
1

Multi-Constraint Static Scheduling of Synchronous
Dataflow Graphs via Retiming and Unfolding

Xue-Yang Zhu, Member, IEEE, Marc Geilen, Member, IEEE,
Twan Basten, Senior Member, IEEE, and Sander Stuijk

Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to represent DSP algorithms and streaming media ap-
plications. This paper presents several methods for binding
and scheduling SDFGs on a multiprocessor platform. Exploring
the state-space generated by a self-timed execution (STE) of
an SDFG, we present an exact method for static rate-optimal
scheduling of SDFGs via implicit retiming and unfolding. By
modeling a constraint as an extra enabling condition for the
STE, we get a constrained STE which implies a schedule under
the constraint. We present a general framework for scheduling
SDFGs under constraints on the number of processors, buffer
sizes, auto-concurrency, or combinations of them. Exploring the
state-space generated by the constrained STE, we can check
whether a retiming, which leads to a rate-optimal schedule under
the processor (or memory) constraint, exists. Combining this with
a binary search strategy, we present heuristic methods to find
a proper retiming and a static scheduling that schedules the
retimed SDFG with optimal rate and with as few processors (or
as little storage space) as possible. None of the methods explicitly
converts an SDFG to its equivalent homogenous SDFG, the size of
which may be tremendously larger than the original SDFG. We
perform experiments on several models of real applications and
hundreds of synthetic SDFGs. The results show that the exact
method outperforms existing methods significantly; our heuristics
reduce the resources used and are computationally efficient.

Keywords-Timing optimization, resource optimization, schedul-
ing, mapping, multi-constraint.

I. Introduction

Synchronous dataflow graphs (SDFGs) [1] are often used
for modeling multirate DSP algorithms and streaming media
applications, such as a spectrum analyzer [2], or a satellite
receiver [3]. Each node (actor) in an SDFG represents a com-
putation or function and each edge models a FIFO channel; the
sample rates of actors may differ. Homogenous synchronous
dataflow graphs (HSDFGs) are a special type of SDFGs. All
sample rates of actors of an HSDFG are one.

Algorithms modeled with an SDFG are usually nonter-
minating and repetitive. They often operate under real-time

This work was supported in part by National Key Basic Research Program
of China (Grant No. 2014CB340701) and the National Natural Science
Foundation of China (Grant Nos. 61572478, 61472406 and 61472474).

X. Y. Zhu is with State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
zxy@ios.ac.cn).

M. Geilen and S. Stuijk are with Department of Electrical Engineer-
ing, Eindhoven University of Technology, Eindhoven, The Netherlands (e-
mail:m.c.w.geilen@tue.nl; s.stuijk@tue.nl).

T. Basten is with Department of Electrical Engineering, Eindhoven
University of Technology, Eindhoven, The Netherlands, and also with
TNO-Embedded Systems Innovation, Eindhoven, The Netherlands (e-
mail:a.a.basten@tue.nl).

Firings

� � � �

� � � �

� �

� �

Firings

(a)

A,1 B,1 C,2

A,1 B,1 C,2

(b)

(c)

(d)

(f)

one iter. as
a sch. cycle

 scheduling
with prologue

two iter. as

 a sch. cycle

unfolding

retiming
(e)

A,1 B,1 C,2

A,1 B,1 C,2

Firings

Cycle 1 Cycle 2

0 1 2 3 4 5 6 7 8 Time

Cycle 1 Cycle 2

0 1 2 3 4 5 6 7 8 Time

Prologue

(g)

0 1 2 3 4 5 6 7 8 Time

Cycle 1 Cycle 2

Firings

0 1 2 3 4 5 6 7 8 Time

� �

� �

� �

�

� � � �

� �

� � � �

� �

one iter. as
a sch. cycle

one iter. as
a sch. cycle

Fig. 1. (a) HSDFG G0; (b) a periodic schedule of G0; (c) an unfolded graph
of G0, with unfolding factor 2; (d) a rate-optimal periodic schedule of G0
with two iterations as a schedule cycle; (e) a schedule with prologue; (f) a
retimed graph of G0; (g) a rate-optimal periodic schedule of G0 with one
iteration as a schedule cycle. The sample rates are omitted when they are 1
and the computation time of each actor is attached inside the node. Black
dots represent initial tokens on the edges.

requirements and a strict resource budget. Static schedules are
typically used to reduce runtime overhead. A static schedule
arranges the computations to be executed repeatedly in a fixed
sequence. In this paper, we are concerned with constructing
efficient static multiprocessor schedules for SDFGs with con-
straints on the throughput, number of processors, buffer sizes,
and auto-concurrency.

An iteration of an SDFG may include more than one firing
of an actor, and a different number of firings for different
actors, because different sample rates are allowed in an SDFG.
In a schedule, the average computation time per iteration is
called the iteration period (IP). The IP is the reciprocal of the
throughput. SDFGs with recursions have an inherent lower
bound on their IP, referred to as the iteration bound (IB) [4].
It is impossible for a schedule to achieve an IP lower than the
IB, even when unlimited resources are available. A schedule
whose IP equals the IB is called a rate-optimal schedule.

The construction of rate-optimal schedules involves explicit
or implicit retiming and unfolding. An unfolded SDFG with
an unfolding factor f describes consecutive iterations of the
original graph [5]. Fig. 1 (c) for example is an unfolded graph
of G0 (Fig. 1 (a)), with unfolding factor f = 2. One iteration
of graph (c) includes two iterations of graph (a). The IB of G0
is 2 (the maximum cycle mean of the graph [6]). A periodic
schedule of G0 is shown in (b); its IP is 3. A periodic schedule
of the unfolded graph of G0 ((c)) is shown in (d); its IP
is 4. The schedule in (d) is in fact a schedule of G0 when
considering two iterations as a schedule cycle and its IP is 2,

and therefore it’s a rate-optimal schedule of G0. An unfolding
factor is called an optimal unfolding factor if a rate-optimal
schedule exists with this factor.

Unfolding can always lead to a rate-optimal schedule, at
the cost of increasing the problem space by the unfolding
factor [5]. Combined with retiming [7], a smaller optimal
unfolding factor may be obtained [8], [9]. Retiming is a graph
transformation technique that redistributes the graph’s initial
tokens, while its functionality remains unchanged. Retiming an
actor once means firing the actor once. Retiming may reduce
the IP of static periodic schedules of an SDFG [10]. Consider
the HSDFG G0 in Fig. 1 again. A schedule of G0 with a
prologue, shown in (e), consists of some initial firings followed
by iterations whose execution time is shorter than the IP of
(b). According to this observation, we get the retimed graph
of G0 shown in (f) by retiming B once. A periodic schedule
of the retimed graph is shown in (g). It is rate-optimal and
with an unfolding factor 1, which is smaller than that of (d).
Retiming and unfolding can also be used to reduce the resource
requirements of schedules as we illustrate later.

In this paper, we optimize SDFGs via implicit retiming and
unfolding. That is, we find schedules of the optimized SDFGs
from the original SDFGs, without explicitly transforming them
into retimed and unfolded graphs. We assume a homogeneous
multiprocessor platform and assume that different firings of an
actor can execute on different processors.

This paper is an extension of our previous work [11]
and [12]. New contributions in this paper are the following:

1) We extend the operational semantics of SDFGs to cap-
ture claiming/releasing processors on actor firings.

2) We incorporate processor allocation of actor firings in
the scheduling process.

3) We present a general framework for static scheduling
under various constraints.

Theoretically, a static schedule of an SDFG can always be
found by converting it to its equivalent HSDFG [6] and using
the available methods for HSDFGs. However, the conversion
procedure may be very time-consuming. In addition, the size
of the HSDFG can be exponentially larger compared to the
original SDFG [13]. Our methods work on SDFGs directly,
without explicitly converting them to HSDFGs.

Our methods are implemented in SDF3 [14]. Experiments
are carried out on hundreds of synthetic SDFGs and several
models of real applications. We compare the execution time
of our exact method with the method in [15], which is faster
than the methods that need to convert an SDFG to its HSDFG.
While our method guarantees rate-optimal schedules, we do
not achieve the minimum optimal unfolding factor in all cases.
We compare the unfolding factors obtained by our method with
the minimum ones proven in [9]. We show how our heuristic
method which tries to minimize the number of processors
improves the processor utilization. One of our other heuristics
reduces the minimal storage requirement compared to the
solution found by [16]. We compare the unfolding factors
and the execution times of our static scheduling methods that
consider allocating actors to processors with methods ([11]
and [12]) that do not consider processor allocation. Finally,
we compare our processor-constrained scheduling method with

the methods from [17] and [18]. Experimental results show
that our methods are still computationally efficient despite their
theoretical exponential complexity.

The remainder of this paper is organized as follows. The
next section discusses related work. Section III introduces the
main concepts and formulates the problems. The basic idea
of our methods is introduced by an example in Section IV.
Section V describes the definition and properties of self-timed
execution of SDFGs. Our scheduling methods are illustrated
in Sections VI, VII and VIII. The experimental evaluation is
shown in Section IX. Finally, Section X concludes.

II. RelatedWork

A survey of different multi-processor scheduling approaches
can be found in [19]. The scheduling problem addressed in this
paper falls under design-time mapping, targets homogeneous
architectures and considers multiple optimization goals includ-
ing throughput (IP), memory and the number of processors.
The optimization techniques we consider are retiming and
unfolding. The scheduling problems considered in this paper
are NP-complete.

By removing edges with initial tokens from an HSDFG, we
can obtain the corresponding directed acyclic graph (DAG).
Heuristic methods to schedule and map a DAG, or a task
graph, while minimizing its makespan are comprehensively
surveyed in [20]. [21] optimizes the makespan of a given
acyclic HSDFG, considering data parallelisms (by allowing
a firing to be executed across more than one processors) as
well as task parallelism. Exact methods using complete search
techniques such as integer linear programming and model
checking have also been studied [22] [23]. [24] uses pipelining,
which can be performed with retiming, to maximize the
makespan. The makespan of a schedule is equal to its IP when
considering only one iteration as a schedule cycle. However a
schedule with optimal makespan may not be rate-optimal. In
this paper, we focus on finding rate-optimal schedules.

