
Work-in-Progress: A Unified Framework for Throughput

Analysis of Synchronous Data Flow Graphs under Memory

Constraints

Xue-Yang Zhu
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

Beijing, China 100190

zxy@ios.ac.cn

ABSTRACT
Streaming applications are often modeled with Synchronous
data flow graphs (SDFGs). A proper analysis of the models is
helpful to predict the performance of a system. In this paper,
we focus on the throughput analysis of memory-constrained
SDFGs (MC SDFGs), which needs to choose a memory ab-
straction that decides when the space of consumed data
is released and when the required space is claimed. Di↵er-
ent memory abstractions may lead to di↵erent achievable
throughputs. The existing techniques, however, consider only
a certain abstraction. If a model is implemented according to
other abstractions, the analysis result may not truly evaluate
the performance of the system. In this paper, we present a
unified framework for throughput analysis of MC SDFGs
for di↵erence abstractions, aiming to provide evaluations
matching up to the corresponding implementations.

ACM Reference format:

Xue-Yang Zhu. 2017. Work-in-Progress: A Unified Framework for
Throughput Analysis of Synchronous Data Flow Graphs under
Memory Constraints. In Proceedings of CODES/ISSS ’17 Com-

panion, Seoul, Republic of Korea, October 15–20, 2017, 2 pages.
DOI: 10.1145/3125502.3125535

1 INTRODUCTION
An important class of applications in embedded systems
are streaming applications, which usually run under limited
resources and are required to achieve a high throughput.
Synchronous data flow graphs (SDFGs) [3] are widely used to
model streaming applications. Each node (also called actor)
in an SDFG represents a computation and each edge models
a FIFO channel which carries streams of data. A token is an
atomic data object. A sample rate is the number of tokens
produced or consumed by an actor. The sample rates of
actors in an SDFG may di↵er.

In the semantics of SDFGs, an actor consumes tokens from
its input edges at the start of its firing and produces tokens
on its output edges at the end of its firing. When memory

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

CODES/ISSS ’17 Companion, Seoul, Republic of Korea

© 2017 ACM. 978-1-4503-5185-0/17/10. . . $15.00
DOI: 10.1145/3125502.3125535

constraints are concerned, an analysis need to choose an
abstraction about when to release the bu↵er space of the
consumed tokens and when to claim the space for the pro-
duced tokens. Many studies conducted to investigate storage
aspects for SDFGs [4, 5] choose a conservative abstraction.
They assume that for a firing of an actor, the bu↵er space
needed by the produced tokens is claimed at the start of the
firing and the bu↵er space of consumed tokens is released at
the end of the firing. An implementation scheduled according
to another scheme may achieve a higher throughput than
the analysis result according to the conservative abstraction,
however. The reason is that di↵erent memory abstractions
may lead to di↵erent achievable throughputs of a system.

To match up to the implementation, we present a unified
framework for throughput analysis of SDFGs to deal with
di↵erent memory abstractions. To the best of our knowledge,
this is the first work that can provide throughput evaluations
under di↵erent memory abstractions in a unified framework.
2 PRELIMINARIES
An SDFG is a finite directed graph G = (V,E). V is the set
of actors, modeling the computations of a system. Actor v

is weighted with its computation time t(v). E is the set of
directed edges, modeling interconnections between computa-
tions. The source actor and sink actor of edge e are denoted
by src(e) and snk(e), respectively. Edge e is weighted with
three properties, d(e), p(e) and c(e). Property d(e) is the
number of initial tokens on e, p(e) is the number of tokens
produced onto e by each firing of src(e), and c(e) is the num-
ber of tokens consumed from e by each firing of snk(e). The
set of incoming edges to actor v is denoted by InE(v), and
the set of outgoing edges from v by OutE(v).

