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Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to model data driven programs, for which throughput is
an important real-time requirement. Retiming and unfolding
are important graph transformation techniques for performance
optimization of SDFGs. Retiming improves the throughput of
an SDFG by redistributing its initial tokens, while unfolding
by scheduling several iterations of the graph. In this paper, we
present an efficient and exact method to find feasible retiming
and optimal retiming of an unfolded SDFG on its original SDFG,
without converting it to its equivalent homogeneous SDFG (HS-
DFG) and therefore without further unfolding the HSDFG. The
conversion procedures are usually time and space-consuming.
We also extend two state-of-the-art retiming methods for SDFGs
to deal with unfolding. We implement all the three methods and
perform experiments on graphs with various structures and sizes
to evaluate them thoroughly. The results show that the proposal
method generally outperforms the extensions of existing retiming
methods, especially for the large graphs and the graphs with
complex structures.

I. INTRODUCTION AND RELATED WORK

Data-driven programs such as digital signal processing
(DSP) algorithms and streaming applications are usually non-
terminating and repetitive. They often operate on embedded
platforms and under real-time requirements. The throughput
is an important property of such systems. It decides how fast
an application can be. In this paper, we are concerned with
the throughput optimization of data-driven applications.

The synchronous dataflow graphs (SDFGs) [1] are widely
used to represent DSP algorithms and streaming applica-
tions [2], [3]. Each node (also called actor) in an SDFG rep-
resents a computation and each edge models a FIFO channel.
The sample rates of actors of an SDFG may differ. A simple
SDFG is shown in Fig. 1 (a). Homogeneous synchronous
dataflow graphs (HSDFGs) are a special type of SDFGs. All
sample rates of actors of an HSDFG are one.

Execution of all the computations of an SDFG for the
required number of times is referred to as an iteration. An
iteration of an SDFG may include more than one execution, or
firing, of an actor, because of its multi-rate nature. An HSDFG
includes exactly one firing of an actor in an iteration. How fast
an SDFG could be scheduled is limited by its iteration period
(IP) – the minimal achievable computation time per iteration
of the SDFG. The IP is the reciprocal of the throughput.
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Fig. 1. (a) The SDFG G1; (b) The equivalent HSDFG of G1, H(G1); (c) A
retimed graph of G1, Rr(G1); (d) An unfolded graph of HSDFG H(G1);
(e) A retimed graph of H(G1); (f) The equivalent HSDFG of Rr(G1);
(g),(h) and (i) Graphs after combinations of the transformations of G1. The
production/consumption rates are omitted when they are 1. For clarity, edges
with tokens are drawn in grey lines.

Reducing the IP of an SDFG improves the throughput of the
corresponding application.

A valid SDFG can always be converted to an equivalent
HSDFG [4], which captures the data dependencies among
firings of actors in the SDFG in an iteration. For example,
the HSDFG shown in Fig. 1 (b) is an equivalent HSDFG of
SDFG G1 (Fig. 1 (a)). The IP of an SDFG equals the IP of its
equivalent HSDFG, which is the length of its critical path [5].
For example, the IP of G1 is 3, the length of path B1 → C1

in its equivalent HSDFG (Fig. 1 (b)).
Retiming [5] and unfolding [6] are important techniques for

performance optimization of dataflow graphs. Both of them
are originally applied to reduce the IP of HSDFGs. Retiming
technique reduces the IP of a graph by redistributing its initial
tokens. Retiming an actor once means firing the actor once.
The firing moves tokens on the incoming edges of the actor to



its outgoing edges. For example, the HSDFG in Fig. 1 (e) is
transformed from the HSDFG in Fig. 1 (b) with retiming A1,
B1 and B2 once, respectively. The transformation reduces the
IP from 3 to 2.

Unfolding technique optimizes a graph by scheduling sev-
eral iterations of the graph. A graph unfolded with an unfold-
ing factor f , called f -unfolded graph, describes f consecutive
iterations of its original graph. For example, the HSDFG in
Fig. 1 (d) is an unfolded graph of the HSDFG in Fig. 1 (b)
with unfolding factor f = 2. The transformation reduces the
IP from 3 to 2.

Retiming explores intra-iteration parallelism, while unfold-
ing explores inter-iteration parallelism, of an SDFG. Com-
bining these two techniques, the IP can be further reduced.
See Fig. 1 (g), (h) and (i) for example. After unfolding and
retiming, the IP is further reduced to 1.5. In this paper, we
present solutions for both feasible retiming, which retimes a
graph to meet a given IP constraint, and optimal retiming,
which retimes a graph to achieve the smallest IP, problems of
f -unfolded SDFGs.

Since a valid SDFG can always be converted to an equiv-
alent HSDFG, it can be analyzed or optimized with existing
techniques for HSDFGs [7]. However, the conversion proce-
dures are usually time and space-consuming [8]. The size of
the equivalent HSDFG can be exponentially larger than that
of the original SDFG in some extreme cases. For example, a
satellite receiver that modeled in an SDFG with 22 actors has
4515 actors in its equivalent HSDFG [3]. Unfolding further
multiplies the problem space. Methods for retiming SDFGs
without converting them to their equivalent HSDFGs are
presented in [9], [10], [11] and [12]. Only feasible retiming is
considered in [9] and [10]. Only optimal retiming is considered
in [11]. Both feasible retiming and optimal retiming are
considered in [12]. Algorithms in [11] and [12] are exact.
Feasible retiming method in [12] is sufficient and necessary,
while both methods in [9] and in [10] are sufficient but not
necessary. However, how to retime an unfolded SDFG on its
original SDFG is still left unsolved.

In this paper, we present an efficient and exact method to
find feasible retiming and optimal retiming of an unfolded
SDFG on its original SDFG, without explicitly converting it to
its equivalent HSDFG and therefore without further unfolding
the HSDFG. Our contributions are as follows.

1) We show that some results about the relationship be-
tween an SDFG and its equivalent HSDFG in [12] can
be extended to the relationship between an SDFG and
its unfolded graph. And therefore the IP of the unfolded
SDFG can be computed directly on its original SDFG.

2) Combined them with the results about the equivalence
of transformations of SDFGs, which is presented as
work-in-progress in [13], we prove that retiming of an
unfolded SDFG can be safely computed on its original
SDFG.

3) With these guarantees the retiming algorithms in [11]
and [12] are extended to deal with unfolded SDFGs.

4) We present a new algorithm for the IP computation of
unfolded SDFGs, based on which a feasible retiming
algorithm, which is sufficient and necessary, and an
optimal retiming algorithm are proposed.

5) We implement all the three methods and perform ex-
periments on graphs with various structures and sizes to
evaluate them thoroughly.

Let |V | and |E| be the numbers of actors and edges in
an SDFG, respectively, and |V ′| and |E′| be the numbers of
actors and edges of its equivalent HSDFG, respectively. As the
experimental results in [12] show, its optimal retiming method
is faster than that in [11] on most cases, but is also much
slower on some cases with complex structure. The reason is
that the optimal retiming algorithms in [12] has an exponential
worst case complexity, while the worst case complexity of the
algorithm in [11] is O(|V ||E||V ′|2). Both retiming methods
have their own advantages. Detailed analysis is shown in [12].

