the sum
of energy used by all processors in an iteration. For each
processor, it includes the energy consumed both while it’s idle
and while it’s in use.

EC =
∑
p∈P

ocT (p) · uEC (p) + [IP − ocT (p)] · iEC (p). (2)

For schedule Sch2 in Fig. 2d, for example,

EC = (2× 10 + 6× 90) + (2× 20 + 6× 30) = 780.

A Pareto point is a tuple (EC , IP) of S. It is impossible
to make one (IP or EC) better off without making the other
worse off. Fig. 2c shows the Pareto space of the system model
M1, including four Pareto points. Schedule S is a Pareto
optimal schedule when its (EC , IP) is a Pareto point. There
may be more than one Pareto optimal schedules corresponding
to a Pareto point. A schedule of a Pareto point means anyone of
them. Fig. 2d shows Pareto optimal schedules of corresponding
Pareto points in Fig. 2c.

Given system model M = (G,P), suppose the set of
all schedules of M is S, the problem we address is to find
schedules of all Pareto points in S, denoted by ParetoS. For
each Pareto point, ParetoS includes one schedule of it. Set S
does not include those schedules that for some moments all
processors are idle. By removing all idle periods from such
schedules, better schedules can always be found.

IV. PARETO OPTIMAL SCHEDULING

A. Basic Ideas of Our Methods

It is straightforward that if we can find set S that includes
all schedules of system modelM, all Pareto optimal schedules
can be found by search in S. In Section IV-C, we first illustrate
how S is constructed step by step with extension. During
the construction, the partial schedules are called constructing
schedules, which are defined in Section IV-B. This construction

procedure is very time and space consuming, however. The
complexities are caused by the procedure of constructing S on
one hand, and by the procedure of search ParetoS from S on
the other hand. If we can find a subset of S with much smaller
size and with ParetoS still included, we can find ParetoS
much more efficiently.

We describe in Section IV-D how to prune the space during
the construction procedure and therefore reduce the number of
final schedules, collected in subS. We prove that subS ⊆ S
and that ParetoS ⊆ subS.

The framework of Pareto optimal scheduling method (POS)
is shown in Fig. 4, in which CSs , CSs ′ and CSs ′′ are sets of
constructing schedules.

POS is further parallelized in Section IV-E as PPOS to
speed up. A fast approximation of PPOS, PPOSa is presented
in Section IV-F to improve the scalability further. The only
difference between constructing schedules with firing mapping
and actor mapping is in extension procedure. Section IV-C
illustrates the extension for firing mapping. Actor mapping
only limits the mapping of firings of an actor to a same
processor. This constraint is introduced in Section IV-G.

B. Constructing Schedules

Definition 3. A constructing schedule (CS) of system model
M = (G,P) is a function cS : V ×N→ N×P that satisfies
conditions 1) and 2) of Definition 2 when S is replace with
cS and 1 ≤ i ≤ k for all α ∈ V and k ∈ [1, q(α)] .

For example, cs11, cs21 and cs22 shown in Fig. 5 are
constructing schedules of system model M1 (in Fig. 2). For
technical reason, let cS (α, 0).st = −1 for all α ∈ V .

To develop our method, we first define some useful attribu-
tions of CS. A CS cs is labeled with vectors sA(V), tsE (E),
ocT (P), tP(P) and tA(V), a set eA, and integers SL and
SE . All of them can be computed by the information of cs .

The number of already scheduled firings of actor α is
recorded with a positive integer sA(α). For example, in Fig. 5,
cs11.sA(A) = 1 and cs21.sA(A) = 2. The sA(α)th firing of α
is the last firing of α arranged by cs . For conciseness, when
mention cs(α, sA(α)).st and cs(α, sA(α)).pa , we use st and
pa , respectively.

Each token tk is tagged with a time stamp to indicate the
time when it is produced. Tokens on edge e is expressed by
a queue of their time stamp, tsE (e). All initial tokens have a
time stamp 0. For example, in Fig. 5, cs11 arranges A of G1

executes once on p1 at time point 0, the two tokens it produces
will have a time stamp 1, then we have cs11.tsE (〈A,B〉) =
{0, 1, 1}, including a time stamp of the initial token on edge
〈A,B〉. Assume that there is always a dummy token with time
stamp −1 on each edge. That is, tsE (e)[0] = −1 for all e ∈ E.
Operations on tsE (e) that affect its size (denoted by |tsE (e)|)
do not count the dummy token.