Rate-optimal scheduling usually involves unfolding. In [5] it
is proven that a rate-optimal schedule of an arbitrary HSDFG
can always be achieved with unfolding. It also presents an
upper bound on the number of processors for rate-optimal
scheduling of HSDFGs. The authors of [9] prove the minimum
rate-optimal unfolding factors for an HSDFG with different
timing models and implementation styles. They also provide
a rate-optimal scheduling algorithm with implicit retiming
and unfolding that achieves these unfolding factors. In [25]
it is first proven that the order of retiming and unfolding
is immaterial for scheduling an HSDFG. [15] discuses the
rate-optimal scheduling of SDFGs without other constraints
such as the number of processors used. It converts an SDFG
to a precedence graph, which has fewer edges than and the
same number of actors as its equivalent HSDFG; it then
computes the unfolding factor and schedules the precedence
graph with the method from [9]. The conversion procedure
is still time- and space-consuming. Paper [26] extends [15]
with minimizing buffer requirements. STE analysis was used
in [27] to construct static periodic rate-optimal schedules
with minimal buffer sizes for HSDFGs. Besides rate-optimal

scheduling assuming no resource constraints as the above-
mentioned work, we also consider rate-optimal scheduling
under different constraints in this paper.

In [17] heuristics are presented to optimize the number of
processors for a given IP and to optimize the IP for a fixed
number of processors. It returns the best results on these two
problems. Our methods deal with the second problem (fixed
number of processors) and the special case of the first problem
as described in [17], which applies the IB as a given IP. [28]
uses explicit unfolding and retiming to increase the throughput
of SDFGs when compiling them onto scratch pad memory
based embedded multicore processors, which have processor
and memory constraints. This method needs to convert an
SDFG to a so-called single appearance SDFG, in which the
firings of an actor must start consecutively. They focus on
using code and data overlay, which are available by the
particular architecture they consider, to reduce memory usage.
In this paper, we work directly on SDFGs, without explicitly
converting an SDFG to an HSDFG or any other kind of graph.

STE analysis was used in [29] to compute the maximal
throughput of SDFGs and in [16] to explore the throughput-
buffering trade-off of SDFGs. In [30] it was used to com-
pute the bottleneck of a resource-aware SDFG, in which
the resource platform and resource requirement are known.
In [31] and [18], it was used to compute throughput after
processor allocation for mapping multiple applications. All
firings of an actor are allocated in a same processor. Our
previous work [11] and [12] uses the STE to find the required
retiming, unfolding factor and schedule. In this paper, we take
the processor allocation into account and present a multi-
constraint scheduling framework. Our method can easily be
extended to other resource constraints that are feasible to be
represented by the limitation of the concurrency of firings of
actors, providing a flexible and extensible framework.

We assume in this paper that different firings of an ac-
tor can be executed on different processors to support data
parallelism as in [24]. An actor with internal state can be
explicitly represented as a self-loop or by an auto-concurrency
constraint. We have not considered the delay introduced by
processor communication since we assumed that this cost
is small compared to the actor execution times. Considering
communication cost is left as a future work.

III. Preliminaries and Problem Formulation

A. Synchronous Dataflow Graph

A synchronous dataflow graph (SDFG) is a directed graph
G = 〈V, E〉, in which V is the set of actors, modeling the
computations of the system; E is the set of directed edges,
modeling dependencies between computations. Each actor v
is weighted with its computation time t(v), a nonnegative
integer. Each edge e is weighted with three properties: d(e), a
nonnegative integer that represents the number of initial tokens
associated with e; prd(e), a positive integer that represents the
number of tokens produced onto e by each firing of the source
actor of e; cns(e), a positive integer that represents the number
of tokens consumed from e by each firing of the sink actor
of e. These numbers are also called the delay, production rate

A,1
C,3

B,1

B,1A,1

e1
A,1 C,3

2
B,1

2
2e2

e3

e4

(a) (b)

Fig. 2. (a) SDFG G1; (b) the equivalent HSDFG of G1. The sample rates
are omitted when they are 1.

and consumption rate, resp. The source actor and sink actor of
e are denoted as src(e) and snk(e), resp. If prd(e) = cns(e) = 1
for each e ∈ E, then G is a homogeneous SDFG (HSDFG).

The edge e with source actor u and sink actor v is denoted
by e = 〈u, v〉. The set of incoming edges to actor v is denoted
by InE(v), and the set of outgoing edges from v by OutE(v). An
initial delay distribution of the SDFG G is a vector containing
delays on all edges of G, denoted as d(G).

An SDFG G is sample rate consistent [1] if and only if
there exists a positive integer vector q(V) such that for each
edge e in G,

q(src(e)) · prd(e) = q(snk(e)) · cns(e). (1)

Eqn. (1) is called a balance equation. The smallest q is called
the repetition vector. We use q to represent the repetition vec-
tor directly. For example, the balance equations for the graph
shown in Fig. 2 (a) yield the repetition vector q = [2, 2, 1]
corresponding to actors A, B and C.

One iteration of an SDFG G is a firing sequence in which
each actor v occurs exactly q(v) times. An iteration of G1 in
Fig. 2(a), for example, includes two firings of actors A and B
and one of C. A sample-rate consistent SDFG can always be
converted to an equivalent HSDFG, which captures the data
dependencies among firings of actors in the original SDFG in
an iteration [6]. Fig. 2 (b) is the equivalent HSDFG of G1.

A sample rate consistent SDFG is deadlock-free if there is
no zero-delay cycle in its equivalent HSDFG. Only sample
rate consistent and deadlock-free SDFGs are meaningful in
practice. Therefore we consider only such SDFGs.

B. Scheduling and Optimization

A static schedule arranges computations of an algorithm to
be executed repeatedly according to a schedule cycle. A static
schedule of an SDFG is in fact a schedule of its unfolded graph
with an unfolding factor f , i.e., a schedule cycle contains f
consecutive iterations of the SDFG.

Definition 1. A static schedule of SDFG G with unfolding
factor f is a function S (G, f) defining the time arrangement
and the processor allocation of firings periodically according
to a period CP. For the ith firing of actor v, denoted by (v, i),
i ∈ [1,∞):

1) S (v, i).st is the start time of (v, i), which implies there
should be sufficient tokens on each e ∈ InE(v) for a
firing of v at the moment S (v, i).st;

2) S (v, i).pa is the processor assigned to (v, i), which should
be available at the moment S (v, i).st;

3) S (v, i + f · q(v)).st = S (v, i).st + CP; and
4) S (v, i + f · q(v)).pa = S (v, i).pa.

Such a schedule S can be represented by the first f
iterations, which is the part of the schedule defined by S (v, i)

with 1 ≤ i ≤ f · q(v) for all v. For conciseness, we may omit
the parameters of S when clear in the context. The definition
of static schedule extends the definition in [11] and [12] with
2) and 4) to express the processor allocation.

The iteration period (IP) of a static schedule S , denoted
by S .IP, is the average computation time of an iteration,
i.e., S .IP = CP

f . When G is arranged to run according to
schedule S , certain resources are required. We call the number
of processors used by S the processor requirement of S ,
denoted by S .pRe. Let S .mRe(e) be the buffer size required by
edge e of G in S . The buffer requirement of S is an integer
vector S .mRe(E). The sum of all elements of S .mRe(E) is
the storage space of S . The degree of auto-concurrency is
defined as the maximal number of auto-concurrent firings of
each actor, denoted by vector S .aRe(V). In summary, given a
static schedule, its IP, pRe, mRe and aRe are decided.

The iteration bound (IB) of SDFG G, denoted by G.IB,
is the greatest lower bound of the IPs of schedules of G. If
S (G, f).IP = G.IB, then S is a rate-optimal schedule and f
is an optimal unfolding factor of G. The IB of an HSDFG is
given by its maximum cycle mean [6].

The IB of an SDFG equals the IB of its equivalent HSDFG.
For example, the IB of G1 in Fig. 2 (a) is 5

2 , which can
be computed by the maximum cycle mean of its equivalent
HSDFG shown in Fig. 2 (b). There are methods to directly
compute the IB on an SDFG, e.g. as an eigenvalue of a specific
max-plus matrix and through symbolic simulation [29].

Retiming is a graph transformation technique that redis-
tributes the graph’s initial tokens while its functionality re-
mains unchanged [7], [2]. Retiming an actor once means firing
this actor once. Given an SDFG G = 〈V, E〉, a retiming of
G is a function r : V → Z, specifying a transformation r
of G into a new SDFG r(G) = 〈V, Er〉, where the delay-
function dr is defined for each edge e = 〈u, v〉 by the equation:
dr(e) = d(e) + prd(e)r(u) − cns(e)r(v). A retiming r of a
consistent and deadlock-free SDFG is legal if the retimed
graph r(G) is also deadlock-free. Only legal retimings are
meaningful. Note that retiming does not affect the IB of an
SDFG, that is, r(G).IB = G.IB.

C. Problem Formulation

When there are unlimited resources available, a static rate-
optimal schedule can always be found [5]. Schedules may
however slow down when resource limitations are introduced.
Depending on the resource limitations considered, we have to
find for a graph G a legal retiming r, an unfolding factor f
and a static schedule S (r(G), f), such that:

1) S .IP = G.IB;
2) S .pRe <= P∧S .mRe 4 M∧S .aRe 4 N for given integer

P, integer vectors M(E) and N(V), where X 4 Y means
that X(e) ≤ Y(e) for each e.

3) S .IP = G.IB and S .pRe are as small as possible;
4) S .IP = G.IB and

∑
e∈E S .mRe(e) are as small as possible.

Our solution for the first problem (no resource limitations)
is exact, which guarantees that the returned schedule is rate-
optimal. Our solution for the second problem returns a sched-
ule satisfying the requirement but it may not be the fastest

� � � � �
� � � � �
� � � � �
� � � � �
�

�
�

�
�

Firings

0 1 2 3 4 5 6 7 8 9 10 11 Time

(b)
Transient

phase
Periodic

phase
(a)

A,1 C,3
2

B,1
2

2

0 1 2 3 4 5 6 7 8 9 10 11 Time
P1
P2
P3
P4

(c)

� � � �
� � � �
� � � �
� � � �

� �
��

Fig. 3. (a) The actor firing sequence obtained by the STE of G1; (b) a
retimed SDFG of G1, with r(B) = 5 and r(A) = r(C) = 0; (c) a rate-optimal
schedule of the retimed SDFG with unfolding factor 2.

one under the constraints. Our solutions for the last two
problems are heuristics, which return rate-optimal schedules
with resources requirements that are not necessarily optimal.
None of our solutions guarantee the smallest unfolding factors.