In the proposed method, the advantage of the meth-
ods in [12] is kept and the worst case complexity is im-
proved significantly. The worst case complexities of the pro-
posed feasible retiming and optimal retiming algorithms are
O(f2|V ′||E′|) and O(IP · f3|V ′||E′|), respectively. Further-
more, on most cases, our algorithms are much faster than the
worst case. The efficiency of our method is also shown in
the experimental results. Our experimental results also reveal
that retiming usually has a better effects than unfolding on
throughput optimization of SDFGs.

The remainder of this paper is organized as follows. We first
introduce the main concepts used in this paper and formulate
the problems we address in Section II. The basis for the
correctness of our method is presented in Section III and
the details of the proposed retiming method are illustrated in
Section IV. Section V provides an experimental evaluation.
Finally, Section VI concludes.

II. PRELIMINARIES AND PROBLEM FORMULATION

An SDFG is a finite directed graph G = (V,E), in which
V is the set of actors and E is the set of directed edges. Actor
v is weighted with its computation time t(v), a nonnegative
integer. The source actor and sink actor of edge e are denoted
by src(e) and snk(e), respectively. Edge e is weighted with
three properties, d(e), p(e) and c(e). The delay d(e) is the
number of initial tokens on e, the production rate p(e) is the
number of tokens produced onto e by each firing of src(e), and
the consumption rate c(e) is the number of tokens consumed
from e by each firing of snk(e). The set of incoming edges to
actor v is denoted by InE (v), and the set of outgoing edges
from v by OutE (v). If p(e) = c(e) = 1 for each e ∈ E, G is
a homogeneous SDFG (HSDFG).

A simple SDFG G1 is depicted in Fig. 1 (a). Actors A and
B need one unit of time to finish and C needs two units. The
production rate and consumption rate of edge 〈C,A〉 are 2 and
1, respectively, and there are three initial tokens on 〈C,A〉.
That is, p(〈C,A〉) = 2, c(〈C,A〉) = 1 and d(〈C,A〉) = 3. A
firing of actor C will produce 2 tokens on 〈C,A〉 and actor
A can fire only when there is at least one token on 〈C,A〉.
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Fig. 2. An example for SDFG with self-loops. (a) The SDFG G′1; (b) The
equivalent HSDFG of G′1, H(G′1). Edges with initial tokens in HSDFGs are
omitted.

Actor A can fire three times before the end of the first firing
of C, because there are three initial tokens on edge 〈C,A〉.
Actors without any incoming edge are free to fire at any time.

SDFG G = (V,E) is sample rate consistent [1] if and only
if there exists a positive integer vector q(V ) satisfying balance
equations, q(src(e))× p(e) = q(snk(e))× c(e) for all e ∈ E.
The smallest such q is called the repetition vector. We use q to
represent the repetition vector directly. The repetition vector
of G1 is q = [2, 2, 1], corresponding to actors A, B and C,
for example.

An iteration of an SDFG is a firing sequence in which each
actor v occurs exactly q(v) times. The average computation
time per iteration is called the iteration period (IP). The IP of
SDFG G is denoted by G.ip.

It is always possible to convert a sample rate consistent
SDFG to an equivalent HSDFG [4], which captures the depen-
dencies among firings in an iteration of the SDFG. We denote
the transformation by H-transformation. For each actor v in
SDFG G, there are q(v) copies of it in the HSDFG, denoted
by (v, i), i ∈ [1, q(v)]. In examples and figures, however, for
the simplicity, we use the form like A1 to represent (A, 1).
The H-transformation is also recapped as a mapping H from
SDFG G to its equivalent HSDFG H(G) in [12].

A sample rate consistent SDFG is deadlock-free if there is
at least one initial token on any cycle in its equivalent HSDFG.
Only sample rate consistent and deadlock-free SDFGs are
meaningful in practice. Therefore we consider only such
SDFGs.

The IP of an SDFG equals the IP of its equivalent HSDFG,
which is the length of critical paths of the HSDFG [5]. For
example, the IP of G1 (Fig. 1 (a)) is 3, the length of critical
path B1 → C1 in H(G1) (Fig. 1 (b)). That is, we always have
G.ip = H(G).ip.

A firing of an actor with internal state depends on the result
of its previous firings, therefore different firings of such an
actor are not allowed to fire concurrently. This limitation can
be explicitly represented as a self-loop on the actor. See Fig. 2
for example. The self-loops on actors A and B of SDFG G′

1

(Fig. 2 (a)) put the data dependencies between the firings of the
same actor. The dependencies are explicitly shown on H(G′

1)
(Fig. 2 (b)), in which the edge 〈A1, A2〉 indicates that A2

cannot start before A1 has finished and 〈B1, B2〉 the same. On
the contrary, in H(G1) (Fig. 1 (b)), there is no edge between
A1 and A2 and no edge between B1 and B2, because there
are no self-loops on A and B of G1. This means that in G1,
A1 and A2 can fire concurrently, and so do B1 and B2.

Retiming is a graph transformation that redistributes the

graph’s initial tokens while remains its functionality un-
changed. It can be defined either in a forward fashion [9] or
in a backward fashion [5], [11], [12]. They are equivalent. We
use a forward retiming in this paper. That is, retiming an actor
once means firing this actor once. The firing moves tokens on
the incoming edges of the actor to its outgoing edges according
to the data rates of these edges. We denote the transformation
with retiming function r by Rr-transformation.

Definition 1. (Rr-transformation) The Rr-transformation of
an SDFG G = (V,E) with a retiming function r : V → Z,
where Z is the set of integers, is a mapping Rr that maps G
to a new SDFG Rr(G) = (V,E′) as follows:

For each edge e = 〈u, v〉 ∈ E, there is an edge e′ =
〈u, v〉 ∈ E′ with p(e′) = p(e), c(e′) = c(e), and d(e′) =
d(e) + p(e)r(u)− c(e)r(v).

The SDFG in Fig. 1 (c) is transformed by G1 with retiming
r: r(A) = 1, r(B) = 2 and r(C) = 0, for example. The
retiming transformation moves one token from edge 〈C,A〉 to
edge 〈A,B〉 and moves two tokens from 〈A,B〉 to 〈B,C〉. For
a given IP constraint dip, a feasible retiming for SDFG G is a
retiming r, such that Rr(G).ip ≤ dip; and an optimal retiming
is a retiming r, such that Rr(G).ip as small as posssible.

A graph unfolded with an unfolding factor f describes f
consecutive iterations of its original graph. We denote the
transformation with unfolding factor f by Uf -transformation.
The procedure that constructs an unfolded graph for an HS-
DFG is presented in [7]. The HSDFG H(G1) unfolded with
unfolding factor f = 2 is shown in Fig. 1 (d), in which nodes
like A2

1 denotes the 1st firing of actor A in the 2nd iteration of
H(G1). The unfolding of an SDFG is defined by the unfolding
of its equivalent HSDFG.

