
Retiming Synchronous Dataflow Graphs through a
State-Space Exploration

Xue-Yang Zhu
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

zxy@ios.ac.cn

Marc Geilen, Twan Basten, and Sander Stuijk
Department of Electrical Engineering
Eindhoven University of Technology

Eindhoven, the Netherlands
{a.a.basten, m.c.w.geilen, s.stuijk}@tue.nl

ABSTRACT
Synchronous dataflow graphs (SDFGs) are widely used to model
multi-rate digital signal processing (DSP) algorithms. A lower iter-
ation period of such a model implies a faster execution of a DSP
algorithm. Retiming is a simple but efficient graph transforma-
tion technique for performance optimization, which can decrease
the iteration period without affecting functionality. In this paper,
we deal with the iteration period minimization problem — retim-
ing an SDFG to achieve the smallest possible iteration period. We
present a heuristic method that works directly on SDFGs, without
converting them to their equivalent homogeneous SDFGs. It an-
alyzes the state-space generated by a self-timed execution of the
SDFG to obtain a near-optimal retiming. Our experimental results
show that in 85% of the test cases that allow actors to fire auto-
concurrently, our method gets reduced iteration periods close to the
optimal ones, while being ten times faster than the state-of-the-art
exact method; in all the test cases in which auto-concurrent firing
of actors is excluded, our method gets reduced iteration periods al-
most the same as the optimal ones, while being 100 times faster
than the exact method. Combining parts of the exact method with
our novel method, we present an improved algorithm, whose exe-
cution time is further reduced by 22%.

1. INTRODUCTION
Dataflow models of computation are widely used to represent DSP
applications. Each node (also called actor) in such a model rep-
resents a computation or function and each edge models a FIFO
channel. One of the most useful dataflow models for designing
multi-rate DSP algorithms are synchronous dataflow graphs (SD-
FGs) [8]. The sample rates of actors of an SDFG may differ. The
graph G1 in Fig. 1(a), for example, is an SDFG model. The real
multi-rate DSP algorithms modeled with SDFGs include the sim-

Figure 1: (a) The SDFG G1, where the sample rates are omitted
when they are 1; (b) the periodic schedule of G1; (c) a schedule
with prologue and improved iteration period.

plified spectrum analyzer [22], the satellite receiver [16], etc.

DSP algorithms are often repetitive. Execution of all the computa-
tions for the required number of times is referred to as an iteration.
A DSP algorithm repeats iterations periodically. An iteration of
G1 in Fig. 1(a), for example, includes two executions, often called
firings in dataflow, of actor A, two firings of B and one firing of
C. The iteration period is the least time required for executing one
iteration of a DSP algorithm [15]. The iteration period of G1, for
example, is 5 as shown by the periodic schedule of Fig. 1(b). The
data dependencies among actors B, C and A imply that the itera-
tion period of G1 cannot be lower than 5 no matter which periodic
schedule is used.

Consider the SDFG G1 in Fig. 1(a) again. A schedule of G1 with



Figure 2: (a) The retimed graph of G1; (b) its periodic schedule.

prologue, shown in Fig. 1(c), consists of some initial actor firings
followed by iterations whose execution time is shorter than the it-
eration period of G1. Executing the prologue of G1, that is, firing
actor B twice and firing C once, respectively, leads to the graph in
Fig. 2(a), whose delays are redistributed and whose iteration period
is reduced to 3, as its periodic schedule, Fig. 2(b), shows.

Fig. 2(a) is in fact a graph obtained by retiming G1 in Fig. 1(a), and
it is called a retimed graph of G1. Retiming is a graph transforma-
tion technique that only changes the delay distribution of a graph,
while it has no effect on its functionality [9]. The delay distribu-
tion indicates the numbers of initial tokens on edges of the SDFG.
A retiming function specifies the firings required to redistribute the
delays. Retiming is originally applied to reduce the iteration period
of homogeneous synchronous dataflow graphs (HSDFGs), which is
a special type of SDFGs. In an iteration of an HSDFG, each actor
fires once.

As this example shows, retiming an SDFG is actually executing
some of its actors. This inspired us to think about a retiming method
that analyzes behaviors of SDFGs. A self-timed execution (STE) [6]
results in a nicely pipelined execution [4] and a snapshot of such a
pipelined execution is likely to have a low iteration period. In this
paper, we present a heuristic retiming algorithm based on the state
space generated by a self-timed execution of an SDFG. The pur-
pose is to find a retiming for an SDFG such that the retimed graph
has an iteration period as small as possible. Our method does not
convert an SDFG to its equivalent HSDFG.

For evaluating our new method, STE, we implemented it and the ex-
act optimal retiming algorithm that works directly on SDFGs [10],
LLW, in the open source tool SDF3 [20]. The experiments were
carried out on thousands of synthetic SDFGs and several realistic
SDFG models. Although our method is not guaranteed to provide
an optimal retiming, the experimental results show that in 85% of
the test cases that allow auto-concurrent actor firing, it reaches a
reduced iteration period very close to what LLW reports; and that
in all the test cases that disallow auto-concurrent actor firing, our
method reaches a reduced iteration period almost the same as the
optimal one. Our method is ten times and 100 times faster than
LLW, on the test cases with and without auto-concurrency, respec-
tively.

