
Efficient Algorithm for the Iteration Period
Computation of Unfolded Synchronous Dataflow

Graphs
Xue-Yang Zhu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
zxy@ios.ac.cn

Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to model streaming applications. Unfolding is one of the
most important techniques for performance optimization of
SDFGs. It may reduce the iteration period (IP) without affecting
functionality. We present a novel method to compute the IPs of
SDFGs by state-space exploration, without converting them to
their equivalent homogeneous SDFGs (HSDFGs), and without
further unfolding the HSDFGs. The conversion procedures are
time and space-consuming. We also consider the cases when there
are resource constraints, which cannot be dealt with by existing
methods. Combining with retiming technique, we further present
a method to compute the reduced IP of unfolded SDFGs. Our
experimental results show that the proposed method outperforms
the existing methods significantly.

I. INTRODUCTION AND RELATED WORK

Dataflow models of computation are widely used to repre-
sent digital signal processing (DSP) applications. Each node
(also called actor) in such a model represents a computation
or function and each edge models a FIFO channel. One
of the most useful dataflow models for designing multi-rate
DSP algorithms is synchronous dataflow graphs (SDFGs) [1].
The sample rates of actors of an SDFG may differ. The
graph G1 in Fig. 1(a), for example, is an SDFG. The real
multi-rate DSP algorithms modeled with SDFGs include the
simplified spectrum analyzer [2] and the satellite receiver [3].
Homogenous synchronous dataflow graphs (HSDFGs) are a
special type of SDFGs. All sample rates of actors of an
HSDFG are one.

DSP algorithms are often repetitive. Execution of all the
computations for the required number of times is referred to as
an iteration. A DSP algorithm repeats iterations periodically.
The number of firings of actors in an SDFG is decided by its
repetition vector, which we explain later. An iteration of G1 in
Fig. 1(a), for example, includes two executions, often called
firings, of actor A, two firings of B and one of C. The iteration
period (IP) is the minimal achievable average execution time
per iteration of an algorithm [4]. It’s an important property of
an SDFG, deciding how fast the application that is modeled by
the SDFG can be. Reducing the IP of an SDFG may improve
the performance of the corresponding application.

This work was supported in part by the National Natural Science Founda-
tion of China (Nos. 61572478, 61472406 and 61472474) and National Key
Basic Research Program of China (No. 2014CB340701).

A,2 C,2B,1
2

2

A1
C1

B1

A2 B2

A1,1

C1,1

B1,1

A2,1 B2,1

A1,2

C1,2

B1,2

A2,2 B2,2

toHSDFG

unfolding

G1:

H(G1):

U(H(G1),2):

(a)

(b) (c)

critical paths: B1/B2 -> C1 critical paths: B1,1/B2,1 -> C1,1 -> A2,2

 A1,1 -> B2,2 -> C1,2

IP=3 IP=5/2=2.5

Fig. 1. (a) The SDFG G1. The computation time of each actor is attached
inside the node. An iteration of G1 includes two firings of actor A, two firings
of B and one of C. (b) The equivalent HSDFG of G1, in which Ai means the
ith firing of actor A. (c) 2-unfolded graph of H(G1), in which Ai,j means
the ith firing of actor A in the jth iteration. Black dots on edges represent
initial tokens on the channels; for clarity, the sample rates are omitted when
they are 1 and the channels with initial tokens are denoted by gray lines in
the HSDFGs.

Schedules of SDFGs on multiprocessor can be nonover-
lapped or overlapped [5] . In a nonoverlapped schedule, firings
in different iterations may not overlap, that is, any firing of
an iteration starts only after completion of all firings of the
previous iteration, while in an overlapped schedule, firings in
different iterations may overlap. In this paper, we consider IPs
in the context of nonoverlapped scheduling, the same as that
in [6], [7], [8], [9].

A valid SDFG can always be converted to an equivalent
HSDFG [10], which captures the data dependences among
firings of actors in the original SDFG in an iteration. The
graph in Fig. 1(b), for example, is the equivalent HSDFG of
G1. The IP of an SDFG equals the IP of its equivalent HSDFG,
which is the length of its critical path [6]. For example, the
IP of G1 is 3, the length of path B1 → C1.

Unfolding [5] can reduce the IP by exploiting the inter-
iteration data dependencies. An unfolded SDFG with an

unfolding factor f , called f -unfolded SDFG, describes f
consecutive iterations of the original graph. The HSDFG in
Fig. 1(c), for example, is a 2-unfolded graph of the HSDFG
in Fig. 1(b), in which, B2,2, the second firing of actor B in the
second iteration, depends on A1,1, the first firing of actor A in
the first iteration. The length of its critical path is 5. Because
it includes two iterations, the IP of the 2-unfolded graph is 5

2 .
That is, after unfolding, the IP of G1 is reduced to 5

2 .
Traditionally, the computation of the IP of an unfolded

SDFG is done by first converting the SDFG to its equivalent
HSDFG (G1 to H(G1) in Fig. 1), then unfolding the HSDFG
with the given unfolding factor (H(G1) to U(H(G1), 2) in
Fig. 1), and at last computing the length of the critical path of
the unfolded HSDFG. This procedure, however, is very time-
consuming when SDFGs scale up. Converting an SDFG to
an HSDFG may exponentially increase the size of the graph
under consideration in extreme cases [9]. Unfolding further
multiplies the problem space.