Definition 2. (Uf -transformation) Let G = 〈V,E〉 be a
sample-rate consistent SDFG, q its repetition vector, and f
an unfolding factor. Let Q = f · q. The Uf -transformation is
a mapping that maps G to an HSDFG UfH(G) = 〈V ′, E′〉
as follows:

1) For each v ∈ V and i ∈ [1, Q(v)], there is an actor
(v, i) ∈ V ′ with t(v, i) = t(v);

2) For each e = 〈u, v〉 ∈ E, i ∈ [1, Q(u)], k ∈ [1, p(e)],
and

j =

⌊
((i− 1)p(e) + (k − 1) + d(e)) mod c(e)Q(v)

c(e)

⌋
+ 1,

there is an edge e′ = 〈(u, i), (v, j), k〉 ∈ E′ with

d(e′) =

⌊
(i− 1)p(e) + (k − 1) + d(e)

c(e)Q(v)

⌋
.

We call UfH(G) a f -unfolded graph of SDFG G. Ob-
viously, H(G) is 1-unfolded graph of G. An SDFG is in
fact a directed multigraph, in which between two actors
may have multiple edges. Since we are only concerned with
the data dependencies among actors, we can just take an
SDFG as a directed graph. Similarly, we consider UfH(G)
as a directed graph by using edge 〈(u, i), (v, j)〉 to represent
each set of edges 〈(u, i), (v, j), k〉, with d(〈(u, i), (v, j)〉) =
mink d(〈(u, i), (v, j), k〉).



An Uf -transformation takes f iterations of a graph as a
cycle. There are Q(u) firings in an cycle of UfH(G) for each
actor u ∈ G. We use (u, k) to represent the kth firing of actor
u in the unfolded graph, where k = (j − 1) · q(u) + i is the
ith firing in jth iteration (of G). In figures and examples, the
form such as A1 is used. Only when the discussion is focus
on the order of iterations, the form uj is used.

The cycle period (CP) of the unfolded graph UfH(G),
denoted by UfH(G).cp, is the length of its critical path. Since
UfH(G) includes f iterations of G, we have

UfH(G).ip =
UfH(G).cp

f
.

The combinations of the transformations are also transfor-
mations. For simplicity, we use UfHRr(G) to express the
transformed graph Uf (H(Rr(G))), and so on. All the three
transformations of SDFGs preserve their functionalities [4],
[5], [6], and so do their combinations.

Given an SDFG, an unfolding factor f and a desired CP
dcp, the problems we address are: how to find a feasible
retiming r, such that UfHRr(G).cp ≤ dcp? how to find
an optimal retiming r such that UfHRr(G).cp as small as
possible (and therefore UfHRr(G).ip as small as possible)?

III. THE BASIS FOR THE CORRECTNESS OF OUR METHOD

Our method works directly on SDFGs, without explicitly
converting an SDFG to its equivalent HSDFG and unfolded
HSDFG. This raises a question: why can we compute the
retiming of an unfolded SDFG on the original SDFG when it is
supposed to be done on an unfolded HSDFG? We answer this
question in this section. We show in Section III-A that retiming
on an SDFG is equivalent to the retiming on its unfolded
HSDFG and in Section III-B that the CP of an unfolded SDFG
can be computed directly on the original SDFG. These two
results guarantee that the retiming of an unfolded SDFG can
be safely computed on its original SDFG.

A. The Equivalence of Transformations of SDFGs

Definition 3. (IP equivalence) Let T1 and T2 be two trans-
formations. If for any SDFG G, T1(G).ip = T2(G).ip, then
T1 is IP equivalent with T2, denoted by T1 ≡ip T2.

Our method is correct only when for any retiming r, there
exists a retiming r′′ such that UfHRr and Rr′′UfH are IP
equivalent. The property is guaranteed by the results about
the equivalence of the transformations of SDFGs, which is
presented as work-in-progress in [13]. We illustrate the results
in this section.

It is proven in [7] that the order of retiming and unfolding
is immaterial for the IP of an HSDFG.

Lemma 1. [7] On HSDFGs, for the given retiming function
r′ and unfolding factor f , UfRr′ ≡ip Rr′′Uf , where r′′ is
a retiming function on the corresponding f -unfolded HSDFG
and for each v in the HSDFG and j ∈ [1, f ],

r′′(vj) =

1 + b r
′(v)
f
c, if j ≤ r′(v) mod f ;

b r
′(v)
f
c, otherwise.

(1)

This property is exemplified in Fig. 1. The HSDFG
UfRr′H(G1) (Fig. 1 (h)) is transformed from H(G1) by first
retiming with Rr′ (r′(A1) = r′(B1) = r′(B2) = 1) and
then unfolding with Uf (f = 2); the HSDFG Rr′′UfH(G1)
(Fig. 1 (g)) is transformed from H(G1) by first unfolding
with Uf (f = 2) and then retiming with Rr′′ (r′′(A1

1) =
r′′(B1

1) = r′′(B1
2) = 1). The retiming functions r′′ is defined

by r′ according to Eqn. (1). The IPs of UfRr′H(G1) and
Rr′′UfH(G1) are both 1.5. The two optimization paths for
HSDFG H(G1): (b) → (e) → (h) and (b) → (d) → (g),
are equivalent. This result guarantees that retiming can be
performed on the HSDFG instead of on the unfolded HSDFG,
whose size is f times of the original HSDFG.

The equivalence of retiming on and SDFG and on its
equivalent HSDFG is proven in [12].

Lemma 2. [12] Given SDFG G and a retiming function r on
G, HRr(G) and Rr′H(G) are equivalent under isomorphism,
where r′ is a retiming function on H(G) and for v ∈ G and
i ∈ [1, q(v)],

r′(v, i) =

{
1 + b r(v)

q(v)
c, if i ≤ r(v) mod q(v);

b r(v)
q(v)
c, otherwise.

(2)

For example, Rr′H(G1) in Fig. 1 (e) is equivalent to
HRr(G1) in Fig. 1 (f) under the isomorphic function φ :
Rr′H(G1) → HRr(G1) that is defined by φ(A1) = A2,
φ(A2) = A1 and φ(v) = v for other actor v. HRr(G1)
is transformed from G1 by first retiming with Rr (r(A) =
1, r(B) = 2) and then converting to the equivalent HSDFG;
Rr′H(G1) is transformed from G1 by first converting to its
equivalent HSDFG and then retiming with Rr′ (r′(A1) =
r′(B1) = r′(B2) = 1). The retiming functions r′ is defined by
r according to Eqn. (2). The two optimization paths for SDFG
G1: (a) → (c) → (f) and (a) → (b) → (e), are equivalent. The
conclusion that HRr ≡ip Rr′H on SDFGs can be drawn
directly by Lemma 2. This result guarantees that retiming
can be performed on the original SDFG instead of on the
equivalent HSDFG, whose size may be much larger than that
of the original SDFG.

Then the IP equivalence of UfHRr, UfRr′H and Rr′′UfH
can be derived from Lemma 1 and Lemma 2.