Combining parts of LLW and STE, we present an improved algo-
rithm with the same results as STE but a 22% reduced execution
time.

The remainder of this paper is organized as follows. We first dis-
cuss the related work in the next section and introduce synchronous
dataflow graphs in Section 3. The problem is formulated in Sec-
tion 4. An operational semantics of SDFGs is defined in Section 5.

Our retiming method is presented in Section 6. Section 7 provides
an experimental evaluation. An improved algorithm and its exper-
imental results are presented in Section 8. Finally, Section 9 con-
cludes.

2. RELATED WORK
A great deal of research has been done on retiming in the context
of HSDFGs [18, 3, 17]. Different from an HSDFG, however, in
an iteration of an SDFG, actors may be executed more than once
and a different number of times. This invalidates many useful re-
sults derived for HSDFGs, and complicates the analysis of retiming
properties of SDFGs. Nevertheless, some efforts have been made.
Some important properties of retiming on SDFGs, such as func-
tional equivalence and reachability, have been proven [23, 22].

A typical solution for the retiming problem includes two main sub-
routines: computing the iteration period and finding a proper re-
timing function. The traditional way to solve retiming problems
on SDFGs is to first convert the SDFG to its equivalent HSDFG
and then to use the available methods for HSDFGs [7]. Theoret-
ically, this is always possible. However, converting an SDFG to
an HSDFG may increase the problem size tremendously and it is
very time-consuming when SDFGs become larger. The size of the
HSDFG can be exponentially larger than the original SDFG in ex-
treme cases [23]. There exists work that tries to solve the retiming
problem without or with limited conversions of the SDFG to HS-
DFG. [14] and [21] present methods to find a retiming of an SDFG
such that the retimed SDFG has an iteration period at most a given
value. The method in [14] computes the retiming function directly
on SDFGs, but the computation for the iteration period is still on
HSDFGs. The method in [21] computes both the iteration period
and retiming function on SDFGs. Liveris et al. [10] present an op-
timal retiming method that computes both the iteration period and
retiming function on SDFGs. To the best of our knowledge, it is
the only optimal retiming method that works directly on SDFGs.

All the above-mentioned methods provide solutions from a static
viewpoint — analyzing structures of SDFGs. They are explicitly
based on the relationship between an SDFG and its equivalent HS-
DFG, which is quite complex. Our method provides a solution from
a dynamic viewpoint — analyzing behaviors of SDFGs. It is intu-
itive and efficient.

3. SYNCHRONOUS DATAFLOW GRAPHS
Definition 1. A synchronous dataflow graph (SDFG) is a finite

directed graph G = 〈V, E, t, d, prd, cns〉, in which

• V is the set of actors, modeling the functional elements of the
system. Each actor v ∈ V is weighted with its computation
time t(v), a positive integer;

• E is the set of directed edges, modeling interconnections be-
tween functional elements. Each edge e ∈ E is weighted with
three properties: d(e), a nonnegative integer that represents
the number of initial tokens associated with e; prd(e), a pos-
itive integer that represents the number of tokens produced
onto e by each execution of the source actor of e; cns(e),
a positive integer that represents the number of tokens con-
sumed from e by each execution of the sink actor of e. These
numbers are also called the delay, production rate and con-
sumption rate, respectively. The source actor and sink actor
of e ∈ E are denoted as src(e) and snk(e), respectively.



We represent the edge e with source actor u and sink actor v by e =

〈u, v〉. The set of incoming edges to actor v is denoted by InE(v),
and the set of outgoing edges from v by OutE(v). We use v ∈ G to
represent that v is an actor of G. An initial delay distribution of an
SDFG is a vector containing delays on all edges of the SDFG G,
denoted as d(G). Take the SDFG G1 in Fig. 1(a) for example. For
each edge e, its prd(e) and cns(e) that are not equal to one and its
d(e) that is not equal to zero are labeled on e. The computation time
vector t = [2, 1, 2]. The initial delay distribution d(G1) = [5, 0, 0],
corresponding to the edges 〈A, B〉, 〈B,C〉, 〈C, A〉.

An SDFG G is sample rate consistent if and only if there exists a
positive integer vector q(V) such that for each edge e in G,

q(src(e)) × prd(e) = q(snk(e)) × cns(e), (1)

where (1) is called a balance equation. The smallest q is called the
repetition vector [8]. We use q to represent the repetition vector
directly. One iteration of an SDFG G is an execution sequence in
which each actor v in G occurs exactly q(v) times. The iteration pe-
riod (IP) of G is the least time required for executing one iteration,
represented by IP(G).

For example, a balance equation can be constructed for each edge
of G1 in Fig. 1. By solving these balance equations, we have G1’s
repetition vector q = [2, 2, 1]. Actor A can start to fire only after C
fires once, while C can start to fire only after B fires twice. There-
fore the time required for executing one iteration of G1 is at least 5,
that is, IP(G1) = 5, as Fig. 1(b) shows.