IV. Basic Idea by an Example

By inserting precedence constraints with a finite number of
delays between the source and sink actors of an SDFG, any
SDFG can be converted to a strongly connected graph [2], [7].
We limit ourselves to strongly connected SDFGs to develop
our ideas. The concept can be generalized to other graphs.

The IB of an SDFG can be obtained by exploring the state
space generated by an STE [29], in which actors must fire as
soon as possible (ASAP) [6]. An STE of an SDFG ultimately
goes into a repetitive pattern, which is called the periodic
phase. The periodic phase includes one or more complete
iterations. The firing sequence before the periodic phase is
called the transient phase. The average iteration computation
time in the periodic phase is the IB of the SDFG. For example,
Fig. 3 (a) shows the firing sequence obtained by an STE of G1
of Fig. 2 (a). At time 6, the number of tokens on each edge
is the same as that at time 1. Thus the firings enabled are the
same at these two time points, i.e., two firings of C. The firings
of actors between time 1 and 6 will be repeated indefinitely.
There are two iterations in the periodic phase, which has a
duration of 5. Then the IB of G1 is 5

2 , which is equal to the
IB of its equivalent HSDFG.

Take a closer look at the firing sequence generated by the
STE. After the firings of the transient phase finish, each of the
following firings will repeatedly start with a time displacement
of 5 time units and the number of firings of each actor v
in each repetition is 2q(v). The firings in the periodic phase
form exactly a rate-optimal schedule with unfolding factor 2
and schedule cycle period 5 of the SDFG transformed by
executing the transient phase. Recall that retiming an actor
once means firing it once. The firings of the transient phase
form a retiming.

Modeling the available processors by a set, we can get a
mapping from firings to processors. When a firing starts, a
processor is used and removed from the set; when the firing
ends, the processor is released and put back to the set. In
this way, we arrange each firing on a fixed processor. Using
the STE from Fig. 3(a), the retiming r = [0, 5, 0] is obtained.
The retimed graph r(G1) is shown in Fig. 3(b). A rate-optimal
schedule of r(G1), shown in Fig. 3(c), is the firing sequence
appearing in the periodic phase of the STE in Fig. 3(a).

� � � � � �
� � � � � �
� � � � � � �

� �
� �

Firings

� � � �
� � � �
� � � � � � �

�
� �

�

Firings

0 1 2 3 4 5 6 7 8 9 10 Time

(b)
0 1 2 3 4 5 6 7 8 9 10 Time

P1
P2
P3
P4

Transient
phase

Periodic
phase

(a)

(c)

A,1 C,3
2

B,1
2

2

� � � �
� � � �
� � � � � � � �

�
�

�
�

0 1 2 3 4 5 6 7 8 9 10 11 12 Time

Transient
phase

Periodic
phase

(d)

Fig. 4. (a) Actor firing sequence obtained by a constrained STE of G1, in
which the number of concurrent firings is limited to 3; (b) a retimed SDFG
of G1, with r(A) = r(C) = 2 and r(B) = 5; (c) a rate-optimal schedule with 3
processors. (d) another constrained STE of G1 with the number of concurrent
firings limited to 3, which leads to a schedule with IP = 11

4 > IB.

The STE also reveals the number of concurrent firings at
each point in time. Since a firing occupies one processor, the
maximum number of concurrent firings in the periodic phase
of the STE implies the processor requirement of a rate-optimal
schedule, which is 4 in our example. Limiting the number
of concurrent firings in an STE may reduce the processor
requirement of a schedule. For example, when there are only
3 processors available, we can limit the number of concurrent
firings of G1 to 3 and then get a constrained STE as shown in
Fig. 4(a). The retimed SDFG obtained is shown in Fig. 4(b)
and a rate-optimal schedule for the retimed graph is shown in
Fig. 4(c). However, an STE with constraints may no longer
be deterministic, because during execution a choice may have
to be made among the enabled firings due to resource limits.
Fig. 4(d) shows another STE of G1 with the same constraint,
which leads to a schedule with IP = 11

4 > IB. We come back
to this in Section VII-B. Similarly, we can also find buffer
sizes needed by each edge at each time point in the STE. The
sum of the maximum buffer sizes of all edges in each state of
the periodic phase of the STE is the buffer size requirement
of the rate-optimal schedule delivered by the STE. The more
concurrent firings of an actor, the larger buffer size needed
by its outgoing edges. By limiting the number of concurrent
firings of the STE to a given constraint, we can check whether
there exists a schedule with given buffer size limitation.

V. Self-Timed Execution

This section formalize the definition and properties of
the self-timed execution. We assume here that there are no
resource constraints. The extension of the semantics with
constraints is presented in Section VII.

A. An Operational Semantics of SDFGs

We define the behavior of an SDFG G in terms of a labeled
transition system (LTS) [32], represented by LTS(G). An LTS
includes a set of states, a set of actions, an initial state and a
set of transitions which define rules on how to change states
according to different actions.

We use a vector tn(E) to model the change of the delay
distribution of G in the execution. Element tn(e) is the current
number of tokens on edge e. The SDFG model of computation
allows simultaneous firings of an actor (auto-concurrency).
For different concurrent firings of an actor, the one first to
start is the one first to end. We use queues tr(v) and op(v) to

TABLE I
Formal Semantics

Acronym Formal Semantics*

readyS(v) ∀e ∈ InE(v) : tn(e) ≥ cns(e)

sFiring(v) (∀e ∈ InE(v) : tn′(e) = tn(e) − cns(e)) ∧ ps′ = ps\{min(ps)}
∧tr′(v) = tr(v) ∪ {t(v) ∧ op′(v) = op(v) ∪ {min(ps)}}

readyE(v) hQ(tr(v)) = 0

eFiring(v) (∀e ∈ OutE(v) : tn′(e) = tn(e) + prd(e)) ∧ ps′ = ps ∪ {hQ(op(v))}
∧tr′(v) = dQ(tr(v)) ∧ op′(v) = dQ(op(v))

readyClk ∀v ∈ V : ¬readyS(v) ∧ ¬readyE(v)

clk (∀v ∈ V : ¬(tr(v) = ∅)⇒ ∀x ∈ tr(v) : x′ = x − mS)
∧glbClk′ = glbClk + mS

* tn′(e), tr′(v), op′(v) and ps′ refer to the value of tn(e), tr(v), op(v)
and ps in the new state, resp. For conciseness, we omit the elements
of states if their values remain unchanged. min(ps) returns minimal
value of ps. hQ(qu) and dQ(qu) returns and removes the first element
of queue qu, resp. mS = minc∈

⋃
v∈V tr(v) c.

contain the remaining times and the occupied processors of
the concurrent firings of actor v, resp. For the ith unfinished
firing of v, its remaining time and the processor it uses are
captured by the ith element of tr(v) and op(v), resp.

Our purpose is to construct fast schedules, so we use a
global clock, denoted by glbClk, to monitor the time progress.
A set ps is used to contain the indices of available processors.
Set ps may be infinite if there are no processor constraints.

A state of the LTS(G) is a 3-tuple that consists of the
values of tn(E), tr(V) and op(V). The initial state of LTS(G) is
denoted as s0. In the initial state of LTS(G), tn(E) is the initial
delay distribution d(G); no firings have been started, so each
element of tr(V) and op(V) are empty. That is s0 = (d, ∅, ∅).
The behavior of an SDFG consists of a sequence of firings
of actors. We use actions sFiring(v) and eFiring(v) to model
the start and end of a firing of actor v, and use predicates
readyS(v) and readyE(v) as their enabling conditions, resp.
In parallel with actor firing, time elapses, represented by the
increase of the global clock glbClk. A time step is modeled
by action clk. All actions are formalized in Table I. Note
that elements in tr(v) and in op(v) are always inserted or
removed synchronously, therefore at each state their sizes are
the same. The guard readyS(v) tests if there are sufficient
tokens on the incoming edges of actor v to enable a firing.
When v starts a firing, action sFiring(v) consumes the tokens
on its incoming edges according to the consumption rates and
occupies a processor. Without loss of generality, assume that a
new firing always takes a processor with minimal index in ps.
When its remaining time is zero, the firing is ready to end. This
is modeled by the predicate readyE(v). When v ends a firing,
eFiring(v) produces tokens to its outgoing edges according
to the production rates and releases the occupied processor.
The released processor is put back to ps. Time progresses as
much as possible when no actor is ready to end or to start.
The enabling condition for time step, readyClk, guarantees an
ASAP execution of an SDFG. The largest possible time step,
denoted by mS, is the minimal element of tr(v) for all v. A
time step reduces the remaining times of all firings by mS and
increases the global clock by mS. The elements in tr(v) are
decreased by mS only when tr(v) is not empty and mS is the
minimal element in all tr(v). This guarantees that a clk action
never leads to a negative value in tr(v). The delay distribution
remains unchanged by clk. An action of LTS(G) is any of the
sFiring(v), eFiring(v) and clk actions. A transition from state

to state of LTS(G) is caused by any of its actions guarded
by their enabling conditions. An execution of an SDFG G
is an infinite alternating sequence of states and transitions of
LTS(G). We use actions to represent transitions which they
cause. By the definition of the enabling condition of a time step
we restrict an execution to a self-timed execution (STE) [33].
The STE can be used to derive a rate-optimal schedule.

The semantics defined above extends the semantics in [11]
by adding op(V) to capture the processor occupation during
the execution of the SDFG. The vector used for recording the
storage requirement defined in [12] is removed. We show later
that it can be computed by the variables we introduced above.
The semantics is based on the assumption that there are no
resource constraints. Subsequent sections show how to extend
the semantics to get executions under constraints.

B. Properties of Self-timed Execution

In an STE, between two clk actions, there can be some
interleaving of simultaneous sFiring and/or eFiring actions.
The order of these actions may differ. However, no matter
what order of these actions is selected, the sequences of actor
firings according to any STE of a strongly connected SDFG
are the same because of the enabling condition of a time step.
The state at each time point is therefore unique according
to this order. Self-timed behavior is deterministic if we only
consider its effects on the actor firing sequence [29]. Seen from
this perspective, there is only one STE for an SDFG. For a
strongly connected SDFG, its STE is deterministic and the
values of tn(E), tr(V) and op(V) are finite; therefore, the STE
includes finitely many states that are distinct and ultimately
goes into a repetitive pattern.