Although there are efficient algorithms to compute IPs of
SDFGs without converting them to HSDFGs [7], [8], these
methods cannot be used on unfolded SDFGs directly. In this
paper, we present an efficient algorithm to compute the IP of
an unfolded SDFG. Our contributions are as follows.

1) We define the IP graph of the f -unfolded SDFG, an
execution of which is equivalent to that of the f -
unfolded SDFG. The IP of an f -unfolded SDFG is then
computed by exploring the state space of its IP graph.

2) The proposed method can be easily extended to deal
with the case when the resource constraints are consid-
ered. We present buffer bound and processor limitation
as examples.

3) Combining with retiming technique [6], our method can
further be applied to compute the reduced IP of unfolded
SDFGs, with or without resource constraints.

4) The IP computation methods for different cases are
thoroughly evaluated by experiments on four practical
streaming applications and hundreds of synthetic graphs.

The proposed method uses state-space exploration (SSE) to
solve problems related to unfolding, which is also used in [11],
[12]. The main difference between the proposed method and
that in [11], [12] is on the addressed problems. The problem
that [11], [12] focuses on is: for a given SDFG, how to retime
and unfold an SDFG to get a schedule that is rate-optimal?
That is, finding the optimal retiming and unfolding factor of
the SDFG. It is in the context of overlapped scheduling, like
in [13]. The unfolding factor is an output in the methods
in [11], [12]. The problem that the proposed method focuses on
is: for a given SDFG and a given unfolding factor, what would
be the iteration period of the unfolded SDFG (without really
unfolding the SDFG)? It is in the context of non-overlapped
scheduling, like in [14]. The unfolding factor is an input. To
the best of our knowledge, the proposed method is the first
work that uses SSE on this problem. And it does outperform
the existing method much, as our experimental results show.

The remainder of this paper is organized as follows. We
first introduce the related concepts and formulate the problems

in Section II. An operational semantics of SDFGs is defined
in Section III. Our main contributions are presented in Sec-
tions IV, V and VI. Section VII provides an experimental
evaluation. Finally, Section VIII concludes.

II. PRELIMINARIES AND PROBLEM FORMULATION

A synchronous dataflow graph (SDFG) is a finite directed
graph G = 〈V,E〉. V is the set of actors, modeling the
functional elements of the system. Each actor v ∈ V is
weighted with its computation time t(v), a positive integer. E
is the set of directed edges, modeling interconnections between
functional elements. Each edge e ∈ E is weighted with
three properties: d(e), a nonnegative integer that represents the
number of initial tokens associated with e; prd(e), a positive
integer that represents the number of tokens produced onto e
by each execution of the source actor of e; cns(e), a positive
integer that represents the number of tokens consumed from
e by each execution of the sink actor of e. These numbers are
also called the delay, production rate and consumption rate,
respectively. If prd(e) = cns(e) = 1 for each e ∈ E, G is a
homogenous SDFG (HSDFG). For technique reasons, we may
allow prd(e) = 0 to mean that no tokens are produced on e.

The source actor and sink actor of e ∈ E are denoted
as src(e) and snk(e), respectively. The edge e with source
actor u and sink actor v is denoted by by e = 〈u, v〉. The set
of incoming edges to actor v is denoted by InE (v), and the
set of outgoing edges from v by OutE (v). An initial delay
distribution of an SDFG is a vector containing delays on all
edges of the SDFG G, denoted as d(G). Take the SDFG G1

in Fig. 1(a) for example. For each edge e, its prd(e) and
cns(e) that are not equal to one and its d(e) that is not
equal to zero are labeled on e. The computation time vector
t = [2, 1, 2], corresponding to actors A, B and C. The initial
delay distribution d(G1) = [3, 0, 3], corresponding to edges
〈A,B〉, 〈B,C〉, 〈C,A〉.

An SDFG G is sample rate consistent if and only if
there exists a positive integer vector q(V) satisfying balance
equations, q(src(e)) × prd(e) = q(snk(e)) × cns(e), for all
e ∈ E. The smallest q is called the repetition vector [1]. We
use q to represent the repetition vector directly. One iteration
of an SDFG G is an execution sequence in which each actor v
in G occurs exactly q(v) times. The iteration period (IP) of G
is the minimal achievable average execution time per iteration,
represented by IP(G).