An SDFG is sample rate inconsistent if there is no nonzero solu-
tion for its balance equations. Any execution of an inconsistent
SDFG will result in deadlock or unbounded memory. We only con-
sider sample rate consistent and deadlock-free SDFGs, referred to
as valid SDFGs.

By inserting precedence constraints with a finite number of delays
between the source and sink actors of an SDFG, any SDFG can be
converted to a strongly connected graph [9, 22]. We therefore only
consider valid SDFGs that are strongly connected, when develop-
ing our ideas.

4. PROBLEM FORMULATION
Retiming is a graph transformation technique that redistributes the
graph’s delays while its functionality remains unchanged [9, 22].
Retiming can be defined either in a forward fashion, by which re-
timing an actor once means firing this actor once [22, 14], or in a
backward fashion, by which retiming an actor once means reversed
firing this actor once [9, 10, 21]. We use the former one.

Given an SDFG G = 〈V, E, t, d, prd, cns〉, a retiming of G is a func-
tion r : V → Z, specifying a transformation r of G into a new
SDFG r(G) = 〈V, E, t, dr, prd, cns〉, where the delay-function dr is
defined for each edge e = 〈u, v〉 by the equation:

dr(e) = d(e) + prd(e)r(u) − cns(e)r(v). (2)

A retiming r of a valid SDFG is legal if the retimed graph r(G) is a
valid SDFG. Only legal retimings are meaningful. Any solution for
retiming problems need to guarantee a legal retiming. It is sufficient
to check if the initial delay distribution d(r(G)) is nonnegative to
ensure that a retiming is legal [21].

We deal with the iteration period minimization problem — to find
a retiming r of G such that it is legal and IP(r(G)) is as small as

possible. We call a retiming r an optimal retiming if IP(r(G)) is
the optimal iteration period (optIP) of G — the smallest iteration
period that can be reached by retiming G. R1 = [0, 2, 1] is an op-
timal retiming and 3 is the optIP for G1 in Fig. 1(a), for example,
because no lower IP can be reached by any retiming of G1. For an
SDFG, there is only one optIP, but the SDFG may have more than
one optimal retiming.

5. AN OPERATIONAL SEMANTICS OF SD-
FGS

In this section, we first define the operational semantics of SDFGs
according to transition systems; then we introduce the important
properties of the self-timed execution.

5.1 Transition System of SDFGs
For developing our method, we define the behavior of an SDFG G
in terms of a simple transition system (TS), represented by TS(G).
A transition system includes a set of states, a set of actions, an
initial state and a set of transitions which define rules on how to
change states depending on different actions. Before defining the
transition system of an SDFG, we introduce some notations to sim-
plify the later illustrations.

We use a vector tn(E) to model the change of delay distribution of
G during its execution. For each edge e ∈ E, tn(e) is the current
number of delays on edge e. The SDFG is a concurrent model of
computation. It allows simultaneous firings of an actor. For differ-
ent concurrent firings of an actor, the one first to start is the one first
to end. We use a queue tr(v) to contain the remaining times of the
concurrent firings of actor v. The ith element of tr(v) is the remain-
ing time of the ith unfinished firing of v. The number of elements
of tr(v), sizeOf (tr(v)), is the number of concurrent firings of v. For
a queue qu, the queue operations we use include: HeadQ(qu) to
return the first element of qu; ENQ(qu, x) to insert x at the end of
qu; DLQ(qu) to remove the first element of qu; and isEmpty(qu) to
test if qu is empty.

Generally, the behavior of an SDFG can be observed on two levels
— first, the global behavior that can be observed by the change
of the delay distribution; second, the local behavior that indicates
which actors are firing and how much time remains for each firing.
The tn(E) characterizes the global behavior and tr(V) characterizes
the local behavior, also called firing status, of G.

Our purpose is to improve the time performance of an SDFG, so we
need to hold two other variables: a global clock, glbClk, to record
the time progress, and the vector nStarted(V) to record the number
of started firings of each actor. We will get the IP from glbClk and
the retiming function from nStarted(V) in a certain state.

A state of TS(G) is a 4-tuple that consists of the values of the delay
distribution vector tn(E), the firing status vector tr(V), the vector
nStarted(V), and the global clock glbClk. We call tn(E) and tr(V)
the behavior elements of states.

There is only one initial state of TS(G), denoted as s0. In s0, tn(E)
is the initial delay distribution d(G); no firings have been started, so
each element of tr(V) is empty and nStarted(V) is the zero vector;
and the global clock glbClk is zero. For example, the initial state of
G1 in Fig. 1(a) is gs0 = ([5, 0, 0], [{}, {}, {}], [0, 0, 0], 0), correspond-
ing to the edges 〈A, B〉, 〈B,C〉 and 〈C, A〉 and the actors A, B and C,
where {} represents an empty queue.



The behavior of an SDFG consists of a sequence of firings of ac-
tors. We use actions sFiring(v) and eFiring(v) to model the start and
end of a firing of actor v, and use readyS(v) and readyE(v) as their
enabled conditions, respectively. In parallel with actor firings, time
elapses on its own step, represented by the increase of the global
clock glbClk. A time step is modeled by the action clk.