Theorem 1. On SDFGs, for a given retiming function r and
unfolding factor f , Rr′′UfH ≡ip UfRr′H ≡ip UfHRr,
where r′ and r′′ are defined according to Eqn. (2) and
Eqn. (1), respectively.

Proof. For any SDFG G, H(G) is an HSDFG. By Lemma 1,
for any legal retiming r′ and unfolding factor f on H(G),
the IP of UfRr′(H(G)) equals the IP of Rr′′Uf (H(G)).
Therefore, we have that Rr′′UfH ≡ip UfRr′H .

For any legal retiming r on G, by Lemma 2, HRr(G)
and Rr′H(G) are equivalent under isomorphism. Suppose the
isomorphic function φ : Rr′H(G) → HRr(G) is defined
by φ(u) = v for each u ∈ Rr′H(G). UfHRr(G) and
UfRr′H(G) are equivalent under the isomorphic function
φ′ : UfRr′H(G) → UfHRr(G) defined by φ′(uj) = vj

for each uj ∈ UfRr′H(G) and 1 ≤ j ≤ f . Hence, UfRr′H
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and UfHRr are equivalent under isomorphism, and therefore
UfRr′H ≡ip UfHRr.

The relationship of the transformations of SDFGs are
summarized in Fig. 3. Examples of the combinations of
transformations of G1, Rr′′UfH(G1), UfRr′H(G1) and
UfHRr(G1), are shown in Fig. 1 (g), (h) and (i), respectively.
The three optimization paths for SDFG G1: (a) → (b) → (d)
→ (g), (a) → (b) → (e) → (h) and (a) → (c) → (f) → (i),
are equivalent.

The first path is the most straightforward solution. Along
this path, one needs to explicitly carry out the H , Uf and
Rr′′ - transformations and compute the IP of the unfolded
HSDFG. The second path improve it by carrying out Rr′ -
transformations on H(G) rather than UfH(G). A method to
compute the CP of an unfolded HSDFG directly on the original
HSDFG is presented in [14]. Therefore along this path, we do
not need to carry out Uf -transformations. Along the last path,
it’s possible to carry out Rr-transformations on G, the smallest
graph, comparing with H(G) and UfH(G). If the CP of the
unfolded SDFG can be computed on the original SDFG, no
explicitly H and Uf -transformations are needed.

B. The Basis for CP Computation on SDFGs

In this section we illustrate how the CP of an unfolded
SDFG can be computed directly on the original SDFG. We
show that certain walks in an SDFG in fact cover all the
critical paths in its unfolded graph, and therefore the CP of
the unfolded SDFG is the length of the longest one of these
walks. Unlike a path, there may be repeated actors or edges
in a walk.

The properties of the relationship between an SDFG and
its equivalent HSDFG is illustrated in [12]. Recall that in
an iteration of an SDFG, each actor v fires q(v) times; and
according to the definition, in a cycle of an f -unfolded SDFG,
each actor v fires Q(v) (Q(v) = f · q(v)) times. Since the
H(G) captures the dependencies among firings in an iteration
of SDFG G and UfH(G) capture the dependencies in f
iterations, the results in [12] can be extended to the relationship
between an SDFG and its f -unfolded graph by replacing all
q(v) with Q(v). We review the extension in this section.

A zero-delay path in an HSDFG is a longest path each of
whose edge has no initial tokens. Path p11 (B1 → C1 → A1)
in Fig. 4 (b) for example is a zero-delay path of H(G2), while
path C1 → A1 is not because it is a part of p11. A critical
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U2H(G2):

p21: B1 -> C1 -> A1 -> B3 -> C2 -> A3

p22: B1 -> C1 -> A1 -> B3 -> C2 -> A4

p23: B1 -> C1 -> C2 -> A3

p24: B1 -> C1 -> C2 -> A4

p25: B2 -> C2 -> A3

p26: B2 -> C2 -> A4

Zero-delay paths: 
A1

C1
B1

A2 B2

H(G2):

p11: B1 -> C1 -> A1

p12: B1 -> C1 -> A2

Zero-delay paths:

p13: B2 

A,1 C,2B,1
2

2

G2:

1-ZR walks:

w21: B -> C -> A -> B -> C -> A
w22: B -> C -> C -> A
w23: B -> C -> A

w11: B -> C -> A

2-ZR walks: 
w12: B

Fig. 4. The f -ZR walks of SDFGs and their corresponding zero-delay paths
in the unfolded graphs. (a) The SDFG G2; (B) the equivalent HSDFG of
G2, i.e. 1-unfolded graph of G2; (c) the 2-unfolded graph of G2. Edges with
initial tokens in HSDFGs are omitted.

path of an HSDFG is a longest zero-delay path. For example,
p11 and p12 are critical paths of H(G2) and p21 and p22 are
critical paths of UfH(G2).

Below, we always suppose that G is an SDFG and f an
unfolding factor.

Definition 4. (f -ZR walk) For actors u, v ∈ G, if there exists
a zero-delay path

p ∈ UfH(G) : (v0, l0)→ (v1, l1)→ · · · → (vn, ln),

then the walk w ∈ G : v0 → v1 → · · · → vn is called a f
zero-delay reachable (f -ZR) walk of G.

See Fig. 4 for example. The walk w11 (B → C → A) is a
1-ZR walk of G2, corresponding to p11 (B1 → C1 → A1), a
zero-delay path of H(G2); it also corresponds to p12. The walk
w21 (B → C → A → B → C → A) is a 2-ZR walk of G2,
corresponding to p21 (B1 → C1 → A1 → B3 → C2 → A3),
a zero-delay path of U2H(G2); it also corresponds to p22.

By Definition 4, f -ZR walks of SDFG G cover all zero-
delay paths in UfH(G). Since the CP of G’s f−unfolded
graph is the length of the critical paths in UfH(G), it is also
the length of the longest f -ZR walks in G.

Now the problem is how to find a longest f -ZR walk in G.
Searching for the f -ZR walks in an SDFG is in fact searching
(implicitly) for the zero-delayed paths in its f -unfolded graph.
We can see that a f -ZR walk of an SDFG corresponds to a set
of zero-delay paths in its f -unfolded graph. Below we show
that each f -ZR walk can be found by searching a particular
zero-delay path or part of it.

Theorem 2. Walk w : v0
e1−→ v1

e2−→ · · · en−→ vn is a f -ZR walk
in G if and only if there is a path p : (v0, l0) → (v1, l1) →
· · · → (vn, ln) in UfH(G), where v0 = u, vn = v, l0 = 1,
and for each i ∈ [1, n]:

li =

⌊
(li−1 − 1)p(ei) + d(ei)

c(ei)

⌋
+ 1 and li ≤ Q(vi). (3)



The detailed proof of Theorem 2 in the case of 1-unfolded
graph is referred to [12]. Path p defined in Theorem 2 is one
or part of one zero-delay path beginning with some actor
(u, 1). We can always find some walks longer than those
walks that correspond to a part of a zero-delay path. So we
neglect those walks, considering only the walks corresponding
a complete zero-delay path. This means that we can always
find the longest f -ZR walk that begins with actor u in G by
searching zero-delay paths beginning with (u, 1) in UfH(G).
For example, by (implicitly) searching path p11 in H(G2)
(Fig. 4 (b)), we find 1-ZR walk w11, which is the longest 1-ZR
walk of G2. It is the only search we need for the computation
of the CP of the 1-unfolded graph of G2. Similarly, walks
w21 and w22, which are found by searching paths p21 and p23
of U2H(G2) (Fig. 4 (c)), respectively, are the only walks we
need for the computation of the CP of the 2-unfolded graph
of G2.