Property 1. Given the STE σ of a strongly connected SDFG,
we have hasCycle(σ) = true, where

hasCycle(σ) ≡de f ∃s1, s2 ∈ σ : s1 = s2.

By Property 1, it is easy to see that the state-space of the
STE includes a finite sequence of states and actions (transient
phase), followed by an infinite sequence that is periodically
repeated (periodic phase). The first pair of states in σ to
make hasCycle(σ) true are denoted by sb and se, resp. For
example in the STE shown in Fig. 3 (a), sb is the state when
glbClk = 1 and se is the state when glbClk = 6. Although
an STE is infinite, we can find it in finitely many steps by
Property 1; beginning with the initial state s0 and ending at
state se. We directly call such a finite state sequence an STE
in the remainder of the paper.

In an STE σ, the subsequence from sb to se forms its
periodic phase, denoted by σp; the subsequence from s0 to
the translation before sb forms its transient phase, denoted by
σt. The time that passes in σp is

CP(σp) = se.glbClk − sb.glbClk.

Let σ : s0 → s1 → ... → si → ... and σ′ : s′0 → s′1 → ... →
s′i → ... be the STEs of an SDFG obtained by the semantics
defined above and by the semantics defined in [11] (i.e., the
semantics without the op(V) vector of occupied processors),
resp. According to the semantics defined above, vector op(V)

has no effect on the behavior of an SDFG, because none of
the enabling conditions depend on its values. Therefore, for
each i ∈ [0,∞], si|(tr,tn) = s′i , where si|(tr,tn) is a projection of si

on (tr, tn). Let σ|(tr,tn) be the sequence containing all si|(tr,tn).
It is obvious that σ′ = σ|(tr,tn). Based on this analysis and the
fact that the value of op(V) is finite, the following properties
hold for our new semantics.

Property 2. The periodic phase of an STE consists of a whole
number of iterations [29].

The number of iterations in σp is denoted by nIter(σp). For
each actor v, the numbers of sFiring(v) and eFiring(v) actions
in σp are both nIter(σp) ·q(v). Then the iteration period in the
periodic phase is: IP(σp) =

CP(σp)
nIter(σp) .

Compared with σ′p, σp may contain more iterations, because
a state in σp includes one more vector, op(V), and the
hasCycle(σ) checking needs to compare not only the equality
of tr and tn but also the equality of op when comparing
states. There exists an integer N ≥ 1 such that nIter(σp) =

N · nIter(σ′p) and CP(σp) = N · CP(σ′p). N can be large
depending on the number of combinations of the values of
tr, tn and op. This in turn leads to a large unfolding factor.

Property 3. Given the STE σ of SDFG G, the iteration period
of σp equals the IB of G. That is IP(σp) = G.IB [29].

In summary, the addition of vector op does not affect the
behavior of an SDFG and it does not violate some of the
important properties of an STE [29], [11]. The addition does
however lead to an improvement in processor and memory
usage of our methods. Because the number of iterations in
σp may be larger than those in σ′p, the optimal unfolding
factors may however be larger than that of [11]. Our results
in Section IX confirm this observation.

VI. Rate-Optimal Scheduling

In this section, we first present an algorithm to explore the
state-space of an SDFG according to its self-timed execution;
then we introduce our rate-optimal scheduling algorithm. The
algorithm schedules SDFGs under the assumption that there
are unlimited resources available and actors are allowed to
fire concurrently as many times as possible. We consider the
construction of schedules under constraints in the next section.

Since self-timed execution is deterministic, we can explore
its state space according to macro steps that enforce an order
of actions. A macro step includes: ending all firings ready
to end, starting all firings ready to start, and then a time
step. Algorithm 1 returns the STE of an SDFG. At Lines 2
and 3, the current state is set to the initial state of the LTS
of G and is stored as the first element of σ. Lines 4 to 20
explore the state space according to the semantics defined in
Section V-A and form the STE. The information of start firings
is related with scheduling, so we store sFiring actions and the
states after them at Lines 13 and 14, reps. The termination of
Algorithm 1 is guaranteed by Property 1. Although we only
consider deadlock-free SDFGs, deadlock can also be detected
by Algorithm 1 by checking glbClk. When deadlock occurs,
the execution will halt on the action clk and glbClk will go to

Algorithm 1 STE(G)
Require: A strongly connected SDFG G.
Ensure: The STE σ of G.

1: ts = LTS(G)
2: s = ts.s0
3: σ← s
4: while not hasCycle(σ) do
5: for all v ∈ G do
6: while readyE(v) do
7: eFiring(v)
8: end while
9: end for

10: for all v ∈ G do
11: while readyS(v) do
12: sFiring(v)
13: σ← σ+‘sFiring(v)’
14: σ← σ + s
15: end while
16: end for
17: if readyClk then
18: clk
19: end if
20: end while
21: return σ

infinite [29]. For an efficient implementation of Algorithm 1, it
is not necessary to check hasCycle(σ) after every iteration of
the loop (Lines between Line 4 and Line 20) but it is sufficient
to check for a recurrent state after every completion of one
specific arbitrarily chosen actor firing in an iteration.

According to the operational semantics, the delay distri-
bution decreases only after an sFiring action. The enabling
condition of sFiring guarantees that the delay distribution
never goes negative in an execution. [2] proves that it is
sufficient to check if the initial delay distribution of the retimed
graph is nonnegative to ensure that a retiming is legal. Hence,
the transient phase of the STE forms a legal retiming.

Theorem 1. Given the STE σ of an SDFG G, the retiming r
defined as below is legal. For each v,

r(v) = the number of sFiring(v) actions in σt.

By Properties 2 and 3, in the periodic phase of an STE σ,
the average computation time for each iteration equals the IB.
If the SDFG is equivalently transformed to a new graph whose
initial delay distribution is the same as the delay distribution
of a state in σp, then the sFiring actions in σp, combined
with the times they happen shifted by sb.glbClk, form a rate-
optimal schedule of the new graph. It is obvious that a retiming
obtained from σt transforms the SDFG to such a new graph.
Recall the definition of sFiring(v). When a firing starts, it takes
a processor from ps and push it to the end of op(v). So, the
last element of op(v) in the state caused by a sFiring(v) is
exactly the processor used by the firing.

Theorem 2. Given the STE σ of an SDFG G and the retiming
obtained from it, r, schedule S (r(G), nIter(σp)) defined below

is rate-optimal: for each actor v ∈ G and 1 ≤ i ≤ f · q(v),

S :

S (v, i).st = sFiring(v, i + r(v)).glbClk − sb.glbClk,
S (v, i).pa = lQ(s(v, i + r(v)).op(v)),

(2)

where sFiring(v, j) is the jth firing of v in σ, s(v, j) is the state
caused by it, and lQ(qu) returns the end element of queue qu.

For SDFG G1 (Fig. 2(a)), the retiming obtained by its STE
(Fig. 3(a)) is r(B) = 5, r(A) = r(C) = 0; the retimed graph
is shown in Fig. 3(b). The optimal unfolding factor is 2 and
Fig. 3(c) is the rate-optimal schedule for the retimed graph.

Consider the rate-optimal schedule shown in Fig. 3(c).
Concurrent firings need to occupy different processors. When
there are 4 concurrent firings, the number of processors needed
at this point is 4. If we can find the maximal number of
concurrent firings in the periodic phase of an STE, we know
how many processors are required in a rate-optimal schedule.
The vector op(V) records concurrently occupied processors by
actors. Then at state s, the number of processors occupied by
actor v is |s.op(v)|, where |s.op(v)| represents the size of queue
s.op(v). The processor requirement of schedule S is:

S .pRe = max
s∈σp

∑
v∈V

|s.op(v)|. (3)

In line with [16], we choose a relatively conservative storage
abstraction to leave more room for implementation. That is,
when one actor starts firing, it claims the space for the tokens
it will produce, and it releases the space of the tokens it
consumes only when the firing ends. Under this assumption, at
each state, the required buffer size of edge e, denoted by tnb(e),
is decided by the number of tokens on e and the numbers of
firings of its source actor and sink actor.

tnb(e) = tn(e) + |tr(src(e))| · prd(e) + |tr(snk(e))| · cns(e). (4)

We consider separate memories for each edge. At each
schedule point, edge e requires at least buffer size tnb(e).
Therefore the maximal tnb(e) in the periodic phase of an
STE forms the buffer requirement for each e in a schedule
S obtained from the STE, denoted by S .mRe(e).

S .mRe(e) = max
s∈σp

s.tnb(e), for all e ∈ E. (5)

The degree of auto-concurrency of schedule S is:

S .aRe(v) = max
s∈σp
|s.tr(v)|, for all v ∈ V. (6)

An algorithm for static rate-optimal scheduling of SDFGs is
shown in Algorithm 2. Lines 2 - 6 accumulate the number of
start firing actions in the transient phase to form a retiming.
Lines 8 - 14 compute the schedule. The correctness of the
algorithm is guaranteed by Theorems 1 and 2.

The schedule computed using our method is fully static [5].
It schedules f iterations as a schedule cycle. The same firing
in different schedule cycles uses the same processor. The use
of retiming allows our algorithm to construct a rate-optimal
schedule in which the start time of all firings in the first
schedule cycle are not larger than CP, i.e., S (v, i).st ≤ CP for
i ≤ f · q(v). This implies that all firings that belong to the one
iteration of the schedule cycle will be started before the first

Algorithm 2 rOptSch(G)
Require: A strongly connected SDFG G.
Ensure: A legal retiming r, an unfolding factor f , a rate-

optimal schedule S (r(G), f), S .IP, S .pRe, S .mRe and
S .aRe.

1: σ = STE(G)
2: for all actions a ∈ σt do
3: if a = sFiring(v) then
4: r(v) = r(v) + 1
5: end if
6: end for
7: set i(v) = 1 for all v ∈ G
8: for all actions a ∈ σp do
9: if a = sFiring(v) then

10: S (v, i(v)).st = a.glbClk − sb.glbClk
11: S (v, i(v)).pa = lQ(s(v, i(v)).op(v))
12: i(v) = i(v) + 1
13: end if{by Theorem. 2}
14: end for
15: f = nIter(σp)
16: IP =

CP(σp)
f

17: get pRe,mRe and aRe by Eqns. (3), (5) and (6), resp.
18: return r, f , S , IP, pRe, mRe and aRe

firing in the next iteration of the schedule cycle. Alternative
rate-optimal scheduling techniques presented in [9] and [15]
do not have such a property.