When there are sufficient tokens on the incoming edges of
actor α, it is enabled for a firing. If the firing number of α
reaches q(α), no new firing of α is allowed, because α has
finished its firings in one iteration. The enabling condition of
α is denoted by en(α).

en(α) ≡def ∀e ∈ InE(α) : |tsE(e)| ≥ cns(e)∧ sA(α) < q(α).

cs1
1�

sA=<1,0,0>
tP=<1,0>
tA=<0,1,-1>
eA={A,B}

�p1
p2

0 1 Time

�
�

p1
p2

0 1 2 3 4 5 Time

� �p1
p2

0 1 2 3 4 5 Time

A C2 B 23 1

tsE: 2 2 1 1 0

A C2 B 23 1

tsE: 5

cs2
1�

sA=<2,0,0>
tP=<2,0>
tA=<1,1,-1>
eA={A,B}

cs2
2�

sA=<1,1,0>
tP=<1,5>
tA=<0,1,5>
eA={A}

exC
S(cs

1
1
,A,2

,p1)

exCS(cs 1
1 ,B,1,p2)

A C2 B 23 1

tsE: 1 1 0

tsE(<B,C>)=∅

SL=1
EC=110 SL=5

EC=270

SL=2
EC=220

Fig. 5: Extension of a constructing schedule.

If α has no incoming edges, the first condition is always
true and therefore whether it is enabled is decided by sA(α).
All enabled actors are collected in set eA.

eA = {α|α ∈ V ∧ en(α) = true}. (3)

The total time while p is occupied in cs is captured by
ocT (p), which is computed by Eqn. (1) when S is replaced
with cS . The end time of the last scheduled firing on p is
recorded with tP(p). Next firing on p can not be arranged
before tP(p).

tP(p) = max
α∈V ∧pa=p

st + t(α, p). (4)

The time stamps of those tokens already on the incoming
edges of actor α set a bound of start time of next firing of α.
See Fig. 5 for example. In CS cs22, there is one token with
time stamp 5 on edge 〈B,C〉. Then next firing of actor C can
not be scheduled before time point 5. tA(α) is used to express
the possible start time of the (sA(α)+ 1)th firing of actor α.

tA(α) =

{
−1, if sA(α) = q(α);

max {tsB(α), st}, otherwise,
(5)

where

tsB(α) =

{
0, if InE(α) = ∅;
maxe∈InE(α)∧0≤i≤nT tsE(e)[i], otherwise,

and nT = min(cns(e), |tsE (e)|) is the number of tokens that
affects the next firing of snk(e).

The schedule length SL is the time when all scheduled
firings finished. That is,

SL = max
p∈P

(tP(p)). (6)

The energy consumption SE can be computed by Eqn. (2),
in which IP is replaced with SL.

When sA(α) = q(α) for all α ∈ V , cs is a schedule and
SL and SE are its IP and EC, respectively. Above defined
attributions of a constructing schedule are summarized in
Table I.

C. Extension

We call a CS cs an empty CS if cs.sA(α) = 0 and
cs(α, 0) = −1 for all α ∈ V . Schedules of a system model
are constructed step by step, beginning with a set including an
empty CS. At each step, we get a set of extensions of current
set of CSs.

TABLE I: Attributions of a constructing schedule

Name Eqn. Meaning

sA(V) - sA(α) is the number of already scheduled firings of α.

tA(V) (5) tA(α) is the possible start time of the (sA(α) + 1)th firing of α.

eA (3) The set of enabled actors.

tsE(E) - tsE(e) is a queue of time stamps of edge e.

ocT(P) (1) ocT(p) is the total time while processor p is occupied.

tP(P) (4) tP(p) is the end time of the last scheduled firing on p.

SL (6) Current schedule length.

SE (2) Current energy consumption.

Definition 4. A CS cs ′ is an extension of CS cs on the
ith firing of actor α and processor p, denoted by cs ′ =
exCS (cs, α, i, p), if Eqns. (7) to (12) are satisfied. For con-
ciseness, we omit the elements of attributions if their values
remain unchanged.

α ∈ cs.eA ∧ cs.sA(α) = i− 1 (7)

cs ′(α, i).st = max{cs.tA(α), cs.tP(p)} (8)
cs ′(α, i).pa = p (9)

∀e ∈ InE(α) : |cs ′.tsE(e)| = |cs.tsE(e)| − cns(e)

∧ cs ′.tsE(e) = cs.tsE(e)− {first cns(e) elements} (10)

∀e ∈ OutE(α),k ∈ [1, prd(e)] :

|cs ′.tsE(e)| = |cs.tsE(e)|+ prd(e)

∧cs ′.tsE(e)[|cs.tsE(e)|+ k] = cs ′.tP(p) (11)

cs ′.sA(α) = i (12)

The ith firing of actor α can only be scheduled after its
previous firing has been scheduled and α is enabled. Eqn. (7)
is the precondition to guarantee a valid extension.

If α is enabled, the ith firing can neither start earlier than
the time stamp of the latest tokens that make α enabled, nor
can it start earlier than the start time of its previous firing,
i.e.,cs ′(α, i− 1).st(= cs(α, i− 1).st). If the firing is arrange
on processor p, its start time cannot also be earlier than the
available time of p, tP(p). Therefore, according to Def. 3 and
Eqns. (5), (8) and (9), the extension cs ′ is also a CS.

Theorem 5. An extension of a CS is also a CS.