A critical f -ZR walk of G is a f -ZR walk that corresponds
to a zero-delay path in UfH(G) as defined in Theorem 2. No-
tice that, a critical f -ZR walk is not necessarily corresponding
to a critical path in UfH(G), but the f -ZR walk corresponding
to a critical path in UfH(G) is definitely a critical f -ZR walk.

Theorem 3. The CP of an f -unfolded graph of SDFG G is
the length of its longest critical f -ZR walk.

IV. RETIMING OF UNFOLDED SDFGS

Retiming algorithms generally work by relaxation [5], [9],
[10], [11], [12]. A feasible retiming is a repeated procedure
that checks the IP of the graph and then shortens the zero-delay
paths/ZR walks that are longer than the given IP constraint
until finds a retiming function that meets the IP constraint or
concludes no such function existing. An optimal retiming is a
procedure that repeatedly reduces the IP constraint and checks
its feasibility until a feasible retiming leading to the smallest
possible IP (optimal IP) is found.

Generally, the speed of a retiming algorithm is affected by
the execution time for an IP/CP check and the number of the
checks, that is, the retiming steps.

In this section, we first present a brief description about how
to extend the state-of-the-art retiming methods in [11] and [12]
to deal with unfolding. A new CP computation algorithm is
introduced in Section IV-B, followed with feasible retiming
algorithm and optimal retiming algorithm for unfolded SDFGs
in Sections IV-C and IV-D, respectively.

A. Unfolding Extension to the methods in [11] and [12]

Based on discussions in Section III, the feasible retiming
algorithm and optimal retiming algorithm in [12] and the
optimal retiming algorithm in [11] can be extended to deal
with unfolded SDFGs by replacing all q(v) in the IP compu-
tation and retiming procedures with Q(v). The extensions of
those in [12] still have an exponential worst case complexity,
because its CP computation is exponentially complex. The
extension of the algorithm in [11] has an O(f2|V ||E||V ′|2)
worst case complexity.

B1 C1 A1 B3 C2 A3

C2 A3

A4 C2 B3 A1

C1 B1B4 A2

B1 C1 A1 B3

C2 A3
(c)(a) (b)

Fig. 5. Search paths in U2H(G2) of the CP computation in different methods.
(a) in [11]; (b) in [12]; (c) in the proposed method. Shared subpaths are circled
in red dot lines.

B. CP Computation

The CP computation of an unfolded SDFG G is in fact
finding the longest zero-delay paths in the HSDFG UfH(G).
The procedure is to find the length of the longest path to each
actor (u, i), and then take the largest one as the CP. The lengths
of the longest paths can be computed forward or backward.
Lengths of longest forward paths (Tf ) and lengths of reverse
paths (Tr) to actors of U2H(G2) are shown in Table I. From
any of them, we can get that U2H(G2).cp = 8. The CP
computation procedures in [11] and [12] find the CP of an
SDFG by computing part of Tf , as shown in the first two parts
of Table II. The proposed method finds the CP by computing
part of Tr as we illustrate below.

TABLE I
LENGTHS OF LONGEST FORWARD PATHS (Tf ) AND LENGTHS OF REVERSE

PATHS TO ACTORS (Tr ) OF U2H(G2)

Tf Tr

1 2 3 4 1 2 3 4
A 4 2 8 8 5 2 1 1
B 1 1 5 5 8 4 4 1
C 3 7 N N 7 3 N N

Obviously, we have

∀u ∈ G : Tr(u, i) ≥ Tr(u, j) for i < j. (4)

Fig. 5 shows the search paths in U2H(G2) of the CP
computations in different methods. When SDFG G2 has no
self-loop on actor C (dot line in Fig. 4), the CP computation
of [12] outperforms that of [11] on this case because it needs
only to search one path, B1 → C1 → A1 → B3 → C2 → A3

(Fig. 5 (b)), while that of [11] needs to search two paths, A4 →
C2 → B3 → A1 → C1 → B1 and B4 → A2 → C1 → B1

(Fig. 5 (c)). The shared subpath C1 → B1 is computed only
once in [11]. But when there is a self-loop, the CP computation
of [12] needs to search two paths as shown in Fig. 5 (b) and
may computes the shared subpath C2 → A3 twice, depending
on which path is searched first. When there are many such
shared subpaths, the CP computation of [12] goes to be very
slow, while that of [11] has no repeated computations of those
shared subpaths, as show in Fig. 5 (a).

We can see that these two methods have their own ad-
vantages and disadvantages. Combining the advantages of
these two approaches, we present a new CP computation
procedure of f -unfolded SDFGs, uSdfCP, in Algorithm 1.
Procedure uSdfCP searches as fewer paths as that in [12] and
computes shared subpaths only once as that in [11]. Again,
take U2H(G2) as an example. The search paths of uSdfCP is
shown in Fig. 5 (c). In the case that there is a self-loop on
actor C, it only searches two paths as that in Fig. 5 (b) and



computes the shared subpath (C2 → A3 ) only once as that in
Fig. 5 (a).

Algorithm 1 uSdfCP(G, f, dcp)
Require: A valid SDFG G = 〈V,E〉, unfolding factor f and the desired CP

dcp
Ensure: criT and CP
1: ∀u ∈ G, i ∈ [1, f · q(u)], let criT (u, i) = −1
2: for all u ∈ V do
3: j = 1
4: criT (u, 1) = getNextT (u, 1)
5: while criT (u, j) > dcp and j < q(u) do
6: j = j + 1
7: criT (u, j) = getNextT (u, j) {To make sure that all criT (u, i)s

larger than dcp are computed. }
8: end while
9: end for

10: CP = maxu∈V,i∈[1,f ·q(u)] criT (u, i)
11: return CP and criT

getNextT(u, l)

12: if l > f · q(u) then
13: return 0
14: end if
15: if criT (u, l) 6= −1 then
16: return criT (u, l) {This step guarantees that the shared subpaths are

only searched once.}
17: end if
18: maxL = −1
19: if OutE(u) = ∅ then
20: maxL = t(u)
21: else
22: for all e ∈ OutE(u) do
23: l′ = b (l−1)p(e)+d(e)

c(e)
c+ 1 {by Eqn. (3)}

24: v = snk(e)
25: maxL = max (maxL, getNextT (v, l′) + t(u))
26: end for
27: end if
28: criT (u, l) = maxL
29: return criT (u, l)