The guard readyS(v) tests if there are sufficient tokens on the in-
coming edges of actor v for a firing of v. That is,

readyS(v) ≡de f ∀e ∈ InE(v) : tn(e) ≥ cns(e).

An actor v starting a firing, sFiring(v), is to insert its computation
time, t(v), into queue tr(v), to reduce delays of all its incoming
edges according to the consumption rates, and to increase nStarted(v)
by one. That is,

sFiring(v) ≡de f (∀e ∈ InE(v) : tn′(e) = tn(e) − cns(e))
∧ tr′(v) = ENQ((tr(v), t(v))
∧ nStarted′(v) = nStarted(v) + 1.

Where tn′(e), tr′(v) and nStarted′(v) refer to the value of tn(e), tr(v)
and nStarted(v) in the new state s′, respectively. For conciseness,
We omit the elements of states if their values unchanged after an
action. In G1, for example, at the initial state gs0, B is ready to
start its firing; after sFiring(B), the state is changed from gs0 to
gs1 = ([4, 0, 0], [{}, {1}, {}], [0, 1, 0], 0).

Time progresses when no actor is ready to end. A time step, clk,
reduces the remaining times of all firing actors by one if there are
firing actors, and increases the global clock by one. That is,

clk ≡de f (∀v ∈ V : ¬isEmpty(tr(v))⇒ (∀x ∈ tr(v) : x′ = x − 1))
∧ glbClk′ = glbClk + 1.

For example, in G1, after actor B starts firing, no actors are ready
to end, then time progresses one step, leading to the state changed
from gs1 to gs2 = ([4, 0, 0], [{}, {0}, {}], [0, 1, 0], 1). Its enabled con-
ditions guarantee that a clk action never leads to a negative tr(v).
Notice that the delay distribution remains unchanged by a time step.

When the remaining time of a firing of v is zero, the firing is ready
to end. This is modeled by the guard readyE(v).

readyE(v) ≡de f HeadQ(tr(v)) = 0.

An actor v ending a firing, eFiring(v), is to remove the first element
from queue tr(v) and to increase delays of all its outgoing edges
according to the production rates. That is,

eFiring(v) ≡de f (∀e ∈ OutE(v) : tn′(e) = tn(e) + prd(e))
∧ tr′(v) = DLQ((tr(v)).

In G1, at the state gs2, actor B is ready to end; after eFiring(B), the
state is changed from gs2 to gs3 = ([4, 1, 0], [{}, {}, {}], [0, 1, 0], 1).

An action of TS(G) is any of sFiring(v), eFiring(v) and clk. A tran-
sition from state to state of TS(G) is caused by any of its actions
constrained by their enabled conditions.

An execution of an SDFG G is an infinite sequence of states of
TS(G) beginning with the initial state and following by states caused
by transitions from their predecessors. For example, states gs0, gs1,
gs2 and gs3 form a prefix of an execution of G1.

A self-timed execution (STE), is an execution in which the time
step, clk, only occurs when no actors are ready to start [6]. That is,

Figure 3: A self-timed execution state space of G1.

in an STE, firings of actors start immediately if they are enalbed.
The time step cannot progress if only there are actors ready to start
a firing. For example, at state gs1, actor B is still ready to start a
firing; therefore state gs2 is not a successor of gs1 in an STE.

5.2 Properties of STEs
In an STE, between two clk actions, there can be some interleaving
of simultaneous sFiring(v) and/or eFiring(v) actions. However, no
matter what order of these actions are selected, the sequences of
actor firings according to any STE of a strongly connected valid
SDFG are the same. For example, Fig. 3 shows the only sequence
of actor firings of all STEs of G1. Self-timed SDFG behavior is
therefore deterministic if we only consider the clk actions and its
effects on the actor firing sequence [4].

When we say two states are equal in behavior, denoted as s1 =bh s2,
the values of their behavior elements, tn(E) and tr(V), are equal.
For example, in Fig. 3, s1 =bh s6.

For a strongly connected valid SDFG, self-timed execution is de-
terministic and the values of tn(E) and tr(V) are finite; therefore,
an STE includes in fact finite states that are distinct in behavior.
Observed only on the behavior elements, the state-space of an STE
includes a finite sequence of states, called the transient phase, fol-
lowed by an infinite sequence that is periodically repeated, called
the periodic phase [4]. That is the following theorem.

Theorem 1. For any STEσ of a strongly connected valid SDFG,
we have hasCycle(σ) = true, where

hasCycle(σ) ≡de f ∃s1, s2 ∈ σ : s1 =bh s2.

The first pair of states of σ to make hasCycle(σ) true is the begin-
ning state of the periodic phase, denoted as sb, and the end state
of the periodic phase, denoted as se. For example in σ1 in Fig. 3,
sb = s1 and se = s6.

According to Theorem 1, although an STE is infinite, we can find it
in finitely many steps of exploration: beginning with the initial state
s0 and ending at se. We directly call such a finite state sequence an
STE in the next section.