After a firing of an actor is scheduled, the tokens on its
incoming edges and outgoing edges are changed. The firing
consumes cns(e) tokens from each incoming edge e and
produces prd(e) tokens on each outgoing edge e with their
produce time as time stamps. Eqns. (10) and (11) formalize the
changes. Also, the number of already scheduled firings of the
actor is increased by one (Eqn. (12)). They are postconditions
of a valid extension.

Other attributions of exCS (cs, α, i, p) can be obtained by
the equations introduced in Section IV-B. Fig. 5 shows effects
of an extension, for example. Lemma 6 can be derived from
the definition straightforwardly.

Lemma 6. If cs ′ = exCS (cs, α, i, p), then cs ′.sA(α) =
cs.sA(α) + 1 and cs ′.ocT (p) = cs.ocT (p) + t(α, p).

Let Lcs =
∑
α∈V sA(α) denotes the number of firings

already arranged. For cs ′, an extension of cs , Lcs′ = Lcs + 1
always holds. Let LCSs = i, if ∀cs ∈ CSs : Lcs = i. A
CS cs has |eA| · |P | extensions, which include arrangements
combining all enabled actors and all processors. Algorithm 1
shows how to extend a set of constructing schedules. It is
obvious that LCSs′ = LCSs + 1.

Algorithm 1 Extend(CSs)
Require: A set of constructing schedules CSs of system

model M = (G,P)
Ensure: A set of constructing schedules CSs ′, including ex-

tensions of all constructing schedules in CSs
1: CSs ′ = ∅
2: for all cs in CSs do
3: for all α ∈ cs.eA do
4: for all p ∈ P do
5: CSs ′ ← exCS (cs, α, cs.sA(α) + 1, p)
6: end for
7: end for
8: end for
9: return CSs ′

In a schedule of system modelM = (G,P), nQ firings are
arranged, where nQ =

∑
α∈V q(α). The space of schedules

of M, S, can be constructed as follows.

Initially, the set of constructing schedules includes an
empty CS cs0. That is, CSs0 = {cs0} and LCSs0 = 0. By
computing CSsi+1 = Extend(CSsi) iteratively until CSsnQ
and LCSsnQ = nQ , we get a set that includes all schedules
of the system model. The construction procedure includes
nQ steps, each of which considers all possible extensions.
Therefore, we have CSsnQ = S. The construction procedure
is shown in the lower part of Fig. 4.

Pareto space ParetoS can always be found in S. The size
of S is usually large, however. In the worst case, an extension
of a CS includes (|V | · |P |) CSs and S includes (|V | · |P |)nQ
schedules. In the following section, we illustrate how to prune
the CS space at each step and therefore reduce the size of the
final set of schedules, in which ParetoS is still included.

D. Pruning

The space at each step is pruned according to a domination
relation as defined below.

Definition 7. Constructing schedules cs1 dominate cs2, de-
noted by cs1 �d cs2 , if Eqns. (13) to (16) are satisfied.

cs1.sA = cs2.sA (13)
cs1.ocT � cs2.ocT (14)
cs1.tP � cs2.tP (15)
cs1.tA � cs2.tA (16)

where, X � Y means that X[i] ≤ Y [i] for each i.

Two CSs are compared only when they have arranged the
same numbers of firings of all actors (Eqn. (13)). As above
analysis, the length of a schedule is decided by its tP and tA
and the energy consumption of a schedule is decided by its
ocT and tP . According to Def. 7 and Eqns. (6) and (2), SL

and SE of the dominated CS are never better than SL and SE
of the dominator.

Theorem 8. If cs1 �d cs2, then cs1.SL ≤ cs2.SL and
cs1.SE ≤ cs2.SE .

Below we prove that these better properties of the domi-
nator are preserved by extension.

Theorem 9. If cs1 �d cs2, then ∀α ∈ V, p ∈ P :
exCS (cs1, α, i, p)�d exCS (cs2, α, i, p).

Proof: Let cs ′k = exCS (csk, α, i, p), k ∈ {1, 2}. We need
to prove that cs ′1 and cs ′2 satisfy all four conditions in Def. 7.
By Lemma 6, Eqns. (13) and (14) hold. Let i = cs ′1.sA(α) =
cs ′2.sA(α).

cs1 �d cs2

⇒ cs1.tP(p) ≤ cs2.tP(p) ∧ cs1.tA(α) ≤ cs2.tA(α)

⇒ cs ′1(α, i).st ≤ cs ′2(α, i).st //by Eqn. (8) (17)
⇒ cs ′1.tP(p) ≤ cs ′2.tP(p) //by Eqn. (4)

Extension does not affect tP(p′) with p′ 6= p. Hence, Eqn.
(15) holds.

By Eqn. (17), we have cs ′1.tA(α) ≤ cs ′2.tA(α). For each
e ∈ OutE(α), cs ′1 add prd(e) tokens on e with time stamp
cs ′1.tP(p), hence the maximal time stamp of the first cns(e)
tokens of e may only be increased to cs ′1.tP(p). It is the same
case for cs ′2. As cs1.tA � cs2.tA and we have already proven
that cs ′1.tP � cs ′2.tP , we have cs ′1.tA(v) ≤ cs ′2.tA(v) for
v = snk(e). Extension does not change tA(u) for other actor
u ∈ V . Hence, Eqn. (16) holds.