To make the difference clearer, Algorithm 1 is structured
the same as the IP computation (sdfIP) in [12] and the same
names are used for key variables. The most important variable
is vector criT . Rather than used to contain the lengths of
ZR walks [12] corresponding to Tf , criT here is used to
contain the lengths of reverse f -ZR walks, corresponding to
Tr. According to Theorem 3, it is not necessary to compute the
lengths of all f -ZR walks, rather, searching those critical f -
ZR walks, which begin with some (u, 1) (Line 4) is sufficient.
A recursive procedure getNextT is used as a subroutine to
explore f -ZR walks in a depth-first search strategy, and to
compute the criT . For each actor u, its successor in a f -ZR
walk is found according to Eqn. (3) (Line 23). The recursive
process terminates when (u, l) is the last firing of a zero-delay
path in the unfolded graph (Lines 12-14), or when criT (u, l)
has been computed (Lines 15-17), that is, there are shared
subpaths from (u, l) to the end of a zero-delay path and those
subpaths have been explored. Because the SDFGs we consider
are deadlock-free, a zero-delay path of its unfolded graph is
definitely ends at some (u, l) with l > f ·q(u); otherwise a loop
without initial token exists and a deadlock occurs. Therefore,
the recursive process is guaranteed to terminate.

Parameter dcp is not necessary for the CP computation

but is helpful for the retiming steps as we show later. It is
set to be infinite when uSdfCP is only used to compute the
CP of an f -unfolded graph. Although this procedure has an
O(f |E′|) worst case complexity, in most cases, the searched
edges are much fewer than f |E′|. See uSdfCP(G2, 2,∞) for
example. There are 14 edges in UfH(G2), i.e. f |E′| = 14,
of which only 6 edges are on the paths (p21 and p23 in Fig. 4
(c)) corresponding to critical 2-ZR walks (w21 and w22 in
Fig. 4 (c)). As a result, only some of the elements of criT
are computed and the CP is the maximum of them. As shown
in Table II, after uSdfCP(G2, 2,∞) is finished, there are still
elements in criT uncomputed, remaining as -1, as initialized
at Line 1.

TABLE II
criT OF G2 IN DIFFERENT CP COMPUTATION METHODS

[11] [12] uSdfCP(G2, 2,∞) uSdfCP(G2, 2, 6)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
A 4 2 -1 8 4 -1 8 -1 5 -1 1 -1 5 -1 1 -1
B 1 -1 5 5 1 -1 5 -1 8 -1 4 -1 8 4 4 1
C 3 7 N N 3 7 N N 7 3 N N 7 3 N N

C. Feasible Retiming

As the experimental results shown in [12], the retiming steps
in its optimal retiming algorithm are much fewer than that
of [11]. This is also the reason that the former is more efficient
than the latter on most cases. The fewer retiming steps, the
fewer CP computations.

Retiming algorithm in [12] can achieve this is because the
retiming function at each loop is computed directly from the
results of its IP computation and is exactly equivalent to the
retiming function of its equivalent HSDFG at each loop in the
retiming algorithm in [5]. By this property, the feasible retim-
ing procedure sdfFEAS in [12] mimics the feasible retiming
procedure FEAS in [5], which is sufficient and necessary for
feasible retiming of HSDFGs. This results in that sdfFEAS
in [12] is also sufficient and necessary for feasible retiming
of SDFGs, while other feasible retiming methods [9], [10] are
only sufficient but not necessary. Procedure sdfFEAS further
reduces the retiming steps by improving the termination con-
dition of FEAS. Below we show that, similar to sdfFEAS, the
proposed feasible retiming algorithm for the unfolded SDFGs
is also sufficient and necessary, and has sharp termination
condition.

For the retiming function computation, our CP computation
uSdfCP(G, f,∞) has not such a good property as the IP
computation in [12]. We have to add some extra operations
in the procedure to achieve such effect.

Lines 5 to 8, as well as parameter dcp, in Algorithm 1
are not necessary for CP computation itself. They compute
all criT (u, i)s that are larger than dcp, so that the increment
of retiming function at each retiming step (4r(u)) can be
calculated according to criT . By Eqn (4), 4r(u) is the largest
label of those (u, j)s that have criT (u, j) > dcp. That is,

4r(u) = j, criT (u, j) ≤ dcp and ∀i ∈ [0, j−1], criT (u, i) > dcp. (5)



Let dcp for G2 be six, the reverse paths to B1 and C1 are
longer than six, as the criT of procedure uSdfCP(G2, 2, 6)
shown in the rightmost part of Table II. In this case, 4r(A) =
0 and 4r(B) = 4r(C) = 1.

The feasible retiming algorithm is outlined in Algorithm 2.

Algorithm 2 uSdfFEAS(G, f, dcp)
Require: A valid SDFG G = 〈V,E〉 and a nonnegative integer dcp
Ensure: A retiming r of G such that UfHRr(G).cp ≤ dcp, if such a

retiming exists
1: if dcp < maxv∈V t(v) then
2: return false
3: end if
4: ∀v ∈ V , let r(v) = 0
5: G′ = G
6: repeat
7: get criT and CP of G′ from uSdfCP
8: if CP ≤ dcp then
9: return r and CP

10: end if
11: for all v ∈ V do
12: r(v) = r(v) +4r(v) {by Eqn. (5)}
13: end for
14: G′ = Rr(G)
15: until find a repetitive delay distribution of Gr

16: return false

Lines 1 to 3 guarantee that the desired CP is larger than
the largest computation time of actors. Line 4 initializes the
retiming vector r. At each step of the loop (Lines 6 to 15)
of Algorithm 2, the retiming function r is increased by 4r,
which is calculated via Eqn. (5). The length of a reverse f -ZR
walk to firing (u, j) is always not less than that of (u, i) when
i > j, so 4r(u) is the number of all firings of u to which the
lengths of reverse f -ZR walks are larger than dcp. Therefore,
a step of Algorithm 2 simulates exactly a step of Algorithm
FEAS in [5], which is sufficient and necessary for HSDFGs.
A delay distribution of a SDFG is a vector containing delays
on all edges of the SDFG. Since a retiming only changes the
delay distribution, when a repetitive one is checked, the whole
procedure can be finished safely (Line 15). This termination
condition is the same as that of [12] – no potential feasible
retiming functions are missed and no redundant retiming
functions are checked. Consequently, Algorithm 2 is sufficient
and necessary and with sharp termination condition.

When it has to repeat f |V ′| times, the worst case occurs.
Therefore the complexity of Algorithm 2 is O(f2|V ′||E′|).
The worst cases usually occurs when checking an infeasible
dcp, for which no feasible retimings exists. For the cases when
a feasible retiming exists, Algorithm 2 converges rapidly and
needs much fewer retiming steps. Our experimental results in
Section V also confirm this observation.

D. Optimal Retiming

An optimal retiming is a procedure that repeatedly reduces
the CP constraint and checks its feasibility until a feasible
retiming leading to the smallest possible CP (therefore the
optimal IP) is found. We outline optimal retiming algorithm
in Algorithm 3.