6. RETIMING ALGORITHM
In this section, we first present a procedure for exploring the state
space of an STE according to so-called macro steps, as explained
below; then based on variations of this basic procedure, a precise



algorithm for computing the IP and a heuristic algorithm for finding
a retiming for iteration period minimization are presented.

6.1 State-Space Exploration
Since self-timed execution is deterministic, we can explore its state
space according to macro steps that enforce an order of actions. A
macro step includes: first, starting all firings of actors that are ready
to start, then one clk, and at last ending all firings of actors that are
ready to end. Because we assume that the computation time of
each actor is positive, it is guaranteed that a clk action in a macro
step is enabled only when no actors are ready to start or to end a
firing. That is, the enabled condition for clk in an STE is preserved.
Algorithm 1 is a procedure for exploring the state space of an STE
according to macro steps.

Algorithm 1 STE(G)
Input: A strongly connected valid SDFG G
Output: The STE σ of G
1: ts = TS(G)
2: s = ts.s0

3: while not hasCycle(σ) do
4: for all v ∈ G do
5: while readyE(v) do
6: eFiring(v)
7: end while
8: end for
9: σ← s // store a state

10: for all v ∈ G do
11: while readyS(v) do
12: sFiring(v)
13: end while
14: end for
15: clk
16: end while
17: return σ

The termination of Algorithm 1 is guaranteed by Theorem 1. States
are stored after each macro step. We can even store only the states
that caused by the end firing action of a certain actor to reduce
the memory and time used. If a zero computation time is allowed,
we need only to repeat lines 4-14 of Algorithm 1 until no actors
are ready to end a firing to get an STE. Only when all actors in
a strongly connected valid SDFG are with zero computation time,
this procedure may be non-terminating. But such a model is mean-
ingless in practice.

Placed different constraints on enable conditions of the start firing
action, readyS(v), the procedure for the state space exploration can
be used straightforwardly to compute the iteration period and the
retiming function for a given SDFG.

6.2 Computing the Iteration Period
When retiming is used to reduce the IP, a subroutine for computing
the IP is needed. One way to compute the IP of an SDFG is to
convert it to its equivalent HSDFG and then compute the IP of the
HSDFG [9]. This is exactly the method that is used by the tradi-
tional retiming method and the method in [14]. It is time and space
consuming due to the conversion procedure from an SDFG to an
HSDFG. Another way to compute the IP is by searching the edges
of the SDFG, without converting it to an HSDFG. [10] and [21]
use this method. This method is much more efficient than the for-
mer one. However, because of the complex relationship between

Figure 4: The ipSTE of G1.

an SDFG and its equivalent HSDFG, the method is not intuitive.
Here we present a method to compute the IP of an SDFG through
a state-space exploration of an STE. The method is straightforward
yet efficient. Although it is not as fast as the IP computation proce-
dures of [10] and [21], it is much faster than that of [14].

A self-timed execution is also known as an as-soon-as-possible ex-
ecution [12]. The IP of an SDFG is the earliest possible completion
time of the execution of one iteration. If an STE is blocked to go
only one iteration, the time passed is the IP and then the STE shut-
ters on clk steps. We model this constraint by limiting the started
firings of each actor v, nStarted(v), to q(v) in an STE. Then the
exploration procedure stops exactly after one iteration has been ex-
ecuted and the number of clk actions is exactly the IP of the SDFG.
We put this constraint on the guard of sFiring action as follows.

readySip(v) ≡de f readyS(v) ∧ (nStarted(v) < q(v)).

We call such an STE an ipSTE. Fig. 4, for example, is the ipSTE of
G1. The procedure to obtain an ipSTE of G, ipSTE(G), is a variation
of Algorithm 1, in which readyS(v) is replaced with readySip(v).

It is easy to see that in ipSTE σ, se =bh s0, because executing
an SDFG one iteration causes it to reach the initial delay distribu-
tion [8]; and at state se, each actor v has been fired exactly q(v)
times and the value of glbClk is the earliest possible completion
time of G, i.e. the IP of G. That is:

σ.se.nStarted(V) = q(V) and
σ.se.glbClk = IP(G).

The procedure to get the IP of an SDFG is shown in Algorithm 2.

Algorithm 2 getIP(G)
Input: A strongly connected valid SDFG G
Output: The IP of G
1: σ = ipSTE(G)
2: return σ.se.glbClk

6.3 Iteration Period Minimization
In either the traditional method or LLW, the procedure for finding
an optimal retiming is repetitive — testing whether a legal retiming
exists for a potential optimal IP until finding one for the smallest
IP. Here we present a single pass heuristic method for finding a
retiming that makes the IP as small as possible.

For an SDFG, there exists a lower bound on the iteration period,
which can be approached by a self-timed execution [19, 5] and is
determined by the period phase of an STE of this SDFG [4]. For
example, the periodic phase of the STE of G1, shown in Fig. 3,
includes a pipelined execution of two iterations of G1 and takes



Figure 5: The optSTE of G1.