A procedure that prunes a set of CSs with domination is
shown in Algorithm 2. The domination relation is partially
ordered. It is possible that two CSs do not dominate each other.
Algorithm 2 returns CSs ′′ as the pruned set of CSs ′. Line 1
initializes CSs ′′ to be an empty set. Lines 2-15 check each CS
cs ′ in CSs ′ to decide whether it should be added into CSs ′′.
If cs ′ is not dominated by any CS in CSs ′′, it’s added to CSs ′′

(Lines 13). Those CSs in CSs ′′ dominated by cs are removed
from CSs ′′ (Line 9).

Inserted pruning at each step, the procedure of construction
of Pareto optimal schedules (POS) is illustrated in the upper
part of Fig. 4 and sketched in Algorithm 3.

The initial set is the same as CSs0, including empty con-
structing schedule cs0 (Line 2). Each step includes extension
and pruning (Lines 3-6). By Theorems 9 and 8, it holds that
CSs ′′i ⊆ CSs ′i and all the potential Pareto points are preserved
in CSs ′′nQ . Therefore, we have ParetoS ⊆ CSs ′′nQ ⊆ S.

The worst complexity of POS is the same as that of the
procedure including only extension. However, in most cases it
reduces the space dramatically and therefore finds ParetoS
speedily. For example, the number of schedules of system
model M1 in Fig. 2 would be 66 in the worst case. However,
POS delivers only 13 schedules, in which all the 4 Pareto
optimal schedules are included. The number of constructing
schedules of M1 at each step is shown in Table II, in which
|CSi| is the size when constructing schedules with extension
only and |CS′′

i | is the size of CSs at each step of POS.

Below we further speed up POS by parallelizing it.

Algorithm 2 Prune(CSs ′)
Require: A set of constructing schedules CSs ′ of system

model M = (G,P) with LCSs′ = i
Ensure: A set of constructing schedules CSs ′′ ⊆ CSs ′ with

LCSs′′ = i
1: CSs ′′ = ∅
2: for all cs ′ ∈ CSs ′ do
3: isDom=false
4: for all cs ′′ ∈ CSs ′′ do
5: if cs ′′ �d cs

′ then
6: isDom=true
7: break
8: else if cs ′ �d cs

′′ then
9: remove cs ′′ from CSs ′′

10: end if
11: end for
12: if isDom=false then
13: CSs ′′ ← cs ′

14: end if
15: end for

Algorithm 3 POS(M)
Require: System Model M = (G,P)
Ensure: ParetoS of M

1: cs0=empty CS
2: CSs ′′0 = {cs0}
3: for i = 0; i < nQ ; i++ do
4: CSs ′i+1 = Extend(CSs ′′i)
5: CSs ′′i+1 = Prune(CSs ′i+1)
6: end for
7: ParetoS={Pareto optimal schedules in CSs ′′nQ}
8: return ParetoS

TABLE II: The number of constructing schedules of M1 at
each step

i 1 2 3 4 5 6
|CSi| 2 8 24 48 96 192
|CS′′

i | 2 7 13 14 9 13

E. Parallelization

Recall the definitions of extension and domination. At each
step of POS (Algorithm 3), each extension does not affect each
other, while pruning operations are possible only for those
CSs with the same sA. This observation reveals the possibility
that, if sets CSs ′i and CSs ′′i are divided properly into some
subsets according to sA, at each step of POS, extension and
pruning may be conducted on those subsets in parallel. Below
we illustrate the parallelized POS algorithm, denoted by PPOS.

Consider a set of constructing schedules, CSs . It is divided
as subsets in terms of sA of its elements. All CSs in CSs with
sA = key is put into a subset, CSs[key]. That is,

CSs[key] = {cs|cs ∈ CSs ∧ cs.sA = key}.

Let K be the set of keys of CSs ′ at each step. As an
intermediate variable, each subset of CSs ′, CSs ′[key], key ∈
K, is stored with a FIFO queue, denoted by bQ [key].

bQ (=CSs'i+1)
/*Queues*/

Extend'(CSs''i , bQ)
/*Producer threads*/

 cs1
k1 … cs1

4 cs1
3 cs1

2 cs1
1

keyi,1
 -> csi,1

1, csi,1
2, …

keyi,2
 -> csi,2

1, csi,2
2, …

……

CSs''i
keyi+1,1

 -> csi+1,1
1, csi+1,1

2, …

keyi+1,2
 -> csi+1,2

1, csi+1,2
2, …

……

CSs''i+1

Prune'(bQ, CSs''i+1)
/*Consumer threads*/

||

keyi+1,1 ->

 cs2
k2 … cs2

4 cs2
3 cs2

2 cs2
1

 cs|K|
k|K| … cs|K|

3 cs|K|
2 cs|K|

1

keyi+1,2 ->

keyi+1,|K| ->

…………

……

…… ……

Fig. 6: Demostration of a step of PPOS

Only those extensions that produce constructing sched-
ules with sA = key may operate on queue bQ [key]. Let
Extend′(CSs, bQ [key]) be a variant of Algorithm 1, in which
CSs ′ is replaced with bQ [key] and after Line 3, a guard to
check whether cs.sA(α)+1 = key [α] and cs.sA(β) = key [β]
for any other actor β is added. For all key in K, the |K|
threads of Extend′(CSs, bQ [key]) can work in parallel without
data race in bQ .