For example, a balance equation can be constructed for each
edge of G1 in Fig. 1(a). By solving these balance equations,
we have G1’s repetition vector q = [2, 2, 1]. Since, there are
no tokens on edge 〈B,C〉, actor C can start to fire only after
B fires twice and produces two tokens on 〈B,C〉. Two firings
of B can start concurrently. Therefore the time required for
executing one iteration of G1 is at least 3, that is, IP(G1) = 3.

An SDFG is sample rate inconsistent if there is no nonzero
solution for its balance equations. Any execution of an incon-
sistent SDFG will result in deadlock or unbounded memory.
We only consider sample rate consistent and deadlock-free
SDFGs, referred to as valid SDFGs. A valid SDFG can always

be converted an equivalent HSDFG [10]. The IP of an SDFG
can be obtained by computing the length of the critical path
of its equivalent HSDFG.

Unfolding is originally defined on HSDFGs [5]. An un-
folded graph with an unfolding factor f , called f -unfolded
graph, describes f consecutive iterations of the original graph.
A procedure to construct unfolded HSDFGs is presented
in [14]. Let H denote the transformation from an SDFG to
its equivalent HSDFG, and U denote the unfolding transfor-
mation. The behavior of an f -unfolded graph of SDFG G is
equivalent to the behavior of HSDFG U(H(G), f).

Definition 1. The IP of f -unfolded graph of SDFG G,
IP(G, f), is the IP of f -unfolded graph of its equivalent
HSDFG, IP(U(H(G), f)).

The problems we address is: given an SDFG G and an
unfolding factor f , how to compute IP(G, f) efficiently.

Let IPbuf (G, f) be the IP under buffer bound buf (E),
IPpro(G, f) be the IP when there are pro number of pro-
cessors available, and IPBandP (G, f) be the IP under the
combination of above two constraints. Prefix re is added to
the corresponding IPs of the optimally retimed SDFGs. We
will also show that how the solution for the problem can be
easily extended to compute reIP , (re)IPbuf , (re)IPpro and
(re)IPBandP efficiently.

III. AN OPERATIONAL SEMANTICS OF SDFGS

For developing our method, we define the operational se-
mantics of SDFGs similar to [11], [12] and restate here for
the completeness. The behavior of an SDFG G in terms of a
simple transition system, represented by TS (G). A transition
system includes a set of states, a set of actions, an initial
state and a set of transitions which define rules on how to
change states depending on different actions. Before defining
the transition system of an SDFG, we introduce some notations
to simplify the later illustrations.

We use a vector tn(E) to model the change of delay
distribution of G during its execution. For each edge e ∈ E,
tn(e) is current number of tokens on edge e. The SDFG is
a concurrent model of computation. It allows simultaneous
firings of an actor. For different concurrent firings of an actor,
the one first to start is the one first to end. We use a queue
tr(v) to contain the remaining times of the concurrent firings
of actor v. The ith element of tr(v) is the remaining time of
the ith unfinished firing of v. A global clock, glbClk , is used
to record the time progress.

A state of TS (G) is a 3-tuple that consists of the values
of tn(E), tr(V) and glbClk . In the initial state of TS (G),
s0, tn(E) is the initial delay distribution d(G); no firings
have been started, so each element of tr(V) is empty; and the
global clock glbClk is zero. For example, the initial state of
G1 in Fig. 1(a) is s0 = ([3, 0, 3], [{}, {}, {}], 0), corresponding
to edges 〈A,B〉, 〈B,C〉 and 〈C,A〉 and actors A, B and C,
where {} represents an empty queue.

The behavior of an SDFG consists of a sequence of firings
of actors. We use actions sFiring(v) and eFiring(v) to model

the start and end of a firing of actor v, and use readyS (v) and
readyE (v) as their enabled conditions, respectively. In parallel
with actor firings, time elapses on its own step, represented by
the increase of the global clock glbClk . A time step is modeled
by the action clk .

The guard readyS (v) tests if there are sufficient tokens on
the incoming edges of actor v for a firing of v. That is,

readyS (v) ≡def ∀e ∈ InE (v) : tn(e) ≥ cns(e).

When readyS (v) is satisfied, actor v can start to fire. Actor
v starting a firing, sFiring(v), is to insert its computation
time, t(v), into queue tr(v), and to consume tokens of all of
its incoming edges according to the consumption rates. That
is,

sFiring(v) ≡def (∀e ∈ InE (v) : tn ′(e) = tn(e)− cns(e))

∧ tr ′(v) = ENQ((tr(v), t(v)),

where tn ′(e) and tr ′(v) refer to the value of tn(e) and tr(v)
in the new state s′, respectively; ENQ(tr(v), t(v)) inserts t(v)
at the end of tr(v). For conciseness, we omit the elements of
states if their values are unchanged after an action.