Figure 6: The retimed graph of G1 according to R2 = [0, 5, 1]
and its periodic schedule.

only 5 time units. On average, each iteration takes 5
2 time units,

which is the iteration period bound of G1.

Since an STE, in which the number of concurrent firings of each
actor is not limited, settles in such a nicely pipelined execution, an
STE that is constrained by limiting the number of concurrent firings
of each actor v to q(v), is likely to lead to a periodic execution of
one iteration with a low IP. We model this constraint by limiting
each sizeOf (tr(v)) to q(v) and put it on the guard of sFiring actions
as follows.

readySopt(v) ≡de f readyS(v) ∧ (sizeOf (tr(v)) < q(v)).

We call such an STE an optSTE. Fig. 5, for example, is the optSTE
of G1. The procedure to obtain the optSTE of G, optSTE(G), is
a variation of Algorithm 1, in which readyS(v) is replaced with
readySopt(v).

Executing the transient phase of the optSTE of G1, i.e., firing 5
times of B and once C, leads to a new graph, shown in Fig. 6, with
a lower IP. In the optSTE of an SDFG, the vector nS tart(V) of state
sb records the number of firings of each actor in the transient phase.

Based on the observation, the procedure trying to find a retiming to
minimize the IP of an SDFG is shown in Algorithm 3. It computes
optSTE of SDFG G first to get retiming function r; next, it retimes
G by r to get the retimed SDFG r(G); then it computes ipS T E of
r(G) to get the IP of the retimed SDFG; at last, it returns r and
IP(r(G)). It computes two STEs.

Algorithm 3 optRe(G)
Input: A strongly connected valid SDFG G
Output: An estimated retiming and IP of G
1: σ = optSTE(G)
2: ∀v ∈ G, let r(v) = σ.sb.nStarted(v)
3: Gr = r(G)
4: IP = getIP(Gr)
5: return r and IP

According to the semantics we defined in Section 5, the delay dis-

tribution decreases only after an sFiring action. The enabled con-
dition of sFiring guarantees that the delay distribution never goes
negative. The retiming function returned by Algorithm 3 is an ac-
cumulation of sFiring actions, and therefore never leads to a re-
timed SDFG with negative delay distribution. That is, the retiming
returned by Algorithm 3 is guaranteed to be legal.

7. EXPERIMENTAL EVALUATION
In this section we present our experimental results to evaluate our
method.

7.1 Experimental Setup
We implemented our new method, STE, and the second algorithm
from [10] (the improved version), LLW, in the open source tool
SDF3 [20]. We performed experiments on four sets of SDFGs,
running on a 2.8GHz CPU with 1MB cache. The experimental
results of these four sets are shown in Tables 1, 2 and 3, and Fig. 7.
All execution times are measured in milliseconds (ms).

The first set of SDFGs consists of four practical DSP applications,
including a sample rate converter (Samplerate) [13], a satellite re-
ceiver (Satellite) [16], a maximum entropy spectrum analyzer (MaxES)
[1], and a channel equalizer (CEer); the latter is converted from
the cyclo-static dataflow model [2] in [11]. Adopting the method
in [22], by introducing to each model a dummy actor with com-
putation time zero and edges with proper rates and delays to con-
nect the dummy actor to the actors that have no incoming edges or
no outgoing edges, we convert these models to strongly connected
graphs.

The second set of test models consists of 1200 synthetic strongly
connected SDFGs generated by SDF3, mimicking real DSP appli-
cations and scaling up the models. The number of actors in an
SDFG, denoted as nA, and the sum of the elements in the repeti-
tion vector, denoted as sumQ, have significant impact on the per-
formance of the various methods. We distinguish three different
ranges of nA: 15-30, 50-65, and 100-120; and four different ranges
of sumQ: 2000-3000, 4000-6000, 8500-11000, and 18000-22000.
Then we generate SDFGs according to different combinations of
nA and sumQ to form 12 groups. Each group includes 100 SDFGs.
The explicit difference in nA and sumQ among these groups is help-
ful for showing how the performance of each method changes with
nA and sumQ.

There are some applications in which an actor holds internal states
or has a self-loop. We model this situation by adding a self-loop
with one delay to each actor of graphs in the two sets of real and
synthetic graphs to form another two sets. Adding self-loops in this
way excludes auto-concurrency, i.e., it disallows concurrent firings
of the same actor.

Table 1 gives the information about and results for the practical
DSP examples. There are three parts in Table 1. The first part is
the information on the graphs, including the number of actors in an
SDFG (nA), and the sum of the elements in the repetition vector,
(sumQ); the second part and the third part list the results for the
models without and with self-loops, respectively. Both the latter
two parts include the initial iteration period (initIP) of the model,
the best/optimal iteration periods obtained with different methods,
and the execution times of different methods. The information in
the first part of Table 1 includes the dummy actors introduced for
strong connectedness. Fig. 7 and Tables 2 and 3 give the results for
the synthetic examples. Fig. 7 gives the results for quality evalua-



Table 1: Experimental results for practical DSP examples
Graph information

name Samplerate Satellite MaxES CEer

nA 7 23 14 23

sumQ 613 4,516 1,289 43

Without self-loops

Initial IP and Best/optimal IP
initIP 21 11 11,528 53,652

llwOPT 6 2 8,192 47,128

steBEST 8 4 8,192 47,128

Execution time(ms)
LLW 6.5 61.7 9.4 1.8

STE 3.1 8.9 0.8 0.8

With self-loops

Initial IP and Best/optimal IP
initIP 1,000 1,314 12,293 53,652

llwOPT 960 1,056 8,192 47,128

steBEST 960 1,056 8,192 47,128

Execution time(ms)
LLW 485.2 4,017.4 553.4 2.3

STE 8.4 9.3 3.0 0.7

tion. Tables 2 and 3 give the results for execution time evaluation.
Each point in the tables is an average of 100 graphs in the same
group.