The constructing schedules are pruned according to domi-
nation relation among them. Only CSs with the same sA may
dominate each other. Let Prune′(bQ [key],CSs ′′[key]) be a
variant of Algorithm 2, in which CSs ′ is replaced with bQ [key]
and CSs ′′ is replaced with CSs ′′[key]. At each step, the |K|
threads of Prune′(bQ [key],CSs ′′[key]) for all key in K can
work in parallel without data race in bQ and CSs ′′.

Therefore, PPOS method allows at most |Ki+1| producers
for extension and |Ki+1| consumers for pruning to work in
parallel at ith step. It is outlined in Algorithm 4, where

Extend′(CSs ′′i , bQ) =‖key∈Ki+1 Extend′(CSs ′′i , bQ [key])

Prune′(bQ ,CSs ′′i+1) =‖key∈Ki+1 Prune′(bQ [key],CSs ′′i+1[key])

Algorithm 4 PPOS(M)
1-3: The same as Lines 1-3 in Algorithm 3.
4: bQ = ∅
5: Extend′(CSs ′′i , bQ) ‖ Prune′(bQ ,CSs ′′i+1)
6-8: The same as Lines 6-8 in Algorithm 3.

A step of PPOS is demonstrated in Fig. 6. Usually at
each step, extension procedure is much faster than pruning
procedure, we allocate more threads for consumers and less
for producers in implementation.

� � �
� �

�p1

p2
EC=810

0 1 2 3 4 5 6 7 8 9 10 11 Time

Fig. 7: A schedule of M1 with actor mapping

F. Approximation

A fast approximation of PPOS, PPOSa, is obtained by
pruning the space according to a quasi-domination relation,
which compares only the schedule length SL and energy
consumption SE of two constructing schedules.

Definition 10. Constructing schedules cs1 quasi-dominate
cs2, if Eqns. (13), (18) and (19) are satisfied.

cs1.SL ≤ cs2.SL (18)
cs1.SE ≤ cs2.SE (19)

Pruning according to a quasi-domination relation may
remove some potentially better schedules and therefore lead to
a suboptimal set of schedules at the final step. However, our
experimental results in Section V show that results returned
by PPOSa are close to results returned by PPOS.

G. Actor mapping

For some applications, all executions of a computation are
required to run on the same processor. In this case, a schedule
with actor mapping is needed. Actor mapping maps all firings
of an actor to a same processor. That is,

∀α ∈ V, s(α, 1).pa = s(α, 2).pa = ... = s(α, i).pa = ...

A schedule of M1 with actor mapping is demonstrated in
Fig. 7. At time point 3, the second firing of actor B is enabled
and processor p1 is available. Since the first firing of B has
been arranged on p2, which is being occupied, the second
firing of B cannot start at this moment.

The only difference between constructing schedules with
firing mapping and actor mapping is in the extension proce-
dure, which is outlined in Algorithm 5. When the first firing
of actor α is being scheduled (Line 4), it can be arranged on
any available processor p with proper start time (Lines 5 to
7). Then cs(α, 1).pa = p. The later firings of α can only be
extended on cs(α, 1).pa (Line 9).

From now on, prefixes fm and am are used for PPOS
with firing mapping and actor mapping, respectively. That
is, fmPPOS and fmPPOSa return Pareto space of schedules
with firing mapping; amPPOS and amPPOSa return that of
schedules with actor mapping.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed fmPPOS, fmPPOSa, amPPOS and amPPOSa
algorithms are implemented [20] and applied on two sets of
system models. They run on a 2.4GHz server with 160 cores,
32MB Cache and 256GB RAM. If not marked specially, the
units of execution time in performance evaluation are in second
(s). The timeout limit is set to 30 minutes.