When the remaining time of a firing of v is zero, the firing
is ready to end. This is modeled by the guard readyE (v).

readyE (v) ≡def HeadQ(tr(v)) = 0,

where HeadQ(tr(v)) returns the first element of tr(v).
An actor v ending a firing, eFiring(v), is to remove the

first element from queue tr(v) and to produce tokens on all
of its outgoing edges according to the production rates. That
is,

eFiring(v) ≡def (∀e ∈ OutE (v) : tn ′(e) = tn(e) + prd(e))

∧ tr ′(v) = DLQ((tr(v)),

where DLQ(tr(v)) removes the first element of tr(v).
Time progresses as much as possible when no actor is ready

to end or start. A time step, clk , reduces the remaining times
of all firing actors by the minimal element of tr(v) of all v,
and increases the global clock by one. The largest possible
time step mS = minc∈

⋃
v∈V tr(v) c.

clk ≡def (∀v ∈ V : ¬isEmpty(tr(v))

⇒(∀x ∈ tr(v) : x′ = x−mS)

∧ (glbClk ′ = glbClk +mS),

where isEmpty(tr(v)) tests if tr(v) is empty. Notice that the
delay distribution remains unchanged by a time step.

An action of TS (G) is any of sFiring(v), eFiring(v) and
clk . A transition from state to state of TS (G) is caused by
any of its actions constrained by their enabled conditions.

An execution of SDFG G is a sequence of states of TS (G)
beginning with the initial state and following by states caused
by transitions from their predecessors. According the definition
of time step, each firing in an execution starts as soon as
possible.

A,2 C,2B,1
2

2
0 0 0

Fig. 2. IP graph of 2-unfolded graph of G1.

IV. IP COMPUTATION

In this section, we first define the IP graph for an unfolded
SDFG, then present the algorithm for computing the IP by
exploring the state-space of the execution of the IP graph in
Section IV-B.

A. The IP graph of the unfolded SDFG

According to the definition of unfolding, a f -unfolded graph
describe f consecutive iterations of the original graph. The
earliest possible completion time of the execution of the f
iterations divided by f is the IP of the f -unfolded graph. Based
on this observation, we construct IP graphs of f -unfolded
SDFGs for IP computation.

Definition 2. Given an SDFG G = 〈V,E〉 and an unfolding
factor f , the IP graph of the f -unfolded graph of G is an
SDFG ipGf = 〈V,E ∪ Ef 〉, in which Ef = {〈v, v〉|v ∈ V }
and for all e′ = 〈v, v〉 ∈ Ef , prd(e′) = 0, cns(e′) = 1 and
d(e′) = f · q(v).

Fig. 2, for example, shows an IP graph of 2-unfolded graph
of G1. Executing an SDFG one iteration causes it to reach the
initial delay distribution [1], so the execution of an SDFG is
infinite. This infinity is limited by the edges in Ef of an IP
graph, however. Each actor v in SDFG G fires infinite times in
an execution. In ipGf , tokens on e′ = 〈v, v〉 will be exhausted
after f · q(v) firings of v, because each firing of v consumes
one token from e′ but produce no token on it. Therefore, an
execution of ipGf includes exactly f iterations of G. Then
we have the following property.

Property 1. In an execution of ipGf , there are
∑

v∈V f · q(v)
firings of actors in G.

Denote the last state of an execution of ipGf by se. It
is easy to see that at state se, each actor v has been fired
exactly f ·q(v) times. And the value of se.glbClk is the earliest
possible completion time of f iterations of G, because the
execution is ASAP. Therefore we have the following property.

Property 2. The value of glbClk at state se is exactly the
length of the critical path of U(H(G), f).

Fig. 3 (a) and (b), for example, show the executions of
the IP graphs of 1-unfolded and 2-unfolded graphs of G1,
respectively. Their longest subroutines directly correspond to
the critical paths of HSDFGs in Fig. 1 (b) and (c), respectively.

The following theorem can be directly deduced from Prop-
erty 2.

Theorem 1. IP(G, f) = se.glbClk/f .

0 1 2 3 4 5 Time0 1 2 3 Time

Firing

Firing
(a) (b)

Fig. 3. Execution of the IP graph of (a) 1-unfolded graph of G1, and (b)
2-unfolded graph of G1.

B. Computing IP by State-Space Exploration

According to the above analysis of IP graphs, comIP, a
procedure that computes the IP of an unfolded SDFG by
exploring the state space of the execution of its IP graph,
is outlined in Algorithm 1. The execution of the IP graph in
comIP is according to macro steps. A macro step includes:
first, starting all firings of actors that are ready to start, then
one clk , and at last ending all firings of actors that are ready
to end.