VII. Scheduling under Constraints

As discussed in the previous section, the number of con-
current firings affects the resource requirement of a schedule.
If we can limit the number of concurrent firings in an STE
according to different constraints, we can find a schedule
of the SDFG or its retimed graph under these constraints.
In this section, we first present a unified framework for
scheduling SDFGs under constraints. Considered constraints
are formalized subsequently.

A. General Scheduling Framework

When there are infinite resources available, actor firings
occur as soon as possible in a STE. When some enabled
firings are blocked because of insufficient resources, we call
the STE a constrained STE. When x = p, m, a or mC,
let CON x be the formula capturing the constraint on the
number of processors, the buffer sizes, auto-concurrency or
their combination. Constraint CON x can be modeled as a
limitation of concurrent firings in an STE as we explain in
the following sections; therefore it can be put on the guard of
sFiring actions. We denote the new guard as readySx(v).

readySx(v) ≡de f readyS(v) ∧ CON x(v).

The definitions of actions and other guards remain unchanged.
The procedure to obtain such an x-constrained STE of G is

denoted by STEx(G, X), where the given value X = P, M, N
or [P,M,N] correspond to x = p, m, a or mC, resp. Procedure

STEx(G, X) is a variation of Algorithm 1, in which readyS(v)
is replaced with readySx(v).

The procedure to obtain the retimed graph and its schedule
under a constraint x is called Schx(G, X). It is a variation of
Algorithm 2, in which the STE(G) is replaced with STEx(G, X).
Different from the STE, the IP of the periodic phase of an STEx

no longer always equals the IB. Hence, the schedule returned
by Schx is not necessarily rate-optimal.

A general framework for scheduling SDFGs under con-
straints is summarized in Table II, which includes three parts.
The first part is the resource requirement limitations under
different constraints. For example, when a processor constraint
is considered (x = p), the processor requirement of the targeted
schedule (pRe) is not allowed to exceed P. The second part
includes the enabling condition (Cond.) of action sFiring,
the name of the execution used to deliver a proper schedule
(Exec.) and the scheduling procedure (Sch.) under different
constraints. The third part shows the possible IPs of schedules
under different constraints, clarifying whether the schedule is
guaranteed to be rate-optimal.

TABLE II
A General Framework for Scheduling SDFGs

Cons. Rate opt. Proc. Mem. Auto-con. Multi.
(x = p) (x = m) (x = a) (x = mC)

pRe ∞ P ∞ ∞ P
mRe ∞ ∞ M ∞ M
aRe ∞ ∞ ∞ N N

Cond. readyS readySp readySm readySa readySmC
Exec. STE STEp STEm STEa STEmC
Sch. rOptSch Schp Schm Scha SchmC
IP = IB ≥ IB ≥ IB ≥ IB ≥ IB

The key factor that distinguishes scheduling procedures
under different constraints is the formula CON x. We discuss
how it is constructed and why it leads to a x-constrained
schedule in the following subsections.

B. Processor Constraint

As defined in Section V-A, the available processors are mod-
eled by the set ps. When there are no processor constraints, ps
is infinite. When only P processors are available, the size of ps
is set to P, where P ≥ 1. While ps is empty, all processors are
occupied by firings. Therefore, the condition to test whether
there is a processor available for a firing to start is defined as:

CON p(v) ≡de f ¬(ps = ∅).

The condition CON p(v) guarantees that at each state of the
p-constrained STE, the number of processors occupied does
not exceed P; therefore the resulting schedule uses no more
than P processors. For example, Fig. 4(a) is a p-constrained
STE of G1 with P = 3. By procedure Schp(G, 3), we get a
retimed graph and its schedule, shown in Fig. 4(b) and (c),
resp. Fig. 5 is a part of Fig. 4(a) with detailed states and
transitions. At state S 1, there are sufficient tokens on 〈A, B〉
and 〈C, B〉 for f ive concurrent firings of B. The number of
available processors, however, is only three. Hence, only three
firings of B are allowed to start.

The schedule obtained by Schp(G, P) is not always rate-
optimal. In fact, there is a lower bound on the number

A,1 C,3B,1
2

2

2

3"sFiring(B)

A,1 C,3B,1
2

2

2
A,1 C,3B,1

2
2

2

Two$sFiring(B)s$are$blocked$at$state$S1,$
because$there$arenomore$processors$
availableforthem.

5"sFiring(B)

Serr:

!$Token
9$Space$occupiedbyfirings

!"Empty$queue$or$set^

…

clk$with$mS=1

tn=[5,0,5,0]
tr=[^,^,^]
op=[^,^,^]

tn=[2,0,2,0]
tr=[^,{1,1,1},^]
op=[^,{1,2,3},^]

glbClk=0
tnb=[5,0,5,0]
ps={1,2,3}

S1:

glbClk=0
tnb=[5,3,5,0]
ps=^

S2:

Fig. 5. A part of the p-constrained STE of G1 with P = 3.

Firings

� � � � �
� � � � �

�
�

0 1 2 3 4 5 6 7 8 Time

Periodic phase

Fig. 6. Actor firing sequence from a p-constrained STE of G1 with P = 2.

of processors for a rate-optimal schedule. If an SDFG is
scheduled on a single processor, the total time used by an
iteration is the sum of t(v) times q(v) for all v, denoted by
sumT . In a multi-processor schedule, an iteration may be
folded and set onto different processors. If the schedule is
rate-optimal, the number of processors it needs is at least the
quotient of sumT and the IB. That is, the lower bound on the
number of processors for a rate-optimal schedule is

lbP =

⌈∑
v∈V t(v)q(v)

IB

⌉
. (7)

For example, lbP for G1 is 3, i.e., with less than 3 processors
available, no rate-optimal schedule exists for G1 or any retimed
graph of it. A p-constrained STE with P = 2 of G1 is shown in
Fig. 6. It delivers a schedule with IP = 7

2 which is larger than
the IB of G1 (5

2). There is no schedule faster than it because
the 2 processors are fully used.

For an STE, at each macro step, all the firings start if they
are ready to start, so the order of sFiring actions does not
matter. In a p-constrained STE with P processors, at a macro
step, the sum of simultaneously ready firings and concurrent
firings may be more than P and these ready firings may be of
different actors. Which ones are chosen to start may affect the
state space of the constrained STE and the IP of its periodic
phase. Therefore the schedule returned by Schp(G, P) may not
be the fastest one under processor constraint P. See Fig. 4
(a) and (d) for example. At time point 6, there are sufficient
tokens for three firings of B and one firing of C to start,
but one of them has to be blocked because of the processor
constraint P = 3. If the priority of C is higher than that of B,
the p-constrained STE is shown in Fig. 4 (a); otherwise the
p-constrained STE is another one shown in Fig. 4 (b). The
IP of schedule obtained by the former is 5

2 , while that of the
latter is 11

4 . We use a fixed random order of the firings in our
implementation. A procedure to find a rate-optimal schedule
with as few processors as possible is presented in Section VIII.

C. Memory Constraint

If the storage space of a schedule is constrained by a
vector M(E), limiting the buffer size of each edge, then an
enabled firing can only start when there is sufficient space
on its outgoing edges. For example, Fig. 7 is a part of a

Three! sFiring(A)s% are% blocked% at% state% S1,%
because% they% will% lead% to% an% disallowed%
state%Serr,%in%which%%tnb(<A,B>)=5>2.

sFiring(A)
sFiring(B)

A,1 C,3B,1
2

2

2

Serr:

!%Token
?%Space%occupied%by%firings

!"Empty%queue^

clk%with%mS=1

A,1 C,3B,1
2

2

2
4!sFiring(A)
!!!!sFiring(B)

A,1 C,3B,1
2

2

2

eFiring(A)%
eFiring(B)

A,1 C,3B,1
2

2

2

…

tn=[1,0,4,5]
tr=[^,^,^]
op=[^,^,^]

tn=[0,0,3,4]
tr=[{1},{1},^]
op=[{1},{2},^]

tn=[1,1,3,4]
tr=[^,^,^]
op=[^,^,^]

glbClk=4
tnb=[1,0,4,5]
ps={1,2,...}

S1:

glbClk=4
tnb=[2,1,4,5]
ps={3,4,…}

S2:

glbClk=5
tnb=[1,1,3,4]
ps={1,2,...}

S3:

Fig. 7. A part of the m-constrained STE of G1 with M = [2, 4, 4, 5],
corresponding to 〈A, B〉, 〈B,C〉, 〈C, A〉 and 〈C, B〉.

A B
M(e)=3

A B2 2

2

e e

e’

Fig. 8. An example of e′ in Lemma 1.

m-constrained STE of G1 with M = [2, 4, 4, 5]. At state S 1,
tokens on edges are available for actor A to fire four times and
B once. However, the buffer size of edge 〈A, B〉 is limited to 2,
leaving space only enough for tokens that will be produced by
one firing of A. Thus the three other firings of A are blocked.
The condition to test whether there is sufficient storage space
available on the outgoing edges of actor v is defined as:

CONm(v) ≡de f ∀e ∈ OutE(v) : prd(e) ≤ M(e) − tnb(e),

where tnb(e) is the already occupied and claimed space on
edge e, defined by Eqn.(4).

Similar to procedure Schp(G, P), the schedule obtained by
Schm(G,M) is not always rate-optimal. For a deadlock-free
G, even when there is only one processor available, the p-
constraint STE will never go to a deadlock state. In the
m-constrained STE, however, it is not the case. Insufficient
storage space may eventually prevent any actor to start firing.
Therefore, there may be no valid schedule of G under the
memory constraint M. In this case, the periodic phase of the
m-constrained STE contains only one action, the time step clk;
its transient phase can still form a legal retiming.

Because of our assumption on the storage model, in an m-
constrained STE, the order of concurrent sFirings is irrelevant.
A different order leads to the same state. At state S 1 in Fig. 7,
for example, no matter sFiring(A) or sFiring(B) occurs first,
once all firings are started, the resulting state is always S err.
Hence, at S 1, three sFiring(A)s have to be blocked.