SDFG G is sample rate consistent [3] if and only if there
exists a positive integer vector q(V) satisfying balance equa-
tions, q(src(e))⇥ p(e) = q(snk(e))⇥ c(e) for all e 2 E. The
smallest such q is called the repetition vector. We use q to
represent the repetition vector directly. An iteration of an
SDFG is a firing sequence in which each actor v occurs ex-
actly q(v) times. The average computation time per iteration
is called the iteration period (IP). The IP is the reciprocal of
the throughput. We will use IP and throughput alternatively
in the remained of the paper.

Definition 2.1. A memory constraint of SDFG G = (V,E)
is a vector MC (E), in which MC (e) � d(e). When MC (e) >
0, it defines the bu↵er bound of edge e 2 E.

We use two variables x 2 {0, 1} and y 2 {0, 1} to model
di↵erent abstractions. Variable x is used for the release ab-
straction. The bu↵er space is released at the start of a firing

CODES/ISSS ’17 Companion, October 15–20, 2017, Seoul, Republic of Korea Xue-Yang Zhu

A�4 C,14 B,2
4

2

2

2

2

����!'����"#!���#�������������!!�" �������#������"�

��������
������!�" ��#�%��'�

�������"���!���� ��#����"���##�������"��
����"�� ���!�#�"��!�����##���&����#��'��!���	�
#������ $#�#����#��������������#�!��"�
�##��������"����#�������	���������#"�
!� !�"��#"����#����#����"����#����������"�

Figure 1: An MC SDFG.

when x = 1, at the end when x = 0. Variable y is used for the
claim abstraction. The bu↵er space is claimed at the start
of a firing when y = 1, at the end when y = 0. A memory
abstraction is a combination of release abstraction and claim
abstraction, denoted by the value of xy. For example, above-
mentioned conservative abstraction is memory abstraction 01,
representing that x = 0 and y = 1.

Let IP
xy

(G,MC) be the minimal achievable IP of SDFG
G = (V,E) under memory constraint MC (E) based on the
memory abstraction xy. Then 1

IP
xy

(G,MC) is the maximal

achievable throughput. The problems addressed in this paper
are: given an SDFG G and a memory constraint MC , how
to compute IP

xy

(G,MC) for x 2 {0, 1} and y 2 {0, 1}.

3 THROUGHPUT ANALYSIS OF
MEMORY CONSTRAINED SDFGS

The bound on bu↵er of an edge hu, vi of an SDFG can be
modeled by adding edge hv, ui with tokens to model available
storage space [4].

Definition 3.1. A memory-constrained SDFG (MC SDFG)
of G = (V,E) under MC (E) is an SDFG GMC = (V,E [
EMC), in which EMC = {hv, ui|hu, vi 2 E ^MC (hu, vi) > 0}.
For all e0 = hv, ui 2 EMC , there is an edge e = hu, vi 2 E,
such that p(e0) = c(e), c(e0) = p(e) and d(e0) = MC (e)�d(e).

Edge e

0 2 EMC is called MC edge of corresponding e 2 E.
Tokens on e

0 model the available space. Denote InEMC (v) as
the set of MC edges of OutE(v) and OutEMC (v) as the set
of MC edges of InE(v). An MC SDFG with MC = (4, 2) is
shown in Fig. 1. Since there are already 4 and 2 tokens on
edges hA,Bi and hB,Ci, respectively, no tokens, which model
bu↵er space, available on their corresponding MC edges.

Scheduling an SDFG under memory constraint is equiv-
alent to scheduling the corresponding MC SDFG. An STE
analysis method is used in our solutions. Instead of using a
clock in the operational semantics of SDFGs as traditional
STE analysis methods [4, 5], we use time stamps on tokens
to model the time progress. Each token is tagged with a time
stamp to indicate the time when it is produced. All initial
tokens have a time stamp 0. There are di↵erent firing rules
for di↵erent abstractions. Below we illustrate the basic ideas
of proposal method via an example shown in Fig. 2, in which
fire

xy

(v) indicates a firing of actor v based on abstraction
xy. The firing starts at v.st and ends at v.et. The memory
constraint MC = (4, 2). There are no constraints on the
self-loop edges.