Algorithm 1 comIP(G, f)
Input: A valid SDFG G and an unfolding factor f
Output: The IP of the f -unfolded graph of G

1: g = ipGf // Construct the IP graph.
2: ts = TS (g) // Construct the transition system of the IP

graph.
3: s = ts.s0
4: nFires =

∑
v∈V f · q(v)

5: // Begin to execute the IP graph.
6: while nFires > 0 do
7: for all v ∈ G do
8: while readyS (v) do
9: sFiring(v)

10: end while
11: end for
12: clk
13: for all v ∈ G do
14: while readyE (v) do
15: eFiring(v)
16: nFires = nFires − 1
17: end while
18: end for
19: end while
20: return s.glbClk/f // Return the IP (by Theorem 1)

Variable nFires is set to be the remaining number of firings
in the execution. Line 4 initializes it as

∑
v∈V f · q(v) (by

Property 1), Line 16 decreases it by one after the end of
each firing, and Line 6 checks whether all required firings are
finished. Lines 6 to 19 simulate the execution of the IP graph.
The termination of Algorithm 1 is guaranteed by Property 1,

A,2 C,2B,1
2

2
0 0 0

2
2

Fig. 4. IP graph of 2-unfolded graph of G1 with buffer bound buf = [4, 3, 3],
corresponding to edges 〈A,B〉, 〈B,C〉 and 〈C,A〉. The edges modeling
buffer bound are denoted by dotted lines.

and its correctness is guaranteed by Theorem 1. The number
of firings of the execution is exactly the initial value of nFires ,
therefore the complexity of Algorithm 1 is O(

∑
v∈V f · q(v)).

V. IP COMPUTATION WITH RESOURCE CONSTRAINTS

The advantage of the proposed method is that it is not only
efficient but also flexible for combining different constraints
into consideration.

A. With Buffer Bound

When an SDFG is constrained with buffer bound, we can
also use Algorithm 1 to find the IP of its unfolded graph. The
bound on buffer of an edge 〈u, v〉 of an SDFG can be modeled
by adding edge 〈v, u〉 with tokens to model available storage
space [13].

Definition 3. A buffer bound SDFG of G = (V,E) with buffer
bound buf(E) is an SDFG Gbuf = (V,E ∪ Ebuf), in which
Ebuf = {〈v, u〉|〈u, v〉 ∈ E}. For all e′ = 〈v, u〉 ∈ Ebuf ,
there is an edge e = 〈u, v〉 ∈ E, such that prd(e′) = cns(e),
cns(e′) = prd(e) and d(e′) = buf (e)− d(e).

The buffer bound SDFG is also an SDFG. The IP graph of
the f -unfolded graph of the buffer bound SDFG can be con-
structed according to Definition 2. Fig. 4, for example, shows
the IP graph of 2-unfolded SDFG of G1 with buffer bound
buf = [4, 3, 3], corresponding to edges 〈A,B〉, 〈B,C〉 and
〈C,A〉. Then IPbuf (G, f) can be computed by Algorithm 1.

Theorem 2. IPbuf (G, f) is the value returned by
comIP(Gbuf , f).

B. With Limited Number of Processors

When there are only pro number of processors available,
the number of concurrent firings in an execution of an SDFG
is limited to pro. Therefore we can put the constraint on the
guard of sFiring actions [11]. We denote the new guard as
readySpro(v).

readySpro(v) ≡def readyS (v) ∧ (
∑
v∈V

|tr(v)| < pro).

A procedure to obtain the IP of unfolded SDFGs with
limited number of processors, called comIPpro(G, f), is a
variation of Algorithm 1, in which readyS is replaced with
readySpro .

A,2 C,2B,1
2

2

A1
C1

B1

A2 B2

R(G1):

H(R(G1)):

Fig. 5. A retimed graph of G1 with retiming R = [1, 2, 0] and its equivalent
HSDFG.

Theorem 3. IPpro(G, f) is the value returned by
comIPpro(G, f).

The IP of an unfolded SDFG with the combination of
buffer bound and processor limitation can be computed by
first constructing the buffer bound SDFG and then use the
procedure comIPpro .

Theorem 4. IPBandP (G, f) is the value returned by
comIPpro(Gbuf , f).

VI. REDUCING IPS OF UNFOLDED SDFGS VIA RETIMING

The IPs of unfolded SDFGs may be further reduced by
retiming. Retiming [6] is a graph transformation technique that
redistributes the graph’s initial tokens while the functionality
of the graph remains unchanged. Retiming an actor once
means firing this actor once. The SDFG R(G1) shown in
Fig. 5, for example, is a retimed graph of G1 by retiming
R, which is defined as R(A) = 1, R(B) = 2 and R(C) = 0.
The token distribution of R(G1) is led by firing A once and
firing B twice of G1. The IP of R(G1) can be easily found in
its equivalent HSDFG, H(R(G1)), also shown in Fig. 5. Its
IP is 2, less than The IP of G1 .

The order of retiming and unfolding is immaterial for
scheduling an HSDFG [14], and retiming on an SDFG and its
equivalent HSDFG is equivalent [8]. Therefore the order of
retiming and unfolding is immaterial for the IP computation.
That is, IP(U(R(G), f)) = IP(R(U(G, f))). We can first
optimally retime an SDFG to be a new SDFG, then unfold
the retimed SDFG to further reduce the IP.