Algorithm 3 finds the optimal retiming by repeatedly calling
uSdfFEAS to check whether a dcp is feasible. As explained

Algorithm 3 uSdfOPT(G, f )
Require: A valid SDFG G = 〈V,E〉
Ensure: A retiming r of G such that UfHRr(G).cp is as small as possible

and the optimal IP
1: ∀v ∈ V , let r(v) = 0, r′(v) = 0
2: G′ = G
3: get CP of G′ from uSdfCP
4: repeat
5: G′ = Rr′ (G

′)
6: r+ = r′

7: optCP = CP
8: run uSdfFEAS(G′, f, optCP − 1) to determine if a feasible retiming

r′ exists; if r′ exists, get its CP
9: until no feasible retiming found for G′

10: return r and optCP
f

in [12], a binary search may check more unfeasible cases,
which are bottlenecks of feasible retiming problem as we
explain before. Hence we choose optCP − 1 as dcp, where
optCP is the CP of the previously retimed graph (Line 7).
The CP is initialized at Line 3 and updated at each feasible
retiming check (Line 8). The times of repeating never exceed
the CP of f - graph of G. In fact, the lower bound of the
dcp is maxv∈V t(v). Therefore the complexity of Algorithm 3
is O(CP · f2|V ′||E′|) or O(IP · f3|V ′||E′|). Since only
one infeasible dcp is checked in Algorithm 3, its average
complexity is much better than the worst case.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have implemented the proposed method (Alg. 2 and
Alg. 3) and the extensions of optimal retiming algorithm
in [11] and both feasible and optimal retiming algorithms
in [12] in the open source tool SDF3 [15]. The algorithm
in [11] deals with only strongly connected SDFGs. Others
have no such limitation. The tested SDFGs are generated
with SDF3. They are divided into four sets according to their
structures and each set is further divided into groups according
to the size of the graphs. We test three unfolding factors
(f = 1, 2, 3) for each graph. The experiments were carried
out on a 2.67GHz CPU with 12MB cache. The experimental
results are shown in Tables III to VIII. All execution times are
measured in milliseconds (ms) unless otherwise specified.

The SDFGs are generated according to four types of
structure: acyclic graphs (Acyc), connected (but not strongly
connected) graphs (Con), strongly connected graphs (SC) and
strongly connected graphs with self-loops (SCsl). A graph
in SCsl is generated by adding a self-loop on each actor of
a graph in SC. The last set is used to model graphs with
complex structure. Graphs with different structure are grouped
into different set. There are four groups in each set: A20Q100,
A50Q100, A50Q1000 and A100Q1000, where AxQy means
there are x actors in an SDFG and y actors in its equivalent
HSDFG, and f ·y actors in its f -unfolded graphs. Each group
includes 30 SDFGs.



B. Experimental Results

All the three methods considered are exact, and they have
no significant difference on the use of the memory because
they all work directly on the original SDFGs. Therefore,
we compare only the execution times of them. The general
improvements of our feasible retiming algorithm (Alg. 2) and
optimal retiming algorithm (Alg. 3) are shown in Tables III
and IV, respectively. Each point in the tables is an average of
execution times of the algorithms on 360 unfolded graphs in
each set. The improvement is measured by the execution time
of the compared method divided by that of our method.

In Table III, Alg. 2 is compared with the extension of
feasible retiming algorithm in [12]. The optimal CP (optCP)
is used as feasible dcp and optCP minus one as infeasible
dcp. On the feasible tests, Alg. 2 is over ten percent better
than that in [12]. The significant improvement, however, is on
the infeasible tests, especially on those graphs in set SCsl, on
which Alg. 2 outperforms the algorithm in [12] more than 500
times faster. We explain later why the infeasible case for set
Acyc and the feasible case for set SCsl are not shown here.

TABLE III
PERFORMANCE IMPROVEMENT OF FEASIBLE RETIMING (MS)

Type [12] Alg. 2 imp Type [12] Alg. 2 imp
Acyc-feas 0.99 0.91 109% SC-feas 0.60 0.44 137%
Con-feas 0.52 0.36 143% SC-infeas 4.64 3.17 147%
Con-infeas 46.54 24.93 187% SCsl-infeas 266s 512.36 51879%

In Table IV, Alg. 3 is compared with the extensions of
optimal retiming algorithms in [11] (imp1) and [12] (imp2).
The algorithm in [11] is only tested on sets SC and SCsl, which
are strongly connected. Alg. 3 is more than twice as fast as
the algorithm in [11]. Not surprisingly, Alg. 3 outstandingly
improves the algorithm in [12] on the SCsl set, since the
feasible retiming used by it has the worst execution time when
deals with infeasible dcp.

TABLE IV
PERFORMANCE IMPROVEMENT OF OPTIMAL RETIMING (MS)

Type [12] Alg. 3 imp Type [11] [12] Alg. 3 imp1a imp2b

Acyc. 9.8 6.5 150% SC 10.0 7.1 3.9 259% 183%
Con 51.3 26.3 195% SCsl 1s 267s 515.2 203% 51769%
a the improvement to [11] .
b the improvement to [12].

The detailed experimental results are shown in Ta-
bles V, VI, VII and VIII. Each table shows results for one set
of graphs. Each point in the tables is an average of the results
of 30 graphs in the same group. The first part of each table
shows IPs and optimal IPs (optIPs) of f -unfolded graphs, and
the last part shows the execution time and retiming steps of
different optimal retiming algorithms. The results for feasible
retiming algorithms are shown between them. We only show
the results of cases when f = 1 and 2 because of space
limitation.

The results of acyclic graphs are shown in Table V. The
optimal CP of an acyclic graph is the maximal execution
time of its actors. In the infeasible tests, since dcp is set
to be optCP − 1, Alg. 2 always returns at Line 2 and do
nothing. Therefore, the results for infeasible cases of feasible
retiming algorithms are not shown here. Tables VI and VII
shows the results of graphs in sets Con and SC, respectively.
Both feasible cases and infeasible cases of feasible retiming
algorithms are included. The results of strongly connected
graphs with self-loops are shown in Table V. With a self-loop
on each actor, graphs in set SCsl have very limited space for
throughput optimization. For most graphs, the optCP used as
dcp for feasible tests is the initial CP. This causes Alg. 2
returns at Line 9 at the first loop and do nothing more.
Therefore, the results for feasible cases of feasible retiming
algorithms are not shown here.