Algorithm 5 Extendam(CSs)
Require: A set of constructing schedules CSs of system

model M = (G,P) with LCSs = i
Ensure: A set of constructing schedules CSs ′, including ex-

tensions of all CSs in CSs , with L′
CSs = i+ 1

1: CSs ′ = ∅
2: for all cs in CSs do
3: for all α ∈ cs.eA do
4: if cs.sA(α) = 0 then
5: for all p ∈ P do
6: CSs ′ ← exCS (cs, α, 1, p)
7: end for
8: else
9: CSs ′ ← exCS (cs, α, cs.sA(α) + 1, cs(α, 1).pa)

10: end if
11: end for
12: end for
13: return CSs ′

FD

IDCTVLD

x

RCMC

x

x x

(a) SDFG of the MP4 decoder

Sce. x
Rep. Vector

nQ
FD VLD IDCT MC RC

P5 5 1 5 5 1 1 13
P10 10 1 10 10 1 1 23
P30 30 1 30 30 1 1 63

(b) The repetition vector of each Px and the sums of its elements

Energy Exec. Time
inuse idle FD VLD IDCT MC RC

p1 90 10 0 1 1 1 1
p2 30 20 0 2 2 2 2

(c) The execution platform P1 and the execution time of actors on
different processors

Fig. 8: System models of the MPEG-4 decoder

The first set is an MPEG-4 decoder with different param-
eters. The MPEG-4 decoder supports various kinds of frames.
It is modeled as a scenario-aware dataflow (SADF) model
in [21]. Each scenario in an SADF model is actually an SDFG.
Three scenarios are considered, namely P5, P10, and P30.
For each scenario Px, the sum of elements of its repetition
vectors is 3 + 2x. The problem scale grows when x goes
larger. The SDFGs of the MPEG-4 decoder and their repetition
vectors are shown in Fig. 8a and Fig. 8b, respectively. The
execution platform P1 and the execution time of actors on
different processors are shown in Fig. 8c. The second set
consists of 180 synthetic strongly connected SDFGs generated
with SDF3 [22], mimicking real DSP applications. The number
of actors in an SDFG (nA) and the sum of the elements
in the repetition vector (nQ) have significant impact on the

performance of various methods. We use six groups with
different values of nA and nQ . Each group includes 30 graphs
with the same values of nA and nQ . For example, a group
named a5q20 includes 30 SDFGs with nA = 5 and nQ = 20.
They all use execution platform P1 as shown in Fig. 8c. The
execution time of their actors on processor p1 are assigned
randomly and each execution time on p2 is double of that on
p1. A tested system model consists of an above-mentioned
SDFG and execution platform P1, which may include two,
four or eight processors with one, two or four processors per
type, respectively.

The total number of threads is set to the maximum value
allowed by the experimental platform, which is 160 in our ex-
periments. Since extension is usually much faster than pruning
at each step, we allocate 90 percent of cores to pruning threads
(Consumers) and 10 percent to extension threads (Producers).

B. Experimental Results

We revise the method in [19] (denoted by MC) to produce
Pareto space of system models and compare its results with
that of fmPPOS and fmPPOSa to evaluate the accuracy of our
methods. The results for the MPEG-4 decoder are shown in
Table III, which include two parts. The first part shows results
for firing mapping, including the Pareto spaces of different sce-
narios of the MPEG-4 decoder with different parameters and
the execution time of MC, fmPPOS and fmPPOSa. Similarly,
the second part shows results for actor mapping. Since MC
cannot deal with actor mapping, its results are not shown. The
first column, labeled with #Pro, is the number of processors
in the tested system models.

TABLE III: Experimental results for MPEG-4 decoder

Results for Firing Mapping

Pareto Space (EC,IP)

#Pro P5 P10 P30

2
(990,9)(960,10) (1790,15)(1760,16) (5020,42)(4990,43),

(4960,44)

4 (1020,5) (1820,9) (5080,22)(5020,23)

Execution Time (s)

MC [19]/fmPPOS/fmPPOSa

2 0.1/0.1/0.1 0.2/0.2/0.2 6.4/1.2/1.0

4 13.5/0.3/0.1 19m/11.4/0.2 N/N/0.7

Results for Actor Mapping

Pareto Space (EC,IP)

2
(1230,11)(1020,12) (2330,21)1820,22) (6730,61)(5020,62)

(990,13)(960,14) ((1790,23)(1760,24) (4990,63),(4960,64)

4
(1380,7)(1320,12) (2480,12)(2420,22) (6880,32)(6820,62)

(1080,13) (1880,23) (5080,63)

Execution Time (s)

amPPOS/amPPOSa

2 0.1/0.1 0.1/0.6 1.4/0.4

4 0.1/0.1 0.2/0.4 0.4/0.4

N - Timeout.

The model checking method in [19] can deal with various
constraints such as buffer size, which may limit the space that
need to be explored. Our experiments here use no constraints.

For all scenarios and parameters of MPEG-4 decoder that [19]
can finish, fmPPOS and fmPPOSa return exact Pareto spaces
as [19] does. The Pareto Points of scenario P30 and four
processors are returned by fmPPOSa, because neither MC nor
fmPPOS finishes in 30 minutes. Our methods outperform MC
method more when the models grow larger. For example, for
the system model with P10 and four processors, MC takes
19 minutes, while fmPPOS takes 11.4 seconds and fmPPOSa
only 0.2 second. The three times are almost the same for the
system model with P5 and two processors.