Let optR be the optimal retiming obtained by optimal
retiming algorithm in [8]. Then reIP , reIPbuf , reIPpro and
reIPBandP can also be computed by Algorithm 1 and proce-
dure comIPpro .

Theorem 5. The IP reIP(G, f) is the value returned
by procedure comIP(optR(G), f), reIPbuf (G, f)
by comIP(optR(G)buf , f), reIPpro(G, f) by
comIPpro(optR(G), f) and reIPpro(G, f) by
comIPpro(optR(G)buf , f).

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implemented Algorithm 1 and above-mentioned exten-
sions, the IP computation algorithms in [7] and [8], and
the traditional method (byHSDFG) in the open source tool
SDF3 [15]. The algorithms in [7] and [8], can only be used
for 1-unfolded graph. Method byHSDFG computes the IP
of an unfolded graph by first converting it to an HSDFG,
then unfolding the HSDFG, and at last computing the length
of the critical path of the unfolded HSDFG. We performed
experiments on two sets of SDFGs, running on a 2.67GHz
CPU with 12MB cache. The experimental results of these two
sets are shown in Tables I, II and III. All execution times are
measured in milliseconds (ms) unless otherwise specified.

The first set of SDFGs consists of four practical DSP
applications, including a sample rate converter (SaRate) [16],
a satellite receiver (SR) [3], a maximum entropy spectrum
analyzer (MaxES) [17], and a channel equalizer (CEer) [8].
Because the method in [7] can only work on strongly con-
nected graph, we convert these models to strongly connected
graphs by introducing to each model a dummy actor with
computation time zero and edges with proper rates and delays
to connect the dummy actor to the actors that have no
incoming edges or no outgoing edges.

The second set of test models consists of 200 synthetic
strongly connected SDFGs generated by SDF3, mimicking
real DSP applications and scaling up the models. The number
of actors in an SDFG, denoted by nA, and the sum of
the elements in the repetition vector, denoted by nQ , have
significant impact on the performance of the various methods.
We distinguish two different ranges of nA: 15-30 and 100-120;
and two different ranges of nQ : 2000-3000 and 8500-11000.
Then we generate SDFGs according to different combinations
of nA and nQ to form 4 groups. Each group includes 50
SDFGs. The explicit difference in nA and nQ among these
groups is helpful for showing how the performance of each
method changes with nA and nQ .

The buffer bounds are chosen to be the smallest storage
capacity that guarantees deadlock-freeness of an SDFG.

B. Experimental Results

Table I gives the information about and results for the 1-, 3-
and 5-unfolded graphs of the practical DSP examples. There
are four parts in Table I. The first part is the information on
the DSP models, including the number of actors in an SDFG
(nA), the sum of the elements in the repetition vector (nQ)
and the sum of the elements in the buffer bound (buf). The
second part lists the results for (re)IP , (re)IPbuf , (re)IPpro

and (re)IPBandP . The third part shows the execution times of
IP , IPBandP , reIPBandP and byHSDFG . We measured the
memory used by IP and byHSDFG on the four DSP examples
using the tool Valgrind (http://valgrind.org/) and show the
results in the fourth part.

The information in the first part of Table I includes the
dummy actors introduced for strong connectedness.

TABLE I
THE EXPERIMENTAL RESULTS FOR DSP EXAMPLES

Graph information

CEer SaRate MaxES SR

nA 23 7 14 23

nQ 43 613 1,289 4,516

buf 75 1,368 2,089 14,454

Returned IPs by Proposed Methods

f IP /reIP

1 53652/47128 21/6 11528/8192 11/2

3 49302.7/47128 7/5.3 3842.7/3842.7 3.7/2

5 48432.8/47128 4.2/4.2 4611.2/4611 2.2/2

IPbuf /reIPbuf

1 53652/47328 1053/491 12293/9217 601/528

3 49302.7/47194.7 1037/490.3 10241.7/9216.3 584.3/528

5 48432.8/47168 1033.8/490.2 9831.4/9216.2 581/528

IPpro /reIPpro with #pro = 16

1 53652/47128 153/153 11618/8208 284/283

3 49302.7/47128 152.7/152.7 3936.7/3907 282.7/282.3

5 48432.8/47128 152.6/152.6 4704.8/4668.8 282.4/282.2

IPBandP /reIPBandP with #pro = 16

1 53652/47328 1053/537 12308/9232 615/542

3 49302.7/47194.7 1037/540.3 10257.3/9232 589/528

5 48432.8/47168 1033.8/538.8 9847.2/9232 583.8/528

IPpro /reIPpro with #pro = 4

1 53876/47128 610/610 11906/8256 1130/1129

3 49377.3/47128 610/610 4224.7/4160.7 1129/1129

5 48477.6/47128 609.8/609.8 4992.8/4890.4 1128.8/1128.8

IPBandP /reIPBandP with #pro = 4

1 53652/47328 1067/735 12356/9280 1207/1292

3 49302.7/47194.7 1043/724.7 10305.3/9280 1155.7/1189

5 48432.8/47168 1038.2/725.6 9895.2/9280 1145.4/1165

Execution time (ms) (IP/IPBandP/reIPBandP/byHSDFG)