7.2 Quality Evaluation
It is not guaranteed to get a precise optimal retiming from STE,
since it is a heuristic method. To evaluate the quality of our method,
we normalize the best IP returned from STE, steBEST , of each
graph according to the optimal IP returned from LLW, llwOPT ,
using the following formula:

N =
llwOPT
steBEST

.

The normalized steBEST , N, measures how close steBEST is to
llwOPT . It approaches one when steBEST approaches llwOPT .

For the four practical DSP examples, in the cases without self-
loops, two of them have steBEST as good as llwOPT , as the second
part of Table 1 shows; in the cases with self-loops, all have steBEST
as good as llwOPT , as the third part of Table 1 shows.

The results of the synthetic examples are shown in Fig. 7. The
number of graphs is depicted on the horizonal axis and the quality
of our method represented by N as defined above is depicted on
the vertical axis. In the cases without self-loops, from the 1200
examples, 38% have N = 1, that is, these steBESTs are as good
as llwOPTs; 40% have 0.9 ≤ N < 1. In total, 85% of the Ns is
larger than 0.8. In the cases with self-loops, for all the synthetic
examples, N > 99%; for 70% of them, steBESTs are as good as
llwOPTs. The different ranges of nA and sumQ have no important

Figure 7: Quality of STE on synthetic examples.

impact on the quality of STE.

The above results show that STE has much better quality on the
SDFGs with self-loops than the SDFGs without self-loops.

7.3 Execution Time Evaluation
The execution times of STE and LLW for the practical DSP ex-
amples is shown in the second and the third parts of Table 1. Our
method is more efficient than LLW for all examples, especially for
Satellite. From these practical DSP examples, it seems that the
larger the difference between nA and sumQ, the more efficient our
method is in comparison to LLW. Our experiments on the synthetic
examples also confirm this conclusion.

Table 2: Execution times (ms) for synthetic examples without
self-loops

15-30 50-65 100-120
�������nA

sumQ
LLW 15 24 48

2k-3k*

STE 3 4 13

LLW 33 50 92
4k-6k

STE 4 9 15

LLW 89 89 129
8.5k-11k

STE 9 11 20

LLW 269 271 425
18k-22k

STE 16 20 35
* 1k=1000.

The execution times for the synthetic examples is shown in Tables 2
and 3, for models without and with self-loops, respectively. It is
clear that our method gains a greater advantage when the difference
between sumQ and nA grows. For example, when nA is in 15-30
(the smallest) and sumQ is in 18000-22000 (the largest) , STE gets
the greatest advantage in both kinds of models. The execution time
of LLW is affected more by the growth of sumQ than the growth of
nA. In the cases with self-loops, it even decreases with nA. There
is no obvious different effect on STE.

Our method is about ten times faster than LLW in the cases without
self-loops and about 100 times faster in the cases with self-loops.
The difference is more significant for larger models and/or when



Table 3: Execution times (ms) for synthetic examples with self-
loops

15-30 50-65 100-120
�������nA

sumQ
LLW 11,278 6,645 5,945

2k-3k*

STE 19 69 451

LLW 32,878 34,835 25,445
4k-6k

STE 30 140 533

LLW 127,597 106,384 84,953
8.5k-11k

STE 210 260 1,053

LLW 524,645 471,700 389,291
18k-22k

STE 152 655 1,884
* 1k=1000.

Figure 8: Execution times for the IP of synthetic examples with-
out self-loops.

retiming is done frequently as part of an encompassing exploration
process.

8. AN IMPROVED ALGORITHM
In the retiming algorithms, the procedure for computing the IP of
SDFGs affects the efficiency of whole procedure. We evaluate our
getIP procedure separately by comparing it with the procedures for
the IP computation of various retiming methods in [14], [10] and
[21], denoted as nsIP, llwIP and zhuIP, respectively. The results
of the various method, except for neilIP, on the synthetic examples
without self-loops are shown in Fig 8. The procedure nsIP is much
slower than the other three, so we do not show it in the figure. The
results are similar for the models with self-loops. The procedure
llwIP is the fastest among them.

Based on this observation, we replace the procedure getIP in Algo-
rithm 3 with llwIP [10] to get an improved version of our method,
denoted as STEllw. The quality of STEllw is the same as that of
STE. STEllw is about 18% faster than STE on the synthetic exam-
ples without self-loops and 27% faster on the synthetic examples
with self-loops. We show the results of the graphs without self-
loops in Fig 9.