These buffer size constraint can also be modeled by adding
an incoming edge with tokens to model available storage
space [16]. Therefore, an m-constrained STE of an SDFG is
in fact an STE of another SDFG in which a reverse edge with
proper initial tokens is added for each edge. An example of
this graph transformation is shown in Fig. 8.

Lemma 1. An m-constrained-STE of SDFG G = 〈V, E〉 with
memory constraint M(E) is an STE of SDFG G′ = 〈V, E∪E′〉,
in which E′ = {〈v, u〉|〈u, v〉 ∈ E} and for each e′ = 〈v, u〉 ∈ E′ :
d(e′) = M(e) − d(e), prd(e′) = cns(e) and cns(e′) = prd(e).

By Lemma 1, under buffer constraint M, no other schedules
will be faster than the schedule derived by STEm(G,M).

Theorem 3. Procedure Schm(G,M) is sufficient and necessary
for a fastest schedule under memory constraint M.

A procedure to find a rate-optimal schedule with as little
storage space as possible is presented in Section VIII.

D. Auto-Concurrency Constraint

The constraint on the number of auto-concurrent firings of
each actor v to N(v) can be represented by limiting the size
of tr(v):

CONa(v) ≡de f |tr(v)| < N(v).

The constraint CONa on G has the same result for an ASAP
execution as a new graph in which each actor v is added a self-
loop edge with N(v) initial tokens. Therefore the a-constrained
STE is as fast as the STE of the new graph. Under auto-
concurrency constraint N, no other schedules are faster than
the schedule returned by Scha(G,N).

Theorem 4. Procedure Scha(G,N) is sufficient and necessary
for a fastest schedule under auto-concurrency constraint N.

E. Multi-Constraint

Multiple constraints can be considered simultaneously by
combining them as enabling conditions of action sFiring.
This gives a multi-constrained STE through which a multi-
constrained schedule can be obtained. When all above men-
tioned constraints are considered, CONmC can be defined as:

CONmC(v) ≡de f CON p(v) ∧ CONm(v) ∧ CONa(v).

Procedure SchmC(G, [P,M,N]) does not always return the
fastest schedule under the constraints because when a proces-
sor constraint is considered, the different choices for the firing
order affect the IP of the resulting schedule.

VIII. Rate-Optimal Scheduling withMinimal Resources

A. Processor Optimal Scheduling

Suppose a rate-optimal schedule uses nP processors. The
closer nP to lbP (Eqn. (7)), the more occupied processors are.
We define the rate of processors used by a schedule as lbP

nP .
The rate becomes higher when fewer processors are used by
a schedule. We use this rate in Section IX to measure the
processor utilization of a schedule.

Algorithm 3 is a heuristic algorithm which tries to find a
rate-optimal schedule using as few processors as possible.

Algorithm 3 rOptSchp(G)

Require: A strongly connected SDFG G
Ensure: A legal retiming r, a rate-optimal schedule S of r(G)

and S .pRe
1: Get the IB and pRe from rOptSch(G)
{According to Property 3 and Eqn. (3)}

2: Perform a binary search over [lbP, pRe]; assuming P is
the number of processors considered, test whether the IP
returned by Schp(G, P) equals IB

3: return r, S and pRe obtained by Schp(G, P)

A,1 C,3
2

B,1
2

2

Fig. 9. Retimed G1 allowing rate-optimal schedule with buffers [2, 4, 4, 5].

Let S be the schedule returned by Schp(G, P). S .pRe does
not linearly decrease with P. That is, for two integers P1 and
P2 with P1 > P2, pRe returned by Schp(G, P1) may be less than
that returned by Schp(G, P2). The reason is that the feasibility
check for P in the binary search on Line 2 might result
in a false negative (as explained in Section VII-B). Hence,
Algorithm 3 might lead to a suboptimal result. Nevertheless,
our experimental results show that it helps to reduce the
number of processors used by a rate-optimal schedule. The
binary search can be replaced with a linear search starting from
lbP which might lead to a further reduction in the number of
processors at the cost of a longer execution time.

B. Memory Optimal Scheduling

As illustrated in Section VII-C, using retiming to shift the
initial tokens, we may obtain a retimed graph that can be
scheduled with a given buffer constraint. By decreasing the
buffer constraint and testing whether a rate-optimal schedule
can be found under the constraint, we may find a retimed
SDFG whose rate-optimal schedule requires less storage space
than the proven minimal storage requirement of the original
graph. For example, Fig. 9 shows a retimed graph of G1 that
can be rate-optimally scheduled with buffer size requirement
[2, 4, 4, 5], which is smaller than [5, 4, 4, 5], the minimal buffer
size of the original graph computed by [16].

If the IP returned by Schm(G,M) equals the IB of G, we say
that M is feasible for a rate-optimal schedule of G. We use a
binary search per edge on the memory constraints to seek a
rate-optimal schedule with minimal storage space. The mRe(E)
of an STE records the memory required by a rate-optimal
schedule without any resource limitation. Since this is always
feasible, we use it as an upper bound on the binary search. The
lower bound can be set to 〈0, ..., 0〉 or a storage distribution to
avoid deadlock obtained by [16]. The former is too low and the
latter itself takes time to compute. In our implementation, we
therefore use a compromise between them. Let LB(E) be a vec-
tor, in which each LB(e) = prd(e)+cns(e)−gcd(prd(e), cns(e)).
A deadlock-free execution uses at least LB(e) buffer size for
e [34]. For example, consider edge e = 〈A, B〉 with prd(e) = 3
and cns(e) = 2. We have LB(e) = 4. Each firing of B consumes
two out of three tokens produced by the previous firing of
A and then has to wait for the next firing of A, which will
increase the number of tokens on e to four. This is one of the
firing sequences of A and B that limits the buffer size. We use
LB(E) as a lower bound on the binary search.

The procedure is shown in Algorithm 4. It includes |E|
binary searches and begins with the memory constraint optB =

mRe of rOptSch(G). Each time one edge e is considered and
the buffer sizes of other edges remain unchanged. A binary
search over LB(e) and optB(e) is used to find the smallest
buffer size of e, and then optB(e) is set to the smallest value.
After all edges are checked, we get a smallest feasible storage
distribution optB. The schedule returned by Schm(G, optB) is
rate-optimal and requires minB for storage.

Algorithm 4 rOptSchm(G)
Require: A strongly connected SDFG G
Ensure: A legal retiming r, a rate-optimal schedule S of r(G)

and the size of its storage space
1: Get the IB and mRe from rOptSch(G)
2: Let optB = mRe
3: for all e ∈ E do
4: Perform binary search over [LB(e), optB(e)] ; assuming

x is considered value, let vector M be defined as M(e) =

x and M(e′) = optB(e′) if e′ , e; use Schm(G,M) to test
whether M is feasible for a rate-optimal schedule and
let optB = M if so.

5: end for
6: get r, S and mRe by Schm(G, optB)
7: minB =

∑
e∈E mRe(e)

8: return r, S and minB

Algorithm 4 is a heuristic. In general, buffer sizes can not be
determined independently from each other. Hence, the results
may differ when the order of edges chosen for the search
changes. As shown in our experimental results, however, in
most cases, Algorithm 4 does return a storage requirement less
or equal to the proven minimal feasible storage space returned
by [16], which does not use retiming. We use a random edge
order in our experiments. Whether an optimal edge order exist
for binary search is left as future work.

For a constrained STE σ, its transient phase σt may need
more processors or storage space than σp needs. In a real
implementation of an SDFG, if the retiming process is carried
out at runtime, the firings corresponding to the retiming r
can be arranged to run under the processor and buffer size
requirement of S with a slower speed (less concurrent firings)
instead of an as soon as possible execution.

IX. Experimental Evaluation

A. Experimental Setup

We have implemented Algorithms 2 (rOpt-m), 3 (rOptP-
m) and 4 (rOptM-m) in SDF3 [14]. Their respective versions
that do not consider processor allocation, Algorithms 2 and
3 in [11] and Algorithm 1 in [12], are denoted in this paper
by rOpt, rOptP and rOptM, resp. The rate-optimal scheduling
algorithm that directly works on SDFGs in [15] (GG95), which
addresses the same problem as rOpt, has been implemented
and its execution time is used to evaluate the performance of
rOpt. We have also implemented the method to compute the
smallest optimal unfolding factor for HSDFGs in [9] (CS95).
Converting an SDFG to its equivalent HSDFG, we compute
the smallest rate-optimal unfolding factor of the SDFG by
CS95, which is compared with the unfolding factors returned
by rOpt and rOpt-m. We compare the storage space for the
retimed graphs returned by our method (rOptM and rOptM-
m) with the minimal storage requirements of the original
graphs computed using the algorithm from [16] (SGB08). We
also compare our processor-constrained scheduling method
with the methods from [17] and [18]. We have performed
experiments on three sets of SDFGs, running on a 2.67GHz

TABLE III
Acronyms and symbols

Acronym Meaning
MP3 The MP3 playback application [36]

SaRate The sample rate converter [35]
MaxES The maximum entropy spectrum analyzer

CEer The channel equalizer [37]
Satellite The satellite receiver [3]

nA The number of actors
nQ The sum of the elements in the repetition vector
nD The SDF3 parameter ‘initialTokens prop’
IB The iteration bound

GG95 The result returned by [15]
CS95 The result returned by [9]

SGB08 The result returned by [16]
rOpt The result returned by optSch (Algorithm 2) of [11]

rOptP The result returned by minOptSch (Algorithm 3) of [11]
rOptM The result returned by conOptSch (Algorithm 1) of [12]
rOpt-m The result returned by rOptSch (Algorithm 2)

rOptP-m The result returned by rOptSchp(Algorithm 3)
rOptM-m The result returned by rOptSchm(Algorithm 4)

CPU with 12MB cache. The experimental results are shown
in Tables IV, V, VI and VII and discussed in Section IX-B.
All execution times are measured in milliseconds (ms).