At state s, there are su�cient tokens on the incoming edges
of actor B. That is, d(hA,Bi) � c(hA,Bi) and d(hC,Bi) �
c(hC,Bi). Therefore actor B is ready for a firing. The time
stamps of tokens produced on edges of OutE(B) are not
a↵ected by the abstractions. They are always B.et, although
the values of B.et may di↵er with respect to claim abstraction
y. The time stamps of tokens on OutEMC (B) are decided by
the abstraction used.

fire11(B)--B.st=2, B.et=4

fire00(B)--B.st=0, B.et=2

fire10(B)--B.st=0, B.et=2

A,4 C,14 B,2
4

2

2

2

2
21

0000

0 0 2

A,4 C,14 B,2
4

2

2

2

2
2

200 2

0 2 2

2
B.et

A,4 C,14 B,2
4

2

2

2

2
2

400 4

0 4 2

2
B.st

A,4 C,14 B,2
4

2

2

2

2
0

200 2

0 2 2

0
B.st

s
s11 s10

B.et

B.etB.et

A,4 C,14 B,2
4

2

2

2

2
4

400 4

0 4 2

4
B.et

s01
B.et

fire01(B)--B.st=2, B.et=4 s00

time stamps

Figure 2: The e↵ects of firings under di↵erent ab-

stractions.

37 38 39 40 41 42 43 44 45 buffer bound

--IP01
--IP10
--IP11 & IP00

4

8

12

16

20

24

28

32

IP

Figure 3: IP
xy

(modem,MC)s under abstractions xy.

When the release time of consumed tokens is set to the
end of the firing, i.e. x = 0, these time stamps are tagged
with B.et, e.g. states s01 and s00; otherwise, they are tagged
with B.st, e.g. states s11 and s10. Abstraction y a↵ects the
start time of a firing. When the required space is claimed at
the start of the firing, i.e. y = 1, B.st is set to be the largest
time stamp of the required tokens for the firing, e.g. fire01

and fire11. Otherwise, the largest time stamp of the required
tokens for the firing can be seen as the end time of the firing,
i.e. B.et, then B.st = B.et� t(B), e.g. fire00 and fire10.

Similar to the methods in [4, 5], the IP
xy

(G,MC) can be
computed via the STE according to firing rules fire

xy

. The
IP

xy

s of SDFG of a modem [1] are shown in Fig. 3. The
IPs are computed under di↵erent MC s, which are storage
distributions of the Pareto points obtained by the method
in [4], which is under the abstraction 01.

We also consider the e↵ects of the order of concurrent
occurs of start and end of firings on the analysis results and
the extension of the proposed technique to CSDF graphs [2],
but omit them here because of space limitations.

4 ACKNOWLEDGMENTS
This work is supported in part by the National Natural
Science Foundation of China (Nos. 61572478, 61472406 and
61472474).

REFERENCES
[1] SS Bhattacharyya, PK Murthy, and EA Lee. 1996. Software

synthesis from dataflow graphs. Vol. 360. Springer.
[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. 1996.

Cyclo-static dataflow. IEEE Trans. on signal processing 44, 2
(1996), 397–408.

[3] EA Lee and DG Messerschmitt. 1987. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE
Trans. on Comput 36, 1 (1987), 24–35.

[4] S. Stuijk, M. Geilen, and T. Basten. 2008. Throughput-bu↵ering
trade-o↵ exploration for cyclo-static and synchronous dataflow
graphs. IEEE Trans. on Computers 57, 10 (2008), 1331–1345.

[5] XY Zhu, M Geilen, T Basten, and S Stuijk. 2014. Memory-
Constrained Static Rate-Optimal Scheduling of Synchronous
Dataflow Graphs via Retiming. In Proc. of 17th Design, Au-
tomation and Test in Europe (DATE). 1–6.