1 0/0/5/2 1/0/1/89 0/1/1/256 1/2/3/4,641

3 0/1/5/4 0/1/1/471 0/2/3/1.3s 2/6/6/50s

5 1/1/5/8 0/1/1/1,258 1/3/5/3.8s 4/9/10/158s

Memory used (MB) (IP/byHSDFG)

1 0.83/0.91 0.23/1.63 0.38/3.06 0.77/11.08

3 0.83/0.99 0.23/2.96 0.39/5.52 0.93/20.70

5 0.83/1.09 0.23/4.29. 0.39/8.03. 1.07/30.90

For SaRate model, its IPs and reIPs are decreased with
f increased. The reason is that after the optimal retiming,
which explores the parallel probability in an iteration, there
still remains parallel probability among inter-iteration, which
are further exploited by unfolding. On the contrary, for models

CEer and SR, after retiming, there are no parallel probability
for further explore among inter-iteration. Therefore, their IPs
are decreased with f increased, but their reIPs have no change
with different fs. The IPs of unfolded graph of an SDFG are
not always monotonously decreased with the unfolding factor
increased. For example, for MaxES model, IP(MaxES, 5) >
IP(MaxES, 3). But its IP will be reduced to 3842.7 again
when f = 6, 9.... Therefore f = 3 is good enough for
unfolding MaxES to achieve a small IP. For the cases that
models with buffer bound, because the bound buf is chosen
to be the smallest storage capacity that guarantees deadlock-
freeness of an SDFG, there is little room left for IP optimizing.
Therefore, their IPbuf s and reIPbuf s are improved in a very
limited way by unfolding. Two numbers of processors are
tested to show how the processor limitation impacts on the
IPs. These examples also show that how our method can help
when designing DSP algorithms. The proposed method IP is
significantly faster than method byHSDFG as the execution
times shown in the third part of Table I. The space efficiency
of our method gets better when the sum of the elements of
repetition vector of SDFGs (nQ) grows larger, e.g. the SR
case (nQ=4516), as shown in the fourth part of Table I.
Our execution time advantages are mainly obtained from that
we do not convert an SDFG to its equivalent HSDFG and
neither further convert the HSDFG to an unfolded graph. Thus,
compare to byHSDFG, our method saves the time for these
conversion procedures and saves the memory for storing the
HSDFG and its unfolded graph.

Tables II and III give the results for the synthetic examples.
Each point in the tables is an average of 50 graphs in the same
group. The execution times of IP , IPBandP , reIPBandP , [8],
[7] and byHSDFG are shown in Tables II. The methods in [7]
and [8] are only comparable to our method IP at f = 1
case. In this case, the method in [7] is fastest on the average.
The byHSDFG method is only comparable to our method IP
without any constraints and optimization. It is already five
orders of magnitude slower than IP with f = 1 , so we do
not show its execution times for f = 2 and f = 3.

Table III gives the IPs of synthetic graphs. The processor
limitation is set to 16, which affects the IPs more than buffer
bound does for these large graphs. The results also show that
after retiming there is little room left for unfolding to improve
the IPs.

VIII. CONCLUSION

In this paper, we have presented an algorithm for IP
computation of unfolded SDFGs. The proposed method uses
the state-space exploration technique. It works directly on
SDFGs, without converting them to their equivalent HSDFGs,
and without further unfolding the HSDFGs. This method
can be easily extended to deal with cases when resource
constraints are enforced. Buffer bound and processor limitation
are used to exemplify such case. Combining with retiming
technique, the reduced IP of unfolded SDFGs can be found
using the proposed algorithm. Our experimental results show

TABLE II
EXECUTION TIMES (MS) FOR SYNTHETIC EXAMPLES

f 15-30 100-120
������nA

nQ

IP /IPBandP /reIPBandP /[8]/[7] /byHSDFG

1 0/1/2/0/0/1,364 5/21/42/1/1/1,307

2k-3k*2 1/2/3/N†/N/-‡ 8/44/65/N/N/-

3 1/3/4/N/N/- 11/67/88/N/N/-

1 2/4/5/0/0/26,007 6/74/113/1/1/24,445

8.5k-11k2 3/8/9/N/N/- 11/168/206/N/N/-

3 4/12/13/N/N/- 15/261/298/N/N/-
† The methods in [7] and [8] can only be used for 1-unfolded

graph, therefore they are only comparable to our method IP
at f = 1 case.

‡ byHSDFG is already five orders of magnitude slower than
IP with f = 1 , so we do not show its execution times for
f = 2 and f = 3.