When all firings of an actor are limited on one processor,
the EC and IP of a schedule are generally larger than that of
a schedule with firing mapping. This is also demonstrated by
the Pareto space returned by amPPOS in the second part of
Table III. Algorithm amPPOS is much faster than fmPPOS
because the space of each extension step is limited by actor
mapping. The number of processors of system models seems
to have important impacts on exact methods MC, fmPPOS and
amPPOS, but not for the approximate methods. For the case
when the exact methods fail to meet the timeout limit, the
approximate methods do well, e.g. the case with P30 and four
processors.

To further evaluate the proposed methods, we carry out
them on the set of synthesis models. The results of relative
small cases are shown in Table IV and the results of large
cases are shown in Table V.

The experiments on the relative small cases are mainly
used to evaluated the performance of exact methods fmPPOS
and amPPOS and measure the accuracy of the approximate
methods. The second, third, fifth and sixth columns of Ta-
ble IV show the execution time of different methods. Each
point includes the average, maximal and minimal values
(AVG/MAX/MIN) of graphs in the same group. For those
groups that PPOS or PPOSa can not finish all cases within
timeout period, their values are that of those finished. For all
the cases with 5 actors (a5q20 and a5q50), fmPPOS finishes
in 11.3 seconds and amPPOS finishes in 1.4 seconds. For the
larger cases (a10q50 and a10q100), fmPPOS fails to meet the
timeout limit on 7 cases and amPPOS fails on 1 case. In most
cases, the approximate methods finished in several seconds.

TABLE IV: Results for synthesis models with two processors

fmPPOS fmPPOSa NADRS amPPOS amPPOSa

Exe. Time (AVG/MAX/MIN) of fmPPOSa Exe. Time (AVG/MAX/MIN)

a5q20 0.2/1.1/0.1 0.1/0.3/0.1 1.0% 0.1/0.4/0.1 0.1/0.4/0.0

a5q50 1.9/11.3/0.1 0.3/0.7/0.1 0.6% 0.4/1.4/0.1 0.5/1.7/0.1

a10q50 37.2/8.2m/0.3b 0.7/7.3/0.1 0.8% 2.6/30.0/0.1a 0.7/2.5/0.1

a10q100 4.6m/23.7m/1.1b 7.7/2.6m/0.2 0.5% 12.7/3.2m/0.3a 1.7/16.9/0.2
a Timeout on 1 case.
b Timeout on 7 cases.

Similar to [23], we use the Average Distance to Reference
Set (ADRS) to measure the accuracy of our approximation
methods. The Pareto optimal sets returned by proposed exact
methods are used to be reference sets. We calculate Euclidean
distance for each point in the approximation set to the clos-
est Pareto-optimal point and take average over all of these
distances as ADRS [24]. The ADRS is normalized by the

ratio of ADRS to the average distance of reference set for
each system model to a zero point. The normalized ADRS is
called NADRS. NADRS of fmPPOSa is calculated for each
SDFG in group a5q20, a5q50, a10q50 and a10q100, with two
processors. The NADRS of each group of models is shown
in the fourth column of Table IV. The experimental results
show that the results obtained by our approximation methods
are very close to the exact Pareto optimal sets.

The experiments on the large cases are mainly used to
evaluate the performance of proposed approximate methods.
Table V shows that except for the extreme large cases
(a10q1000), fmPPOSa and amPPOSa are efficient on most
cases. For example, having a close look at the execution time
of amPPOSa on group a20q100 with #Pro = 4, we find
there is one case taking 29.2 minutes, two cases taking more
than 1 minute, one case 14 seconds, and 8 cases less than 1
second. The results also show that, dislike the exact methods,
the number of processors of a system model has not important
impact on the performance of the approximate methods.

TABLE V: Execution time (s) for large scale system models

#Pro = 4 #Pro = 8

fmPPOSa amPPOSa fmPPOSa amPPOSa

AVG/MAX/MIN AVG/MAX/MIN AVG/MAX/MIN AVG/MAX/MIN

a10q50 0.7/5.5/0.1 0.8/3.4/0.1 0.7/4.3/0.1 0.7/2.3/0.1

a10q100 5.6/1.8m/0.2 1.7/11.5/0.4 5.3/1.4m/0.1 1.5/12.5/0.4

a20q100 44.2/14.6m/0.5a 1.1m/29.2m/0.4 1.5m/29.4m/0.5 12.2/2.2m/0.4a

a10q1000 4.2m/21.4m/19.9b 40.6/4.6m/0.9a 3.1m/15m/4.2b 70.8/12.2m/1.5a

a Timeout on 1 to 2 cases.
b Timeout on 9 to 13 cases.

VI. CONCLUSIONS

In this paper, we have presented a parallelized Pareto
optimal scheduling method (PPOS) for scheduling SDFGs
on heterogeneous multiprocessor platforms. The optimization
criteria are throughput and energy consumption. PPOS is an
exact method that can find all exact Pareto optimal schedules,
with firing mapping or with actor mapping. An approximation
variant of PPOS, PPOSa, has also been presented to deal with
larger system models. The exactness and efficiency of the exact
methods are further confirmed by the experimental results. The
approximate methods return results close to the exact ones.