TABLE V
RESULTS OF ACYCLIC GRAPHS

f A20Q100 A50Q100 A50Q1000 A100Q1000
IP/optIP

1 58.0/6.5 88.4/6.8 99.7/6.8 129.1/7.0
2 29.0/3.3 44.2/3.4 49.9/3.4 64.6/3.5

Feasible retiming for dcp=optCP ( dcp is feasible)
Execution time (ms) / Retiming steps

[12] 1 0.3/10.9 0.7/16.8 0.9/19.1 2.1/24.7
2 0.3/10.9 0.7/16.8 0.8/19.1 2.2/24.7

Alg. 2 1 0.2/10.9 0.5/16.8 0.6/19.1 1.8/24.7
2 0.3/10.9 0.6/16.8 0.7/19.1 1.9/24.7

Optimal retiming
Execution time (ms) / Retiming steps

[12] 1 1.3/60.2 6.7/137.1 8.3/161.4 20.5/256.9
2 1.4/60.2 8.0/137.1 9.3/161.4 21.0/256.9

Alg. 3 1 0.9/54.8 3.4/122.5 4.1/142.9 10.8/215.7
2 1.5/76.8 5.3/165.1 5.8/189.8 15.4/282.6

TABLE VI
RESULTS OF CONNECTED GRAPHS

f A20Q100 A50Q100 A50Q1000 A100Q1000
IP/optIP

1 63.2/47.5 107.0/80.4 128.8/77.7 182.7/106.9
2 55.1/47.4 93.5/80.4 102.8/77.6 143.0/106.9

Feasible retiming for dcp=optCP ( dcp is feasible)
Execution time (ms) / Retiming steps

[12] 1 0.1/1.2 0.3/1.8 0.3/2.2 0.8/2.5
2 0.2/1.0 0.5/1.6 0.3/1.4 0.9/1.4

Alg. 2 1 0.1/1.2 0.3/2.2 0.3/2.0 0.8/2.4
2 0.0/1.0 0.2/1.8 0.4/1.4 0.7/1.4

Feasible retiming for dcp =optCP-1 ( dcp is infeasible)
Execution time (ms) / Retiming steps

[12] 1 1.3/65.3 3.0/72.1 24.1/641.7 60.4/714.7
2 1.6/65.2 5.3/72.0 43.6/641.6 116.9/715.2

Alg. 2 1 1.3/73.6 1.9/70.3 25.1/742.7 42.1/689.2
2 1.6/73.9 2.7/70.2 34.5/742.6 61.5/689.3

Optimal retiming
Execution time (ms) / Retiming steps

[12] 1 1.8/70.0 4.9/82.7 27.7/660.9 66.4/751.5
2 2.7/69.7 9.3/82.0 48.9/659.4 125.3/747.9

Alg. 3 1 1.5/80.2 2.7/81.6 26.4/762.4 43.8/720.4
2 2.2/80.2 3.9/80.4 35.9/760.9 64.1/718.6

For the feasible retiming algorithms, no matter on which
sets, they are much slower in the infeasible cases. This also



TABLE VII
RESULTS OF STRONGLY CONNECTED GRAPHS

f A20Q100 A50Q100 A50Q1000 A100Q1000
IP/optIP

1 62.2/45.4 104.9/86.7 126.9/86.3 185.5/118.5
2 53.4/45.3 96.0/86.7 104.9/86.2 150.8/118.5

Feasible retiming for dcp=optCP ( dcp is feasible)
Execution time (ms) / Retiming steps

[12] 1 0.1/1.8 0.3/1.8 0.4/3.1 0.8/2.1
2 0.1/1.5 0.5/1.1 0.5/1.6 1.0/1.5

Alg. 2 1 0.1/1.5 0.2/1.7 0.2/3.5 1.0/2.6
2 0.1/1.5 0.2/0.9 0.4/2.1 0.9/1.3

Feasible retiming for dcp =optCP-1 ( dcp is infeasible)
Execution time (ms) / Retiming steps

[12] 1 0.2/13.9 1.4/28.2 1.6/30.6 5.0/50.1
2 0.4/14.0 2.4/27.5 3.3/33.4 10.5/51.2

Alg. 2 1 0.4/18.1 1.0/35.5 2.0/43.7 5.6/76.8
2 0.5/18.2 1.7/35.2 2.6/44.6 7.8/74.7

Optimal retiming
Execution time (ms) / Retiming steps

[11] 1 0.6/38.8 1.1/43.7 7.7/311.4 14.2/257.9
2 0.9/48.7 2.4/59.4 12.5/325.9 22.1/264.7

[12] 1 0.4/19.8 1.6/35.6 2.3/47.5 7.8/80.3
2 0.7/19.2 3.2/34.4 4.4/45.7 16.3/79.4

Alg. 3 1 0.1/24.3 1.4/42.5 2.3/57.7 6.7/99.4
2 0.4/24.1 1.8/41.7 3.3/56.4 9.8/96.6

TABLE VIII
RESULTS OF STRONGLY CONNECTED GRAPHS WITH SELF-LOOPS

f A20Q100 A50Q100 A50Q1000 A100Q1000
IP/optIP

1 323.1/319.3 241.1/232 3951.9/3938.4 2981.7/2958.1
2 321.2/319.3 236.5/232 3945.2/3938.4 2969.9/2958.1

Feasible retiming for dcp=optCP-1 ( dcp is infeasible)
Execution time (ms) / Retiming steps

[12] 1 70/74.2 44/54.4 82,596/870.6 53,155/699.7
2 388/74.2 234/53.4 525,977/870.6 310,456/699.7

Alg. 2 1 6/98.9 7/88.0 497/999.1 554/994.7
2 11/98.9 12/86.6 986/999.1 1,056/994.7

Optimal retiming
Execution time (ms) / Retiming steps

[11] 1 5/76.3 5/62.9 505/898.4 477/774.2
2 17/147.3 15/110.0 1,953/1750.7 1,659/1426.8

[12] 1 71/75.2 47/59.0 82,862/873.6 53,456/704.9
2 391/75.2 243/56.4 527,358/873.6 312,246/704.9

Alg. 3 1 6/99.8 7/90.3 500/1003.5 558/1001.6
2 11/99.8 12/88.8 991/1003.5 1,060/1001.6

confirms the observation in [16] that it is the bottleneck of a
feasible retiming algorithm when a desired IP/CP is infeasible.
The performance of the three methods varies from case by
case, but in most cases, the proposed method outperforms the
others. Algorithm in [11] often has a fastest procedure for CP
computation, but it also has much more retiming steps than
the other two in most cases. Algorithms in [12] is very slow
for the fourth set because for those graphs its CP computation
procedure has to repeatedly compute many shared subpaths.

Our experimental results also reveal that retiming usually
has a better effects than unfolding on throughput optimization
of SDFGs, and that the more complex the graphs are, the less
room left for optimization, no matter retiming or unfolding.

VI. CONCLUSIONS

In this paper, we have presented efficient and exact method
for finding the feasible retiming and the optimal retiming of
an unfolded SDFG, without converting it to its equivalent
HSDFG and therefore without further unfolding the HSDFG.
The correctness of our method is guaranteed by the results
about the equivalence of transformations of SDFGs [13]. We
have also extended two state-of-the-art retiming methods for
SDFGs [11], [12] to deal with unfolding. Our method has
a better worst case complexity than them. The experimental
results on graphs with various structures and sizes show that,
in most cases, the proposed method outperforms the extensions
of [11], [12]; for the graphs with extremely complex structure,
it can be over 500 times faster. Our experimental results also
reveal that, on throughput optimization of SDFGs, retiming
usually has a better effects than unfolding, and the structure
of the graphs has an impact.
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