The first set of SDFGs consists of five practical applications,
including a sample rate converter (SaRate) [35], a satellite
receiver (Satellite) [3], a maximum entropy spectrum analyzer
(MaxES) (http://ptolemy.eecs.berkeley.edu/), an MP3 playback
application (MP3) [36] and a channel equalizer (CEer) [37].
Adopting the method in [2], by introducing to each model
a dummy actor with computation time zero and edges with
proper rates and delays to connect the dummy actor to the
actors that have no outgoing edges and no incoming edges,
we convert these models to strongly connected graphs. The
second set consists of 540 synthetic strongly connected SDFGs
generated with SDF3, mimicking real DSP applications. The
number of actors in an SDFG (nA) and the sum of the elements
in the repetition vector (nQ) have significant impact on the
performance of the various methods. We distinguish three
different ranges of nA: 10-15, 20-25, and 50-65, and three
different ranges of nQ: 1000-1500, 2000-2500, and 4000-6000.
The state-space of an SDFG may increase with the increase
of its delay count. A large delay count may slowdown the
STE procedure and therefore our scheduling methods. The
SDF3 parameter ‘initialTokens prop’, denoted as nD, is used
to control the amount of delays in a generated SDFG in
SDF3. The delay count changes from small to large when
it is changed from 0 to 1. To measure the extreme cases we
may deal with, we choose two values of nD: 0 and 0.9. we
generated SDFGs according to different combinations of nA,
nQ and nD to form 18 groups. Each group includes 30 SDFGs.
The explicit difference in nA, nQ and nD among these groups
is helpful for showing how the performance of each method
changes with these parameters. The third set consists of five
benchmark graphs from [17]. The acronyms and symbols used
in this section are summarized in Table III.

B. Experimental Results

Before discussing the results, we first clarify the differences
between the schedules returned by rOpt-m, rOptP-m and
rOptM-m and those returned by rOpt, rOptP and rOptM.

TABLE IV
Experimental results for practical DSP examples

Graph Information
name MP3 SaRate MaxES CEer Satellite

nA 4 6 13 22 22
nQ 10601 612 1288 42 4515
IB 116424 5.25 5764 47128 1.83

Unfolding Factor
CS95 Na 4 1 1 6
rOpt 1 4 2 1 6

rOpt-m 1 4 2 1 6
Rate of Processors Used

rOpt(-m) 24.0% 72.6% 0.5% 14.6% 19.4%
rOptP(-m) 24.0% 77.3% 0.5% 43.7% 68.4%

Storage Requirement
SGB08 N N N 73 N

rOptM(-m) 2916 1328 2087 73 15168
Execution Time (ms)

GG95 N 2,024 580 38,459 3,558,957
rOpt 7 1 1 0 4

rOpt-m 27 2 2 1 19
rOptP 38 15 3 2 127

rOptP-m 111 79 18 2 2,410
rOptM 213 45 55 1 5,807

rOptM-m 548 592 115 2 20,612
Schp

b 16 4 4 0 104
Schm 12 12 0 0 48

Schpm 12 8 4 0 80
a no results available because of timeout.
b Schp uses the minimal number of processors returned by rOptP(-m)

as a constraint; Schm uses the minimal buffer requirement returned
by rOptM(-m) as a constraint; Schpm uses their combination.

The former include allocation information while the latter
schedules do not include it; both require the same number
of processors and buffer sizes; however the former may have
larger unfolding factors. The common aspects and differences
are consequences of the semantics of their STEs (see Sec-
tion V-B). The advantage of the proposed algorithms (*-m)
is that besides determining the start times of actor firings,
they also allocate actors to processors. Since the results are
identical, we show only one and label them as *(-m), e.g.
rOpt(-m).

Table IV summarizes the results for the practical examples.
There are five parts in Table IV. The first part is the infor-
mation on the graphs, including the number of actors (nA),
the sum of the elements in the repetition vector (nQ) and
the iteration bound (IB). The second part shows the optimal
unfolding factor obtained by rOpt and rOpt-m and the smallest
one proven in [9] (CS95). The third part measures the rates of
processors used by the schedules returned by rOpt and rOptP.
The fourth part compares the storage requirements returned by
our method (rOptM) with that of SGB08. The last part includes
the execution times of different methods. The information and
the storage space do not include the dummy actors and edges.

For the practical examples, CS95 and GG95 do not finish
on the MP3 playback model in ten hours. For other examples,
except for MaxES, the optimal unfolding factors obtained
by rOpt and rOpt-m are equal to those computed by CS95.
In three examples, rOptP improves the rate of processors
used compared to schedules returned by rOpt. For the models
which SGB08 can analyze in ten hours, our method reaches
the minimal storage requirement of the original graph. The
reason for the inefficiency of SGB08 is the amount of auto-

TABLE V
Execution times (ms) for synthetic examples

nD = 0 nD = 0.9 nD,nA
nQa10 a20 a50 a10 a20 a50

Rate-optimal scheduling without mapping [11], [12]
GG95 51s 58s 45s 57s 59s 43s

1k-1.5k*rOpt 0 1 2 1 2 3
rOptP 4 7 32 45 60 61

rOptM 12 14 73 161 249 321
GG95 8m 9m 11m 8m 8m 11m

2k-2.5krOpt 1 1 3 9 3 4
rOptP 7 12 40 119 104 121

rOptM 22 35 10 467 371 409
GG95 107m 123m 115m 117m 122m 114m

4k-6krOpt 1 2 4 7 3 8
rOptP 15 24 57 287 50 511

rOptM 33 104 229 742 223 745
Rate-optimal scheduling with mapping

rOpt-m 3 4 8 15 22 23

1k-1.5krOptP-m 22 31 90 417 654 225
rOptM-m 31 35 158 1s 4s 1s

rOpt-m 5 6 26 270 35 28

2k-2.5krOptP-m 37 49 302 11s 852 440
rOptM-m 70 96 354 29s 39s 1s

rOpt-m 6 13 25 4s 27 7s

4k-6krOptP-m 78 147 290 197s 453 8s
rOptM-m 85 350 685 425s 1s 21s

* 1k=1000.

TABLE VI
Unfolding Factors and Improvement for Synthetic Examples

Unfolding Factor Rate of Pro. Used Mem. Imp.
CS95 rOpt rOpt-m rOpt rOptP(-m) rOptM(-m)

nD = 0 1.11 1.18 1.51 10.5% 20.1% 6.0%
nD = 0.9 2.18 2.73 8.12 21.7% 40.4% 4.8%

concurrency in the SDFG execution. When auto-concurrency
is disallowed, SGB08 runs much faster, as shown by the
experimental results in [16]. The proposed binary search can
cope well with auto-concurrency. The model that takes the
longest execution time is the satellite model, which has a
relatively large nA and nQ. Note that a single execution of
Schx has a small run-time compared to rOptP-m and rOptM-
m as they both call Schx many times.

From the results for the practical DSP examples, it seems
that rOpt is much faster than GG95 and the larger the
difference between nA and nQ, the more efficient rOpt is
in comparison with GG95. Our experiments on the synthetic
examples confirm this conclusion.

Tables V and VI give the results for the synthetic examples.
Each point in Tables V is an average of graphs in the same
group. Each point in Table VI is an average of graphs with
the same value of nD. The execution time of GG95 is affected
more by the growth of nQ than the growth of nA. Both nA and
nQ affect the speed of our methods, but not as much as nD
does. The number of delays (nD) has almost no effect on the
speed of GG95. Both nA and nQ have no significant impact
on the optimal unfolding factors and the rate of processors
used, but nD does. We show the average results of all graphs
with nD = 0 and nD = 0.9 in Table VI, resp. When the delay
count is larger, the optimal unfolding factor and the rate of
processors used is generally larger. Procedure rOptP increases
the rate of processors used of rOpt by about 90 percent in
both cases. The optimal unfolding factors returned by rOpt

are close to the proven smallest one (CS95). In the cases with
nD = 0.9, the average of unfolding factors of rOpt-m seems
quite a bit larger than that of rOpt. This may be caused by the
large number of initial tokens, which increases the number of
values of tn. The number of combination of values of tn and
tr and op is then enlarge the state space of STE. However,
the detailed experimental data shows that in 94% of the tested
cases, the unfolding factors of rOpt-m are the same or twice
that of rOpt; the largest case is 30 times, largely increasing
the average; the others are in the order of three to six times.

The average storage improvements are also shown in Ta-
ble VI. Of 54%, 44% and 2% of all the tested models for which
SGB08 finished within 30 minutes, our method returns storage
spaces smaller than, equal to and larger than that returned by
SGB08 [16], resp. The average improvement is about 5.4%.

The procedures rOpt-m, rOptP-m and rOptM-m are slower
than their respective versions that do not consider processor
allocation (rOpt, rOptP and rOptM). The reason is that, in
the semantics of SDFGs considered in this paper, a state of
an LTS includes one more vector, op(V), than that of [11]
and [12]. This makes the state larger and therefore enlarges
the state space of STEs, which need longer time to explore.
This is also the reason that the unfolding factors of rOpt-
m sometimes are larger than that of rOpt. The details are
discussed in Section V-B.

The heuristics in [17] return the best results on the processor
constrained scheduling problems of HSDFGs. The state-of-
the-art design flow in [18] maps and schedules SDFGs on
heterogeneous multiprocessor platforms, taking into account
communication cost. The scheduler in [18] maps all firings
of an actor to one processor and doesn’t use retiming or
unfolding. We have adapted it to deal with our models. We
ran our algorithm (Schp) on the five benchmark graphs in [17]
and compared our results with [17] and [18] in Table VII. For
the five graphs, 22 processor bounds (#P) are checked. For
the 22 returned IPs, compared to [17], our method performs
better on 8 cases, worse on 5 cases and equal on all others.
[17] considers not only the ASAP start time of an actor but
also its slack time, leaving more room for the actor to be
scheduled, while our method considers only ASAP start times.
As a result, our method performs worse on some cases. [17]
only deals with integer IPs. This may be the reason that our
method performs better on some cases. Our method in all the
tested cases returns better IPs than the method of [18] except
for the cases when #P=1, since [18] binds firings of an actor
on the same processor while we allocate firings on available
processors. [18] does not find schedules for some cases.
When #P=1, there are no differences between actor allocation
and firing allocation. Results shown in Table VII also reveals
partially how the IPs deviated as the processor constraints vary.
We observe that when #P decreases, the products of #P and
the IP may tend to equal from a certain #P. The reason is that
when #P is large enough, the parallelism of an SDFG is mainly
decided by its structures; when #P decreases to a threshold,
the parallelism of the SDFG will mainly decided by #P, and
therefore the IP may be dependent on #P linearly.