The design of complex embedded systems usually needs
to take into account various resource constraints. Besides
processors and energy, we will extend our methods to deal
with more resource constraints in the future work.

REFERENCES

[1] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” IEEE Trans. Comput,
vol. 36, no. 1, pp. 24–35, 1987.

[2] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
Proc. of the 50th Ann. Design Automation Conf. (DAC), 2013, pp. 1–10.

[3] S. Stuijk, M. Geilen, and T. Basten, “Throughput -buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs,” IEEE
Trans. Comput, vol. 57, no. 10, pp. 1331–1345, 2008.

[4] X. Y. Zhu, M. Geilen, T. Basten, and S. Stuijk, “Multiconstraint static
scheduling of synchronous dataflow graphs via retiming and unfolding,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 6, pp. 905–918, 2016.

[5] M. H. Wiggers, M. J. Bekooij, and G. J. Smit, “Efficient computation of
buffer capacities for cyclo-static dataflow graphs,” in Proc. of the 44th
Design Automation Conference (DAC). IEEE, 2007, pp. 658–663.

[6] S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,”
in Proc. of the 1995 Acoustics, Speech, and Signal Processing Conf.
IEEE, 1995, pp. 2651–2654.

[7] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software synthesis
from dataflow graphs. Springer, 1996, vol. 360.

[8] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing buffer require-
ments under rate-optimal schedule in regular dataflow networks,” The
Journal of VLSI Signal Processing, vol. 31, no. 3, pp. 207–229, 2002.

[9] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: schedul-
ing and synchronization. CRC Press, 2009.

[10] V. Zivojnovic and R. Schoenen, “On retiming of multirate DSP algo-
rithms,” in Proc. of the Acoustics, Speech, and Signal Processing, 1996.
IEEE Computer Society, 1996, pp. 3310–3313.

[11] J. Zhu, I. Sander, and A. Jantsch, “Energy efficient streaming applica-
tions with guaranteed throughput on mpsocs,” in Proc. of the 8th ACM
int. conf. on Embedded software. ACM, 2008, pp. 119–128.

[12] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiprocessor
real-time systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 14, no. 7, pp. 686–700, 2003.

[13] D. Wu, B. Al-Hashimi, and P. Else, “Scheduling and mapping of
conditional task graph for the synthesis of low power embedded
systems,” Computers and Digital Techniques, vol. 150, no. 5, pp. 262–
273, 2003.

[14] Z. Shao, Q. Zhuge, C. Xue, and E. H.-M. Sha, “Efficient assignment and
scheduling for heterogeneous DSP systems,” IEEE Trans. on Parallel
and Distributed Systems, vol. 16, no. 6, pp. 516 – 525, 2005.

[15] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular noc architectures,” Computer-Aided Design of Integrated
Circuits and Systems, vol. 4, no. 24, pp. 551–562, 2005.

[16] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins, “Energy-aware runtime scheduling for embedded-
multiprocessor socs,” IEEE Design and Test of Computers, 2001.

[17] M. Fakih, K. Grüttner, M. Fränzle, and A. Rettberg, “State-based real-
time analysis of SDF applications on MPSoCs with shared communi-
cation resources,” Journal of Systems Architecture, vol. 61, no. 9, pp.
486–509, 2015.

[18] W. Ahmad, P. K. Holzenspies, M. Stoelinga, and J. Van De Pol, “Green
computing: power optimisation of VFI-based real-time multiprocessor
dataflow applications,” in Proc. of Digital System Design (DSD). IEEE,
2015, pp. 271–275.

[19] X.-Y. Zhu, R. Yan, Y.-L. Gu, J. Zhang, W. Zhang, and G. Zhang,
“Static optimal scheduling for synchronous data flow graphs with model
checking,” in Proc. of FM 2015: Formal Methods, ser. LNCS, vol. 9109.
Springer, 2015, pp. 551–569.

[20] [Online]. Available: http://lcs.ios.ac.cn/∼zxy/tools/idfos.html
[21] B. Theelen, J.-P. Katoen, and H. Wu, “Model checking of scenario-

aware dataflow with CADP,” in Proc. of Design, Automation and Test
in Europe, 2012, pp. 653–658.

[22] S. Stuijk, M. Geilen, and T. Basten, “Sdf3: Sdf for free,” in the 6th Int.
Conf. on Application of Concurrency to System Design. IEEE, 2006,
pp. 276–278.

[23] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Iteration-
based trade-off analysis of resource-aware sdf,” in 2011 14th Euromicro
Conference on. Digital System Design (DSD), 2011, pp. 567–574.

[24] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-
seca, “Performance assessment of multiobjective optimizers: an analysis
and review,” IEEE Transactions on Evolutionary Computation, vol. 7,
no. 2, pp. 117–132, April 2003.