* 1k=1000.

TABLE III
THE IPS OF SYNTHETIC GRAPHS

f 15-30 100-120
������nA

nQ

IP/IPbuf/IPpro/IPBandP

2k-3k*

1 75/101/826/840 212/227/860/875

2 66/90/824/837 168/181/848/859

3 63/87/824/836 154/167/844/854

reIP/reIPbuf/reIPpro/reIPBandP

1 57/81/826/841 126/143/848/854

2 57/80/824/838 126/140/842/849

3 57/79/824/836 126/139/840/847

IP/IPbuf/IPpro/IPBandP

8.5k-11k

1 78/110/2957/2969 202/227/3077/3087

2 67/99/2954/2964 160/183/3075/3082

3 64/96/2953/2963 147/170/3074/3080

reIP/reIPbuf/reIPpro/reIPBandP

1 57/89/2954/2964 119/143/3077/3082

2 57/88/2953/2962 119/139/3076/3080

3 57/88/2952/2961 119/138/3074/3079
* 1k=1000.

that the proposed method outperforms the existing method
significantly.

A schedule that achieves the IP returned by the proposed
method can be obtained by the information of the execution,
similar to that in [11]. And, also, more constraints that may
affect the IP of unfolded SDFGs can be taken into account in
the framework of the proposed method. Furthermore, optimiz-
ing the memory use of models by eliminating buffers [18] or
by reducing the sizes of buffers [19] are helpful for practical

use of SDFGs. These will be investigated in the future work.

IX. ACKNOWLEDGMENTS

The author would like to thank the anonymous referees for
their valuable comments and helpful suggestions.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. on
Computers, vol. 36, no. 1, 1987.

[2] V. Zivojnovic, S. Ritz, and H. Meyr, “Optimizing DSP programs using
the multirate retiming transformation,” in Proc. of EUSIPCO Signal
Processing, 1994.

[3] S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,” in
Proc. of the 1995 Acoustics, Speech, and Signal Processing Conf. IEEE,
1995, pp. 2651–2654.

[4] K. K. Parhi, VLSI digital signal processing systems: design and imple-
mentation. Wiley India Pvt. Ltd., 2007.

[5] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding,” IEEE Trans. on
Computers, vol. 40, no. 2, pp. 178–195, 1991.

[6] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5–35, 1991.

[7] N. Liveris, C. Lin, J. Wang, H. Zhou, and P. Banerjee, “Retiming for
synchronous data flow graphs,” in Proc. of the 2007 Asia and South
Pacific Design Automation Conf. IEEE, 2007, pp. 480–485.

[8] X.-Y. Zhu, T. Basten, M. Geilen, and S. Stuijk, “Efficient retiming of
multirate DSP algorithms,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 6, pp. 831–844, 2012.

[9] V. Zivojnovic and R. Schoenen, “On retiming of multirate DSP algo-
rithms,” in Proc. of the Acoustics, Speech, and Signal Processing, 1996,
pp. 3310–3313.

[10] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: schedul-
ing and synchronization. CRC Press, 2009.

[11] X.-Y. Zhu, M. Geilen, T. Basten, and S. Stuijk, “Static Rate-Optimal
Scheduling of Multirate DSP Algorithms via Retiming and Unfolding,”
in Proc. 18th Real-Time and Embedded Technology and Applications
Symp., 2012, pp. 109–118.

[12] ——, “Multiconstraint static scheduling of synchronous dataflow graphs
via retiming and unfolding,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 6, pp. 905–918, June 2016.

[13] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs,” IEEE
Trans. on Computers, vol. 57, no. 10, pp. 1331–1345, 2008.

[14] L. F. Chao and E. H. M. Sha, “Scheduling data-flow graphs via retiming
and unfolding,” IEEE Trans. on Parallel and Distributed Systems, vol. 8,
no. 12, pp. 1259–1267, 1997.

[15] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Proc.
of the 6th Int. Conf. on Application of Concurrency to System Design.
IEEE, 2006, pp. 276–278. http://www.es.ele.tue.nl/sdf3/.

[16] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Joint minimization
of code and data for synchronous dataflow programs,” Formal Methods
in System Design, vol. 11, no. 1, pp. 41–70, 1997.

[17] “ptolemy.” [Online]. Available: http://ptolemy.eecs.berkeley.edu/
[18] Y. Ko, B. Burgstaller, and B. Scholz, “Laminarir: Compile-time queues

for structured streams,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’15. New York, NY, USA: ACM, 2015, pp. 121–130.
[Online]. Available: http://doi.acm.org/10.1145/2737924.2737994

[19] X.-Y. Zhu, M. Geilen, T. Basten, and S. Stuijk, “Memory-constrained
static rate-optimal scheduling of synchronous dataflow graphs via re-
timing,” in Proc. of the 17th Design, Automation and Test in Europe
(DATE), 2014, pp. 1–6.