9. CONCLUSION

Figure 9: Execution times for the best IP of synthetic examples
without self-loops.

In this paper, we have presented a heuristic retiming method trying
to minimize the iteration period of an SDFG. Our method computes
the iteration period and the retiming function through analyzing the
state space generated by a self-timed execution of the SDFG. It
works directly on the SDFG without converting it to its equivalent
HSDFG.

Experimental results show that in 85% of the test cases that have no
self-loops, our method reports the best iteration periods close to the
optimal ones and it is ten times faster than the exact method of [10];
in all test cases that disallow auto-concurrency via self-loops, our
method gets iteration periods that are almost the same as the op-
timal ones, while being 100 times faster than the method of [10].
By combining our method with the iteration period computation of
[10], we achieve the same quality and further reduce the execution
time by another 22%. Our method has a greater advantage when
the models scale up.

10. REFERENCES
[1] http://ptolemy.eecs.berkeley.edu/.
[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.

Cyclo-static dataflow. IEEE Trans. on signal processing,
44(2):397–408, 1996.

[3] G. Even, I. Y. Spillinger, and L. Stok. Retiming revisited and
reversed. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 15(3):348–357, 1996.

[4] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten,
B. Theelen, M. Mousavi, A. Moonen, and M. Bekooij.
Throughput analysis of synchronous data flow graphs. In
Proc. of the 6th Int. Conf. on Application of Concurrency to
System Design, page 36. IEEE, 2006.

[5] R. Govindarajan and G. R. Gao. Rate-optimal schedule for
multi-rate dsp computations. The Journal of VLSI Signal
Processing, 9(3):211–232, 1995.

[6] E. Lee and S. Ha. Scheduling strategies for multiprocessor
real-time DSP. In IEEE Global Telecommunications Conf.
and Exhibition, GLOBECOM’89. Communications
Technology for the 1990s and Beyond., pages 1279–1283,
1989.

[7] E. A. Lee. A coupled hardware and software architecture for
programmable digital signal processors. PhD thesis,
University of California, Berkeley, 1986.

[8] E. A. Lee and D. G. Messerschmitt. Static scheduling of



synchronous data flow programs for digital signal
processing. IEEE Trans. on Computers, 36(1), 1987.

[9] C. E. Leiserson and J. B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5–35, 1991.

[10] N. Liveris, C. Lin, J. Wang, H. Zhou, and P. Banerjee.
Retiming for synchronous data flow graphs. In Proc. of the
2007 Asia and South Pacific Design Automation Conf., pages
480–485. IEEE, 2007.

[11] A. Moonen, M. Bekooij, R. van den Berg, and J. van
Meerbergen. Practical and accurate throughput analysis with
the cyclo static dataflow model. In Proc. of the 15th Int.
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 238–245.
IEEE, 2007.

[12] O. Moreira and M. Bekooij. Self-timed scheduling analysis
for real-time applications. EURASIP Journal on Advances in
Signal Processing, 2007:14, 2007.

[13] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee. Joint
minimization of code and data for synchronous dataflow
programs. Formal Methods in System Design, 11(1):41–70,
1997.

[14] T. O’Neil and E. H. M. Sha. Retiming synchronous data-flow
graphs to reduce execution time. IEEE Trans. on Signal
Processing, 49(10):2397–2407, 2001.

[15] K. K. Parhi. VLSI digital signal processing systems: design
and implementation. Wiley India Pvt. Ltd., 2007.

[16] S. Ritz, M. Willems, and H. Meyr. Scheduling for optimum
data memory compaction in block diagram oriented software
synthesis. In Proc. of the 1995 Acoustics, Speech, and Signal
Processing Conf., pages 2651–2654. IEEE, 1995.

[17] N. Shenoy. Retiming: theory and practice. Integration, the
VLSI journal, 22(1-2):1–21, 1997.

[18] N. Shenoy and R. Rudell. Efficient implementation of
retiming. In Proc. of the 1994 IEEE/ACM int. conf. on
Computer-Aided Design, page 233. IEEE, 1994.

[19] S. Sriram and S. S. Bhattacharyya. Embedded
multiprocessors: scheduling and synchronization. CRC
Press, 2009.

[20] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In
Proc. of the 6th Int. Conf. on Application of Concurrency to
System Design, pages 276–278. IEEE, 2006.
http://www.es.ele.tue.nl/sdf3/.

[21] X. Y. Zhu. Retiming multi-rate DSP algorithms to meet
real-time requirement. In Proc. of the 13nd Design,
Automation and Test in Europe, pages 1785–1790. IEEE,
2010.

[22] V. Zivojnovic, S. Ritz, and H. Meyr. Optimizing DSP
programs using the multirate retiming transformation. In
Proc. of EUSIPCO Signal Processing, 1994.

[23] V. Zivojnovic and R. Schoenen. On retiming of multirate
DSP algorithms. In Proc. of the Acoustics, Speech, and
Signal Processing Conf., pages 3310–3313. IEEE, 1996.