TABLE VII
Experimental results of processor-constrained scheduling for benchmark
graphs (HSDFGs) in [17] (The IB of each graph is shown in bold)

Graph name #P IP[17] IP[18] IP #P IP[17] IP[18] IP
Second-order

section
4 3 - 3.5 2 6 - 6
3 4 - 4 1 12 - 12

Jaumann
filter

3 16 20 16 1 33 33 33
2 17 20 16.5 - - - -

All-pole
filter

3 14 19 14.5 1 31 31 31
2 16 19 15.5 - - - -

16-point
FIR filter

8 4 - 4.1 4 8 11 7.8
7 5 8 4.5 3 11 12.2 10.3
6 6 9.8 5.2 2 16 16.5 15.5
5 7 - 6.2 1 31 31 31

Fith-order
elliptic filter

4 16 22 16 2 22 23 23
3 17 21 18 1 42 42 42

X. Conclusion
In this paper, we have proposed methods for multi-constraint

static scheduling of SDFGs via retiming and unfolding. The
methods presented include: an exact method that considers
only optimal rate (maximal throughput), a general framework
that schedules SDFGs under constraints on the number of
processors, memory, auto-concurrency, or combinations of
these, and heuristic methods that schedule SDFGs with optimal
rate and with as few processors (or as little storage space) as
possible. None of the methods explicitly converts an SDFG to
its equivalent HSDFG.

We have carried out experiments on hundreds of synthetic
SDFGs and several models of real applications. Our rate-
optimal scheduling method is 4-7 orders of magnitude faster
than the existing method [15] and it returns often optimal
unfolding factors close to the smallest ones proven in [9].
Our processor minimal rate-optimal scheduling method further
reduces the number of processors needed for a rate-optimal
schedule by about 90%. In 54% of the tested models, our
memory minimal rate-optimal scheduling method leads to a
retimed SDFG whose rate-optimal schedule that requires less
storage space than the proven minimal storage requirement of
the original graph [16], and in 44% of the cases, the returned
storage requirements equal the minimal ones. The average
improvement is about 5.4%. The results also show that our
methods are computationally efficient.

References
[1] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data

flow programs for digital signal processing,” IEEE Trans. on Comput,
vol. 36, no. 1, pp. 24–35, 1987.

[2] V. Zivojnovic, S. Ritz, and H. Meyr, “Optimizing DSP programs
using the multirate retiming transformation,” in Proc. EUSIPCO Signal
Process. VII, Theories Applicat, 1994.

[3] S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,” in
Proc. Acoustics, Speech, and Signal Processing Conf., 1995, pp. 2651–
2654.

[4] R. Reiter, “Scheduling parallel computations,” Journal of the ACM
(JACM), vol. 15, no. 4, pp. 590–599, 1968.

[5] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding,” IEEE Trans. on
Computers, vol. 40, no. 2, pp. 178–195, 1991.

[6] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: schedul-
ing and synchronization. CRC Press, 2009.

[7] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorith-
mica, vol. 6, no. 1, pp. 5–35, 1991.

[8] L. Lucke, A. Brown, and K. Parhi, “Unfolding and retiming for
high-level DSP synthesis,” in Proc. IEEE International Sympoisum on
Circuits and Systems, 1991, pp. 2351–2354.

[9] L. Chao and E. Hsing-Mean Sha, “Static scheduling for synthesis of DSP
algorithms on various models,” The Journal of VLSI Signal Processing,
vol. 10, no. 3, pp. 207–223, 1995.

[10] X.-Y. Zhu et al., “Efficient retiming of multirate DSP algorithms,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 31, no. 6, pp. 831–844, 2012.

[11] X.-Y. Zhu et al., “Static Rate-Optimal Scheduling of Multirate DSP
Algorithms via Retiming and Unfolding,” in Proc. 18th Real-Time and
Embedded Technology and Applications Symposium, 2012, pp. 109–118.

[12] X.-Y. Zhu et al., “Memory-constrained static rate-optimal scheduling
of synchronous dataflow graphs via retiming,” in Proc. 17th Design,
Automation and Test in Europe (DATE), 2014, pp. 1–6.

[13] V. Zivojnovic and R. Schoenen, “On retiming of multirate DSP algo-
rithms,” in Proc. Acoustics, Speech, and Signal Processing, 1996, pp.
3310–3313.

[14] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Proc.
6th Int. Conf. on Application of Concurrency to System Design, 2006.
http://www.es.ele.tue.nl/sdf3/, pp. 276–278.

[15] R. Govindarajan and G. Gao, “Rate-optimal schedule for multi-rate DSP
computations,” The Journal of VLSI Signal Processing, vol. 9, no. 3, pp.
211–232, 1995.

[16] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs,” IEEE
Trans. on Computers, vol. 57, no. 10, pp. 1331–1345, 2008.

[17] S. H. De Groot, S. H. Gerez, and O. E. Herrmann, “Range-chart-
guided iterative data-flow graph scheduling,” IEEE Trans. on Circuits
and Systems I: Fundamental Theory and Applications, vol. 39, no. 5,
pp. 351–364, 1992.

[18] S. Stuijk et al., “Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs,” in 44th Design Automation
Conference., 2007, pp. 777–782.

[19] A. K. Singh et al., “Mapping on multi/many-core systems: Survey of
current and emerging trends,” in Proc. 50th Ann. Design Automation
Conf. (DAC), 2013, p. 1.

[20] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys
(CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[21] Z. Zhou et al., “Scheduling of parallelized synchronous dataflow actors
for multicore signal processing,” J. Signal Process. Syst., pp. 1–20, 2014.

[22] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” in ACM SIGPLAN Notices, vol. 43,
no. 6, 2008, pp. 114–124.

[23] A. Malik and D. Gregg, “Orchestrating stream graphs using model
checking,” ACM Trans. Archit. Code Optim., vol. 10, no. 3, pp. 19:1–
19:25, 2013.

[24] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling
technique for mpsoc,” in Proc. Conference on Design, Automation and
Test in Europe, 2009, pp. 69–74.

[25] L. Chao and E. Sha, “Scheduling Data-Flow Graphs via Retiming and
Unfolding,” IEEE Trans. on Parallel and Distributed Systems, vol. 8,
no. 12, pp. 1259–1267, 1997.

[26] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing buffer require-
ments under rate-optimal schedule in regular dataflow networks,” The
Journal of VLSI Signal Processing, vol. 31, no. 3, pp. 207–229, 2002.

[27] O. Moreira et al., “Buffer sizing for rate-optimal single-rate data-flow
scheduling revisited,” IEEE Trans. on Computers, vol. 59, no. 2, pp.
188–201, 2010.

[28] W. Che and K. S. Chatha, “Unrolling and retiming of stream applications
onto embedded multicore processors,” in Proc. 49th Annual Design
Automation Conference (DAC), 2012, pp. 1272–1277.

[29] A. Ghamarian et al., “Throughput analysis of synchronous data flow
graphs,” in Proc. International Conference on Application of Concur-
rency to System Design (ACSD)., 2006, pp. 25–36.

[30] Y. Yang et al., “Automated bottleneck-driven design-space exploration
of media processing systems,” in Proc. the Conference on Design,
Automation and Test in Europe (DATE), 2010, pp. 1041–1046.

[31] A. K. Singh, A. Kumar, and T. Srikanthan, “A hybrid strategy for
mapping multiple throughput-constrained applications on mpsocs,” in
Proc. 14th International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES), 2011, pp. 175–184.

[32] F. Kröger and S. Merz, Temporal Logic and State Systems. Springer-
Verlag Berlin, 2008.

[33] E. Lee and S. Ha, “Scheduling strategies for multiprocessor real-
time DSP,” in IEEE Global Telecommunications Conf. and Exhibition,
GLOBECOM’89, 1989, pp. 1279–1283.

[34] M. Adé, R. Lauwereins, and J. Peperstraete, “Data memory minimisation
for synchronous data flow graphs emulated on DSP-FPGA targets,” in
Proc. 34th Design Automation Conference (DAC), 1997, pp. 64–69.

[35] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Joint minimization
of code and data for synchronous dataflow programs,” Formal Methods
in System Design, vol. 11, no. 1, pp. 41–70, 1997.

[36] M. H. Wiggers, M. J. Bekooij, and G. J. Smit, “Efficient computation of
buffer capacities for cyclo-static dataflow graphs,” in Proc. 44th Design
Automation Conference (DAC)., 2007, pp. 658–663.

[37] A. Moonen et al., “Practical and accurate throughput analysis with the
cyclo static dataflow model,” in Proc. 15th Int. Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems,
2007, pp. 238–245.

Xue-Yang Zhu (M’12) received the M.Sc. degree
in mathematics from Fuzhou University, Fuzhou,
China, in 1999, and the Ph.D. degree in computer
software and theory from the Institute of Software,
Chinese Academy of Sciences, Beijing, China, in
2005.

She is currently an Assistant Professor with the
State Key Laboratory of Computer Science, Insti-
tute of Software, Chinese Academy of Sciences.
Her current research interests include the design of
embedded systems, software architecture, and formal

methods.

Marc Geilen (M’11) received the M.Sc. degree in
information technology and the Ph.D. degree from
the Eindhoven University of Technology, Eindhoven,
The Netherlands.

He is currently an Assistant Professor with the
Department of Electrical Engineering, Eindhoven
University of Technology. His current research in-
terests include modeling, analysis and synthesis of
streamprocessing systems, multiprocessor systems-
on-chip and wireless sensor networks, and multiob-
jective optimization and tradeoff analysis.

Twan Basten (M’98-SM’06) received the M.Sc. and
Ph.D. degrees in computing science from the Eind-
hoven University of Technology (TU/e), Eindhoven,
The Netherlands.

He is currently a Professor with the Department
of Electrical Engineering, TU/e, where he chairs
the Electronic Systems group. He is also a Se-
nior Research Fellow with TNO Embedded Sys-
tems Innovation, Eindhoven. His current research
interests include the design of embedded and cyber-
physical systems, reliable computing, and computa-

tional models.

Sander Stuijk received the M.Sc. (with honors)
and Ph.D. degrees in electrical engineering from
the Eindhoven University of Technology, Eindhoven,
The Netherlands, in 2002 and 2007, respectively.

He is currently an assistant professor in the De-
partment of Electrical Engineering at Eindhoven
University of Technology. He is also a visiting re-
searcher at Philips Research Eindhoven working on
bio-signal processing algorithms and their embedded
implementations. His research focuses on modeling
methods and mapping techniques for the design and

synthesis of predictable systems.

